1,446 research outputs found

    Development of an efficient Ad Hoc broadcasting scheme for critical networking environments

    Get PDF
    Mobile ad hoc network has been widely deployed in support of the communications in hostile environment without conventional networking infrastructure, especially in the environments with critical conditions such as emergency rescue activities in burning building or earth quick evacuation. However, most of the existing ad hoc based broadcasting schemes either rely on GPS location or topology information or angle-of-arrival (AoA) calculation or combination of some or all to achieve high reachability. Therefore, these broadcasting schemes cannot be directly used in critical environments such as battlefield, sensor networks and natural disasters due to lack of node location and topology information in such critical environments. This research work first begins by analyzing the broadcast coverage problem and node displacement form ideal locations problem in ad hoc networks using theoretical analysis. Then, this research work proposes an efficient broadcast relaying scheme, called Random Directional Broadcasting Relay (RDBR), which greatly reduces the number of retransmitting nodes and end-to-end delay while achieving high reachability. This is done by selecting a subset of neighboring nodes to relay the packet using directional antennas without relying on node location, network topology and complex angle-of-arrival (AoA) calculations. To further improve the performance of the RDBR scheme in complex environments with high node density, high node mobility and high traffic rate, an improved RDBR scheme is proposed. The improved RDBR scheme utilizes the concept of gaps between neighboring sectors to minimize the overlap between selected relaying nodes in high density environments. The concept of gaps greatly reduces both contention and collision and at the same time achieves high reachability. The performance of the proposed RDBR schemes has been evaluated by comparing them against flooding and Distance-based schemes. Simulation results show that both proposed RDBR schemes achieve high reachability while reducing the number of retransmitting nodes and end-to-end delay especially in high density environments. Furthermore, the improved RDBR scheme achieves better performance than RDBR in high density and high traffic environment in terms of reachability, end-to-end delay and the number of retransmitting nodes

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Personal area technologies for internetworked services

    Get PDF

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Kablosuz sensör ağlarinda yönlü antenlerle enerji̇ veri̇mli̇ yönlendi̇rme

    Get PDF
    Without measurements, sustainable development effort can not progress in the right direction. Wireless sensor networks are vital for monitoring in real time and making accurate measurements for such an endeavor. However small energy storage in the sensors can become a bottleneck if the wireless sensor network is not optimized at the hardware and software level. Directional antennas are such optimization technologies at the hardware level. They have advantages over the omnidirectional antennas, such as high gain, less interference, longer transmission range, and less power consumption. In wireless sensor networks, most of the energy is consumed for communication. Considering the limited energy in small scale batteries of the sensors, energy efficient (aware) routing, is one of the most important software optimization techniques. The main goal of the technique is to improve the lifetime of the wireless sensor networks. In the light of these observations, it is desirable to do a coupled design of directional antennas with network software, for fully exploiting the advantages offered by directional antenna technology. In this thesis, the possibilities of doing such integrated design are surveyed and improvements are suggested. The design of the proposed microstrip patch antenna array is discussed and the performance characteristics are assessed through simulations. In the benchmarks, the proposed routing method showed improvements in energy usage compared to the existing approaches.Ölçümler olmadan sürdürülebilir kalkınma çabaları doğru yönde ilerleyemez. Bu tür çabalar için, kablosuz sensör ağları, gerçek zamanlı olarak izleme ve kesin ölçümler yapmak için vazgeçilemez unsurdur. Ancak, sensör ağı, donanım ve yazılım düzeylerinde optimize edilmemişse, sensörlerde enerji yetersizliği görülebilinir. Yönlü antenler, donanım düzeyinde uygulanan optimizasyon teknolojilerinden biri olmakla birlikte, çok yönlü antenlerden farklı olarak, yüksek kazanç, daha az parazit, daha uzun iletim mesafesi ve daha az güç tüketimi sağlarlar. Kablosuz sensör ağlarında enerjinin çoğu iletişim için tüketilir. Sensörlerdeki limitli enerjili küçük ölçekli piller göz önüne alındığında, yazılım düzeyindeki önemli metodlardan biri olan enerji verimli (duyarlı) yönlendirme protokolü, kablosuz sensör ağının genel enerji kullanımını optimize etmek ve ömrünü uzatmak için gereklidir. Bu gözlemlerin ışığında, yönlü anten teknolojisinin sunduğu potansiyel avantajlardan tam olarak yararlanmak için, yönlü antenlerin ağ yazılımıyla birlikte entegre tasarımını yapmak arzu edilir. Bu tezde, böyle bir entegre tasarımın yapılma olasılıkları araştırılmış ve iyileştirmeler önerilmiştir. Tezde, küçük şeritli yamalı anten dizisinin tasarımı tartışılmış ve performans karakteristikleri simulasyonlarla ölçülmüştür. Önerilen yönlendirme algoritması, diğer yönlendirme algoritmaları ile karşılaştırıldığında, enerji kullanımında iyileştirmeler göstermiştirM.S. - Master of Scienc
    corecore