86 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    On the Stability of Distribution Topologies in Peer-to-Peer Live Streaming Systems

    Get PDF
    Peer-to-Peer Live-Streaming-Systeme sind ständigen Störungen ausgesetzt.Insbesondere ermöglichen unzuverlässige Teilnehmer Ausfälle und Angriffe, welche überraschend Peers aus dem System entfernen. Die Folgen solcher Vorfälle werden großteils von der Verteilungstopologie bestimmt, d.h. der Kommunikationsstruktur zwischen den Peers.In dieser Arbeit analysieren wir Optimierungsprobleme welche bei der Betrachtung von Stabilitätsbegriffen für solche Verteilungstopologien auftreten. Dabei werden sowohl Angriffe als auch unkoordinierte Ausfälle berücksichtigt.Zunächst untersuchen wir die Berechnungskomplexität und Approximierbarkeit des Problems resourcen-effiziente Angriffe zu bestimmen. Dies demonstriert Beschränkungen in den Planungsmöglichkeiten von Angreifern und zeigt inwieweit die Topologieparameter die Schwierigkeit solcher Angriffsrobleme beeinflussen. Anschließend studieren wir Topologieformationsprobleme. Dabei sind Topologieparameter vorgegeben und es muss eine passende Verteilungstopologie gefunden werden. Ziel ist es Topologien zu erzeugen, welche den durch Angriffe mit beliebigen Parametern erzeugbaren maximalen Schaden minimieren.Wir identifizieren notwendige und hinreichende Eigenschaften solcher Verteilungstopologien. Dies führt zu mathematisch fundierten Zielstellungen für das Topologie-Management von Peer-to-Peer Live-Streaming-Systemen.Wir zeigen zwei große Klassen effizient konstruierbarer Verteilungstopologien, welche den maximal möglichen, durch Angriffe verursachten Paketverlust minimieren. Zusätzlich beweisen wir, dass die Bestimmung dieser Eigenschaft für beliebige Topologien coNP-vollständig ist.Soll die maximale Anzahl von Peers minimiert werden, bei denen ein Angriff zu ungenügender Stream-Qualität führt, ändern sich die Anforderungen an Verteilungstopologien. Wir zeigen, dass dieses Topologieformationsproblem eng mit offenen Problemen aus Design- und Kodierungstheorie verwandt ist.Schließlich analysieren wir Verteilungstopologien die den durch unkoordinierte Ausfälle zu erwartetenden Paketverlust minimieren. Wir zeigen Eigenschaften und Existenzbedingungen. Außerdem bestimmen wir die Berechnungskomplexität des Auffindens solcher Topologien. Unsere Ergebnisse liefern Richtlinien für das Topologie-Management von Peer-to-Peer Live-Streaming-Systemen und zeigen auf, welche Stabilitätsziele effizient erreicht werden können.The stability of peer-to-peer live streaming systems is constantly challenged. Especially, the unreliability and vulnerability of their participants allows for failures and attacks suddenly disabling certain sets of peers. The consequences of such events are largely determined by the distribution topology, i.e., the pattern of communication between the peers.In this thesis, we analyze a broad range of optimization problems concerning the stability of distribution topologies. For this, we discuss notions of stability against both attacks and failures.At first, we investigate the computational complexity and approximability of finding resource-efficient attacks. This allows to point out limitations of an attacker's planning capabilities and demonstrates the influence of the chosen system parameters on the hardness of such attack problems.Then, we turn to study topology formation problems. Here, a set of topology parameters is given and the task consists in finding an eligible distribution topology. In particular, it has to minimize the maximum damage achievable by attacks with arbitrary attack parameters.We identify necessary and sufficient conditions on attack-stable distribution topologies. Thereby, we give mathematically sound guidelines for the topology management of peer-to-peer live streaming systems.We find large classes of efficiently-constructable topologies minimizing the system-wide packet loss under attacks. Additionally, we show that determining this feature for arbitrary topologies is coNP-complete.Considering topologies minimizing the maximum number of peers for which an attack leads to a heavy decrease in perceived streaming quality, the requirements change. Here, we show that the corresponding topology formation problem is closely related to long-standing open problems of Design and Coding Theory.Finally, we study topologies minimizing the expected packet loss due to uncoordinated peer failures. We investigate properties and existence conditions of such topologies. Furthermore, we determine the computational complexity of constructing them.Our results provide guidelines for the topology management of peer-to-peer live streaming systems and mathematically determine which goals can be achieved efficiently

    Cryptographic error correction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 67-71).It has been said that "cryptography is about concealing information, and coding theory is about revealing it." Despite these apparently conflicting goals, the two fields have common origins and many interesting relationships. In this thesis, we establish new connections between cryptography and coding theory in two ways: first, by applying cryptographic tools to solve classical problems from the theory of error correction; and second, by studying special kinds of codes that are motivated by cryptographic applications. In the first part of this thesis, we consider a model of error correction in which the source of errors is adversarial, but limited to feasible computation. In this model, we construct appealingly simple, general, and efficient cryptographic coding schemes which can recover from much larger error rates than schemes for classical models of adversarial noise. In the second part, we study collusion-secure fingerprinting codes, which are of fundamental importance in cryptographic applications like data watermarking and traitor tracing. We demonstrate tight lower bounds on the lengths of such codes by devising and analyzing a general collusive attack that works for any code.by Christopher Jason Peikert.Ph.D

    SDN Enabled Network Efficient Data Regeneration for Distributed Storage Systems

    Get PDF
    Distributed Storage Systems (DSSs) have seen increasing levels of deployment in data centers and in cloud storage networks. DSS provides efficient and cost-effective ways to store large amount of data. To ensure reliability and resilience to failures, DSS employ mirroring and coding schemes at the block and file level. While mirroring techniques provide an efficient way to recover lost data, they do not utilize disk space efficiently, resulting in large overheads in terms of data storage. Coding techniques on the other hand provide a better way to recover data as they reduce the amount of storage space required for data recovery purposes. However, the current recovery process for coded data is not efficient due to the need to transfer large amounts of data to regenerate the data lost as a result of a failure. This results in significant delays and excessive network traffic resulting in a major performance bottleneck. In this thesis, we propose a new architecture for efficient data regeneration in distribution storage systems. A key idea of our architecture is to enable network switches to perform network coding operations, i.e., combine packets they receive over incoming links and forward the resulting packet towards the destination and do this in a principled manner. Another key element of our framework is a transport-layer reverse multicast protocol that takes advantage of network coding to minimize the rebuild time required to transmit the data by allowing more efficient utilization of network bandwidth. The new architecture is supported using the principles of Software Defined Networking (SDN) and making extensions where required in a principled manner. To enable the switches to perform network coding operations, we propose an extension of packet processing pipeline in the dataplane of a software switch. Our testbed experiments show that the proposed architecture results in modest performance gains

    A Policy-Based Resource Brokering Environment for Computational Grids

    Get PDF
    With the advances in networking infrastructure in general, and the Internet in particular, we can build grid environments that allow users to utilize a diverse set of distributed and heterogeneous resources. Since the focus of such environments is the efficient usage of the underlying resources, a critical component is the resource brokering environment that mediates the discovery, access and usage of these resources. With the consumer\u27s constraints, provider\u27s rules, distributed heterogeneous resources and the large number of scheduling choices, the resource brokering environment needs to decide where to place the user\u27s jobs and when to start their execution in a way that yields the best performance for the user and the best utilization for the resource provider. As brokering and scheduling are very complicated tasks, most current resource brokering environments are either specific to a particular grid environment or have limited features. This makes them unsuitable for large applications with heterogeneous requirements. In addition, most of these resource brokering environments lack flexibility. Policies at the resource-, application-, and system-levels cannot be specified and enforced to provide commitment to the guaranteed level of allocation that can help in attracting grid users and contribute to establishing credibility for existing grid environments. In this thesis, we propose and prototype a flexible and extensible Policy-based Resource Brokering Environment (PROBE) that can be utilized by various grid systems. In designing PROBE, we follow a policy-based approach that provides PROBE with the intelligence to not only match the user\u27s request with the right set of resources, but also to assure the guaranteed level of the allocation. PROBE looks at the task allocation as a Service Level Agreement (SLA) that needs to be enforced between the resource provider and the resource consumer. The policy-based framework is useful in a typical grid environment where resources, most of the time, are not dedicated. In implementing PROBE, we have utilized a layered architecture and façade design patterns. These along with the well-defined API, make the framework independent of any architecture and allow for the incorporation of different types of scheduling algorithms, applications and platform adaptors as the underlying environment requires. We have utilized XML as a base for all the specification needs. This provides a flexible mechanism to specify the heterogeneous resources and user\u27s requests along with their allocation constraints. We have developed XML-based specifications by which high-level internal structures of resources, jobs and policies can be specified. This provides interoperability in which a grid system can utilize PROBE to discover and use resources controlled by other grid systems. We have implemented a prototype of PROBE to demonstrate its feasibility. We also describe a test bed environment and the evaluation experiments that we have conducted to demonstrate the usefulness and effectiveness of our approach

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Multicast resource management for next generation mobile communication systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Smart network caches : localized content and application negotiated recovery mechanisms for multicast media distribution

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1998.Includes bibliographical references (p. 133-138).by Roger George Kermode.Ph.D

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated
    • …
    corecore