641 research outputs found

    From Data to Actions in Intelligent Transportation Systems: A Prescription of Functional Requirements for Model Actionability

    Get PDF
    Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that are data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a “story” intensively producing and consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers’ personal devices act as sources of data flows that are eventually fed into software running on automatic devices, actuators or control systems producing, in turn, complex information flows among users, traffic managers, data analysts, traffic modeling scientists, etc. These information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in other words, for data-based models to fully become actionable. Grounded in this described data modeling pipeline for ITS, we define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We deliberately generalize model learning to be adaptive, since, in the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.This work was supported in part by the Basque Government for its funding support through the EMAITEK program (3KIA, ref. KK-2020/00049). It has also received funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government

    A Survey on Actionable Knowledge

    Full text link
    Actionable Knowledge Discovery (AKD) is a crucial aspect of data mining that is gaining popularity and being applied in a wide range of domains. This is because AKD can extract valuable insights and information, also known as knowledge, from large datasets. The goal of this paper is to examine different research studies that focus on various domains and have different objectives. The paper will review and discuss the methods used in these studies in detail. AKD is a process of identifying and extracting actionable insights from data, which can be used to make informed decisions and improve business outcomes. It is a powerful tool for uncovering patterns and trends in data that can be used for various applications such as customer relationship management, marketing, and fraud detection. The research studies reviewed in this paper will explore different techniques and approaches for AKD in different domains, such as healthcare, finance, and telecommunications. The paper will provide a thorough analysis of the current state of AKD in the field and will review the main methods used by various research studies. Additionally, the paper will evaluate the advantages and disadvantages of each method and will discuss any novel or new solutions presented in the field. Overall, this paper aims to provide a comprehensive overview of the methods and techniques used in AKD and the impact they have on different domains

    Driving performance:International studies on performance management of hospital services and health care systems in times of the COVID-19 pandemic and lessons learnt for its aftermath

    Get PDF
    This thesis explored the field of healthcare performance management and provided insights into key drivers contributing to better performance. Performance management supports reaching individual, organisational, or system goals through setting objectives, developing strategies, organising work, monitoring progress, providing feedback, taking corrective actions, and evaluating outcomes. It is inextricably linked to data and involves managerial and collaborative efforts of healthcare workers in the context of healthcare systems and services. Measurement and management policies and practices across diverse healthcare settings were researched on both hospital and healthcare system levels. With an international scope, most of this work was done during the COVID-19 pandemic, which influenced research focus and methods. The crucial role of data, people and collaboration in organisational and system-level decision-making has been identified and highlighted. Contrasting approaches in utilising performance data were revealed between hospital managers in different geographies. Additionally, the research uncovered innovative, collaborative tools and practices emerging during the pandemic alongside persistent challenges such as data silos and governance issues. This work provides insights into healthcare performance management, guiding future research and policy development toward patient-centric, resilient healthcare. Policy implications stress the importance of investing in managerial training, aligning metrics with desired outcomes, and fostering collaboration for resilient healthcare systems

    Driving performance:International studies on performance management of hospital services and health care systems in times of the COVID-19 pandemic and lessons learnt for its aftermath

    Get PDF
    This thesis explored the field of healthcare performance management and provided insights into key drivers contributing to better performance. Performance management supports reaching individual, organisational, or system goals through setting objectives, developing strategies, organising work, monitoring progress, providing feedback, taking corrective actions, and evaluating outcomes. It is inextricably linked to data and involves managerial and collaborative efforts of healthcare workers in the context of healthcare systems and services. Measurement and management policies and practices across diverse healthcare settings were researched on both hospital and healthcare system levels. With an international scope, most of this work was done during the COVID-19 pandemic, which influenced research focus and methods. The crucial role of data, people and collaboration in organisational and system-level decision-making has been identified and highlighted. Contrasting approaches in utilising performance data were revealed between hospital managers in different geographies. Additionally, the research uncovered innovative, collaborative tools and practices emerging during the pandemic alongside persistent challenges such as data silos and governance issues. This work provides insights into healthcare performance management, guiding future research and policy development toward patient-centric, resilient healthcare. Policy implications stress the importance of investing in managerial training, aligning metrics with desired outcomes, and fostering collaboration for resilient healthcare systems

    FIN-DM: finantsteenuste andmekaeve protsessi mudel

    Get PDF
    Andmekaeve hõlmab reeglite kogumit, protsesse ja algoritme, mis võimaldavad ettevõtetel iga päev kogutud andmetest rakendatavaid teadmisi ammutades suurendada tulusid, vähendada kulusid, optimeerida tooteid ja kliendisuhteid ning saavutada teisi eesmärke. Andmekaeves ja -analüütikas on vaja hästi määratletud metoodikat ja protsesse. Saadaval on mitu andmekaeve ja -analüütika standardset protsessimudelit. Kõige märkimisväärsem ja laialdaselt kasutusele võetud standardmudel on CRISP-DM. Tegu on tegevusalast sõltumatu protsessimudeliga, mida kohandatakse sageli sektorite erinõuetega. CRISP-DMi tegevusalast lähtuvaid kohandusi on pakutud mitmes valdkonnas, kaasa arvatud meditsiini-, haridus-, tööstus-, tarkvaraarendus- ja logistikavaldkonnas. Seni pole aga mudelit kohandatud finantsteenuste sektoris, millel on omad valdkonnapõhised erinõuded. Doktoritöös käsitletakse seda lünka finantsteenuste sektoripõhise andmekaeveprotsessi (FIN-DM) kavandamise, arendamise ja hindamise kaudu. Samuti uuritakse, kuidas kasutatakse andmekaeve standardprotsesse eri tegevussektorites ja finantsteenustes. Uurimise käigus tuvastati mitu tavapärase raamistiku kohandamise stsenaariumit. Lisaks ilmnes, et need meetodid ei keskendu piisavalt sellele, kuidas muuta andmekaevemudelid tarkvaratoodeteks, mida saab integreerida organisatsioonide IT-arhitektuuri ja äriprotsessi. Peamised finantsteenuste valdkonnas tuvastatud kohandamisstsenaariumid olid seotud andmekaeve tehnoloogiakesksete (skaleeritavus), ärikesksete (tegutsemisvõime) ja inimkesksete (diskrimineeriva mõju leevendus) aspektidega. Seejärel korraldati tegelikus finantsteenuste organisatsioonis juhtumiuuring, mis paljastas 18 tajutavat puudujääki CRISP- DMi protsessis. Uuringu andmete ja tulemuste abil esitatakse doktoritöös finantsvaldkonnale kohandatud CRISP-DM nimega FIN-DM ehk finantssektori andmekaeve protsess (Financial Industry Process for Data Mining). FIN-DM laiendab CRISP-DMi nii, et see toetab privaatsust säilitavat andmekaevet, ohjab tehisintellekti eetilisi ohte, täidab riskijuhtimisnõudeid ja hõlmab kvaliteedi tagamist kui osa andmekaeve elutsüklisData mining is a set of rules, processes, and algorithms that allow companies to increase revenues, reduce costs, optimize products and customer relationships, and achieve other business goals, by extracting actionable insights from the data they collect on a day-to-day basis. Data mining and analytics projects require well-defined methodology and processes. Several standard process models for conducting data mining and analytics projects are available. Among them, the most notable and widely adopted standard model is CRISP-DM. It is industry-agnostic and often is adapted to meet sector-specific requirements. Industry- specific adaptations of CRISP-DM have been proposed across several domains, including healthcare, education, industrial and software engineering, logistics, etc. However, until now, there is no existing adaptation of CRISP-DM for the financial services industry, which has its own set of domain-specific requirements. This PhD Thesis addresses this gap by designing, developing, and evaluating a sector-specific data mining process for financial services (FIN-DM). The PhD thesis investigates how standard data mining processes are used across various industry sectors and in financial services. The examination identified number of adaptations scenarios of traditional frameworks. It also suggested that these approaches do not pay sufficient attention to turning data mining models into software products integrated into the organizations' IT architectures and business processes. In the financial services domain, the main discovered adaptation scenarios concerned technology-centric aspects (scalability), business-centric aspects (actionability), and human-centric aspects (mitigating discriminatory effects) of data mining. Next, an examination by means of a case study in the actual financial services organization revealed 18 perceived gaps in the CRISP-DM process. Using the data and results from these studies, the PhD thesis outlines an adaptation of CRISP-DM for the financial sector, named the Financial Industry Process for Data Mining (FIN-DM). FIN-DM extends CRISP-DM to support privacy-compliant data mining, to tackle AI ethics risks, to fulfill risk management requirements, and to embed quality assurance as part of the data mining life-cyclehttps://www.ester.ee/record=b547227

    A User-Centric Approach to Explainable AI in Corporate Performance Management

    Get PDF
    Machine learning (ML) applications have surged in popularity in the industry, however, the lack of transparency of ML-models often impedes the usability of ML in practice. Especially in the corporate performance management (CPM) domain, transparency is crucial to support corporate decision-making processes. To address this challenge, approaches of explainable artificial intelligence (XAI) provide solutions to reduce the opacity of ML-based systems. This design science study further builds on prior user experience (UX) and user interface (UI) focused XAI-research, to develop a user-centric approach to XAI for the CPM field. As key results, we identify design principles in three decomposition layers, including ten explainability UI-elements that we developed and evaluated through seven interviews. These results complement prior research by focusing it on the CPM domain and provide practitioners with concrete guidelines to foster ML adoption in the CPM field
    corecore