8,708 research outputs found

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Cloud Security in Crypt Database Server Using Fine Grained Access Control

    Get PDF
    Information sharing in the cloud, powered by good patterns in cloud technology, is rising as a guaranteeing procedure for permitting users to advantageously access information. However, the growing number of enterprises and customers who stores their information in cloud servers is progressively challenging users’ privacy and the security of information. This paper concentrates on providing a dependable and secure cloud information sharing services that permits users dynamic access to their information. In order to achieve this, propose an effective, adaptable and flexible privacy preserving information policy with semantic security, by using Cipher text Policy Element Based Encryption (CP-EBE) consolidated with Character Based Encryption (CBE) systems. To ensure strong information sharing security, the policy succeeds in protecting the privacy of cloud users and supports efficient and secure dynamic operations, but not constrained to, file creation, user revocation. Security analysis demonstrates that the proposed policy is secure under the generic bi- linear group model in the random oracle model and enforces fine-grained access control, full collusion resistance and retrogressive secrecy. Furthermore, performance analysis and experimental results demonstrate that the overheads are as light as possible

    Leveraging OpenStack and Ceph for a Controlled-Access Data Cloud

    Full text link
    While traditional HPC has and continues to satisfy most workflows, a new generation of researchers has emerged looking for sophisticated, scalable, on-demand, and self-service control of compute infrastructure in a cloud-like environment. Many also seek safe harbors to operate on or store sensitive and/or controlled-access data in a high capacity environment. To cater to these modern users, the Minnesota Supercomputing Institute designed and deployed Stratus, a locally-hosted cloud environment powered by the OpenStack platform, and backed by Ceph storage. The subscription-based service complements existing HPC systems by satisfying the following unmet needs of our users: a) on-demand availability of compute resources, b) long-running jobs (i.e., >30> 30 days), c) container-based computing with Docker, and d) adequate security controls to comply with controlled-access data requirements. This document provides an in-depth look at the design of Stratus with respect to security and compliance with the NIH's controlled-access data policy. Emphasis is placed on lessons learned while integrating OpenStack and Ceph features into a so-called "walled garden", and how those technologies influenced the security design. Many features of Stratus, including tiered secure storage with the introduction of a controlled-access data "cache", fault-tolerant live-migrations, and fully integrated two-factor authentication, depend on recent OpenStack and Ceph features.Comment: 7 pages, 5 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    Improved Cauchy Reed-Solomon Codes for Cloud Data Retrieval and Secured Data Storage using Role-Based Cryptographic Access and forensic investigation

    Get PDF
    Doling out client consent strategies to PC frameworks presents a huge test in guaranteeing legitimate approval, especially with the development of open frameworks and scattered stages like the cloud.  RBAC  has turned into a broadly involved strategy in cloud server applications because of its versatility. Granting access to cloud-stored data for investigating potential wrongdoings is crucial in computer forensic investigations. In cases where the cloud service provider's reliability is questionable, maintaining data confidentiality and establishing an efficient procedure for revoking access upon credential expiration is essential. As storage systems expand across vast networks, frequent component failures require stronger fault tolerance measures. Our work secure data-sharing system combines role (Authorized) based access control and AES encryption technology to provide safe key distribution and data sharing for dynamic groups. Data recovery entails protecting data dispersed over distributed systems by storing duplicate data and applying the erasure code technique. Erasure coding strategies, like Reed-Solomon codes, guarantee disc failure robustness while cutting down on data storage expenses dramatically. They do, however, also result in longer access times and more expensive repairs. Consequently, there has been a great deal of interest in academic and business circles for the investigation of novel coding strategies for cloud storage systems. The objective of this study is to present a novel coding method that utilizes the intricate Cauchy matrix in order to improve Reed-Solomon coding efficiency and strengthen fault tolerance
    • …
    corecore