
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2002

A Policy-Based Resource Brokering Environment
for Computational Grids
Ahmed Hamdan Al-Theneyan
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Al-Theneyan, Ahmed H.. "A Policy-Based Resource Brokering Environment for Computational Grids" (2002). Doctor of Philosophy
(PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/8zqc-7x67
https://digitalcommons.odu.edu/computerscience_etds/70

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/70?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A POLICY-BASED RESOURCE BROKERING ENVIRONMENT

FOR COMPUTATIONAL GRIDS

Ahmed Hamdan Al-Theneyan
M.Sc. Computer Science, August 1998, Old Dominion University

B.Sc. Computer and Information Sciences, July 1995, King Saud University, Saudi
Arabia

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2002

by

Approved by:

Mi ’ ’ ~ ' Director)

Piyush Mehrotra (Director)

Hussein Abdel-Wahab (Member)

tester GroschCMember)

Ravi Mukkamala (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A POUCY-BASED RESOURCE BROKERING ENVIRONMENT FOR

COMPUTATIONAL GRIDS

Ahmed Hamdan Al-Theneyan

Old Dominion University, 2002

Co-Directors: Dr. Mohammed Zubair

Dr. Piyush Mehrotra

With the advances in networking infrastructure in general, and the Internet in particular,

we can build grid environments that allow users to utilize a diverse set of distributed and

heterogeneous resources. Since the focus of such environments is the efficient usage of

the underlying resources, a critical component is the resource brokering environment that

mediates the discovery, access and usage o f these resources. With the consumer’s

constraints, provider’s rules, distributed heterogeneous resources and the large number of

scheduling choices, the resource brokering environment needs to decide where to place

the user’s jobs and when to start their execution in a way that yields the best performance

for the user and the best utilization for the resource provider.

As brokering and scheduling are very complicated tasks, most current resource

brokering environments are either specific to a particular grid environment or have

limited features. This makes them unsuitable for large applications with heterogeneous

requirements. In addition, most o f these resource brokering environments lack flexibility.

Policies at the resource-, application-, and system-Ievels cannot be specified and enforced

to provide commitment to the guaranteed level of allocation that can help in attracting

grid users and contribute to establishing credibility for existing grid environments.

In this thesis, we propose and prototype a flexible and extensible Policy-based

ResOurce Brokering Environment (PROBE) that can be utilized by various grid systems.

In designing PROBE, we follow a policy-based approach that provides PROBE with the

intelligence to not only match the user’s request with the right set o f resources, but also to

assure the guaranteed level of the allocation. PROBE looks at the task allocation as a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Service Level Agreement (SLA) that needs to be enforced between the resource provider

and the resource consumer. The policy-based framework is useful in a typical grid

environment where resources, most o f the time, are not dedicated. In implementing

PROBE, we have utilized a layered architecture and facade design patterns. These along

with the well-defined API, make the framework independent o f any architecture and

allow for the incorporation of different types o f scheduling algorithms, applications and

platform adaptors as the underlying environment requires. We have utilized XML as a

base for all the specification needs. This provides a flexible mechanism to specify the

heterogeneous resources and user’s requests along with their allocation constraints. We

have developed XML-based specifications by which high-level internal structures of

resources, jobs and policies can be specified. This provides interoperability in which a

grid system can utilize PROBE to discover and use resources controlled by other grid

systems.

We have implemented a prototype o f PROBE to demonstrate its feasibility. We also

describe a testbed environment and the evaluation experiments that we have conducted to

demonstrate the usefulness and effectiveness o f our approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © 2002

by

Ahmed Hamdan AI-Theneyan. Ail rights reserved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DECLARATION

I declare that this thesis is my own work and contains no materials that have been

submitted in any form for another degree or diploma at any university or other tertiary

institution. Information that has been derived from the published and unpublished work

o f others has been referenced.

Ahmed H. AI-Theneyan

October 28,2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents

Hamdan and Aljawharah

my sisters

Asma, Amal, Amany, Sarah, Alanood and Norah

and my brothers

Ibraheem, Mohammed and Abdulmohsen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First and foremost, I would like to express my thanks and gratitude to Allah, the Most

Gracious, the Most Merciful whom granted me the ability and willing to start and

complete this thesis. Indeed, all thanks go to Allah for giving me the motivation,

determination, patience and paving my path to achieve my goals. 1 pray to his greatness

to inspire me the right path to his content and to enable me to continuo the work started in

this thesis to the benefits of my country.

I would like to express my sincere appreciation and gratitude to my advisor, Prof.

Mohammed Zubair and co-advisor, Prof. Piyush Mehrotra whom I have the privilege to

work with. I am very grateful for their time, efforts and understanding throughout my

graduate career and during the completion o f this thesis. I would also like to thank them

for pushing me in the right direction when I was wasting time or missing the point.

To my committee, Profs. Hussein Abdel-Wahab, Chester Grosch, Kurt Maly and

Ravi Mukkamal, thank you for your useful advice, constructive criticism and suggestions

on improving the thesis. I would also like to thank Prof. Irwin Levinstein for being the

chair of my committee.

Far too many people to mention individually have assisted in so many ways during

my work at ODU. They all have my sincere gratitude. In particular, I would like to thank

Aymen Abdelhamid, Saad Al-Sayary, Hesham An an, Prof. Waleed Farag, Mohammed

Kholief, Prof. Xiaoming Liu, Prof. Emad Mohammed, Prof. Shunichi Toida and Ashraf

Wadaa. Also, I would like to thank the faculty and colleagues at the Computer Science

department o f Old Dominion University for their support and encouragement. Special

thanks go to Phyllis Wood and Ida Brown for their kindness and helpful nature in

handling office matters. I also want to acknowledge the help of Suzana Meservey and

Nancy Bollinger who proofread the thesis.

My special gratitude also goes to Abdulhadi Al-Abdulhadi, Abdullah Al-Baddah,

Abdulazeez Al-Bader, Tawfeeq Al-Bakri, Prof. Ahmed Al-Fahaid, Abdullah Al-

Mansoori, Sultan Al-Saadi, Abdulazeez Al-Swaileem, Youssef Al-Thabiti, Khaled Al-

Qadi, Youssef Al-Omran, Prof. Alaaeldin Aly, Ashraf Basha, Mohammed Battishah,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Prof. Aymen Eldeib, Ashraf Elswify, Prof. Elsayed Hemayed, Mahdi Rahoui, Prof. Salah

Serghini, Alaaeldin Sleem, Prof Ahmed Taha, Prof Sameh Yamany and Hamad Al-

Zoman. All have been good friends and supportive brothers in the United States. I am

thankful to for their supports and encouragement over the years. Special thanks also go to

my friends at Muslim Students Association (MSA) and Saudi Students Association

(SSA) of Old Dominion University with whom I practiced my activism during my

staying at ODU. They made me feel Norfolk like home for me.

Many thanks also go to other relatives and friends whose encouragement and support

have remained constant in spite of the distance: Saud AI-Theneyan, Fahad AI-Theneyan,

Naser AI-Theneyan, Abdulmohsen Al-Qabbany, Khaled AI-Dossary, Fahad Al-Fadhel,

Abdulazeez Al-Howaidy, Prof. Mohammed Al-Jlayl, Saad AI-Maliki, Khaled Al-

Mujjayesh, Ahmed Al-Nasser, Ahmed Al-Omran, Abdullah Al-Selaimi, Adeeb AI-

Swaeery and Mohammed Al-Qahtani. I also thank numerous other relatives and friends

whose names did not appear here, I appreciate their supports in the spirit of continuous

friendship and brotherhood.

And last, but not least, no words in the existing contemporary dictionaries will be

enough to use to appreciate the supportive will of my dearest parents and their prayer,

love, sacrifice and endless support in all my endeavors. They have never relented in their

prayers, jointly supported by my beloved sisters and brothers. To them, I owe this

dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES.. xv

LIST OF FIGURES..xvii

Chapter

I. INTRODUCTION.. I

1.1 Background...4

1.2 Resource Brokering Environment: Functionality and Characteristics.................6

1.2.1 Functionalities.. 6

1.2.2 Characteristics.. 8

1.3 Objective... 10

1.4 Approach... 11

1.5 Focus and Contribution...13

1.6 Organization of the thesis...15

Q. RELATED WORK.. 16

2.1 Batch Queuing Systems..16

2.1.1 NQS... 17

2.1.2 PBS... 17

2.1.3 DQS... 18

2.1.4 LSF.. 18

2.1.5 LoadLeveler... 18

2.2 Grid Systems... 19

2.2.1 NetSoIve..19

2.2.2 Ninf...21

2.2.3 Globus...22

2.2.4 Legion...24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Chapter Page
2.2.5 DISCWorld... 25

2.2.6 Sun Grid Engine..26

2.3 Brokering Systems..26

2.3.1 Condor... 26

2.3.2 AppLeS... 27

2.3.3 Nimrod.. 28

2.3.4 EZ-Grid..28

2.4 Integrated systems...29

2.4.1 Gateway.. 29

2.4.2 UNICORE... 29

2.5 Other related systems..29

2.5.1 RCS..30

2.5.2 SNIPE..30

2.5.3 PARDIS...30

2.6 Arcade..30

2.6.1 Overview..31

2.6.2 Architecture..31

2.6.3 Application Specification..32

2.7 Related Technologies..35

2.7.1 CORBA..36

2.7.2 DCOM..36

2.7.3 RMI.. 37

2.7.4 Jini.. 37

2.7.5 Jiro.. 39

2.7.6 J2EE...40

2.7.7 JXTA..41

2.8 Conclusion.. 41

III. PROBE: A POLICY-BASED RESOURCE BROKERING ENVIRONMENT

FOR COMPUTATIONAL GRIDS.. 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Page
3.1 Overview... 44

3.2 Design Goals... 44

3.3 Architecture... 45

3.3.1 Client Interface Module...45

3.3.2 Resource Broker... 47

3.3.3 Policy Enforcement Manager... 47

3.3.4 Resource Repository.. 48

3.3.5 Resource Monitor... 49

3.3.6 Job Repository... 49

3.3.7 Job Monitor.. 49

3.3.8 Resource Daemon.. 50

3.4 Scenarios... 50

3.5 Meeting Design Goals...52

3.5.1 Platform Independence.. 52

3.5.2 Modularity...52

3.5.3 Scalability...54

3.5.4 Site Autonomy..55

3.5.5 Interoperability..56

3.6 Functionalities... 59

3.6.1 Resource Brokering..59

3.6.2 QoS Brokering..62

3.6.3 Monitoring..64

3.7 Summary... 66

IV. RESOURCE BROKER: A DETAILED ARCHITECTURAL VIEW....................68

4.1 Overview... 68

4.2 Architecture... 68

4.3 Resource Daemon: Detailed Architecture.. 71

4.4 Design Pattern... 73

4.5 Flexible Job Language (FJL)... 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Page
4.6 Job State Transition Diagram... 77

4.7 Resource Types... 78

4.7.1 Resource Specification Language..79

4.8 Issues..84

4.8.1 Rescheduling...84

4.8.2 Allocation Assurance... 85

4.9 Summary... 86

V. POUCY-BASED FRAMEWORK FOR RESOURCE BROKERING.................... 87

5.1 Overview.. 87

5.2 Philosophy.. 87

5.3 Design Goals.. 89

5.4 Architecture.. 90

5.5 Caching.. 93

5.6 Policy Specification Language... 94

5.6.1 Syntax... 95

5.6.2 XML representation of PSL... 96

5.6.3 Examples... 97

5.7 Policy Parsing... 98

5.8 Policy Optimization..99

5.9 Actions...100

5.10 Summary..102

VI. IMPLEMENTATION.. 103

6.1 Environment...103

6.2 Enhancing Jini for Use Across Non-Multicastable Networks..........................105

6.2.1 Global Tunneling Lookup Service (GTLS)...107

6.2.2 Tunneling Service (TS)...108

6.2.3 Jini Modifications... 109

6.2.4 A scalable alternative for super grids..110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

Chapter Page
6.2.5 Experimental Results..113

6.2.6 Future Enhancements..115

6.3 Client Interfaces... 116

6.3.1 Command-line Interface...116

6.3.2 Visual Interface... 117

6.4 Package Design... 120

6.4.1 Package probe... 120

6.4.2 Package probe.common..120

6.4.3 Package probe.core... 121

6.4.4 Packag e probe.repository...122

6.4.5 Packag e probe.algorithms...123

6.4.6 Packageprobe.util... 127

6.4.7 Package probe.resources..128

6.4.8 Package probe.Jobs... 128

6.4.9 Package probe.daemons.. 130

6.4.10 Package probe.policy.. 133

6.4.11 Package probe.client... 134

6.5 Summary.. 135

VH. EVALUATION AND EXPERIMENTAL RESULTS..136

7.1 Overview...136

7.2 Experimental Testbed..137

7.3 Test Applications... 141

7.3.1 Single Job... 141

7.3.2 Co-Allocation Job..142

7.3.3 Parametric Job..142

7.3.4 Pathfinder - Sample DAG application...143

7.4 Experiments..146

7.4.1 Qualitative Experiments.. 146

7.4.2 Quantitative Experiments.. 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiv

Chapter Page
7.5 Conclusion.. 166

v m . CONCLUSIONS AND FUTURE WORK... 168

8.1 Conclusions.. 168

8.2 Future Work...169

8.3 PROBE Extensions... 170

8.3.1 Predictor.. 171

8.3.2 Fault Handler..172

8.3.3 Event Handler...174

8.4 Enhancing Jini to support Scalability.. 175

8.4.1 Overview... 175

8.4.2 Proposed Solution...176

8.4.3 Scenario... 178

REFERENCES.. 180

APPENDIX A Experiment Results.. 197

A. I.Overhead o f broadcasting/delivery for the Collaboration approach............... 197

A.2.0verhead o f broadcasting/delivery for the Hierarchal Tunneling approach.. 197

A.3.0verhead o f XML Parsing.. 198

A.4.Performance o f Resource Matching... 199

A.5.Performance of SLA Monitoring.. 199

A.6.Memory usage... 200

A.7.0veraII Overhead of Brokering.. 203

APPENDIX B List o f Acronyms and Terms...204

APPENDIX C Glossary.. 207

APPENDIX D Extended Bibliography.. 212

VTTA...216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

LIST OF TABLES

Table Page

1. COMPARISON OF THE RELATED WORKS... 42

2. ALLOCATION VISION FOR DIFFERENT TYPES OF GRID RESOURCES........79

3. FURTHER SPECIFICATIONS ABOUT GLOBUS DOMAIN................................138

4. FURTHER SPECIFICATIONS ABOUT PROBE I GRID..139

5. FURTHER SPECIFICATIONS ABOUT PROBE H GRID......................................140

6. VERSION NUMBERS OF THE SOFTWARE PACKAGES USED IN THE

EXPERIMENTS... 140

7. SUMMARY OF THE QUALITATIVE EXPERIMENTS... 155

8. OVERHEAD OF BROADCASTING/DELIVERY FOR THE

COLLABORATION APPROACH... 197

9. OVERHEAD OF BROADCASTING FOR THE HIERARCHAL TUNNELING

APPROACH... 197

10. OVERHEAD OF DELIVERY FOR THE HIERARCHAL TUNNELING

APPROACH... 198

11. PARSING TIME FOR DIFFERENT XML DOCUMENTS......................................198

12. PERFORMANCE OF RESOURCE MATCHING UNDER DIFFERENT DATA

RETRIEVAL APPROACHES...199

13. PERFORMANCE OF SLA MONITORING UNDER DIFFERENT DATA

RETRIEVAL APPROACHES...199

14. MEMORY USAGE FOR SMALL GRID WHEN NO SLAS ARE APPLIED....... 200

15. MEMORY USAGE FOR MEDIUM GRID WHEN NO SLAS ARE APPLIED.... 200

16. MEMORY USAGE FOR LARGE GRID WHEN NO SLAS ARE APPLIED....... 201

17. MEMORY USAGE FOR SMALL GRID WITH AN AVERAGE OF 5 SLAS

PER RESOURCE...201

18. MEMORY USAGE FOR MEDIUM GRID WITH AN AVERAGE OF 5 SLAS

PER RESOURCE...202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvi

Table Page
19. MEMORY USAGE FOR LARGE GRID WITH AN AVERAGE OF 5 SLAS

PER RESOURCE...202

20. COMPLETION TIME OF A 100000 ms JOB UNDER DIFFERENT

EXECUTION ENVIRONMENTS.. 203

21. BROKERING OVERHEAD FOR DIFFERENT JOB SIZES UNDER THE

PROBE/GLOBUS EXECUTION ENVIRONMENT.. 203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvu

LIST OF FIGURES

Figure Page

1. A Typical Grid Environment.. 5

2. A Typical Batch Queuing System..17

3. The NetSolve System.............. .. 19

4. The Ninf System.. 21

5. The Globus Resource Management Architecture... 23

6. The Legion Resource Management Infrastructure... 25

7. The Arcade system architecture.. 32

8. Snapshots o f the visual specification in Arcade.. 35

9. Sequence o f steps required to use Jini Technology... 38

10. Architecture of the Jiro Technology.. 40

11. PROBE Architecture... 46

12. Using Jini in PROBE.. 54

13. Different approaches in applying the layered architecture in the repository objects.. 57

14. Different grid environments interoperate via PROBE.. 59

15. Brokering Scenarios.. 61

16. Brokering cycle..63

17. Schema to specify disseminating options.. 65

18. Overall Architecture of the Resource Broker..69

19. An overall event diagram for interaction between the different components of the

Resource Broker...70

20. PROBE Resource Daemon...72

21. Different platform adaptors for the resource daemon... 73

22. Partial Class Diagram that illustrates the use o f the Facade Design Pattern in

PROBE’s brokering infrastructure... 74

23. Flexible Job Language (FJL).. 75

24. Example FJL script representing a sample DAG application....................................... 76

25. A Job State Transition Diagram in the Resource Broker.. 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure Page
26. Class diagram of the resource types... 78

27. A schema for specifying resources.. 82

28. An example script of a resource using the resource specification language................83

29. Using the Resource Parser to write and retrieve resources information to/from the

Resource Repository...84

30. PROBE’s vision of the allocation process...88

31. Overall Architecture of the Policy Enforcement Manager...91

32. Architecture o f the Local Policy Enforcer...93

33. Schema for the Policy Scripting Language..97

34. Example PSL script describing a resource policy... 97

35. Example PSL script describing a client policy... 98

36. Action Flow... 101

37. Example of a dynamic replaceable parameter...101

38. Different non-multicastable subnets connected by the Tunneling Service (TS) 107

39. New format o f the outgoing request message.. 110

40. Hierarchal Tunneling Approach...I l l

41. Class diagram shows the implementing the Tree Algorithm.................................... 112

42. Overhead of the Collaboration approach..114

43. Overhead of the Hierarchal Tunneling approach...115

44. Command line interface o f PROBE..117

45. Snapshots of the resource-related screens.. 118

46. Snapshots of the request-related screens.. 119

47. Class diagram o f Repository Adaptors.. 123

48. Class diagram o f Scheduling Algorithms.. 124

49. Pseudo-algorithm for the Static EA-CPM...125

50. Class diagram o f Queuing Algorithms.. 126

51. PROBE PIuglnHelper Utility..127

52. PROBE ResourceDaemonHelper Utility... 127

53. Class diagram of Application Types.. 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xix

Figure Page
54. Class diagram of Resource Daemons...131

55. Class diagram of Action Infrastructure.. 134

56. PCG Test Bed Environment.. 137

57. FJL script representing a sample single application..141

58. FJL script representing a Co-Allocation application...142

59. FJL script representing a Parametric application...143

60. The Pathfinder System.. 144

61. FJL script representing the Pathfinder application..145

62. Basic PROBE with different plug-ins.. 147

63. Steps involved in successful execution of a Single Job.. 150

64. Scenario of the waiting/rescheduling experiment..152

65. Scenario of the SLA monitoring experiment... 154

66. Parsing time for different XML document.. 159

67. Performance of Resource Matching under different data retrieval approaches 160

68. Performance of SLA Monitoring under different data retrieval approaches............. 161

69. Memory usage for different kinds of grids where no SLAs are applied.....................162

70. Memory usage for different kinds o f grids with an average of five SLAs per

resource.. 163

71. Completion time of a 100 seconds job under different execution environments 164

72. Brokering overhead of a 100 seconds job under different execution environments. 165

73. Brokering overhead for different job sizes under the PROBE/Globus execution

environment...166

74. Architecture of Extended PROBE..171

75. The Prediction Process.. 172

76. MS Outlook recurrence window...174

77. Implementing the Load class..176

78. Implementing the Load-balancing algorithm... 177

79. Scenario of the load balancing process...178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER I

INTRODUCTION

The increasing availability o f inexpensive, high-speed computational resources is making

it feasible for engineers and scientists to address large-size simulations and computational

problems. Multidisciplinary Design Optimization (MDO) methods, for example, are

being explored at NASA Langley Research Center (LaRC) for the design and

optimization of aerospace vehicles [87]. Very often, these problems require

heterogeneous computational resources that are distributed geographically. For example,

simulating the airflow around an airplane may require a Computational Fluid Dynamics

(CFD) code to be run on a supercomputer, whereas a workstation may be sufficient for

the control code.

Due to current advances in networking infrastructure, specifically in the Internet,

many groups, both research and commercial, are attempting to build grid environments

that allow users to utilize distributed heterogeneous resources to solve their problems

[28],[45],[110]. A key component in these grid environments is the resource brokering

environment, since management o f the shared resources is central to building an efficient

grid system. In such environments, the broker’s primary role is to efficiently schedule

resources based on the user’s requirements and the constraints placed by the resource

providers. That is, given a set of application requirements and the capabilities and status

o f the resources under its control, the resource brokering environment acts as a

matchmaker, choosing the right set of resources for the job. This may include co­

allocation, in which multiple resources need to be simultaneously allocated to complete a

job, and advanced reservations, wherein resources may need to be reserved for use at a

future time to satisfy some real-time constraints.

A grid environment is generally dynamic in nature since the sets o f resources

comprising the system are quite varied and are always changing. The resource brokering

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

environment should be able to handle a diverse set o f resources, ranging from

computational resources to data resources, including data from real-time instruments.

These resources may lie in different administrative domains, each with its own set of

policies and rules for access and usage. The resource brokering environment needs to be

flexible enough to accommodate policies for both the provider and the consumer, and the

rights of both need to be respected. In addition, the resource brokering environment has

to be scalable, not only from the point of view o f the number of resources it is handling,

but also with respect to the number of clients wishing to use its services. The resource

brokering environment also should be able to handle a variety of client interfaces, ranging

from interactive queries to batch applications.

Several research groups are implementing resource brokering environments for grid

systems [3],[15],[18],[25],[29],[42],[59],[89],[115]. Most of these resource brokering

environments are either specific to a grid system or have limited features that make them

unsuitable for large applications with heterogeneous requirements. For example,

resources are assumed to be dedicated and their load is assumed to be predictable; tasks1

are assumed to be profiled where resource usage can be estimated in advance. Such

restrictions discourage resource providers and resource consumers from using the

underlying grid. In addition, the issue of fairness to users who are looking for the

satisfaction o f the job’s requirements during the lifetime of the allocation, has not been

addressed by most of these brokering efforts.

The focus of our work is to design and implement a general-purpose, modular and

integrated Policy-based ResOurce Brokering Environment (PROBE) with well-defined

Application Programming Interfaces (APIs) that can easily be utilized in various grid

environments to develop brokering tools. PROBE has all the critical features that are

necessary to support large-scale applications with varying requirements. We divide

PROBE into a set of extensible and replaceable modules that define the basic services

and capabilities necessary for a distributed resource brokering environment. The

1 We use the terms request, application, job and task interchangeably to refer to the user’s
application, or one of its sub-modules, being created to satisfy the user’s request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

flexibility and the ease o f replacement o f these modules make future users’ requirements

easier to satisfy. Moreover, scalability and high availability can be achieved by allowing

modules to be replicated across distributed resources.

The main module of PROBE is a Resource Broker that can support a variety of

underlying scheduling heuristics. The design o f the Resource Broker is based on the

facade design pattern and uses XML as the underlying specification language. Facade

objects are introduced to provide single and simplified interface to more general facilities

of a subsystem This approach provides support for plug-and-play of any scheduling

algorithm or application problem the user might provide. PROBE also adopts a policy-

based approach for resource brokering. The Policy Enforcement Manager is the module

that is in charge of enforcing policies and providing allocation assurance. Both the client

and the resource provider can identify their policies. When requested, the Policy

Enforcement Manager finds the appropriate resource(s) that can match the client request

and then returns the set to the Resource Broker, which in turn creates a schedule and

starts the allocation. PROBE goes far beyond the normal matching/allocation process of a

typical resource brokering environment to assure the guaranteed level o f allocation. It

does so by introducing the concept of Service Level Agreements (SLAs) and policy

enforcement. In contrast to other resource brokering environments, PROBE looks at the

allocation process as an SLA between the client and the resource provider that needs to

be enforced.

In implementing PROBE, we leverage off existing technologies where possible. For

example, we use Java for implementing the modules allowing us to build a platform-

independent system. Similarly, we use XML to describe resources, user’s requests and

their policies, since it provides a flexible mechanism to specify the heterogeneous

resources along with their allocation constraints. Sun’s Jini technology [14],[73], provides

the lookup and discovery protocols necessary to keep track of a dynamic set of services.

However, our experience with Jini has revealed some problems in using the technology

for resource management, such as the lack o f security and the inability to use across

networks that do not support multicasting. To address this limitation, we enhanced Jini

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

with a tunneling service that propagates Jini’s multicast messages across such networks

[9].
Finally, we have evaluated to show that it delivers what it promises in terms of

functionalities, characteristics and performance. We describe an experimental testbed that

we use to carry out our experimental results. We show how we can integrate PROBE

with different plug-ins such as different application types, scheduling algorithms, queuing

algorithms, and platform adaptors. For example, we have integrated PROBE with Globus

and Sun Grid Engine, the most popular and widely accepted systems in the grid

community. We also implement some static and dynamic scheduling algorithms for

Directed Acyclic Graph (DAG) applications based on the classic Critical Path Method

(CPM). This provides a testbed for our experiments to evaluate PROBE with respect to

its ease of use and deployment. We utilize a range of job types ranging from sample jobs

to real test-case application, Pathfinder, an aircraft Multidisciplinary Design Optimization

(MDO) problem [87]. We utilize these job types to conduct a number of experiments

with different requirements to evaluate the performance of our framework. These

experiments demonstrate the effectiveness of our technique and the applicability of

PROBE as a general-purpose resource brokering environment.

In this chapter, we first give a brief overview of grid environments before focusing on

a resource brokering environment, a major component of such environments that

mediates the discovery, access and usage o f these resources. Then, we describe a high-

level approach o f a general-purpose policy-based resource brokering environment in

terms of its functionality and desirable characteristics.

1.1 Background

A grid environment is one that combines geographically distributed resources into a

virtual metacomputer in support o f large-scale problems. This virtual metacomputer can

be used to access powerful computational resources that are not available at one

particular site, to aggregate computational resources superior to the ones offered by a

single site, and to exploit the power o f parallelism [3],[22],[46].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Front-End Clients

Fig. 1. A Typical Grid Environment

As shown in Fig. I, a typical grid environment is usually comprised of a three-tier

architecture. The first tier provides the user interface. The second tier, also called the

middle tier, consists of a set of cooperating management modules that interface the first

tier with the back-end resources. The second tier typically includes the Communication

Manager, which acts like a mediator between the different components providing the

basic communication infrastructure for the system; the Security Manager, which controls

access to the system; the Workflow Manager, which manages the overall automation of

the users’ processes; the Data Manager, which handles access to shared data in the

system; and the Resource Brokering Environment, which manages the distributed

heterogeneous collection o f shared resources o f the system. The third tier consists of the

distributed collection o f shared resources that execute the users’ applications. In general,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

a lightweight daemon resides on each resource, providing a gateway to that resource.

Most of the existing grid systems, as we explain in chapter II, employ this architecture

with slight variations in the middle tier functionalities based on the scope and objectives

o f the system.

1.2 Resource Brokering Environment: Functionality and Characteristics

For the efficient management o f the shared resources, we must have a resource brokering

environment that provides easy access to and utilization of the resources in a secure,

scalable and robust manner. The resource brokering environment is mainly tasked with

monitoring, brokering and providing an interface to the diverse, heterogeneous resources

o f the environment.

We focus here on the resource brokering environment component of grid

environments, describing desired functionalities and characteristics. Later in this chapter,

we present an overall view o f architecture for a general-purpose resource brokering

environment in terms of these functionalities and characteristics.

1.2.1 Functionalities

The main functionalities of a resource brokering environment are monitoring, brokering,

and prediction. Resource monitoring is an active area o f research [61],[67]. The resource

brokering environment has to keep track o f the current status of the available resources.

Each resource generally has some static characteristics, e.g., the speed of the CPU on a

compute engine, along with some dynamic attributes, e.g., the load on a machine. The

resource brokering environment should keep track of not only the static, but also the

dynamic information.

Resource brokering is one o f the most challenging issues in building a grid

environment [117]. For the efficient use of distributed shared resources, the resource

brokering environment has to support brokering in various ways:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

1. Resource allocation. The resource brokering environment is responsible for

allocating resources to various tasks of an application. This can be done in several

ways: Client-Controlled Allocation is when the client specifies the resource to the

resource brokering environment; Broker-Controlled Allocation is when the

resource brokering environment decides for the client based on some client-

specified constraints. In either case, the resources may be allocated statically [4],

i.e., before the start o f execution, or dynamically [5], where the allocation may

change during execution due to resource failure, poor performance, optimization,

etc.

2. Co-allocation. For some applications, the resource brokering environment needs

to allocate multiple resources, ensuring that a set of resources is available for use

simultaneously.

3. Advanced reservation. Some mission-critical applications, such as real-time

applications, require resources to be available at a certain time. For these

applications, advanced reservation is important, because it ensures that a resource

is available for use at the required time [44]. Advance reservation is generally

required to guarantee co-allocation of resource.

4. Rescheduling. Sometimes, due to resource failure, job failure, poor performance,

load imbalance, optimization issues, etc., the resource brokering environment has

to adjust the current schedule. This might include process migration, where the

resource brokering environment needs to save the execution state of the process

(variables, stack, and the point of execution).

5. Job monitoring. The resource brokering environment has to keep track of all the

jobs that occupy the managed resources. Sometimes, due to poor performance,

resource failure or fairness issues, a job has to be stopped, resumed, cancelled or

migrated to another resource.

Also, for efficient scheduling o f resources, it is more useful for the resource brokering

environment to use an estimate o f the performance in the near future rather than current

performance. Based on some historical performance information, the resource brokering

environment should be able to predict the performance each resource is going to deliver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

at the time of the allocation [119],[121], This could result in more efficient scheduling of

the resources.

In a typical grid environment, the resource brokering environment works in

conjunction with the Security Manager to authenticate and authorize all the resource

requests using the credentials provided within the request. However, the resource

brokering environment does not ensure the integrity of the credentials. This is assumed to

be part of the Security Manager design. A detailed discussion of security is beyond the

scope of this thesis.

1.2.2 Characteristics

We outline here the desirable characteristics o f a resource brokering environment. We

use these characteristics later as base requirements in designing PROBE.

• Resource Heterogeneity: Grid environments can include a variety of resources,

each with different architectures, different operating systems, different

configurations, different vendors and different software availability. The resource

brokering environment needs to be flexible enough to accommodate all types of

resources and manage them efficiently.

• Modularity: The resource brokering environment has to be flexible enough to

handle the dynamic behavior o f the resources and the unpredictable needs of the

clients. Over time, new functionalities may need to be added and the existing ones

modified or removed. The resource brokering environment’s components should

be modular so that they can be extended, modified or replaced without interfering

with other parts of the system.

• Interoperability: The resource brokering environment should have an open, rich

Application Programming Interface (API) and should use some public standards

allowing grid systems to interoperate. Recently, there has been some effort to

provide interoperability among existing grids. For example, the Grid

Interoperability Project (GRIP) [52] is a research project that investigates the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

interoperability o f Globus and UNICORE. An interoperability layer has been

developed to map the two grids.

• Scalability: The number of resources, clients and required functionality can grow

without any limitations; the performance of the resource brokering environment

should scale without excessive degradation. The resource brokering

environment’s architecture should be scalable enough to handle the dynamic

behavior of the resources. A service that may prove to be a bottleneck must be

replicated, a hierarchy of services can then be constructed and the load can be

balanced among the replicated components using any o f the available load-

balancing techniques [32],[34],[108].

• Platform independence: The resource brokering environment should be

platform-independent so that it can function on a variety of platforms (e.g., Linux,

NT, or Solaris) without any modifications.

• Fault tolerance: In a mission-critical system such as the resource brokering

environment, which requires high availability, fault-tolerance is a very critical

issue [113]. A failure in one o f its components should not affect the resource

brokering environment in general. The resource brokering environment should

also be able to keep track o f all the available resources and be aware o f the

failures as soon as they occur. A detailed discussion of the fault tolerance issue is

outside the scope of this thesis.

• Support for site autonomy: A grid environment consists of a distributed

collection of shared resources, generally controlled by different administrative

domains. Administrators in such domains want to make sure that their systems are

safe, secure and available to their priority users. Each may have their own set of

rules and policies. The resource brokering environment needs to be flexible

enough to accommodate these policies.

• Heterogeneous Client Interfaces: One of the main characteristics o f a resource

brokering environment is to support a diverse set o f client interfaces in which the

client can interact with the system efficiently. Examples include interactive mode,

both command-line and visual, that are easy to use and set the user free from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

coding. Batch mode is another way, though it may require some programming

effort. This can be done by providing an interface to an existing programming

language such as Java, C, FORTRAN, etc. or by providing some user-friendly

scripting mechanism for the use of the client.

1.3 Objective

Efficient resource brokering is one of the most important features a typical grid

environment must have. For the efficient use o f distributed shared resources, the resource

brokering environment has to support brokering in various ways which might include

allocation, co-allocation, dynamic scheduling, support o f varying scheduling heuristics

and job monitoring. In such an environment where resources are most often not

dedicated, it is very important to assure the client that the quality o f the allocation is

guaranteed even after the allocation is made. Both resource providers and resource

consumers want to specify their policies, and the rights o f both need to be respected.

In building grid systems, and resource brokering environments in particular, different

approaches can be applied. For example, a resource brokering environment could store

resource information using a replicated network directory service such as the Lightweight

Directory Access Protocol (LDAP) [62] or RDBMS, which enables complex queries to

span and aggregate many resources. Similarly, scheduling algorithms can vary from one

system to another. It is not known which approaches are best. Therefore, it is important to

give the grid systems the flexibility to adopt different approaches as their environments

require.

Advancements in networking infrastructure have fueled a growing interest in

developing grid environments that allow users to utilize distributed heterogeneous

resources to solve their problems. We have examined several systems

[3],[15],[18],[25],[29],[42],[59],[89],[115], most o f which are either specific to a grid

system or have limited features that make them unsuitable for large applications with

heterogeneous requirements. For example, some resource brokering environments, such

as system-centric ones [80], allow only resources to specify their policies; others,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

application-centric ones [18], allow only clients to specify their policies. Moreover, the

underlying assumptions made while developing these environments make interoperability

with other grid systems an issue. For example, sometimes resources are assumed to be of

homogenous types, dedicated and their load predictable or tasks are assumed to be

profiled where resource usage can be estimated in advance. Such restrictions discourage

resource providers and resource consumers from using the underlying grid. In addition,

fairness is one o f the issues that has not been addressed by most o f these brokering efforts

where the user is looking for the assurance that its job's requirements are going to be

satisfied during the lifetime of the allocation.

The main objective o f this work is to build a general-purpose policy-based resource

brokering infrastructure that can easily accommodate different types o f grid

requirements. With this goal in mind, we have designed and implemented PROBE, a

general-purpose, modular, heterogeneous, distributed Policy-based ResOurce Brokering

Environment that can be utilized by various grid environments.

In the following subsection, we give an overview of the approach that we have

chosen to implement PROBE. In chapter HI, we describe in detail the architecture of

PROBE.

1.4 Approach

As mentioned earlier in this chapter, the resource brokering environment is one o f the

major components o f a typical grid environment. The principal purposes of a resource

brokering environment is to keep track o f the distributed resources that comprise the

execution environment and to provide information about these resources to the client

upon request. Earlier, we described a desired set of functionalities and characteristics for

a resource brokering environment. Based on these, we have designed and implemented a

Policy-based ResOurce Brokering Environment (PROBE), as shown in Fig. 11. PROBE

is a modular and fully-integrated resource brokering environment framework with well-

defined APIs flexible enough to be utilized on various grid environments. As we explain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

in Chapter H, no existing resource brokering environment provides all these

functionalities nor has all these characteristics.

PROBE has been divided into a set of extensible and replaceable modules, where

each module implements a specific function. These modules interact with each other to

achieve the overall functionality o f PROBE. The Client Interface Module provides an

interface to interact with different clients, including other PROBE deployments. The

Resource Repository maintains up-to-date information and historical performance

information about all the available resources. The Resource Broker is the core component

of PROBE that allocates resources based on client’s requirements. The Policy

Enforcement Manager works with the Resource Broker in finding resources and is

responsible for enforcing policies. The Resource Monitor keeps track o f the current status

of the resources and updates the Resource Repository periodically. The Job Monitor

monitors the execution o f the jobs that occupy the managed resources while the Job

Repository keeps information about all the currently running jobs. The PROBE

infrastructure has been implemented using Jini technology that provides a plug-and-play

networking environment [14]. A detailed discussion about these modules and the

approaches that we have followed in implementing them will be given in chapter HI.

PROBE adopts a policy-based approach for resource brokering in which both the

clients and the resource providers can identify their policies. In order to provide a

common understanding about allocation quality and responsibilities, PROBE uses a

Service Level Agreement (SLA), which can be viewed as a contract between the resource

provider and the resource consumer. PROBE goes far beyond allocating resources to

provide allocation assurance by enforcing SLAs and assuring that the appropriate actions

will be taken in case o f violating the agreements. By committing to provide the

guaranteed level of allocation, PROBE provides one means o f attracting grid users and

contributes to establishing credibility to existing grid environments. The policy

framework is explained in great detail in chapter V.

We end this subsection by describing a typical scenario that illustrates how PROBE

handles a client’s request. Consider a situation in which a client sends a job consisting of

sub-tasks, their dependencies and constraints through one o f PROBE’s client APIs. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Client Interface Module on receiving the problem description creates a Job object and

passes the request to the Resource Broker. The Resource Broker consults with the Policy

Enforcement Manager, which then tries to find the appropriate matched resource(s) and

returns the set to the Resource Broker. Given this set of resources, the Resource Broker

constructs a schedule based on the underlying scheduling algorithm, the user’s job and

the provided sub-set o f resources. As each sub-task in the job gets allocated onto the

designated resources, a Service Level Agreement (SLA) is established between the client

and the resource provider based on the client’s terms; the Policy Enforcement Manager is

notified to start monitoring that SLA and the Job Monitor is informed so that it can keep

track of the job. After the successful completion of the last sub-task, the Resource Broker

terminates the schedule.

1.5 Focus and Contribution

To support the idea that a general-purpose policy-based resource brokering environment

can add a significant value to grid environments, we have made several novel research

contributions during the work of this thesis. The main contributions are:

• Methodology and prototype implementation of a general-purpose policy-

based resource brokering infrastructure that can be easily utilized by various

grid systems. In building grid systems, and brokering environments in

particular, different approaches can be applied. It is not known which

approaches are the best. The layered approach, along with the fa£ade design

patterns and the well-defined APIs give grid systems the required flexibility to

adopt different approaches.

• An interoperable brokering infrastructure that acts as a mediator in which a

grid system can use to discover and use resources controlled by other grid

systems. The Global Grid Forum (GGF) [47] is the main forum that is

developing interoperable standards for the grid. PROBE provides a rich, open

API and a set of specifications based on the public standards proposed by the

Global Grid Forum and standard tools such as XML. The script specifications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

of resources, jobs and their associated policies are based on XML. Using

XML allows us to leverage off existing freely available XML parsers and

editors to develop our tools. Also, such an XML-based specification presents

the potential of inter-framework portability. With its open architecture, rich

interfaces and the use o f XML as the underlying specification language,

PROBE can be viewed as an interoperability layer that maps existing grids.

• Policy-based resource brokering framework that goes far beyond the typical

matching/allocation process to provide allocation assurance. The policy-based

framework allows both the resource consumers and the resource providers to

specify their policies and goes further in assuring that the level o f the

allocation is guaranteed even after the allocation is made. For each allocated

task, PROBE creates an SLA and continues to monitor that SLA assuring that

the appropriate action(s) (if any) are taken in case of violations.

Such an assurance is very useful in a typical grid environment where

resources, most of the time, are not dedicated. The policy-based approach

provides one means of attracting grid users and contributes to establishing

credibility to existing grid environments by committing to provide the

guaranteed level of allocation with the right action (compensation, credit, etc.)

if such guarantees are not met. This helps in encouraging high performance

users to use grid systems as they make a commitment to provide the

guaranteed level of allocation.

• Enhancements to the Jini infrastructure that enable the technology to function

in a scalable manner across non-multicastable networks. Jini [14],[73] is a

distributed computing technology introduced by Sun Microsystems that can

be used to build a flexible network o f resources and services to be shared by a

group of clients. However, Jini relies on multicasting in its internal protocols.

This creates difficulties when the technology is deployed across networks that

do not support multicasting. To address this limitation, we enhanced Jini with

a tunneling service that propagates Jini multicast messages across such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

networks. We also provide another alternative for super grids that relies on

building a hierarchy of these services.

In summary, all the above contributions provide an available methodology and

prototype implementation o f a resource brokering environment that can be easily utilized

by various grid environments. This thesis presents the design and development of

PROBE and demonstrates the effectiveness and the applicability of PROBE as a general-

purpose resource brokering environment.

1.6 Organization of the thesis

The rest of this thesis is organized as follows. In Chapter II, we review several related

systems, focusing on their resource brokering components. Chapter EH describes the

approach that we have followed in designing our resource brokering infrastructure and

gives detail about how we met our design goals. In Chapter IV, we focus more on the

Resource Broker, the heart of our brokering infrastructure. A policy-based framework for

resource brokering is presented in Chapter V. Detail about the implementation of PROBE

is given in Chapter VI. Chapter VH then describes the experimental testbed and the

evaluation experiments that we carried out. Finally, the thesis is concluded and the future

work described in Chapter VIII.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

CHAPTER II

RELATED WORK

The problem of managing a distributed heterogeneous collection of shared resources has

been an active area o f research. As a result, several groups [3],[6],[15],[18],[25],

[29],[42],[54],[59],[89],[115], both commercial and educational, have been working in

this area. This work can be classified into four categories: batch queuing systems that are

intended for local heterogeneous systems and have minimal brokering functionalities;

grid systems that map well in wide area networks and offer applications a number of

services including security, resource management, and communication; brokering

systems that focus mainly on brokering and can be used in conjunction with other grid

systems; and integrated systems that aim to provide end-to-end systems for utilizing

distributed heterogeneous resources.

Generally, the resource brokering environment is a part o f a larger system. In this

chapter, we look at several systems and focus on issues pertinent to resource brokering.

We use the desired functionalities and characteristics identified in the previous chapter as

a base from which to compare and contrast the systems described in this chapter. In each

system, some of the described functionalities and characteristics are either missing,

partially missing, or handled by other components o f the system. Exploring these systems

help us understanding why PROBE is a better alternative.

2.! Batch Queuing Systems

In a typical batch queuing system, as shown in Fig. 2, the user submits his/her job to a

queuing agent, which in turn places the job onto the sufficiently un-Ioaded resource.

Once the job has been executed, the result is returned to the user.

Batch queuing systems are intended for use with locally-distributed homogeneous

environments. They don’t map well in wide area distributed heterogeneous environments

where heterogeneity and administrative boundaries complicate the task of the system. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

most systems, the main focus is a single resource in a single domain and possibly

multiple resources in a single domain.

Queuing

Agent

Fig. 2. A Typical Batch Queuing System

2.1.1 NQS

Network Queuing System (NQS) [76] is a UNIX-based batch queuing system. In this

system, a request is defined as a shell script that contains the shell commands to be

executed when the job runs. Standard output and error can be returned to the user. NQS

has no support for parallelism. An enhanced version, the Generic NQS (GNQS) [60], an

open source batch processing system for UNIX operating systems.

2.1.2 PBS

The Portable Batch System (PBS) [16] is a batch queuing system developed at the

Numerical Aerodynamic Simulation Complex at NASA. PBS provides some features that

allow the placement policy to be configured according to the site’s needs and the

provisioning of the allocated jobs. A batch scheduling language is also supported.

To simplify the common tasks o f submitting jobs and jobs provisioning, a web-based

interface, PBSWeb [86], has been developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

2.13 DQS

The Distributed Queuing System DQS [51] is a batch queuing system developed by the

Super Computations Research Institute at Florida State University. It achieves some fault

tolerance where jobs allocated on failed resources can be restarted. Like other batch

queuing systems, users can submit their jobs using shell scripts. Also, parallelism is

supported via the PVM system [114].

2.1.4 LSF

Load Sharing Facility (LSF) [98], developed by Platform Computing Corporation, is one

of the most popular commercial batch queuing systems. Unlike other batch queuing

systems, LSF provides distributed load sharing and batch processing to heterogeneous

resources. It also has some built-in fault tolerance where another host can be elected as

the master in case of a master queuing agent failure. LSF also supports check-pointing

and process migration for some platforms. LSF may be run via the command line or

through a graphical user interface (GUI)-

2.1.5 Load Leveler

Load Leveler [68] by IBM is a batch queuing system that controls user access and

balances the workload across the resources. Users who wish to submit a program for

execution must create a Load Leveler script and submit it for execution. This script

contains information about the job and about the nodes on which the user wants the job to

run.

The Extensible Argonne Scheduling sYstem (EASY) is a scheduling system, which

provides a better scheduling mechanism through which jobs can be selected to run.

EASY was incorporated into Load Leveler to produce EASY-LL [109].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

2.2 Grid Systems

2.2.1 NetSolve

NetSolve [25],[26] is a research project at the University of Tennessee and the Oak Ridge

National Laboratory that allows users to solve complex scientific problems remotely. As

demonstrated in Fig. 3, NetSolve has a three-tiered architecture in which the client sends

requests to the NetSolve Agent, which in turn chooses the best resource according to the

size and nature of the problem and other resource and network parameters. The client

then directly uses the Computational Server on that resource to do the actual

computation.

NetSolve
Resource

1

Reply

Request NetSolve

Agent

Choice

Fig. 3. The NetSolve System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

One of the major components of the system is the NetSolve Agent that acts like a

resource brokering environment managing the set of resources registered with the

NetSolve system. The system can have more than one NetSolve Agent, each having its

own view of the system. NetSolve Agents communicate as needed to maintain a

consistent view o f the system. The NetSolve Agent does some load balancing in order to

use the available computational resources as efficiently as possible.

Every computational resource runs a Computational Server that has access to pre­

installed libraries on that host. Clients cannot plug-in their codes, as they need to have

them as NetSolve libraries registered with one of the available NetSolve Computational

Servers [24], When a Computational Server is initiated, it has the option to register only

with one NetSolve Agent or for that NetSolve Agent to announce its presence.

NetSolve supports fault tolerance in which a failure of a resource can be detected at

any time and subsequently reported to the NetSolve Agent, which keeps track of the status

on all the resources. NetSolve provides the user with a diverse set of client interfaces,

including an interactive mode (Matlab, shell) and a programming mode (C, FORTRAN,

Java, and Matlab) that allow the user to use NetSolve efficiently [13].

NetSolve has integrated numerous systems (either in part or in whole) to help in

achieving its functionality. These systems include Ninf [103], Legion [54], Globus [42],

Condor [80], Internet Backplane Protocol (IBP) [63] and the Network Weather Service

(NWS) [120].

One of the main problems with NetSolve is that a single NetSolve system cannot

scale up to large networks. This problem becomes more o f a challenge with the growth of

NetSolve Computational Servers and their clients. Another difficulty is that NetSolve

does not allow the client to export its code into the server. For a client to plug his code

into NetSolve, he needs to have a library registered within one of the available

computational servers. At its current stage o f development, NetSolve does not have any

security model. Brokering is also partially supported where all the NetSolve Agent does is

allocate resources to tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

2.2.2 Ninf

Ninf [103],[107] (Network based Information Library for High Performance Computing)

is a research project at the Electrotechnical Laboratory in Japan. This grid system allows

users to access computational resources distributed across a wide area network with an

easy-to-use interface. It is based on a three-tier RPC-based scheme, where libraries are

installed and registered in the hosts and clients can build their applications by calling the

predefined libraries with the Ninf Remote Procedure Call (RPC).

As shown in Fig. 4, the MetaServer is the resource brokering environment that

maintains global information about all the resources available in the system. It uses the

Lightweight Directory Access Protocol (LDAP) technology [62] and helps in achieving

load balancing and location transparency. The MetaServer chooses the best resource with

respect to the computational ability and the current load status. Ninf provides the client

with diverse set of programming interfaces that allow the user to interact with the system

efficiently. These interfaces include C, FORTRAN, Java, and Lisp.

Client Meta
Server

□
Client □

- M

- M

Client

Meta
ServerClient

|w lClient

□
Client Meta

Server
Client

- M

Fig. 4. The Ninf System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

One of the drawbacks of Ninf is that it does not allow the client to export his/her code

into the server. For a client to plug-in his code to the Ninf, he needs to have a Ninf library

registered within one of the available Ninf servers. Then, anyone can use the library

simply by utilizing the Ninf RPC. Another drawback to Ninf is that it has been designed

for numerical applications; this results in the data types in the IDL (Interface Definition

Language) being limited. Moreover, fault tolerance and security are not yet supported.

Ninf and NetSolve are very similar to each other in their design, motivation and

drawbacks. Both are targeted to numerical applications. There is a rough correspondence

between the N inf MetaServer and NetSolve Agent and the N inf Server and the NetSolve

Computational Server. The development teams for both are currently collaborating to

make the two systems interoperate and to standardize the basic protocols [89].

2.2.3 Globus

The Globus grid system [40],[42], at Argonne National Laboratory and the University of

Southern California, provides the basic software infrastructure for computations that use

geographically distributed computational and information resources. A central element of

the Globus system is the Globus metacomputing toolkit that defines the basic services

and capabilities necessary to construct a computational grid. The toolkit comprises of a

set of components that implement basic services for resource management, security,

communication and information infrastructure [41].

The main focus of the resource management infrastructure in Globus is to provide a

uniform and scalable mechanism for naming and locating computational resources [35].

As shown in Fig. 5, Globus uses a layered architecture for resource management. The

Metacomputing Directory Service (MDS) is the service that provides information about

the current availability and capability o f resources. It uses the data representation and an

application programming interface (API) based on the Lightweight Directory Access

Protocol (LDAP) [62]. Clients describe their resource requirements through a Resource

Specification Language (RSL), which in turn is used to exchange information about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

resource requirements between components. Resource brokers then translate RSL into

more concrete resource requirements (Ground RSL). The Dynamically-Updated Request

Online Co-allocator (DUROC) provides a co-allocation service where it splits request

into constitutive components, submits each component to the appropriate resource

manager and manipulates the resulting set of requests as a whole [43]. The Globus

Resource Allocation Manager (GRAM) provides a uniform interface to a range of local

management tools such as NQE [33], LSF [98], Load Leveler [68], PBS [16] and Condor

[80]. Each GRAM is responsible for a particular set of local resources. It processes the

RSL requests for resources, allocates the required resources, and manages and monitors

the active jobs. It also periodically updates the MDS with information about the current

availability and capability of resources.

Application
Ground RSL

Si mpie ground RSL

Fig. 5. The Globus Resource Management Architecture

Unlike NetSolve and Ninf, Globus allows clients to plug-in their codes and run

applications written in multiple languages. The HeartBeat Monitor provides the ability to

detect the failure of resources in the environment.

Scheduling is partially supported, as the main focus is to provide interfaces to other

underlying resource brokering environments and to support site autonomy and security.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Porting to the Windows platform is still an issue, as Globus has only Windows support on

the client side.

Globus has been successfully implemented and deployed on a large testbed named

GUSTO comprising 15 sites, 330 computers and 3600 processors [40].

2.2.4 Legion

Legion [54],[55],[56], at the University o f Virginia, is an object-based metasystem that

allows users to access a large collection of heterogeneous resources unified into a single

coherent system. It has been built on top o f Mentat [53], an object-oriented parallel

processing system.

Each component of the system is an object, an active process that responds to calls

from other objects. Every object is defined and managed by its class object that creates

new instances, activates/deactivates the object, and provides information about the object

to the client. Legion has three kinds of objects: core objects that are essential to the

system (such as classes, hosts, vaults, contexts and binding agents); service objects that

are useful for improving the system (such as cache objects and file objects); and user

objects that allow users to provide their own classes either as executables or to enhance

the system.

Each resource is represented by a Legion object. Two kinds of resources are

supported: Hosts (computational resources) and Vaults (storage resources). The resource

management infrastructure has three major parts: Collection (information database),

Scheduler and Enactor (schedule implementer) [29]. As we can see in Fig. 6, Collection

collects information about the resources. The Scheduler queries the Collection to find the

desired resource, maps from object to resource and then passes the information to the

Enactor. The Enactor carries out the reservation, confirms it with the Scheduler and

places objects on the host. It then monitors object execution and notifies the Scheduler

when rescheduling is needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Scheduler Enactor

Collection Object

Fig. 6. The Legion Resource Management Infrastructure

Globus and Legion share common objectives and some design features. There is a

rough correspondence between Globus’s DUROC and Legion’s Scheduler, Globus’s

Information Services and Legion’s Collection; and Globus’s GRAM and Legion’s Host

objects. Both allow clients to plug-in their codes and run applications written in multiple

languages. The major difference is that Legion relies on an object-oriented programming

model and presents a whole-cloth approach, while Globus relies on a set-of-services

approach. The whole-cloth approach adds some complexity to Legion where, unlike

Globus, Legion cannot be used in part and is very complicated to set up and use. In

addition, portability is still an issue and scheduling is only partially supported as

resources cannot be co-allocated.

2.2.5 DISCWorld

Distributed Information Systems Control World (DISCWorld) [59] is a service-oriented

grid system being developed at the University o f Adelaide. When a user submits a

request to the system, it gets decomposed into services. Scheduling is supported, data and

services may be moved to the host at which the least cost is found. Due to some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

scheduling constraints, the services that the user can request are limited to those defined

and written for the DISCWorld system; users can’t submit their binaries. Moreover, all

nodes have to be aware of each other in order to make intelligent scheduling decisions

with respect to moving the data and the services. This might result in wastage of the

bandwidth due to the huge amount of information being exchanged.

2.2.6 Sun Grid Engine

Formally known as CODINE, Sun Grid Engine [115] is the new name of Sun

Microsystems’ distributed resource management tool for computational grids. Sun Grid

Engine accepts jobs submitted by users and schedules them for execution on appropriate

resources based on the specified resource management policies. Policies are determined

by the particular needs o f the organization. As o f its current status, Sun Grid Engine does

not have a security model.

Grid Engine is an open source community effort which is sponsored by Sun

Microsystems and compatible with the Sun Grid Engine. Its main objective is to extend

Sun’s Grid Engine.

2.3 Brokering Systems

2.3.1 Condor

Condor [15],[80], at the University of Wisconsin-Madison, is a high-throughput

computing system that runs on a cluster of workstations to harness wasted CPU cycles.

The main goal o f Condor is to use workstations that would otherwise be idle without

disturbing other use.

It has a classified advertisement (classad) matchmaking framework to manage the

system’s variety of resources [101]. Condor entities, both provider and consumer,

advertise their characteristics and their requirements in these classads. A specific

matchmaking service (matchmaker) matches the classads and informs the matching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

entities to establish contact. A ranking mechanism, based on the application constraints,

is used to select the best resource when multiple resources satisfy the request.

The classad has been designed to match only a single resource, making the job o f the

resource brokering module very difficult when dealing with jobs that require multiple

resources. Condor DAGMan is a module that has been introduced recently to allow users

to specify dependencies between jobs so that Condor can manage them automatically.

DAGMan submits jobs to Condor in an order represented by a Directed Acyclic Graph

(DAG). The disadvantage of this approach is that it does not give the system an overall

view o f the entire DAG.

Another drawback of Condor is that it does not map well onto wide area

environments, where issues such as site autonomy and heterogeneity complicate the job

o f the resource brokering environment. Such systems can be used within a wide area grid

environment such as Globus and Legion where mediators between the systems need to be

implemented. Currently, the Globus GRAM interface to Condor enables Globus users to

submit jobs to Condor pools. The development teams of both systems are working

together on integrating the two systems. In addition, to allow checkpointing and to

perform remote system calls, code must be linked with Condor libraries [80],

2.3.2 AppLeS

The AppLeS system [18],[112], at the University o f California in San Diego, is a system

that provides tools for efficient scheduling o f distributed supercomputing applications.

The AppLeS approach is application-centric where everything is evaluated in terms of its

impact on the application. A recent effort within the AppLeS project is the development

o f AppLeS templates. Built based on the expertise gained while developing AppLeS

agents, these templates are stand-alone classes that can be re-used to automatically

schedule applications o f similar structure.

The Network Weather Service (NWS) [119],[120],[122], at the University of

California in San Diego and the University o f Tennessee, is a distributed resource

performance forecasting Service for computational grids. Its goal is to provide accurate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

forecasts of dynamically changing performance characteristics from a distributed set of

resources. NWS takes periodic measurements of the resource and uses numerical models

to dynamically generate forecasts o f future performance levels. AppLeS uses NWS as

back-end probing system to monitor the varying performance of resources used by its

applications.

233 Nimrod

Nimrod [3], at Griffith University in Australia, is a system for managing the execution of

parameterized simulations on distributed workstations. It incorporates a distributed

scheduling component that manages the scheduling of individual parametric experiments

onto a set of idle resources in a local area network. Nimrod/O [79] is an extension of

Nimrod that employs a number of different optimization algorithms. The work is

continued in Nimrod/G that runs on top of Globus [l],[2].

2.3.4 EZ-Grid

EZ-Grid [30], at the University o f Houston, is a high-level job submission interface. It

has been layered on top of the Globus metacomputing toolkit using its services whenever

possible. EZ-Grid has a policy engine that provides authorization and cost-based

accounting on top of Globus.

Currently, EZ-Grid has no concrete scheduling model. Researchers are working to

define a good scheduling algorithm and to interface EZ-Grid with other systems such as

IBM Load Leveler [68], PBS [16], Sun Grid Engine [115] and NWS [120]. The focus is

on achieving efficient job execution in a grid environment in the presence of deadline and

budget constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

2.4 Integrated systems

Numerous projects are focusing on building a seamless and secure environment that

allows resources to be accessed over the WWW so as to provide ease o f access and to

eliminate software distribution. Such systems rely on some o f the existing grid systems as

their back-end infrastructure. These include Gateway and UNICORE.

2.4.1 Gateway

Gateway [10] is a system that provides seamless and secure access to remote resources

through a web-based user interface. It has been layered on top of the Globus

metacomputing toolkit where it can play the role of the job broker. It uses the Globus

MDS to identify resources, GRAM to allocate resources, and GASS for high-

performance data transfer [58].

2.4.2 UNICORE

UNICOR (UNiform Interface to Computing REsources) [102] is a system that provides

seamless, intuitive and secure access to computing resources distributed across networks.

As of now, UNICORE has no brokering model. The user selects a resource based on the

availability at the job preparation time. The work is being continued in UNICORE Plus

[6] and GRIP [111] to provide interoperability between Globus and UNICORE.

2.5 Other related systems

Related systems are being developed at several other places. In this section, we briefly

summarize some o f efforts. Appendix D contains references to additional examples not

covered in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

2.5.1 RCS

RCS [12], at the Institute of Scientific Computing in Switzerland, is a single-user

homogeneous system that provides an easy-to-use mechanism for using computational

resources remotely. Numerical libraries are installed in the distributed hosts, which the

user can access remotely.

2.5.2 SNIPE

SNIPE [39], at the University of Tennessee & Oak Ridge Laboratory, is a system whose

aim is to provide a reliable, secure, fault tolerant environment for distributed computing

applications and data stores across the global Internet. It relies on the Resource

Cataloging and Distribution System (RCDS) [85] and the Parallel Virtual Machine

(PVM) [114]. SNIPE uses RCDS as a framework for replication of resource registries

and globally accessible state. It uses facilities provided by PVM for message passing,

task management and resource management.

2.5.3 PARDIS

PARDIS [74],[75], is a system developed at Indiana University that provides support for

building PARallel Distributed applications. It employs the key idea of CORBA [93], as it

has an Interface Definition Language (IDL) compiler, communication library and object

repository database. PARDIS can exist as a communication subsystem in grid

environments.

2.6 Arcade

In this subsection, we describe Arcade, the grid system that inspired the need for this
effort.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

2.6.1 Overview

Arcade [31] is a web-based integrated grid environment that is being built to provide

support for a team of discipline experts to collaboratively design, execute, and monitor

multidisciplinary applications on a distributed heterogeneous network o f workstations

and parallel machines. This framework is suitable for applications that, in general, consist

of multiple heterogeneous modules interacting with each other to solve an overall design

problem, such as the multidisciplinary design optimization of an aircraft.

2.6.2 Architecture

As shown in Fig. 7, Arcade is based on a three-tier architecture. The first tier is a web-

based, lightweight client, which provides the user interface to the whole system. It

consists of applets that allow users to design an application, monitor and allocate

resources, and execute, monitor and steer the application in a collaborative manner. It

also has interfaces that allow the system administrator to manage the system, including

resource registration and user management and authentication. Most o f the logic of the

system is contained in the Java-based middle tier. Among other modules, the middle tier

consists of the User Interface Manager that provides logic to process the user input and

coordinate among the other components; the Execution Manager that manages the overall

execution of the application; the Data Manager that manages the shared data; the

Resource Manager that manages the distributed heterogeneous resources of the system;

and the Security Manager that controls access to the system. The third tier consists of the

distributed resources that are used to actually execute the user modules and application

codes. A lightweight Resource Controller executes on each resource providing a gateway

to the resource.

The user generally does not need to be aware of the three-tier architecture and

interacts directly with the middle tier only. For example, during the application

specification phase, the user employs the visual and script applets to specify the

application. During the execution phase, the middle tier (specifically the Execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Manager) manages the overall execution, including the necessary communication and

data staging.

Second Iter
Internet

Third Tier

Fig. 7. The Arcade system architecture

Arcade is still in its early stages. The Security Manager, Data Manager and Resource

Manager are not yet implemented; nevertheless, some of their functionalities are

embedded in the Communication Manager. More information about the architecture of

Arcade can be obtained from [31].

2.6.3 Application Specification

In the Arcade framework, a distributed application consists o f a collection of

heterogeneous modules (application codes from different disciplines). Arcade targets

applications in which these modules are very coarse grained. A typical distributed

application requires these modules to be executed in some order and possibly on different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

machines. For certain problems, a set o f modules may need to be executed iteratively, for

example, until a desired optimization criterion is reached.

In Arcade, each application is internally represented as a Java Project object. This is

the central object in the Arcade framework. All the information related to the application,

both static and dynamic, is stored within this object. The Project object is a complex

object that is shared by all the processes of the middle tier and supports methods that are

used by these processes. When the user requests the execution of an application, the web-

based client interface (the first tier) passes the corresponding Project object to the middle

tier's Execution Manager, which handles the overall execution o f the application.

To be able to support a wide variety o f distributed applications, Arcade supports

different types of modules. Ail these modules have a common set of properties and,

hence, are derived from a general Module object. Some common attributes o f the Module

object are Module Name, Module Directory and Input/Output Names. The following

types of modules derive from the general Module:

• Normal Module'. This is the basic module in the Arcade framework and is used to

represent the executable parts in the applications. A Normal Module is identified by

its executable code, command line arguments, resource requirements, and

input/output file requirements.

• Loop Modules'. These modules allow a set of “internal’ modules to be iteratively

executed. There are two kinds of looping modules: the For Module for a

predetermined number of iterations and the While Module, where the iteration

condition is tested at the beginning of the loop. These modules have an associated

Project object, which represents the set o f internal modules.

• I f Module'. This module provides a mechanism for testing the value o f a condition.

The truth-value o f the condition determines whether the modules in the then-block

or the optional else-block (each represented by a Project object) will be executed.

• Hierarchical Module: This is an abstract Module representing a sub-graph, i.e., a

recursively defined collection of modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

In the current prototype, there are two ways to specify distributed applications:

visually or by XML script [8]. The web/browser-based visual interface, as shown in Fig.

8, is designed to be intuitive to use. The visual interface has been designed to allow users

to drag and drop modules providing the information required for each module. The

dependencies between modules can be specified graphically. The system supports control

dependencies using hierarchical modules to specify the bodies of loops and the then and

else blocks o f conditionals. Such an approach shows just the data dependencies at each

level, hiding the control structure in the hierarchy. The visual representation is, thus,

clean with no cluttering of control and data dependencies. However, this approach does

not provide an overall view of the application in a single window, forcing users to look

through multiple windows. Arcade is currently experimenting with other views. Once

specified, the same visual representation of the application can also be used for visual

monitoring during execution.

The script specification of Arcade is based on XML. Using XML allows Arcade to

leverage off existing freely available XML parsers and editors in order to develop its

tools. Also, such an XML-based script presents the potential of inter-framework

portability. Thus, if a piece of the overall application needs to be executed by another

framework, we could translate that portion o f the XML specification into the framework

specific representation.

In addition, there is a one-to-one correspondence between the visual- and script-

based interfaces, allowing users to go back and forth between the two. Thus, some users

will specify the application visually and then use the script representation to make

changes. On the other hand, some users may be more comfortable writing the XML script

using an offline editor and then using the visual representation for execution. To support

this possibility, we have developed translators that translate a script-based specification to

a visual-based specification, and vice-versa. These translators are integrated with Arcade

tools and are transparent to users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(.»r<jphfcditor: j l l

Condiffonf

Fig. 8. Snapshots of the visual specification in Arcade

2.7 Related Technologies

There are a number o f commercial technologies on the market that can be used to build

the basic infrastructure of distributed systems in general, and resource brokering

environments in particular. In this section, we provide a brief summary o f some of these

technologies and contrast them with one another.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

2.7.1 CORBA

The Common Object Request Broker Architecture (CORBA) [93] from the Object

Management Group (OMG) is a standard for the development and deployment of

applications in distributed, heterogeneous environments. CORBA automates many

common network programming tasks such as object registration, location, and activation;

framing and error-handling; and parameter marshalling and demarshalling.

CORBA relies on a protocol called the Internet Inter-ORB Protocol (HOP), which

allows object references to be passed across networks. The Object Request Broker (ORB)

is the middleware that establishes the client-server relationships between objects. Each

server object has an interface and exposes a set o f methods. Using an ORB, a client can

transparently invoke a method on a server object that can be on the same machine or

across a network.

CORBA supports multiple languages and provides legacy integration capabilities that

other distributed computing technologies do not address. Thus, it is more suitable where

legacy support is needed.

2.7.2 DCOM

Distributed Component Object Modeling (DCOM) [36], is a distributed object model

developed by Microsoft that supports remote objects via a protocol called the Object

Remote Procedure Call (ORPC). Unlike CORBA, a DCOM server can support multiple

interfaces, each representing different behaviors o f the server. A DCOM client interacts

with the DCOM server by acquiring a reference to one of the DCOM server’s interfaces

and invoking methods through that reference. The major disadvantage of DCOM is that

clients need access to the DCOM runtime, which in most circumstances is available only

on Windows platforms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

2.73 RMI

Java Remote Method Invocation (RMI) [71], from Sun Microsystems, provides a simple

and direct model for distributed computation with Java objects. These objects can be new

Java objects or can be simple Java wrappers around other applications.

RMI provides the mechanism by which the client and the server communicate and

pass information back and forth. An RMI server creates some remote objects, makes

references to them accessible via an RMI Registry service, and waits for clients to invoke

methods on these remote objects. An RMI client gets a remote reference to one or more

remote objects in the server and then invokes methods on them.

RMI relies on a protocol called Java Remote Method Protocol (JRMP) that supports

mobile code, making it possible to transport both object state and object implementation

across networks. Therefore, the client does not need to have previous knowledge of the

service and does not need to use a complex API to figure out how to use new services.

CORBA and DCOM do not support such a feature; instead, they allow object references

to be passed across networks, while the implementation and execution of those objects

remain in the server. Built on top of Java, RMI brings the power of Java safety and

portability to distributed computing.

RMI over HOP [116] is a standard which as been recently introduced by Sun

Microsystems and International Business Machine (IBM). It allows Java clients to access

CORBA objects as if they were RMI Java objects.

2.7.4 Jini

Jini [14],[73] is a connection technology introduced by Sun Microsystems that can be

used to build a flexible network of resources and services to be shared by a group of

clients. It is based on the idea o f federating groups of clients and the resources required

by those clients. Built on top o f Java and RMI, Jini provides simple mechanisms for

resources to join together in a federation with no human intervention and then provide

their services to the clients on the network. Jini provides the necessary protocols for

services to register themselves with lookup services and for clients to then discover these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

services. Additional features make the system resilient to failures such as removal of

resources, network outages, etc. The whole technology can be segmented into three

categories: infrastructure, programming model and services.

4. Multicast masg “Any lookup sornco hart?* (Discovery)
5. “Do you have service S Hegisterad?' (Loohtg)
8. *1 uead your sarnca*

Lookup
Service

2. ‘ I am Hare”
1. Multicast m ag “Any lookup service hare?” (Discovery)

S. “I am hare*
J. “Please Register me* (Join) . . .

7. “Yes, here it is.

Fig. 9. Sequence of steps required to use Jini Technology

The infrastructure includes lookup services that serve as a repository of services and

uses RMI, which defines the mechanism of communication between the members. The

programming model includes interfaces such as discovery, lookup, leasing, remote events

and transactions which ease the task of building distributed systems [14]. A service is a

central concept within Jini. It is essentially an entity that can be used by a person,

program or another service to perform a required task. The runtime infrastructure

supports the discovery and jo in protocol that enables services to discover and register

with lookup services. Discovery is the process by which a service locates lookup services

on the network and obtains references to them. Join is the process by which a resource

registers the services it offers with lookup services. Li particular, the resource may post,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

with the lookup service, objects representing the services they provide, including any

code required to use the services. On the other hand, clients use the same protocol to

locate and contact services. The discovery protocol is used to locate lookup services.

Once an appropriate lookup service has been found, the client can query it to find the

reference to the service that it requires. A client may then download the posted object and

utilize it to directly use the service. Fig. 9 shows a simplified version o f the sequence of

steps that take place for a service to discover and join a lookup service and for a client to

use the lookup service to locate and interact with the service that it is seeking.

2.7.5 Jiro

The Jiro technology [72] is a pure Java technology-based implementation of the

Federated Management Architecture (FMA) specification that provides developers with

the infrastructure required to build distributed resource management solutions. As shown

in Fig. 10, the Jiro technology leverages the functionality of both RMI and Jini. It

leverages both the remote communication protocol and the distributed garbage collection

from RMI. It also relies heavily on Jini where it leverages the dynamic extensible

network behavior, the lookup service, the lookup discovery/join protocol and some of the

Jini programming model.

By providing the infrastructure, Jiro allows the developer to focus more on the

features. Jiro provides a set o f Jini services that provide functionality common to many

management solutions. These services, referred to as Base Management Services,

include: Lookup Service that provides a mechanism allowing all Jiro services available in

the management domain to be registered and located; Transaction Service that provides a

light-weight two-phase commit service; Event Service that provides an event delivery

mechanism allowing publishers to post events and subscribers to receive them; Logging

Service that supports sophisticated log messages that can be used to log any information

that requires reliable persistent record; Scheduling Service that enables the automation of

task execution based on a performance schedule; and Security Service that extends the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Java Authorization and Authentication Service (JAAS) to support remotely supplied

login modules.

Distributed
Management

Layer

Managed
Resources

Layer E

Management Console

Dynamic
Management

Services

Static
Management

Services

Fig. 10. Architecture of the Jiro Technology

2.7.6 J2EE

Java 2 Enterprise Edition (J2EE) [69] is a specification by Sun Microsystems that defines

the standards to build multi-tiered distributed enterprise applications. Enterprise

JavaBeans (EJB) technology is the basis o f J2EE that provides the infrastructure for

handling the business logic in a distributed computing environment.

EJB relies heavily on the Java Naming and Directory Interface (JNDI) for clients to

lookup and locate distributed services. Unlike RMI, JNDI does not allow the injection of

client-side proxy into the client virtual machine. Moreover, JNDI does not provide an

effective approach for keeping track of distributed services on a dynamic basis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Recently, there have been some efforts to integrate Jini and EJB. This work focuses in

providing a Jini-EJB bridge where instead of JNDI the Jini Lookup Service is used to

locate the Enterprise Java Beans.

2.7.7 JXTA

Peer-to-peer (P2P) computing [94] is an evolving distributed methodology where each

participant can be both a client and service. JXTA [99] is an open research project by Sun

that provides a P2P-based infrastructure for distributed computing applications. The

beauty of the JXTA specification is that it is independent o f the transport protocol as

implementation can be done over TCP/IP, HTTP, etc. Nevertheless, security and efficient

message passing is still a big concern with this technology. Recently, there has been an

interest in building P2P-based grid environments.

2.8 Conclusion

This chapter presents some of the related work. Of course, this is not a comprehensive list

of all the research that has been done in this area, but we believe that it covers the major

efforts.

Most of these resource brokering environments presented in this chapter are either

specific to a grid system or have limited features that make them unsuitable for large

applications with heterogeneous requirements. For example, resources are assumed to be

dedicated, o f homogenous type, and their load is assumed to be predictable; tasks are

assumed to be profiled where resource usage can be estimated in advance; and so on.

Such restrictions discourage resource providers and resource consumers from using the

underlying grid. In addition, the issue of interoperability has not been addressed by most

current resource brokering environments. Recently, there have been some efforts in

addressing this issue. For example, Grid Interoperability Project (GRIP) [52] is a research

project that investigates on the interoperability o f Globus and UNICORE. An

interoperability layer has been developed to map the two grids. Similarly, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

development teams in both NetSolve and Ninf are collaborating to make the two systems

interoperate and to standardize their basic protocols [89].

TABLE 1

COMPARISON OF THE RELATED WORKS

Category System
Name

Resource
Type

Environment Client
Policy

Resource
Policy

Features

NQS Homogeneous LAN No No Very
simple. No
parallelism

Batch

PBS Homogeneous LAN Yes No Popular,
Web-based
interface

Queuing

Systems

DQS Homogeneous LAN No No Fault
tolerance.
Parallelism

LSF Heterogeneous LAN No No Fault
tolerance,
Load
balancing

Load
Leveler

Homogeneous LAN Yes No Load
balancing

NetSolve Homogeneous LAN No No Load
Balancing,
Fault
tolerance.
Not
scalable.
Minimal
brokering

Grid
Systems

Ninf Homogeneous LAN No No Limited
IDL

Globus Heterogeneous WAN Yes No Commonly
used,
No
brokering

Legion Heterogeneous WAN No No Whole-doth
design, very
complicated

DISCWorld Heterogeneous WAN Yes No Restricted
brokering

Sun Grid
Engine

Homogeneous WAN No Yes* •System
policy, no
brokering

Brokering

Systems

Condor Heterogeneous LAN Yes Yes System^
centric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Table I, concluded

AppLeS Heterogeneous LAN Yes No Application
-centric

Nimrod Heterogeneous LAN Yes No Focuses on
parametric
applications

EZ-Grid Heterogeneous WAN Yes No No
brokering
model yet

Integrated

Systems

UNICORE Heterogeneous WAN Yes No Layered on
top of
Globus, no
brokering.

Gateway Heterogeneous WAN Yes No Layered on
top of
Globus, no
brokering,

Table I shows a comparison o f the efforts that have been discussed throughout this

chapter. The type of resources the systems support can be either Homogeneous or

Heterogeneous. Environments where the system maps very well can be either a tightly

coupled Local Area Network (LAN) or a loosely coupled Wide Area Network (WAN).

Client Policy and Resource Policy columns specify whether or not the systems allow

such policies to be specified. The features column notes any feature that has not been

covered by other columns. In the following chapter, we present the architecture of

PROBE, a general-purpose policy-based brokering infrastructure, which can handle these

deficiencies.

We ended this chapter by critically reviewing some o f the existing distributed

computing technologies [14],[36],[69],[71],[72],[93],[94] that can be used to build the

infrastructure o f PROBE. The attractive features that Jini has and the degree of

modularity it provides, make it the most appropriate candidate for building the

infrastructure o f PROBE. As Jini is layered on top o f Java RMI, it can support mobile

code, making it possible to transport not only object state but also object implementation

across networks. This feature can help us in applying the plug-and-play feature that

PROBE supports in an effective manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

CHAPTER m

PROBE: A POLICY-BASED RESOURCE BROKERING

ENVIRONMENT FOR COMPUTATIONAL GRIDS

3.1 Overview

The work described in this thesis is motivated by the lack of a general-purpose distributed

heterogeneous resource brokering middleware facility in support of grid environments.

The main objective is to design and implement a prototype of a policy-based resource

brokering infrastructure in support of grid systems. In chapter I, we discussed the high-

level approach of PROBE a general-purpose Policy-based distributed ResOurce

Brokering Environment for computational grid that can be easily utilized by various grid

systems.

In this chapter, we discuss the design and development o f PROBE in greater detail. In

section 3.2, we present our key design goals. Section 3.3 presents the architecture of

PROBE and describes the various modules in the system, while section 3.4 describes

some typical scenarios that illustrate the interactions among these modules. We discuss in

detail how we met our design goals in section 3.5. Finally, section 3.6 focuses on the

main functionalities the system provides.

3.2 Design Goals

The design of PROBE is driven by the following goals:

• Platform Independence'. PROBE must function on many platforms.

• Modularity: the design of PROBE has to be flexible enough to handle the

dynamic behavior of the managed resources and the unpredictable future needs of

the clients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

• Scalability: as the number o f resources and clients continues to grow, PROBE

should maintain service without fundamental change in the application’s

architecture or major degradation o f the performance.

• Site Autonomy. PROBE is targeted to distributed heterogeneous systems in which

resources, most likely, are distributed across different administrative domains.

PROBE should give administrators the flexibility to specify their usage policies

and the right of both resource providers and resource consumers should be

respected.

• Interoperability, because of the diverse grid implementation, PROBE should

support interoperability allowing existing grid system to discover, access and

utilize resources controlled by other grid systems.

In section 3.5, we discuss, in more detail, these design goals and how we achieve

them.

3 3 Architecture

PROBE employs a layered three-tier architecture. The work within PROBE has been

divided into a set o f flexible and extensible modules, each implementing an individual

function. These modules are loosely coupled and have been implemented using the Jini

infrastructure. The PROBE architecture along with the interactions between the different

modules is illustrated in Fig. 11. The main components in the architecture include Client

Interface Module, Resource Broker, Policy Enforcement Manager, Resource Repository,

Resource Monitor, Job Repository and Job Monitor. In the following sections, we

provide description o f these modules.

33.1 Client Interface Module

The Client Interface Module provides an interface to handle all the client interactions

with the brokering system. The client can be a user application, some other component of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the grid system, e.g., Workflow Manager, or another grid system. It also provides an

interface to other instances o f PROBE and helps in achieving consistency across different

PROBEs managing the resources in the system.

PROBE Clients

Fig. 11. PROBE Architecture

As we explain later in 4.5, clients express their requests using XML. The Client

Interface Module parses XML requests, checks their validity and creates the

corresponding job/resource objects that can be manipulated by the different components

o f the system. The Client Interface Module could be installed in the client’s machine or in

distributed places accessible to the clients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

3.3.2 Resource Broker

This is the core component o f PROBE that allocates resources based on the client

requirements. The Resource Broker gets the problem description along with the resource

requirements from the Client Interface Module, consults with the Policy Enforcement

Manager to find the matched resources, creates a schedule based on the underlying

scheduling algorithm, and then allocates the required resources.

The Resource Broker maintains an internal queue of jobs currently in the system

including those that have not been scheduled yet and those that failed and need to be

rescheduled. A queuing algorithm selects the next job to schedule.

The design of the Resource Broker follows a layered facade design pattern and uses

XML as the underlying specification language. This makes the Resource Broker flexible

and generic enough not only to handle the different kinds o f user applications but also to

handle the different kinds of scheduling techniques that can be utilized. This approach

makes algorithms and application types look like black boxes allowing the users to plug

in their scheduling and queuing algorithms as needed. Resource brokering is briefly

discussed in section 3.6.1. More detail about the Resource Broker module is given in

chapter IV.

3.3.3 Policy Enforcement Manager

The Policy Enforcement Manager is the component that is in charge of enforcing the

policies. In contrast to other resource brokering environments, both the client and the

resource provider can identify their policies. When requested, the Policy Enforcement

Manager finds the appropriate resource(s) that can match the client request and returns

the set to the Resource Broker.

What distinguishes PROBE from other resource brokering environments is that it

goes far beyond the typical matching/allocation process to guarantee the provided level o f

allocation by providing the means o f policies and Service Level Agreements (SLAs) and

ensuring that the appropriate actions are taken in case o f violation o f the allocation terms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

PROBE looks at the allocation process as an SLA between the client and the resource

provider.

At the time of a job’s allocation, the Policy Enforcement Manager is notified so that it

can create an SLA based on the provided policy. The Policy Enforcement Manager keeps

monitoring this SLA during the life-time of the allocation and takes appropriate action (as

specified in the policy) when a violation occurs.

The policy framework has been divided into a set of flexible and extensible

components and uses a layered facade design pattern where plug-ins can be added and

future needs can be incorporated. An XML-based Policy Scripting Language (PSL) has

been introduced to handle the requirements of both the resource provider and the resource

consumer.

To achieve high levels of scalability and performance, the Policy Enforcement

Manager caches the minimal set of policy related information that it needs for resource

matching and SLA monitoring. Also, to optimize the performance, we have introduced

several techniques where we can avoid multiple and unnecessary parsing and optimize

policies locally at their associated resources. In section 3.6.2, we briefly discuss our

policy-based approach in handling resource brokering. The design of the policy

framework is explained in greater detail in chapter V.

3.3.4 Resource Repository

The Resource Repository maintains up-to-date information about all the available

resources in the system. To support prediction, the Resource Repository keeps some

historical performance information about the resources. For the sake of scalability and

high availability, we can have distributed Resource Repositories with each having its own

set of resources. Of course, these Resource Repositories need to interact with each other

to maintain consistency.

As we explain later in this chapter, we have adopted a layered approach in designing

the repositories internal to PROBE. This makes the design independent o f the underlying

protocol. A protocol layer has been introduced that acts as an intermediate layer between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

the protocol and the repository objects. It adapts the requests received from the repository

object to the appropriate protocol format and adapts the responses from the protocol

dependent objects to the internal format o f PROBE.

3.3.5 Resource Monitor

The Resource Monitor keeps track of the current status o f the resources. It updates the

Resource Repository and the Policy Enforcement Manager frequently with up-to-date

information about the resources.

The Resource Monitor supports different approaches for monitoring the status of the

resources. This includes the Push Mode approach where the daemon that resides on the

resource sends the required information to the Resource Monitor, and the Pull Mode

approach where the Resource Monitor sends a request to the daemon asking about the

current status of the resource. More on resource monitoring is given in section 3.6.3.1.

3.3.6 Job Repository

The Job Repository keeps information about all the currently running jobs that occupy

resources. We have applied the same layered approach being applied in the Resource

Repository to make the design independent of any underlying protocol.

3.3.7 Job Monitor

The Job Monitor keeps an eye on the jobs that occupy the managed resources along with

their progress. It provides an interface to interact with some external components, e.g.,

Workflow Manager, and provides information about the current jobs that are occupying

the resources. In case of job failure, the Job Monitor informs the Resource Broker to re­

schedule the failed job.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

3.3.8 Resource Daemon

PROBE requires that a daemon to be started on each resource under the control o f their

administrative domains. This daemon, implemented as a Jini service, acts as a gateway

between PROBE and the managed resource. It handles the collection of statistical data

about the resource and keeps track of the allocated jobs within the resource. It can also be

used as an integration base to interact with other grid systems. Detailed design of the

Resource Daemon is given in chapter IV.

3.4 Scenarios

In this subsection, we present high-level scenarios that can occur within PROBE. They

are provided to describe the functionality o f PROBE’s modules and their interactions.

When PROBE is installed in an environment, the first thing that happens is that

daemons are started on all the resources under the control of their administrative

domains. These daemons act as gateways between PROBE and the managed resources.

Each daemon registers with the Resource Monitor, providing the policies the resource

provider wants to enforce on the resource. The Resource Monitor then notifies the Policy

Enforcement Manager to keep track of the associated policies while matching the

resource with the user’s requirements. Based on the data probing approach (pull or push,

as described in section 3.6.3.1), the Resource Monitor updates both the Resource

Repository and the Policy Enforcement Manager periodically with up-to-date information

about the resource.

Using any of the client APIs that PROBE supports, a client sends a problem

description to the Client Interface Module. This request can be either an information-

retrieval request, in which the client needs to get up-to-date information about resources,

or a task-brokering request, in which the client has a problem and is looking for specific

kinds of resources to solve that problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

In the course o f information retrieval, the following sequence o f operations takes

place:

• The Client Interface Module queries the Resource Repository or the Job Repository

based on the constraints specified by the client.

• If the information is available within the repositories, the Client Interface Module will

send it back to the client.

• Otherwise, the request is propagated to other PROBEs by the Client Interface

Module.

In the course o f task brokering, the following sequence o f operations takes place:

• The Client Interface Module passes the request to the Resource Broker.

• A unique job identifier is created and passed back to the Client Interface Module

where the request can be tracked.

• The Resource Broker then consults with the Policy Enforcement Manager, which

tries to find the appropriate resource(s) that can match the client request and returns

the set to the Resource Broker.

• The Resource Broker then, based on the underlying scheduling algorithm, the user’s

job and the provided sub-set of resources, constructs a schedule and starts

implementing it.

• At the time o f the allocation:

o A Service Level Agreement (SLA) is established between the client and the

resource provider based on the client’s terms,

o The Policy Enforcement Manager is notified to start monitoring that SLA.

o The Job Monitor is informed so that it keeps track of the job.

• A job can failed, be cancelled or complete successfully. In case o f a successful finish:

o The Job Monitor informs the Resource Broker where the schedule can be

modified and then terminated,

o The Policy Enforcement Manager is notified for each sub-task’s finish to

terminate the associated SLA.

• In case o f job failure:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

o The Job Monitor informs the Resource Broker where the schedule can be

modified and the failed job can then be re-scheduled,

o Associated SLAs are cancelled and new ones will be created based on the new

schedule.

3.5 Meeting Design Goals

The design o f PROBE is driven by several key goals. These goals include platform

independence, modularity, scalability, site autonomy and interoperability. These goals

have certain implications for the design of PROBE and the approaches that we have

chosen in order to implement the prototype of the system. In this subsection, we identify

the key design goals o f PROBE.

3.5.1 Platform Independence

The underlying technology we use in implementing PROBE is Java. Besides being

simple, safe, object-oriented, robust, and tightly integrated with the World Wide Web

technologies, Java is a portable and platform-independent language enabling the resulting

prototype implementation to run on any operating system platform with an

implementation o f the Java Virtual Machine (JVM). The JVM acts like a virtual

computer making it possible to run programs written in Java on any machine, once they

have been translated into bytecode.

PROBE is entirely written in Java and uses technologies (Jini/RMT) written in Java.

Since the Java programming language is platform independent, PROBE can be

considered to be platform independent that can run on heterogeneous systems.

3.5.2 Modularity

We have divided PROBE into several flexible modules, where each module implements

an individual function. These modules define the basic services and capabilities required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

to construct a distributed resource brokering environment. Some of these modules are

broken down into sub-modules as we explain later in chapter IV and chapter V. Dividing

into modules provides flexibility and ease o f replacement making it easier to satisfy

users’ requirements in the future. Also, scalability and high availability can be achieved

by replicating modules. Because the architecture of PROBE is so flexible, its different

modules can be coallocated in one process or fully distributed across a number of

machines.

Built on top of Java, as explained in chapter II, the Jini connection technology can be

used to build a plug-and-play network o f resources. Its attractive features and the degree

of modularity it provides, make it appropriate for building the infrastructure of PROBE.

As shown in Fig. 12, each module o f PROBE has been implemented as a Jini service and

thus has to register with a Module Lookup Service (MLS) dedicated for maintaining the

list o f modules in the environment. Modules could be in the same host, distributed across

hosts in the same subnets or distributed across different subnets. Also, each daemon,

representing a resource, has been implemented as a Jini service and thus has to register

with a Resource Lookup Service (RLS) dedicated for maintaining the list of resources in

the environment. The MLS and the RLS have also been implemented as Jini Lookup

Services. Modules, daemons and their corresponding lookup services can be replicated

and distributed across networks as the underlying grid environment continues to grow.

A service, representing either a module or resource, uses the discovery and join

protocol to discover and register with its corresponding lookup services. It posts, with the

lookup service, a service proxy, which is an object representing the services it provides.

Services use the same protocol to locate and contact each other.

One issue with Jini is that it cannot be used efficiently across networks that do not

support multicasting. To address this limitation, we enhanced Jini with a tunneling

service that propagates Jini multicast messages across such networks [9]. In chapter VI,

we describe this enhancement in more detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Subnet 1

Subnet 2
Subnet 3

Fig. 12. Using Jini in PROBE

3.5.3 Scalability

A critical factor for a distributed resource brokering environment is its ability to grow, to

some extent, with the number o f resources, clients and the required capabilities. The

resource brokering environment is expected to handle very high loads as the underlying

environment continues to grow. The busiest resource brokering environment may even

have hundreds of thousands of concurrent requests. To deal with this type of load, the

resource brokering environment needs to have an extremely scalable architecture.

Scalability is one o f the biggest challenges in building a distributed resource

brokering environment, and it is becoming more of a challenge with the growth of

resources and their clients. Most o f the existing early scalability architectures achieve

only limited scalability at the cost o f excessive hardware requirements and network

traffic.

Built on top o f Jini and based on our modular architecture, we have designed PROBE

in a way that it can be capable of scaling with the environment without resource problems

or performance bottleneck. Given the flexible nature of Jini, PROBE’s modules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

(especially the heavily loaded ones) can be distributed across different processes on

different machines to achieve high scalability.

One of the issues with replicating modules is keeping track o f the various replicas. A

replica should be added and subtracted with no harm. The Jini Lookup Service along with

its protocols allows us to easily discover all the modules providing a specific service. In

8.4, we describe a proposed further enhancement to Jini, which allows it to support

scalability for distributed applications.

The degree o f flexibility that PROBE has, along with the Jini’s enhancements make it

easy to set up highly scalable distributed brokering architecture to meet the needs of

typical grid environment. Through our scalable architecture, PROBE can process a large

number of concurrent client requests and manage a large number of distributed

heterogeneous resources.

3.5.4 Site Autonomy

As we mention in chapter I, a grid environment has a distributed collection o f shared

resources controlled by different administrative domains. Administrators in such domains

want to make sure that their systems are safe, secure and available to their priority users.

Administrators control the daemons that run on behalf o f their resources and specify

their usage policies. For example, a site might insist that a resource cannot be accessed if

the load is greater than 50%, the free physical memory is less than 512 MB, or not

between 8 am and 5 pm.

PROBE’s policy-based resource brokering approach, allows both the provider and the

consumer to specify their policies and assure that the rights o f both the owner and the

consumer are respected. Using this approach, not only each administrative domain, but

also each resource owner can identify their own policies.

We have noticed the urgency o f having a flexible language that provides the

necessary power to express the diverse kinds of rules that both resource providers and

consumers can have. We have designed and implemented a very flexible XML-based

Policy Scripting Language (PSL), which can be used for this purpose. A detailed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

explanation of the policy framework and the Policy Scripting Language is given in

chapter V.

3.5.5 Interoperability

One of the major issues behind this research is to build a general-purpose, stand-alone

resource brokering environment that can be easily used in various grid environments and

at the same time can be smoothly layered on top of various grid systems. Our modular

approach, open architecture, rich interfaces, layered approach and the use of XML for

resource, job and policy specifications, allow us to build an interoperable framework that

grid systems can interoperate with. We achieved interoperability at different levels:

• Layered Approach. In building grid systems, brokering environments in

particular, different approaches can be applied. It is not known which approaches

are best. PROBE adopts a layered architecture for the internal repositories (both

resources and jobs), brokering infrastructure, resource daemon and policy

framework. The main objective is to make the targeted module independent of the

underlying protocol. A protocol layer has been introduced which acts as an

intermediate layer between the underlying protocol and the module object. This

layer is considered to be a part of the module object. It adapts the requests

received from the module object to the appropriate protocol format and adapts the

responses from the protocol dependent objects to the internal format of PROBE.

This layered architecture gives grid systems the flexibility to adopt different

approaches as their environments require and makes the framework independent

o f any architecture.

Fig. 13 illustrates the use of the layered approach in implementing the

repositories internal to PROBE. Later on in this chapter we explain the usage of

this approach within the PROBE resource daemon. Chapter IV explains the usage

within the Resource Broker and the resource daemon, and chapter V explains the

usage within the Policy Enforcement Manager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

However, the misuse of the layering feature might result in some overhead in

the performance, mainly when communication is involved.

Object Layer Repository Object

Repository Object

Fig. 13. Different approaches in applying the layered architecture in the repository

objects

• Open APIs. The Global Grid Forum (GGF) [47] is a community-initiated forum

of individual researchers and practitioners working on distributed computing, or

grid technologies. The focus is to generate the best practice documents, protocols,

and API specifications to enable interoperability between existing grids.

In designing PROBE, we follow the protocols and APIs suggested by the Grid

Forum. For example, we follow the resource specification defined by the Grid

Information Service Group [78], extend it and express it using XML (as explained

in section 4.7.1). Also, we have studied most of the existing grid environments;

mainly the most widely accepted ones such as Globus and Sin Grid Engine.

PROBE provides a rich, open API and a set of specifications based on public

standards proposed by the Global Grid Forum and standard tools such as XML.

For example, the Client Interface Module has been built so as to provide rich and

flexible interface to other grid environments. It also provides an interface to other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

resource brokering environments. The other resource brokering environments can

belong to the same grid system or may be part of another system, e.g., Globus or

NetSolve. The Client Interface Module also provides an API that can be used by

the resource brokering environment’s clients. A client can be a user application,

some other component of the system, e.g., Workflow Manager, or may be another

system, e.g., Globus and NetSolve.

• Flexible specification languages. The extensible Markup Language (XML) [38]

is a specification for creating structured documents and data. The beauty of XML

is that it isolates the content format of the source from the content format of the

target making it possible to take data from any source and deliver it to any target.

XML is evolving and quickly becoming a standard way to identify and describe

data because it has proved easy to use and deploy. This standard has been

recommended by the World Wide Web Consortium (W3C) and can be used as a

common meta-language that enables data to be transformed from one structure to

another.

We provide a set o f script specifications for resources, jobs and their

associated policies based on XML. Sections 4.7.1, 4.5, and 5.6 respectively

describe these specifications in detail. Using XML allows us to leverage off

existing freely available XML parsers and editors to develop our tools. It makes

the development o f our tools easier by using the existing freely available XML

parsers and editors. Also, such an XML-based script presents the potential of

inter-framework portability.

Some grid systems such as NetSolve, Ninf and Condor cannot map well onto wide

area environments where site autonomy and heterogeneity complicate their task. For such

systems, an interoperability layer needs to be developed such that those systems can be

integrated with wide area grid environments such as Globus and Legion. Moreover, there

is an increasing trend towards integrating existing grid systems together to form super

grid environments. With its interoperability, heterogeneity, flexibility, scalability, rich-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

context and easy-to-extend modules, PROBE can be that interoperation layer that can

integrate a variety o f grid environments as illustrated in Fig. 14.

NInf Gateway Unicore PUNCH Darwin Arcade

M AMZ AZm M t M Sm

AAA AAA AAA AAA AAA AAA
Globus Legion Condor NetSolve Disc-

Wolrd
Sun Grid

Engine

Fig. 14. Different grid environments interoperate via PROBE

3.6 Functionalities

In this subsection, we describe the main functionalities the PROBE system provides.

3.6.1 Resource Brokering

Task scheduling is one of the most critical issues in building a heterogeneous distributed

resource brokering environment and is known to be an NP-Complete problem [37]. Many

heuristics have been developed to generate near-optimal schedules [84],[123],[124].

Scheduling is said to be static when the resource on which the job is going to be allocated

is assigned before execution [4]. Dynamic scheduling is performed at run time as a means

of maximizing resource utilization, job throughput, or other metrics depending on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

scheduling policy [5],[57]. Static scheduling is easy to implement, and is more widely

used [23].

Scheduling o f user’s required tasks is a very challenging issue in building a resource

brokering environment and as a result most of the available resource brokering

environments implement only minimal scheduling capabilities [17],[27],[66],[112]. Most

of the existing efforts suffer from limitations such as:

• resources are dedicated;

• resources are of homogeneous types;

• resources do not fail;

• resource load is predictable;

• task is profiled and its resource usage is known in advance;

• task can be allocated on any resource; etc.

PROBE provides efficient brokering o f resources. The Resource Broker module is the

one in charge o f this task. As we detail in chapter IV, the design allows the plug-and-play

of any scheduling algorithm and application problem the user might provide. As we

illustrate in Fig. 15, the Client Interface Module receives a problem description from a

client including a task that needs to be scheduled and allocated. The Client Interface

Module then passes the information to the Resource Broker, where a unique job identifier

is created and passed back to the Client Interface Module so that the request can be

tracked. PROBE takes placement restrictions into account while scheduling tasks. The

Resource Broker then consults with the Policy Enforcement Manager and based on the

underlying scheduling algorithm, the user’s job and the provided sub-set of matched

resources, constructs a schedule and starts implementing it. Based on the client’s choice,

the Resource Broker can allocate the targeted resource(s). The allocation decision can

take several approaches:

• Client-Controlled Allocation, in which the client specifies the resource statically

to the resource brokering environment. For example: “run my aircraft design

application on tango.cs.odu.edu ”.

• Broker-Controlled Allocation, in which the resources are chosen by the Resource

Broker based on some constraints specified by the client. For example: “run my

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

biomedical problem (Bio) fo r 6000 combinations on nodes each with at least 1000

MHZ CPU speed".

Dynamic allocation: In this case, the allocation decision may change dining

execution due to resource failure, poor performance, load imbalance, etc.

PROBE s Clients

run my aircraft
design application

on tango.cs.odu.edu

I i
Job

Repository

Job Status
Changes

Job
Monitor

Job Status
Changes

run my biomedical problem
Bio fo r 6000 combinations
on nodes each with at least
1000 MHZ CPU speed

 ▲ '

run the supplied DAG on
nodes each with at least 600
MHZ

Client Interface
Module

Job
Specification

1
I Resource Match Policy Enforcement

] Broker Create
SLA

Manager

Scheduled
Task

Resource
Monitor

Resource
Daemon

V7Updated Resource Status
Optimized Policies

Fig. 15. Brokering Scenarios

Sometimes, the task requires co-allocation where a set of resources needs to be

available for use simultaneously. The current implementation of PROBE supports a plug­

in for this kind o f application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

After the schedule is created, the Resource Broker implements it. The job is

dispatched to the resource once it is ready. The Resource Broker hands the scheduled task

to the daemon that runs on the resource. Authentication and data staging will be done at

this phase by other components of the systems, e.g., Data Manager and Security

Manager. If successful, the daemon spawns a process to monitor the job execution. At

this time, the Resource Broker informs the Job Monitor to monitor the execution of the

job. When the job finishes successfully, the Resource Broker terminates the schedule. A

detailed design of the Resource Broker is given in chapter IV.

3.6.2 QoS Brokering

In a typical grid environment where resources, most o f the time, are not dedicated, it is

very important to assure the client that the QoS of the allocation is ensured even after the

allocation is made. One of the main issues behind this effort is to provide a QoS policy

framework that makes it easy for both the resource provider and the resource consumer to

define their policies.

On the other hand, policy-based frameworks are increasingly being used within the

network community as means of guaranteeing a given level of the provided Quality of

Service (QoS). In such frameworks, a Service Level Agreement (SLA) is defined as a

formal negotiated agreement of service levels between two parties, the service provider

and the service consumer. An SLA can comprise one or more policies in which a policy

can be seen as a set o f conditions and actions that need to be taken when those conditions

are met.

PROBE employs a policy-based approach for resource brokering that attempts not

only to match the user’s request with the right set of resources, but also to assure the

guaranteed level of the allocation. The Policy Enforcement Manager is the module that

is in charge of enforcing the policies, in which both the clients and the resource providers

can identify their policies. When requested, the Policy Enforcement Manager finds the

appropriate resource(s) that can match the client request and gives them to the Resource

Broker. Unlike other resource brokering environments, PROBE goes far beyond

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

matching/allocating resources to provide allocation assurance by introducing the concept

o f Service Level Agreements (SLAs) and assuring that the appropriate action will be

taken in case of violations of the agreements.

The brokering process requires interaction between different modules of the system.

In order to simplify the process, Fig. 16 defines the different stages that need to be

considered while handling user’s requests. These stages are:

Development 4 Matching 4 Scheduling 4 Allocation 4 Assurance

Fig. 16. Brokering cycle

• Development: the stage where the client specifies its requirements. PROBE

works in conjunction with other components o f the underlying grid system.

The client could hand its requirements to the Workflow Manager, which in

turn creates the appropriate request and hands it to PROBE.

• Matching', this is where the system matches the client’s requirements with the

applicable set of resources.

• Scheduling-, a schedule is created based on the underlying scheduling

algorithm and using the matched set of resources.

• Allocation: the resulting schedule is implemented and a Service Level

Agreement is created for each resource allocation.

• Assurance: SLAs are monitored to assure that the allocation terms are not

violated. Appropriate action(s) (if specified) will be taken in case of a

violation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

A detailed discussion of the policy-based framework is given in chapter V.

3.6.3 Monitoring

Monitoring is the process o f obtaining, collecting and presenting the information required

by an observer about the observed system [61],[67]. It is one of the critical issues in

building a distributed computing environment in general and a distributed resource

brokering environment in particular where distribution and issues such as site autonomy

and resource heterogeneity complicate the task of monitoring.

PROBE has three observers; Resource Monitor that monitors the status in the

managed resources; Job Monitor that monitors the jobs occupying them; and the SLA

Monitoring Agent, part of the Policy Enforcement Manager infrastructure, that monitors

the SLAs being created for the allocated jobs and their associated policies. In this

subsection, we describe those observers and the approaches that we have chosen in order

to implement them.

3.6J.1 Resource Monitoring

As we mentioned earlier in this chapter, PROBE’s design employs that a daemon resides

on each resource to provide a gateway to the resource. It collects statistical data about the

resource and keeps track o f the allocated jobs. For example, in UNIX environment, the

resource daemon opens a pipe to read from a program that gets this information such as

top, ps, who, and w.

The Resource Repository holds the up-to-date information about the status of the

resources. The Resource Monitor is the component that monitors the underlying

resources and keeps the Resource Repository up-to-date. For this, PROBE supports two

approaches. The first one is the Push Mode approach where the daemon that resides on

the resource sends the required information to the Resource Monitor either periodically or

based on some specific events (event-driven mechanism). The second one is the Pull

Mode approach where the Resource Monitor sends a request to the resource daemon

asking about the current status o f the resource. This mode can also be performed either

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

periodically or on-demand (event-driven mechanism). The event-driven mechanism has

some advantages over the periodic one since it does not fill up the network with massive

traffic and also provides more accurate results. However, it may have poor performance

since it does not rely on cache information in the Resource Repository. The Resource

Monitor and the resource daemon provide an API where information about resources can

be obtained using all these modes. The user can either chose Pull, Push or a hybrid

approach that combines both.

In section 4.7, we present a schema that can be used to describe resources. That

schema relies on the DTD given on Fig. 17 in order to specify the disseminating options.

<!~D issem inating.dtd~>
<! ELEMENT Disseminating (Push?,Pull?)>
<!ELEMENT Push (Periodic?,EventBased?)>
<!ELEMENT Pull (Periodic?,EventBased?)>
< (ELEMENT Periodic EMPTY>
<!ATTUST Periodic Interval CDATA>
<!ELEMENT EventBased EMPTY>

Fig. 17. Schema to specify disseminating options

3.6.3.2 Jobs Monitoring

The Job Monitor monitors the execution o f the currently running jobs on the resources of

the system. It provides an API to interact with some internal components, e.g., Resource

Broker, and also external components, e.g., Workflow Manager.

The Job Monitor provides an API to manipulate the currently running jobs. In some

situations, e.g., poor performance or failure, a job may have to be stopped, resumed,

cancelled or migrated to another resource. The API provides support such tasks. In case

of resource failure, the Job Monitor will inform the Resource Broker so that it can re­

schedule all the failed jobs.

The Execution Monitor, part o f the PROBE resource daemon, keeps track of the

allocated jobs within the resource and updates the Job Monitor about their status changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

This part has been implemented using the distributed event notification mechanism in

Jini.

The current implementation of the Job Repository, which keeps information about all

the currently running jobs, has been done using MySQL. As we explain in chapter IV, a

user’s request, including the job description, is represented using XML. We store the

XML specification of the jobs in the object-relational form and use the Request Parser to

write/retrieve jobs information to/from the Jobs Repository.

Also, to make it easier for the user to track the job and make sure that it has been

executed correctly, the standard output and the standard error are redirected to SID. out

and SID.err respectively, where SID represents the unique identification being assigned

to the job.

3.6.3.3 SLA Monitoring

The SLA Monitoring Agent, part o f the Policy Enforcement Manager infrastructure, is the

place where the allocation is assured. Once the job is allocated, an SLA is created with

the user’s policy. The SLA Monitoring Agent keeps monitoring the associated policies

and takes the appropriate action (if any) in case o f violations. For example, a credit could

be issued to the user.

The SLA Monitoring Agent provides an API to interact with some internal

components, e.g., Resource Broker, and also external components, e.g., Workflow

Manager, where SLAs can be manipulated. Based on changes in the job’s status, an SLA

might be stopped or terminated. More detail about SLA monitoring is given in chapter V.

3.7 Summary

In this chapter, we have described the overall architecture of PROBE, a Policy-based

ResOurce Brokering Environment, in great detail. We have discussed the various

approaches that we have chosen to implement the prototype along with the related issues.

As we explain in chapter VI, the implementation of PROBE focuses on providing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

prototype modules, as shown in Fig. 11. Given our modular approach, rich APIs and the

interoperable architecture, more functionality can easily be added in the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

CHAPTER IV

RESOURCE BROKER: A DETAILED ARCHITECTURAL VIEW

4.1 Overview

One of the major tasks o f a resource brokering environment is to provide an efficient

brokering of resources. Given the application's constraints, provider’s rules, distributed

heterogeneous resources and the large numbers of scheduling choices, the resource

brokering environment has to decide where to place the user’s jobs and when to start their

execution in a way that yields the best performance to the user and the best utilization to

the resource provider [65].

As we have stated earlier in chapter in , the Resource Broker module is the module

that is in charge of the brokering tasks within PROBE. The Resource Broker needs to be

flexible and generic enough not only to handle the different kinds of user tasks but also to

handle the different kinds of scheduling techniques the system is going to incorporate.

In this chapter we present the design and implementation of the flexible, extensible

and generic brokerage infrastructure for computational grids following a layered

approach and facade design pattern and using XML as the underlying specification

language.

4.2 Architecture

We have designed and implemented a resource brokering infrastructure for computational

grids that can be easily utilized by various grid systems [7]. As illustrated in Fig. 18, we

have divided the Resource Broker into two flexible agents, where each agent implements

an individual function. These agents define the basic services and capabilities required to

construct a distributed resource brokering system. Dividing into agents provides

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

flexibility and ease o f replacement making it easier to satisfy users’ requirements in the

future. Also, scalability and high availability can be achieved by replicating those agents.

Client Interface
Module

i i

Resource Broker
Policy

Enforcement
Manager

Scheduler Agent " 1Job
Monitor

Awaiting
Job

Allocation
Schedule Agent

Fig. 18. Overall Architecture of the Resource Broker

1. Scheduler Agent. This is the heart o f our Resource Broker and the first point of

contact for the user’s job. Based on the underlying scheduling algorithm, the

user’s job and the matched sub-set of resources provided by the Policy
Enforcement Manager, the Scheduler Agent is going to construct a near optimal

active schedule object and pass it to the Allocation Agent where it is going to be

implemented.

The schedule is an active object that has an order and placement o f tasks that

need to be allocated. The Scheduler Agent creates the schedule based on the

application type and the underlying scheduling algorithm. The schedule then gets

manipulated by the different components o f the Resource Broker as necessary.

A unique job ED is assigned for each job at the time of creating the schedule

by the Scheduler Agent. In case o f aggregated jobs, unique job IDs are assigned

for the job and all its sub-tasks. This makes it easy to track jobs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

Resources roker : PolicvEnforcemerrtManaoer: : JbbMonitor

matchRequest()

createSchedule()

-startAllocation()
< ------

createSLA()

a lo ca te ()

startMonitoring()

updateJobStatus()

cancelSLA()

: ResourceDaemon

re trackJob()

notify()

terminateSchedule()

Fig. 19. An overall event diagram for interaction between the different components o f the

Resource Broker

The Scheduler Agent maintains an internal queue of jobs currently in the

system and that have not been scheduled yet including those that failed and need

to be rescheduled. The Scheduler Agent uses a queuing algorithm to select the

next job to schedule. The approach we follow allows the users to plug in their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

scheduling and queuing algorithms as needed. The design approach makes these

algorithms look like black boxes to the Scheduler Agent.

2. Allocation Agent. The Allocation Agent is responsible for implementing the

created schedule, i.e., launching the tasks on the designated resources. The

Allocation Agent notifies both the Policy Enforcement Manager so that it creates

an SLA based on the provided policy and keeps on monitoring that SLA during

the life-time o f the allocation; and the Job Monitor which in turn keeps on

monitoring the allocated job. The Job Monitor then updates the Scheduler Agent
as necessary about the significant changes in the job status {Finished, Failed,
Stopped, etc). The Scheduler Agent in such a case might need to cancel the

associated SLAs and re-schedule some of the associated tasks based on the

underlying scheduling and queuing algorithms.

We follow a layered approach and facade pattern approach in designing and

implementing these modules. In section 4.4, we explain this approach in greater detail.

4.3 Resource Daemon: Detailed Architecture

PROBE requires a daemon to be started on each resource under the control of their

administrative domains. This daemon, implemented as a Jini service, acts as gateways

between PROBE and the managed resource. It also can be used as an integration base to

interact with other grid systems. As illustrated in Fig. 20, the work within the daemon has

been divided into five components:

1. Core Daemon: implements the infrastructure necessary for the daemon to be a Jini

service and for managing the interactions among the other components.

2. Data Collector: handles the collection o f statistical data about the resource and

passes it to the Local Policy Enforcer for optimization and local policy parsing

before handing it to the Resource Monitor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

3. Execution Monitor: keeps track of the allocated jobs within the resource and

updates the Job Monitor about their status. This part has been implemented using

the distributed event notification mechanism in Jini.

Resource Daemon
Core

Daemon
Local
Policy

Enforcer

Execution
Monitor

Data
Collector

Fig. 20. PROBE Resource Daemon

4. Local Policy Enforcer: a resource can have two kinds of policies: allocation

policies that define how the resource can be utilized, and internal policies that are

meant for internal use within the resource such as setting a warning level to avoid

an allocation violation. The Local Policy Enforcer keeps track of the policies

associated with the resource along with the local policies. It also does some

optimization of the associated policies before updating the Policy Enforcement
Manager. Details about this component is given in chapter V.

5. Platform Specific Adaptor: maps the data collection and job execution/monitoring

requests to the specific platform (such as Globus, Sun Grid Engine, UNIX, Linux,

NT, etc). For example, in a UNIX-based resource daemon, the data collector may

open a pipe to some o f the existing UNIX utilities such as top, ps, uname and

vmstat so that it can read the current statistics. Fig. 21 illustrates some of the

platform adaptors o f the current prototype implementation o f PROBE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

C are
D aem aa

L aca i
P alicjr

E a te rc e r

E xecatiai
M a x to r

D ate.
C aO ectar

mm■M M

Fig. 21. Different platform adaptors for the resource daemon

4.4 Design Pattern

Design patterns are simple and elegant solutions to specific problems in object-oriented

software design [106]. They represent solutions that have worked out for experienced

Object Oriented designers in the past. The Facade design pattern is the one that wrap a

complex set of classes into a much simpler interface. A facade object is introduced to

provide a single, simplified interface to more general facilities of a subsystem.

We have noticed the need of decoupling the Resource Broker from any specific

queuing algorithm, scheduling algorithm and the type o f jobs that it is going to deal with.

One way to address this issue is to use a facade object that defines a higher-level interface

and makes the subsystem easier to use. As shown in Fig. 22, we follow the facade design

pattern for the objects being used by the Resource Broker. This shields the Resource

Broker from any particulars of the users’ queuing algorithms, scheduling algorithms and

jobs. The Resource Broker sees them as black boxes. To simplify the figure, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

shown only some of the correspondence classes and hidden the signatures o f the

operations

P n o n t y B a s e d

W e i g h t B a s e d

N e w A l g o n t n m

% n F r o m : i n t
% n T o : i n t

QueuingAlgarithm

♦ a d d J o b f l
♦ d e l e t e J o b O

’ - > • ♦ u p d a t e J o b O
♦ g e t N e x t J o b O
♦ g e t J o b B y l D O
♦ g e U o b B y N a m e O
^getNarreO

S c h e d u l e

R e s o u r c e B r o t e r

i A d d i t l o n a l l n f o

^ s N a m e : S t i n g
% s V a l u e : S t i n g

! D A G J o b
[^ v N o d e s : J o b Q

f l ^ v E d g e s : E d g e Q

♦ a d d N o d e O
♦ d e l e t e N o d e O
♦ u p d a t e N o d e O
♦ a d d E d g e O
♦delete EdgeO
♦ u p a d t e E d g e Q

Job

r
/ \

i ♦ g e t N e x t S c h e d u l e d T a s l O
-3 1 ♦ a d d S c h e d u l e d T a d O

; ♦ u p d a t e S c h e d u l e d T a d O
I ♦ d e l e t e S c h e d u l e d T a d O
| ♦ d i s p l a y O

SchedutingAlgorithm

+createScheduleO
%'sSchedulableQ
+isDynanfcO
+updateSchedule()
*getNameO

^ n J o b l D : i n t
^ s J o b N a m e : S t r i n g
f l ^ s J o b T y p e : S t r i n g
% s U a e r : S t r i n g

~ £ ^ . % 9C o n s t r a i n t s : S t r i n g
% n S t a t u s : i n t
f l ^ v A d d i t i o n a l l n f o : A d d i t i o n a l l n f o Q

S i n g l e J o b

% f f l E x e c u t a b l e : S t r i n g
^ G R u n O i r e c t o r y : S t r i n g
(b ^ f B u m e n t s : s t r i n g

+hasSubTasksO
♦ getContainedTasksO
+updateJobStatusO
+getRaadyJobsO
♦ g e t A d d i t i o n a l l n f o B y N a m e O
♦ g e t A d d i t i o n a l l n f o O

~x;—

N e w S c h e d u l i n g
1 A l g o r i t h m

H e a v y N o d e F i r s t i

S t a t i c E A C P M

D y n a m i c _ E A _ C P M

A g g r e g a t e d J o b

i % v A g g « g a t e d J o b s : : J o b Q

<h ♦ a d d A g g r e g a t e d J o b O
♦ d a l e t e A g g r e g a t e d J o b ()
♦ u p d a b A g g r e g a t e d J o b Q

Fig. 22. Partial Class Diagram that illustrates the use o f the Facade Design Pattern in

PROBE’s brokering infrastructure

An example o f the use o f the facade approach is the job types. Job is an abstract class

and needs to be implemented by the job type. The Resource Broker and the Scheduling

Algorithm have a unified interface to a set o f Job Types. This makes the design

independent o f any job type. Initially, we support Single, Aggregated and Direct Acyclic
Graph (DAG) jobs. A Single Job is the basic job type in our framework that represents

the executable portion o f an application. An Aggregated Job is where a group o f tasks are

combined to form a unified job such as: CoAllocation Job that requires that a set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

resources are available for use simultaneously; and Parametric Job where the same

program is repeatedly executed with different initial conditions as a means o f exploring

the behavior of a complicated system. A DAG Job represents an application program that

consists of a collection of heterogeneous modules (application codes from different

disciplines). A typical distributed application requires these modules to be executed in

some order and possibly on different machines.

Adding new job types to the system does not require modification to the code nor its

recompilation. One needs to create a class inheriting Job and implement the abstract

methods. The same approach is used for the scheduling algorithm and the queuing

algorithm. This gives PROBE the flexibility to plug and play any one o f them based on

the requirements o f the overall system. In chapter VII, we demonstrate this approach in

greater detail.

< !~Request.dtd—>
<!ENTTTY % JobType "Single|Aggregated|DAG">
<!ENTITY % aggregationType "CoAllocation| Parametric" >
< 'ENTITY % CoAllocationTiming "SameTime|DifferentTime">
<!ENTITY % PolicyDTD SYSTEM "Policy .dtd">
%PolicyDTD;
<!ELEMENT Request ((% JobType;))>
<!ELEMENT Single (Policy?,AdditionalInfo*)>
<!ATTUST Single

Name CDATA ^IMPLIED
Executable CDATA ^IMPLIED
RunDirectory CDATA ^IMPLIED
Arguments CDATA #IMPLIED>

<!ELEMENT Aggregated (Single+,Rule?,AdditionalInfo*)>
<!ATTLIST Aggregated

Name CDATA ^IMPLIED
Type (% aggregationType;) ^IMPLIED
Timing (%CoAllocationTiming;) #IMPLIED>

<!ELEMENT DAG ((%JobType;)+,Dependency*,RuIe?,AdditionalInfo«)>
< IATTLIST DAG

Name CDATA #IMPUED>
< 'ELEMENT Dependency EMPTY>
< IATTLIST Dependency

From CDATA ^IMPLIED
To CDATA #TMPLIED>

Fig. 23. Flexible Job Language (FJL).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

4.5 Flexible Job Language (FJL)

The underlying language used to specify the user’s request is based on XML. This allows

our system to interact with external systems and exchange jobs information. We have

designed a Flexible Job Language (FJL) that can be used to express the user’s request.

FJL can be extended to satisfy complicated user’s requirements in the future. Fig. 23

illustrates the schema that specifies how the request can be generated. This schema relies

on the Policy Scripting Language (PSL) in which the user can specify the associated

policy. PSL is explained, in detail, in section 5.6. An example FJL script representing a

sample DAG application is given in Fig. 24.

<?xml version="1.0"?>
<!DOCTYPE Request SYSTEM "Request.dtd">
<Request>
<DAG Name="DAGJab">

<Single Nam e=”Ml" Arguments=”"
Executable="/home/theneyan/Demo/DAGJob/ml"
RunDirectory=7home/theneyan/Demo/DAGJob/">

</Single>
<Single Name="M2" Arguments=""

Executable=7home/theneyan/Demo/DAGJob/m2"
RunDirectory=7home/theneyan/Demo/DAGJob/">

</Singte>
<Single Name="M3” A rg u m en ts^”

Executable=7home/theneyan/Demo/DAGJob /m 3"
RunDirectory=7home/theneyan/Demo/DAGJob/">

</Single>
<Single Name="M4" Arguments="“

Executable=7home/theneyan/DAGJob/Pathfinder/m 4"
RunDirectory=7home/theneyan/DAGJob/Pathfinder/''>

</Single>
<Dependency From=”Ml" T o="M 2"x/D ependency>
<Dependency From="Ml" To="M3”x /D e p e n d e n c y >
<Oependency From="M3" To=”M 4"x /D ependency>
<Dependency From="M2” To=’’M 4"x /D ependency>

<Policy>
<Rule>
<Condition Entity="res.CPUspeed" Operator='*GR" Value="100”x /C o n d itio n >
</Rule>
</Policy>
</DAG>
</Request>

Fig. 24. Example FJL script representing a sample DAG application.

Ml

M4

M2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

4.6 Job State Transition Diagram

When a job is submitted to the Resource Broker, it passes through a series o f states till it

completes successfully, is cancelled or fails. The Job Monitor API allows the job to be

monitored. It allows even sub-tasks o f an aggregated application (such as DAG, Co-

Allocation, Parameterized, etc) to be monitored. Fig. 25 shows the possible states a job

can pass through when submitted to the Resource Broker. Job states are described below:

• Waiting: A job is in a waiting state when it is submitted to the PROBE system and

is waiting for resource allocation. This could happen when the job is failed,

stopped and then resumed, or can’t be scheduled at the current time.

• Scheduled: A job transitions to this state when it is scheduled but not yet

allocated.

• Running: A job transitions to this state when the resource gets allocated and the

execution starts.

• Stopped: A job transitions to this state when the user stops the request. The user

can stop the request at any time. A stopped job can be resumed.

CancelledCancel Finished

Normal
Finish

Schedule Run
RunningScheduledWaiting

ResumeV RescheduIe

Stop

Stop
Stop

Stopped Failed

Fig. 25. A Job State Transition Diagram in the Resource Broker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

• Cancelled: A job transitions to this state when the user cancels the request. The

user can cancel the request at any time.

• Failed: A job can fail due to several reasons. It could be due to process failure,

server crash, networking failure, etc.

• Finished: A job transitions to this state when it normally finishes its execution.

4.7 Resource Types

A resource denotes any entity that is meant to be shared in a grid environment. It could

be computational, network, software, data or storage. The current prototype

implementation of PROBE focuses on computational grids. However, the design of

PROBE allows the Resource object that represents the managed resource, as shown in

Fig. 26, to look like a black box for the different components of PROBE.

Resource

Computational Network ■ Software Data Storage NewResourceType

Fig. 26. Class diagram of the resource types

A new resource type can be easily added by extending the Resource abstract class.

PROBE APIs are flexible enough to handle such resource heterogeneity. The vision of

allocation varies from one resource type to another as illustrated in Table 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

TABLE 2

ALLOCATION VISION FOR DIFFERENT TYPES OF GRID RESOURCES

Resource Type Allocation Philosophy Client-side Example

Computational Executes a request. run my aircraft design
optimization problem in a set
of machines each with at least
I GHz CPU speed and 256
MB of free physical memory.

Software Obtains a license or uses
software. PROBE could be
viewed as license manager in
such case.

give me a license to use the
CFD package.

Data Obtains the right to use access
for a data source. Resource
denotes the data being stored
or retrieved.

retrieve the data that satisfies
my query.

Storage Stores/retrieves data into/from
storage server. Resource
denotes the place where the
data get stored. This includes
physical storages, digital
libraries, databases, etc.

store my data in storage with
at least 10 GB of free space
and a rotation speed of at least
7200 rpm.

Network Offers a network service. assign me a link where
bandwidth >= 1 Mbps and
availability > 90%

4.7.1 Resource Specification Language

We need a flexible language that provides the necessary richness to express the diverse

kinds of heterogeneous resources managed by the system along with their allocation

constraints.

The Grid Information Service (GIS) working group [48] o f the Global Grid Forum

(GGF) [47] focuses on services that either provide or consume information on the Grid.

They have proposed a simple set of objects that can be used to describe computational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

resources in the Grid [78]. We follow the specification defined by the Grid Information

Service Group, extend it and express it using XML. A resource can be described using

the Document Type Definition (DTD) shown in Fig. 27. The different entities are

described as the following:

• Resource: describes the main entity that contains information about the resources.

This information is either given by the vendor or internal to the brokering

environment.

o CanonicalSystemName: a string indicating the architecture-manufacturer-

operatingSystem, e.g., sparc-sun-solaris2.8.

o Manufacturer, the manufacturer of the computational resource, e.g., Sun

Microsystems.

o Model: the model of the computational resource, e.g., sun4u.

o SerialNumber: the serial number of the computational resource,

o MachineHardwareName: the machine hardware name as given out by the

vendor.

o HostID: the host id number as given by the vendor,

o Type: the type of the compute resource. This includes one or more out of

the following list:

■ Workstation: a stand-alone workstation.

■ PC: a personal computer.

■ SIMD: a Single Instruction stream, Multiple Data stream machine.

■ MIMD: a Multiple Instructions stream, Multiple Data stream

machine.

■ SM: a computational resource using shared memory between

multiple nodes.

• DM: a computational resource using distributed memory between

multiple nodes.

o ResourcelD: the resource id number as given by the brokering

environment,

o IPaddress: the IP address of the resource.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

• OperatingSystem: It contains information about the resources operating system.

o Name: the name o f the resource Operating System, e.g., Red Hat Linux,

o Version: version of the Operating System,

o Release: The release version of the Operating System, e.g., 7.2.

o Type: The type o f operating system, e.g. POSDC, BSD, etc.

• Memory: It contains both highly dynamic and relatively static information about

the resources memory.

o PhysicalMemorySize: The total size of the main memory in KB.

o FreePhysicalMemory: The free main memory in KB.

o PhysicalMemoryAccessTime : the average access Time of the main

memory in ms.

o VirtualMemorySize: the virtual memory size in KB.

o FreeVirtualMemory: the free virtual memory in KB.

o TotalSwapSpace: the total swap space in KB.

o FreeSwapSpace: the free total swap space in KB.

o PageFaultRate: the page fault rate in term pages/second.

• Cache: It contains cache information for the resource.

o TotalDataCache: the total data cache size in K.

o TotallnstructionCache: the total instruction cache size in K.

• Benchmark: It contains benchmark information for the resource.

o SPECint92: SPECint92 rating of the machine,

o SPECfloat92: SPECfloat92 rating of the machine,

o lapacklOO: LAPACK rating o f machine for solving a matrix o f 100.

o lapack500: LAPACK rating of machine for solving a matrix o f 500.

o lapacklOOO: LAPACK rating of machine for solving a matrix o f 1000.

o mflops: Stores MFlop rating of the machine.

• CPU: It contains both highly dynamic and relatively static information about the

resources processors) as well as current load information.

o CpuType: type o f computer processor (Pentium, Sparc, RS6000, MIPS,

etc.).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

<!— Resource.dtd —>
<!ENTTTY % PolicyDTD SYSTEM "PoIicy.dtd">
%PoIicyDTD;
<!ENTITY % DisseminatingDTD SYSTEM "Dtssemjnating.dtd">
% DisseminatingDTD;
<!ENTITY % AvailabilityStatus “AvailablefNoneAvailabIe">
<!ELEMENT Resource (OperatingSystem, Memory, Cache. Benchmarck,CPU,SystemDynamicInfo,Policy?,
Disseminating?)>
< ’A 1 1 LIST Resource CanonicalSystemName CDATA # IMPLIED

Manufacturer CDATA # IMPLIED
Model CDATA # IMPLIED
SerialNumber CDATA # IMPLIED
MachmeHardwareName CDATA # IMPLIED
HostID CDATA # IMPLIED
Type CDATA # IMPLIED
ResourcelD CDATA # IMPLIED
IPaddress CDATA #IMPLIED>

CELEMENT OperatingSystem EMPTY>
<!ATTLIST OperatingSystem Name CDATA # IMPLIED

Version CDATA # IMPLIED
Release CDATA # IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Memory EMPTY>
<!Al l'LIST Memory PhysicalMemorySize CDATA # IMPLIED

FreePhysicalMemory CDATA # IMPLIED
PhysicalMemoryAccessTime CDATA # IMPLIED
VirtualMemorySizc CDATA # IMPLIED
FreeVirtualMemory CDATA # IMPLIED
Totals wapSpace CDATA #IMPLIED
FreeS wapSpace CDATA # IMPLIED
PageFauItRate CDATA #IMPUED>

<!ELEMENT Cache EMPTY>
<!ATTLIST Cache TotalDataCache CDATA # IMPLIED

TotallnstructionCache CDATA #IMPLIED >
<!ELEMENT Benchmarck EMPTY>
<!Al 1 LIST Benchmark SPECint92 CDATA # IMPLIED

SPECfloat92 CDATA #IMPLIED
lapacktOO CDATA # IMPLIED
lapackSOO CDATA «IMPLIED
lapacklOOO CDATA # IMPLIED
mflops CDATA #IMPLIED >

<!ELEMENT CPU EMPTY>
<?ATTLIST CPU cpuType CDATA #IMPLIED

fpuType CDATA #IMPLIED
Count CDATA # IMPLIED
Speed CDATA # IMPLIED
Load I CDATA # IMPLIED
Load5 CDATA # IMPLIED
Load15 CDATA # IMPLIED
LoadModified CDATA # IMPLIED >

<!ELEMENT SystemDynamicInfo EMPTY>
<!A IT LIST SystemDynamicInfo heartBeat CDATA # IMPLIED

bootTime CDATA # IMPLIED
numbeiOflnteractiveUsers CDATA # IMPLIED
Status (%AvaiIabiIityStatus;)>

Fig. 27. A schema for specifying resources

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

o fpuType : type of floating point processor,

o Count: number of CPU’s in the compute resource,

o Speed: clock rate o f the CPU's in MHz.

o Load I : the load average in the last minute,

o Load5: the load average in the last five minutes,

o Load 15: the load average in the last fifteen minutes,

o LoadModified: the time at which the load averages was last modified.

• SystemDynamicInfo

o Heartbeat: the last time the resource was known to be alive,

o BootTime: the last time the resource was known to be rebooted,

o NumberOflnteractiveUsers: The number of the interactive users,

o Status: The current availability status of the resource.

• Policy: It contains information about the usage policy as described in the Policy

Specification Language. A detailed explanation about how a policy can be

specified is given in chapter V.

<?xml version='T.0"?>
<!DOCTYPE Resource SYSTEM ”Resource.dtd">
<Resource CanonicalSystemName=”sparc-sun-solaris2.8” Manufacturer" Sun Microsystems”
Model=”sun4u” SerialNumber”11-22-33” MachineHardwareName=”” HostID=”12345”
Type=”Workstation” ResourceID=”2” IPaddress” 128.82.7.107”>
<OperatingSystem Name=”Solaris” Version^”” Release =”2.8” Type=””/>
<Memory PhysicaIMemorySize=”5l2000” FreePhysicaIMemory=”24000”
PhysicalMemoryAccessTime=”” VirtualMemorySize=’”’ FreeVirtualMemory=””
TotalS wapSpace=”20000” FreeSwapSpace=”15000” PageFaultRate=””/>
<Cache TotalDataCacbe=”” TotalInstructionCache=”” />
<Benchmark SPECint92=’"’ SPECfloat92=”” lapackl00=”” Iapack500=”” !apackl000=””
mflops=’”’/>
<CPU cpuType=”Sparc” fpuType=”” Count=”l ” Spced=”750” Loadl=”” Load5=’”’ Loadi5="”
LoadModified—’ 1019999999”/ >
<SystemDynamicInfo heartbear”1019999999” bootTime=”1010000000”
numberOfInteractiveUsers=”5” Status”AvailabIe”/>
< D issem inating>
<Push> <Periodic Interval=”60”> </Push>
</Disseminating>
</Resource>

Fig. 28. An example script of a resource using the resource specification language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

• Dissemination: When a resource registers with PROBE, its status needs to be

updated regularly based on the disseminating option. This entity describes the

dissemination option being used in monitoring the resource. More about resource

monitoring is given in 3.6.3.1.

An example script representing a Solaris workstation is given in. Fig. 28. Also, as

illustrated in Fig. 29, the current implementation of PROBE uses MySQL in the

underlying implementation o f the repository. We store the XML specification o f the

resources in the object-relational form and use the Resource Parser to write and retrieve

resource information to/from the Resource Repository.

Client

Resource
Daemon

Fig. 29. Using the Resource Parser to write and retrieve resources information to/from the

Resource Repository

4.8 Issues

4.8.1 Rescheduling

Rescheduling is one of the important issues that has not received enough attention from

most existing resource brokering efforts. PROBE supports rescheduling in various ways.

Jobs that are aborted due to resource or job failure are kept in an internal queue within

Resource
Parser Resource

Repository

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Scheduler Agent that in turns uses an underlying queuing algorithm to select the next job

to schedule. Sometimes, due to poor performance, load imbalance, optimization issues,

etc, the resource brokering environment has to adjust the current schedule. PROBE

supports such a dynamic scheduling in which the current schedule can be re-examined

and the job executions reordered.

However, our rescheduling approach does not support process migration since it

requires process persistence where the resource brokering environment needs to save the

execution state o f the process (variables, stack, and possibly even the point of execution).

Condor [80] migrates the whole process through checkpoints. However, to allow

checkpointing, object code o f the application must be re-linked with the Condor

augmented system library. This adds more limitation on types of process that can be

migrated. For example multi-process jobs cannot be migrated and inter-process

communications such as pipes, semaphores and shared memory are not allowed [81].

4.8.2 Allocation Assurance

In a typical grid system, resources are designed to work as stand-alone units rather than

being dedicated to the system. Management and control of such a system is tedious and

challenging issue. Allocation assurance is another issue that has not been addressed by

most current resource brokering efforts. An allocation needs to satisfy the job’s

requirements during the lifetime of the allocation. The performance of the client’s

allocated task should not suffer after the allocation is made. For example, let us say that

the client asks for a resource where Free Physical Memory has to remain greater than 256

MB, then suddenly another allocated task or a local user’s task competes in using the

resource which results in affecting the level o f allocation the client has requested.

Most existing efforts focus on resolving this issue by making some assumptions that

might restrict the usage of the underlying grid system. For example, in [105], all

resources are assumed to be dedicated and their loads are predictable, and tasks are

assumed to be profiled where resource usage can be estimated in advance. We believe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

such restrictions do not encourage either the resource provider or the resource consumer

to use the underlying grid.

Our brokering infrastructure is flexible enough where the user can plug-in any kind of

scheduling algorithms that can help in resolving fairness issues before they occur. In the

following chapter, we describe how the policy-based framework helps in improving

fairness and providing some confident to the user to use the underlying grid environment

by assuring the guaranteed level of allocation.

4.9 Summary

In this chapter, we focused on the design and implementation of the Resource Broker, the

core component of PROBE that accepts clients’ tasks and schedules them accordingly.

We described a flexible and extensible XML-based schema that clients can use to

describe their application problems.

We showed how the design of our brokering infrastructure is flexible and how the

layered facade design approach makes it easy to plug-in application types and scheduling

techniques. However, allocation assurance is one of the major issues that most existing

resource brokering efforts ignore. In the next chapter, we focus more on a policy-based

framework that helps in resolving this issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

CHAPTER V

POLICY-BASED FRAMEWORK FOR RESOURCE BROKERING

5.1 Overview

A typical grid environment has a distributed heterogeneous collection of shared resources

controlled by different administrative domains. In general, the resource provider wants to

control the utilization o f its resources. This can be done via a resource-specific policy. In

the same manner, the resource consumer wants to specify its application requirements.

The rights o f both the provider and the consumer need to be respected.

Some resource brokering environments are system-centric, allowing only resource

providers to specify their policies; others are application-centric, allowing only clients to

specify their policies. Moreover, allocation assurance is one of the major issues, which

has not been addressed by most current resource brokering efforts. PROBE’s approach

allows both clients and resource providers to specify their policies. The Policy

Enforcement Manager enforces these policies. In particular, the selection of the resources

takes into account both the client’s requirements and the resource constraints.

In this chapter, we focus on our policy framework. We begin this chapter by

explaining our philosophy and outlining the design goals. Then, we describe in detail the

architecture that we chose in order to implement our policy framework, the different

approaches and their tradeoffs.

5.2 Philosophy

The network community has been utilizing policy-based frameworks in order to

guarantee a given level of Quality o f Service (QoS) [20],[100],[118]. In such

frameworks, a Service Level Agreement (SLA) is defined as a formal negotiated

agreement between two parties, the service provider and the service consumer. Each SLA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

comprises one or more policies. A policy can be seen as a set of conditions and actions

that need to be taken when those conditions are met.

One result o f enabling SLA on grid systems is that it provides one means o f attracting

grid users and contributes to establishing credibility to existing grid environments. It does

so by committing to provide the guaranteed level of allocation with the right action

(compensation, credit, configuration, etc) if such guarantees are not met or are

approaching violation. This will help in encouraging high performance users to use grid

systems as they make a commitment to provide the guaranteed level of allocation.

As illustrated in Fig. 30, PROBE looks at the allocation process as a Service Level

Agreement (SLA) between the resource consumer and the resource provider. PROBE

goes far beyond the typical matching/allocation process to provide allocation assurance

by providing the means o f policies and SLAs and ensuring that the appropriate action will

be taken in case of a violation.

In order to provide a common understanding about allocation quality and

responsibilities, PROBE creates a Service Level Agreement (SLA) that can be viewed as

a contract between the resource provider and the resource consumer. At the time of a

Provider

Policies

Conditions Actions

Allocation

Application

Constraints

Fig. 30. PROBE’s vision o f the allocation process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

job’s allocation, the Resource Broker notifies the Policy Enforcement Manager so that it

can create an SLA based on the client’s terms. The Policy Enforcement Manager keeps

monitoring this SLA during the life-time o f the allocation and takes appropriate action(s)

(as specified in the policy) when a violation occurs. The Policy Enforcement Manager
interacts with the Resource Monitor to get up-to-date information, such as the status of

the resources, and the policy related information. The API is flexible enough to let the

Policy Enforcement Manager talk to an external source of information such as Globus’s

MDS. External alert systems could also be notified when a violation occurs.

Resource providers could also specify some local policies internal to their resources

to ensure that the appropriate action will be taken before a violation occurs.

SJ Design Goals

The key design goals o f our policy framework are:

• Flexible architecture'. It must be flexible and general so that it can incorporate

existing brokering requirements as well as evolve to meet future needs. To

address this goal, we have divided our policy framework into a set o f flexible and

extensible components and used a layered approach and facade design pattern

where future needs can be incorporated. The architecture of the framework is

given in section 5.4.

• Scalability: As the underlying grid environment continues to grow, the Policy
Enforcement Manager is expected to handle massive number of clients, resources

and their associated SLAs. The architecture has to be scalable to handle this issue.

Modularity, distribution and caching, as we explain later, help us build a scalable

policy-based framework that can process a large number of concurrent client

requests and manage large number of distributed heterogeneous resources. We

achieve distribution at different levels. The Policy Enforcement Manager, as part

of PROBE, can be replicated and distributed; the components o f the Policy
Enforcement Manager can be replicated and distributed; and policy parsing is

distributed across resources where each resource has its own local policy enforcer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

• Efficient matching: The Policy Enforcement Manager caches all the minimal

policy related information that it needs for resource matching and SLA

monitoring. For efficient retrieval o f the cached data, we index the data using a

HashMap where objects can be retrieved using an 0(1) algorithm. Also, we apply

some optimization techniques where policies are parsed and optimized locally at

their associated resources, unnecessary parsing is avoided, and unavailable

resources are excluded from the matching process. This minimizes the effort

needed by the Policy Enforcement Manager. We explain caching in 5.5 and

optimization techniques in 5.8.

• Powerful Specification Language: We need a very flexible and extensible

language that can handle the requirements of both the resource provider and the

resource consumer. To address this issue, we have designed a flexible and

extensible Policy Scripting Language (PSL) using XML. PSL is described in 5.6.

As we explain in this chapter, our design is driven by these goals.

5.4 Architecture

As shown in Fig. 31, we have divided the Policy Enforcement Manager into seven

components, where each component implements an individual function. These

components interact with each other to achieve the overall functionality o f the Policy
Enforcement Manager. Below, we give an outline o f these components:

• Policy Keeper: the main component that maintains the internal cache of the

Policy Enforcement Manager. It provides an interface where objects in the cache

can be put into, removed or retrieved from the cache very effectively. The data is

indexed using a HashMap for efficient retrieval.

• Policy Parser: the parsing engine. Both the Policy Matcher and the SLA
Monitoring Agent use this component to evaluate the policies at hand. The

Expression Builder and External Evaluator provide more flexibility and

extensibility to the parsing engine where plug-ins can be easily added.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

• Expression Builder: This module builds expressions based on existing entities,

external entities or previously defined expressions. For example, Memory

Utilization could be defined as “((PhysicalMem — FreePhysicalMem) /

PhysicalMem) * 100).

Resource
Broker

Resource
Monitor

Policy Enforcement Manager

SLA
Monitoring

Agent

Policy
Matcher

Policy
Parser

Action
Manager

I

Policy
Keeper

External
Evaluator

Expression
Builder

Resource Daemon
Core

Daemon
Local
Policy

Enforcer

Execution
Monitor

Data
Collector

Fig. 31. Overall Architecture of the Policy Enforcement Manager

• External Evaluator: This module evaluates the external entities. Entities like

time, environmental variables, PROBE variables (system load, etc), system-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

specific variables, etc can be easily evaluated if their plug-ins are available. The

system could have a dynamic variable that the user could manipulate to affect the

brokering process.

• Policy Matcher: This module matches the client’s policy and the resources’

policies. A subset o f matched resources is constructed and passed to the Resource
Broker that then constructs the appropriate schedule and starts the allocation

process.

• SLA Monitoring Agent: This module is responsible for assuring the allocation.

Once the job is allocated, an SLA is created with the client’s policy. The SLA
Monitoring Agent continues monitoring the associated policies and takes the

appropriate action (if any) in case of violations.

• Action Manager: A policy might have action(s) associated with it that need to be

triggered in case o f a violation. An action can be anything that the associated

Action Processor can handle. For example, we could have a Logging Action
Processor whose only function is to log a message that a specific SLA has been

violated. Another possible handler could trigger an event to some external system

(e.g., accounting) that then takes the appropriate action (e.g., crediting the client’s

account).

Our policy framework is distributed. Within each resource daemon, we have a Local
Policy Enforcer that manages the policies internal to the resource, and optimizes the

SLA’s policies prior to updating the Policy Enforcement Manager. As shown in Fig. 32,

we have divided the Local Policy Enforcer into five components. Those components are:

Policy Monitor. Policy Parser, Expression Builder, External Handler and Action
Manager. Except for the Policy Monitor, the other components are identical to that o f the

Policy Enforcement Manager.
A resource might have two kinds o f policies: allocation policies that define how the

resource can be used, and internal policies that are meant for internal use within the

resource. The Policy Monitor monitors and optimizes the local and internal policies. In

case o f a violation, the Policy Monitor triggers the associated action(s), if any.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Local Policy Enforcer

Policy Policy
Monitor Parser

ZA
Action

Manager
External

Evaluator
Expression

Builder

v\AA/\AJw\AJkAAAJ\AA/\AAA/
Bgffl im S B ^ S i
IH BH Hm B9 ISi

Fig. 32. Architecture of the Local Policy Enforcer

5.5 Caching

As the underlying grid environment continues to grow, the Policy Enforcement Manager
is expected to handle a large numbers o f clients, resources and their associated SLAs. To

achieve a high level o f scalability and performance, the Policy Enforcement Manager
caches a minimal set o f policy related information that it needs for resource matching and

SLA monitoring.

The Policy Keeper is the component that maintains the cached information about all

the SLAs available in the system and their associated policies and actions. Caching helps

in achieving near real-time performance while matching resources or monitoring their

associated SLAs. Internal cache reduces the cost o f loading the data from the Resource
Repository for each request. For efficient retrieval o f the cached data we use a HashMap,
a very fast data structure where indexed objects can be retrieved using an 0(1) algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

In order to tackle consistency issues, the Resource Monitor feeds the Policy Keeper
with the up-to-date status o f the resources making sure that the internal cache is

consistent with the system information. To address concurrency, we apply some form of

synchronization for both read and write operations. Java does not have a ready solution

where concurrency can be handled efficiently. It provides object synchronization where

the Java runtime ensures that only one thread can access the synchronized object at a

time. This is not efficient since it allows one read operation at a time. We have

implemented some wrapper applications where read and write lock can be handled

properly.

One drawback of caching, in general, is that one has to pay the price o f expensive use

o f memory. However, the cost is very small compared to the gained performance. In

7.4.2, we analyze the performance o f caching.

Another issue is how to recover the cached data when a failure happens and the

component restarts. Different recovery mechanisms could be applied. For example, data

could be serialized to permanent storage or reloaded from the Resource Repository. In the

current prototype, we store the information in the underlying Resource Repository. When

the Policy Enforcement Manager is restarted, the state is able to be restored. In 8.3, we

describe an extension of PROBE where we propose a new module that handles failures

and recovery issues. A detailed discussion of failure/recovery issues is outside the scope

o f this thesis.

5.6 Policy Specification Language

The Policy Enforcement Manager needs a flexible and extensible language that can

handle the requirements o f both the resource provider and the resource consumer. To

address this issue, we have designed a Policy Specification Language (PSL) using XML.

In this subsection, we discuss PSL in more detail. We begin by explaining the syntax of

PSL, and then we present its XML representations. We conclude the section by

presenting some examples that demonstrate the use of PSL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

5.6.1 Syntax

A policy is a set of conditions and associated actions that are triggered when these

conditions are met. The policy script should have the flexibility to express both the

conditions and the actions.

We look at the condition as an expression built based on basic conditions (entity,

comparison operator, threshold value) and logical operators (AND, OR, NOT). The

policy script is the one that determines how the policy can be evaluated based on the

scripting language that we describe in this section. Initially, we support the following

items in the policy script:

• Basic Condition. This represents the condition that needs to be evaluated either at

the time o f matching the resource or monitoring the associated SLAs. A basic

condition is in the following form:

[Basic Entity] [Comparison operator] [Threshold Value]

A Basic Entity can be:

o Resource related entity such as Load, CPU speed, Free Physical Memory,

etc. Resource related entity takes the prefix o f “res”,

o Job related entity such as user, priority, etc, that takes the prefix o f'Job ’'.

o External entity that needs to be evaluated by the External Evaluator such

as time, some sort of environmental variable, etc. External entity takes the

prefix o f “exr”.

o Expression that needs to be calculated with the help of the Expression

Builder. Expression takes the prefix of “exp”

Comparison operators are:

o Less than

o Less than or equal,

o Greater than.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

o Greater than or equal,

o Equal,

o Not equal.

The threshold value is a constant or another basic entity. Applicable value types

are: Float, String and Error.

• Logical operators. Logical operators (such as AND, OR, NOT) are supported for

aggregating conditions.

Actions are triggered when some policy conditions are met. The policy script

supports actions where one or more action(s) can be specified in case of violations. Each

action has a type specifying its Action Processor and a set of parameters (name-value

pairs) specifying the behavior of the Action Processor when the action is triggered. A

detailed explanation o f actions and how they are being handled is given later in this

chapter.

5.6.2 XML representation of PSL

We have noticed the need of having a flexible language that provides the necessary

richness to express the diverse kinds of policies that both resource providers and

consumers can have. We have designed and implemented a very flexible XML-based

Policy Scripting Language (PSL), which can be used for specifying the policies of both

provides and consumers. Fig. 33 shows the schema for specifying the policies and

restrictions.

In order to overcome the overhead of XML parsing and to minimize the memory

requirement, we parse the policy script once, extract the necessary information and

convert the condition into the infix notation where the Policy Parser can easily parse it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

<!—Policy. d td ~ >
<!ENTTTY % operator “AND|OR|NOT">
c'.ENTITY % comparison 'EQ|NEQ|GR|GREQ|LS|LSEQ'>
<!ELEMENT Policy (Rule,Action*)>
<!ELEMENT Rule ((Condition)|(% operator;))>
< I ELEMENT AND ((Condition)|(% operator;))*>
<!ELEMENT OR ((C ondition)|(% operator;))»>
<!ELEMENT NOT ((Condition)|(% operator;))>
<!ELEMENT Condition EMPTY>
<!ATTLIST Condition

Entity CDATA
Operator (%comparison;)
Value CDATA >

<!ELEMENT Action (AdditionalInfo*)>
<!ATTUST Action

Type CDATA #IMPUED>
<!ELEMENT Additionallnfo EMPTY>
<!ATTLIST Additionallnfo

Name CDATA ^IMPLIED
Value CDATA #IMPLIED>

Fig. 33. Schema for the Policy Scripting Language

5.63 Examples

In this subsection, we present some examples that demonstrate the use of our Policy

Scripting Language to express policies for both the client and the resource.

Fig. 34 illustrates an example of a resource policy script that could be part o f a

resource specification. In this policy, the resource provider wants the resource to be

allocated only when the Free Physical Memory is less than 128 MB or the Free Swap

Space is less than 10 GB.

<?xml version="1.0"?>
<!DOCTYPE Resource SYSTEM "Resource.dtd”>
<Policy>
<Rule>
<OR>
<Condition Entjty="res.FreePhysicalMem" Operator="LS" Value="128000"></Condition>
•cCondidon Entity="res.FreeSwapSpace" Operator="LS" Value=“10000000"x /C ondition>
</OR>
</Rule>
</Policy>

Fig. 34. Example PSL script describing a resource policy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

On the other hand, in Fig. 35 we present a sample client’s request where the client is

looking for a resource with an available physical memory that is greater than 512 MB and

the Free Swap Space is greater than 20 GB. The client wants an e-mail to be sent to the

given e-mail address in case o f a violation.

<?xml version="1.0"?>
<!DOCTYPE Request SYSTEM "Request.dtd">
<Request>
<Single Name="Initialization" A rgum ents="” Executable=7hom e/theneyan/D em o/A ppl/
initial.csh" RunD irectory=7hom e/theneyan/D em o/A ppl">
<Policy>
<Rule>
<AND>
<Condition Entity="res.FreePhysicalMem" Operator="GR” Value="512000"></Condition>
<Condition Entity=”res.FreeSwapSpace” Operator="GR” Value="20000000”x /C o n d itio n >
</AND>
</Rule>
<Action Type="Email">
<AdditionalInfo Name=”To" V alue="theneyan@ cs.odu.edu"x/A dditionalInfo>
<AdditionalInfo Name=“Subject" Value="Violation"x/AdditionalInfo>
<AdditionalInfo Name="Body” Value="Your Policy has been vio lated"x/A dditionalInfo>
</Action>
</Policy>
</Single>
</Request>

Fig. 35. Example PSL script describing a client policy

5.7 Policy Parsing

Internally, the Policy Enforcement Manager caches the minimal set of information that

allows it to answer all kinds o f questions that arise while parsing policies. Basically, these

questions reveal the values of resource related entities (FreePhysicalMem, CPULoad,

etc), job related entities (user, priority, etc), expressions (resource utilization, etc) or

external entities (time, environmental variables, etc). Policies are parsed and optimized

locally at their associated resources as we explain in the next section. Also, the XML

representation is parsed once and a string representing the condition portion in the infix

notation is saved in the internal cache. This minimizes the effort needed by the Policy

Enforcement Manager.

The Policy Parser is the parsing engine that is used by both the Policy Matcher and

the SLA Monitoring Agent to evaluate the policies at hand. Upon request, the Policy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Parser parses the given policy. It relies on the cached information, Expression Builder

and External Evaluator to evaluate the entities included in the policy script.

5.8 Policy Optimization

One of the main goals of our policy framework is to effectively parse policies, mainly at

the time o f monitoring SLAs that is expected to happen regularly during the lifetime of

the allocation.

To optimize the performance of the Policy Enforcement Manager, the Local Policy

Enforcer at each resource optimizes the associated policies and returns the optimized

policy scripts along with the resource statistics when updating the resource status.

Optimizations are done at several levels:

• Logical operators are short-circuited. A short-circuit operator does not evaluate

its second operand if the evaluation o f its first operand alone would determine the

result. C++ and Java use short-circuit evaluation for the Boolean operators AND

and OR. The parsing engine supports short-circuit for logical operators. For the

AND operator, if either operand is false, the operator returns false, thus the

parsing engine stops if the first operand is evaluated to be false and the second

operand is not evaluated. For the OR operator, if either operand is true, the

operator returns true, thus the parsing engine stops if the first operand is evaluated

to be true and the second operand is not evaluated. Examples are given below:

o AND example: (false) AND ((Free Physical Memory < 512000) OR (

Free Swap Space < 10000000)). The parsing engine returns false before

parsing the second operand,

o OR Example: (true) OR ((Free Physical Memory > 512000) OR (Free

Swap Space > 10000000)). The parsing engine returns true before parsing

the second operand.

• Avoid Multiple Parsing. Our policy framework avoids parsing entities that have

been already parsed at the resource level. Instead o f parsing the same entities

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

multiple times, it can be done once and the parsed value embedded in the updated

script. Let us say we have a resource policy as the following:

(user=”theneyan”) AND ({Free Physical Memory > 512000) OR (Free Swap

Space> I0000000))

Let us say that the Free Physical Memory was 518000 kilobytes (KB) and the

Free Swap Space was 15000000 KB. The Local Policy Enforcer could come up

with:

(user=”theneyan”) AND (true)

When the Policy Enforcement Manager needs to match that resource, it uses the

optimized script, so that it does not need to evaluate the same entities again.

• Excluding non-available resources. Using the above optimization techniques, a

resource whose policy evaluated to be fa lse is excluded from the matching

process since there will be no point for the Policy Matcher to consider the

resource at its current status since it is not going to match with any request.

5.9 Actions

As stated before, actions are associated with policy conditions and are triggered when the

conditions are m et When the guaranteed level o f allocation is not met, the appropriate

action(s) need to be taken as specified in the policy script.

When an action is created, it gets assigned an action type specifying its Action

Processor and a set of parameters. Each parameter is a name-value pair specifying the

behavior of the Action Processor when the action is triggered. When a policy is violated,

the SLA Monitoring Agent notifies the Action Manager so that it can trigger the

corresponding action as illustrated in Fig. 36.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

SLA
Monitoring

Agent

Fig. 36. Action Flow

Depending on the terms of the SLA, the violation in the guaranteed level of allocation

may result in variety of actions; this may include Compensation where a credit could be

issued to the client, Shell where a designated shell script can be executed and predefined

arguments can be passed or Email where a detailed email regarding the violation can be

sent via email. Each action is handled by what we call an Action Processor.

An Action Processor can handle many actions o f different action types. Initially, we

support the Email and the Shell action processors. New Action Processors can be easily

added as needed. The Action Manager caches references to all the existing Action

Processors and has an API where the new ones could be added on the fly.

<?xml version="1.0"?>
<!DOCTYPE Policy SYSTEM "Policy.dtd">
< Policy >
<Rule>
<AND>
<Condition Entity="res.FreePhysicalMem" Operator="GR" V alue="512000"x/C ondition>
<Condition Entity="res.FreeSwapSpace" Operator="GR" V alue="20000000"x/C ondition>
</AND>
</Rule>
<Action Type=”Compensation">
<AdditionalInfo Name="Customer" V alue="$job.user"x/A dditionallnfo>
<AdditionalInfo Name=“Credit" V alue="10"x/A dditionallnfo>
<AdditionalInfo Name="FreePhysicalMenn” Value=”$res.FreePhysicalMem”x /A d d idonalIn fo>
<AdditionalInfo Name=”FreeSwapSpace" Value="$res.FreeSwapSpace "></AdditionalInfo>
</Action>
</Policy>

Fig. 37. Example of a dynamic replaceable parameter

ViolationAction
Manager

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

The system also supports dynamic parameters whose values can change on the fly. A

dynamically replaceable parameter could be any basic entity preceded by the dollar sign

This gives the client the necessary power to track down violations as they occur. Fig.

37 illustrates an example of policy with some dynamic replaceable parameters.

5.10 Summary

In this chapter, we explained our policy framework in greater detail. The policy-based

approach provides one means of attracting grid users and contributes to establishing

credibility to existing grid environments by committing to provide the guaranteed level of

allocation with the right action (compensation, credit, etc) if such guarantees are not met.

We believe that such a policy-based framework can help in encouraging high

performance users to use grid systems as it makes a commitment to assure the guaranteed

level of allocation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

CHAPTER VI

IMPLEMENTATION

This chapter focuses on the implementation o f the current prototype o f PROBE. We

describe the tools and environments that we have used to implement the current

prototype. The PROBE infrastructure has been implemented using Jini technology. One

issue with Jini is that it cannot be used across networks that do not support multicasting.

We detail an enhancement for Jini in order to enable it across networks that do not

support multicasting. We also describe a variety of client interfaces and helper utilities

that we have developed to demonstrate the use o f PROBE. We end this chapter by

focusing on overview of the whole package.

6.1 Environment

The current prototype implementation o f PROBE is based on the following:

• Programming Language: Java

The underlying technology we use in implementing PROBE is Java [50]. Besides

being simple, safe, object-oriented, robust, and tightly integrated with the World

Wide Web technologies, Java is a portable and platform-independent language

enabling the resulting prototype implementation to run on any operating system

platform with an implementation of the Java Virtual Machine (JVM). The current

prototype uses Java 2 SDK, Standard Edition, version 1.4.1 that can be obtained

from: http://java.sun.eom/j2se/l.4/.

• Distributed Computing Technology: Jini

The distributed nature o f Jini allows us to create very scalable systems that inherit

all o f the intrinsic benefits that Jini has to offer. The major advantages that Jini

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.eom/j2se/l.4/

104

has over other distributed computing technologies are the semantics and

mechanisms that help with dealing with network and hardware failures and permit

the silent addition and removal of resources with their services on a network.

Also, as Jini is layered on top of Java RMI, it can support mobile code, making it

possible to transport not only object state but also object implementation across

networks. This feature helps us in applying the plug-and-play feature of PROBE

in an effective manner. Jini technology is explained in chapter II in great detail.

The current prototype uses Jini reference implementation version 1.1 that can be

obtained from: http://wwws.sun.com/software/jini/.

• Repository Infrastructure: MySQL

The current repository adaptors that we have implemented for both the Resource

Repository and the Job Repository are RDBMS-based ones. We store the XML

specification o f the resources and job’s information in the object-relational form

where the data can be easily updated, queried and reformatted as needed using

SQL. The relational model has several advantages since it enables complex

queries to span and aggregate many resources. It also leverages sophisticated and

scalable database technologies.

MySQL [88] is the most widely used open source database management

system. It is light-weight and considered to be one of the fastest, most stable and

most secure databases ever developed. In short, MySQL is very fast, secure,

reliable, and easy to use. The repositories adaptors that we have used through the

current implementation o f PROBE use MySQL version 3.23 as their background

infrastructure. MySQL can be obtained from: http://wwwjnysql.com/.

• XML Parser: JAXP

We use the Java API for XML Processing (JAXP) [70] to parse all the XML

documents. We have implemented several user-friendly parsers to parse

resources, requests and their associated policies. The API is flexible enough to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wwws.sun.com/software/jini/
http://wwwjnysql.com/

105

utilized by external applications. The current implementation uses the JAXP 1.2

reference implementation. It can be obtained from: http://java.sun.com/xml/jaxp/.

• XML Editor: xmloperator

The xmloperator is an open source, free software that can be used to edit XML

documents. It is written in Java where it can run on any machine that supports the

Java platform. PROBE supports a Graphical User Interface (GUI) where clients

can submit requests and monitor and view current state of resources and requests.

We have integrated the GUI of PROBE with the xmloperator XML editor release

l.l 1. The xmloperator can be obtained from: http://www.xmloperator.net/.

6.2 Enhancing Jini for Use Across Non-Multicastable Networks

Jini’s internal protocols rely on multicasting for discovering and joining lookup services.

This becomes an issue when deploying Jini across non-multicastable networks. Some

routers on the Internet do not support routing of multicast packets for a variety o f reasons.

Also, some organizations are not willing to open their firewalls to multicast so as to avoid

security problems. Similarly, a local area network divided into subnets may disable

multicast traffic across the subnets to avoid unnecessary traffic that may result in

performance degradation. This blocking of multicast traffic across subnets prohibits the

use of Jini in such an environment.

One method for working around this problem is to use a tunneling mechanism where

the multicast traffic is encapsulated in a unicast packet and is then transferred through

unicast routers and non-collaborative firewalls. This method has been used in several

projects. For example, MRoutd has been used to achieve tunneling in the Mbone [104].

However, there are many problems in the approach taken by the MRoutd implementation,

such as the lack of platform independence, wastage o f available bandwidth due to the

transfer o f a large amount of control information and the fact that it forwards all the

multicast traffic interfaces. Other projects, such as mTunnel [95],[96] and liveGate [83],

were designed to overcome some of these problems, however there are several reasons

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/xml/jaxp/
http://www.xmloperator.net/

106

for building our own tunneling mechanism and not using some o f those existing ones.

Having decided to use Jini, we would like to take advantage o f the open source code of

Jini and embed our mechanism within Jini. Using a pure Jini approach allows us to

leverage the capabilities o f Jini while activating tunneling in the background without the

aid of any member of the federation. Also, unlike other tunneling mechanisms, in our

environment, we do not need to tunnel some o f the control information such as the

multicast address group and port to which the message is supposed to be delivered. This

is because in the context of Jini, our needs are very specific: we need to tunnel only the

multicast request and announcement messages that have predetermined multicast

endpoints. Providing the right proxies, as explained in the next section, can easily satisfy

these requirements.

To solve this problem, we have enhanced Jini in order to support systems like

PROBE that need to work with resources in different domains. In particular, we have

introduced a lightweight service called the Tunneling Service (TS) for tunneling

multicast messages across subnets. Our approach, as illustrated in Fig. 38, involves

establishing a tunneling service end point, TS, at each subnet. Each TS provides a

window between its subnet and the rest of the world. The TSs are implemented as Jini

services and thus have to register with a known Global Tunneling Lookup Service

(GTLS) dedicated for maintaining the list o f TSs in the environment. The GTLS is

implemented as a lookup service that can be started at any subnet o f the federation. TSs

will collaborate with each other in order to tunnel all the multicast messages across

subnets that do not support multicast..

Given such an architecture, the scenario is as follows. Each TS establishes the

appropriate multicast endpoints and listen for incoming multicast requests and

announcements from within its subnet and will then tunnel the messages out to all the

other TSs. Also, each TS is going to listen for incoming tunneled multicast requests and

announcements from other subnets and will multicast them locally. Any connection that

needs to be setup between the clients, services and the lookup services directly uses the

unicast protocol even if it has to cross subnet boundaries. The TSs are not involved in

this phase o f the interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Global Tunneling
Lookup Service

^ f G T L S) ^

Client I

Fig. 38. Different non-multicastable subnets connected by the Tunneling Service (TS)

The underlying aim o f our implementation is to make enhancements to Jini that are

compatible with the Jini functionality. Thus, we would like the tunneling service to be

active in the background without making any changes as far as possible to the behavior of

the clients, services and the lookup services. Also, we would like the implementation to

work without any modification even if the underlying network supports multicasting and

the tunneling service is not required. In the next few subsections we describe the

implementation o f the Global Tunneling Lookup Service and the Tunneling Service.

6.2.1 Global Tunneling Lookup Service (GTLS)

In order for the system to work properly, each o f the TSs needs to know about all the

other TSs in the environment. Thus, we need a central repository that keeps track of all

the currently active TSs. Jini provides the functionality required for just such a

repository. Hence, we implemented this repository as a lookup service called the Global

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Tunneling Lookup Service. Using the distributed events interface of Jini, every TS can be

notified when a new TS joins or leaves the system, hi our implementation, since each TS

relies on the unicast discovery protocol in all its interactions with the GTLS, it needs to

know the IP address and the port where the GTLS is running.

6.2.2 Tunneling Service (TS)

The Tunneling Service is the central concept in our solution. This service can be patched

into the runtime infrastructure of Jini as a new service just like any other standalone

service. A TS has to be started on each subnet that is taking part in the larger system. The

system administrator can do this. On the other hand, if suitably modified, the first Jini

client, service or LS to start in a subnet could check to see if a TS is already running in

the subnet. If not, it can start one. The tunneling service consists of four major parts: the

core tunneling subsystem which is published at the GTLS as a proxy; the listener which

keeps track o f local multicast requests and announcements and uses other TSs’ proxies

for tunneling messages; the notifier which keeps track o f all the other active TSs; and the

wrapper which implements the infrastructure necessary for the TS to be a Jini service.

The Core Tunneling Subsystem: The core tunneling subsystem is the proxy to the

service that is posted with the GTLS by the wrapper. The TSs need to contact the GTLS

and download each other’s proxies in order to achieve tunneling amongst them. The

proxy consists o f two methods: one for the incoming tunneled request messages and the

other for the incoming tunneled announcement messages. Incoming tunneled requests

from other TSs are multicast across the local subnet so that the local LSs can respond

appropriately. Similarly, incoming tunneled announcements from other TSs are multicast

for the discovering entities in the local subnet.

The Listener: This is the part of the service that is in charge of catching the necessary

multicast traffic, the multicast requests and the multicast announcements from within the

local subnet. It listens for incoming multicast requests from any discovering entity in its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

subnet, at the same multicast request endpoint as any other LS (224.0.1.85/4160).

Similarly, it listens for incoming multicast announcements from any LS in its subnet at

the same multicast announcement endpoint as any other discovering entity

(224.0.1.84/4160). When it receives a request or announcement message, it tunnels it to

all the other TSs using their references and proxies that it holds.

The Notifier: This part has been implemented using one of the most useful mechanisms

of Jini, the distributed event notification mechanism. When a TS starts up, it sends an

inquiry to the GTLS about all the currently registered TSs. Then it uses the remote events

model supported by Jini to request that the GTLS notify it whenever a new TS registers

or leaves the environment.

The W rapper: The wrapper is the main segment of the service. It publishes the TS’s

proxy in the GTLS and renews its lease as and when necessary. Also, it launches the

assistant subsystems, the Listener and the Notifier, and keeps track o f them. If more

functionality is needed, such as the encryption of the data for security reasons or the

detection of unnecessary TSs, this can be added as subsystems of the wrapper.

6.23 Jini Modifications

We would have preferred to implement our system without making any modifications to

Jini. However, to overcome some of the obstacles o f tunneling, we have had to modify

the format of the outgoing request messages. Note that only the message formats need to

be modified, the behavior of the rest o f Jini remains intact and does not need to be

changed.

The problem deals with the host address of the sender in a tunneled request message.

When responding to a request message from a discovering entity, an LS uses the port

number included in the message. However, it obtains the IP address of the sender by

inquiring for the source of the multicast message. This works well within a subnet where

the multicast message is originating from the discovering entity itself. However, in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

case o f a tunneled request, the IP address is going to represent the TS’s host and not the

host o f the original discovering entity. To overcome this problem, we have added the IP

address o f the host o f the sending entity in the header o f the request message, as shown at

the top of Fig. 39. We don’t need to add it in the announcement message since it already

contains the host IP address.

Protocol Port H E SB H l Group Group I Heard Heardl
Version ■H H Len Len

Added field

Original field

Fig. 39. New format of the outgoing request message

The mechanisms described above have been implemented using the Java

Development Kit (JDK) 1.4 and the current Jini reference implementation 1.1 with the

modifications that we have described in the previous subsection.

6.2.4 A scalable alternative for super grids

Scalability is one o f the main issues when applying the above mentioned solution, the

Collaboration approach, to super grids that connect resources at massive numbers of

loosely coupled subnets where multicasting is not enabled. Each TS has to know about

and interact with all other TSs in the system. Scalability becomes an issue and TS

becomes a bottleneck as the number o f broadcasted messages or TSs to broadcast to

increase. We achieve better scalability by building a hierarchy of federations as shown in

Fig. 40.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

Master TS

Slave TS

Tree Algorithm

Fig. 40. Hierarchal Tunneling Approach

Instead of using the Jini Lookup Service to keep track of the distributed TSs, we

introduce Hierarchal Tunneling Manager, where we can build a hierarchy o f TSs. In this

scenario, TS registers with a centralized Tree Manager that organizes the registered TSs

in a tree based on a given Tree Algorithm. A TS node can be either a root node, an

intermediate node or a leaf node. A TS does not need to keep track of all the TSs in the

system, instead it keeps track o f its parent and children, if any. New TSs are assigned a

position based on the underlying tree algorithm. As shown in Fig. 41, TreeAlgorithm is

an abstract class that needs to be implemented by the underlying tree algorithm. The user

can plug-in any algorithm as his environment requires. Also, for critical subnets,

Master/Slave approach could be applied to ensure high availability. A slave TS is started

where necessary and keeps track o f the master TS. It uses the remote events model

supported by Jini to be notified whenever the status o f the master TS changes. The slave

TS takes over when the master one dies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

TreeAlgorithm

+addNode()
+deleteNode()
♦ searchNodeQ \

y
/

BalancedTreeAlgorit hm NetworkBasedAlgorithm NewTreeAlgorithm

Fig. 41. Class diagram shows the implementing the Tree Algorithm

Using this alternative approach, each TS listens for incoming multicast requests and

announcements in its subnet and broadcasts it as we describe below:

• A root node sends it to its children (if any).

• An intermediate node sends it to its parent and children (if any).

• A leaf node sends it to its parent.

For a broadcast traffic (via other TSs), we have the following scenarios:

• A root node multicasts it locally and sends it to its children except the one that it

has received from.

• An intermediate node multicasts it locally in its subnet and sends it to its parent

and children (if any) except the one that it has received from.

• A leaf node multicasts it locally in its subnet.

The Hierarchal Tunneling approach has some advantages over the Collaboration

approach. In this scheme, the TSs are lighter in weight since they do not have to keep

track o f all the currently active TSs. This approach also gives the ability to perform

several tunneling tasks concurrently. Additional functionality can be easily incorporated,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

which cannot be done if we use the Jini Lookup Service. However, the root node is a

potential communication bottleneck since all messages have to go through it. On the

other hand, the Collaboration approach is a purely Jini approach which leverages off Jini

technology in using the mechanism for storing proxies in the GTLS and also the event

notification interface for keeping track o f active TSs.

We implement the alternate approach and compare both schemes. In the following

section, we show the experimental results that we have performed.

6.2.5 Experimental Results

We have conducted a number of experiments with different requirements to test both

approaches. In this subsection, we discuss in details each o f these experiments and

present the performance data.

To measure the scalability of the two approaches, we apply different alternatives and

measure the overhead o f each one with respect to the following factors:

• Number of participant Tunneling Services (TSs).

• Overhead of broadcasting defined as the time that it takes for a TS to broadcast a

tunneled message. This indicates whether or not a TS becomes a bottleneck.

• Overhead of delivery defined as the time that it takes for a broadcasted tunneled

message to reach the entire participant TSs. This shows how the overall

performance gets affected.

All the experiments were conducted using our experimental testbed, described in

section 7.2. The machines where TSs run are connected via 100 Mbps Ethernet and thus

communication cost between the machines are relatively small. Detailed observations are

given in appendix A. All times are based on at least six measurements.

In order to simulate a large number o f subnets that do not have multicasting enabled,

we have implemented another version o f the TS, called Dummy TS, where all it does is to

listen to incoming broadcast traffic and discard the received packets. The Dummy TS does

not listen for incoming multicast traffic. This enables us to start several TSs on the same

subnet as if they were in different subnets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

600 -i

? E 300

40 50 60 70
Number of TSs

Fig. 42. Overhead of the Collaboration approach

Fig. 42 illustrates the overhead of the Collaboration approach. Our results show that

as the number o f the TSs increases, each TS becomes a bottleneck and the Collaboration

approach scales poorly. Also, delivery time suffers with such increment. The data

material of the figure are given in appendix A .l.

Fig. 43 illustrates the overhead of the Hierarchal Tunneling approach. The underlying

Tree Algorithm that we use in the experiment is a Balanced Tree algorithm, which

assigns TSs in a regular basis. We did our measurements for the Root node. We expect

the broadcasting time to be similar for an intermediate node and less for a leaf node.

However, the delivery time is expected to be a little bit higher for a leaf node.

Unlike the Collaboration approach, the Hierarchal Tunneling approach is more

scalable as the performance o f a TS and the overall performance did not get affected with

the increased number of participant TSs. As the number of TSs approaches 100, the

Hierarchal Tunneling approach gains a factor of 5.71 for the broadcasting time and 3.02

for the delivery time over the Collaboration approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

Broadcasting time
Delivery time

u •=•
S E 300

40 50 60 70 80
Number of TSs

Fig. 43. Overhead of the Hierarchal Tunneling approach

6.2.6 Future Enhancements

There are some other issues that we have not addressed and in particular new features can

be added to the system. For example, tunneled data can be encrypted when transported

across subnets, so we can make sure that only the intended TSs can read it [95]. In

addition, tunneling can be done on demand, i.e., we can have a TS only where needed.

Thus, the first Jini client, service or LS that starts in the subnet can start the TS

dynamically. Sometimes, we might have more than one TS running on the same network

and not be aware of each other. Mechanisms like the ones used by mTunnel [95],[96] can

be added in order to detect unnecessary TSs. A TS might send a multicastable test

message periodically to a specific group address and port and wait for a response. TSs

within the same network, if any, exchange messages to identify the redundant TSs. We

will be examining our design and adding features as necessary in the near future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

6.3 Client Interfaces

One of the main characteristics of PROBE is to support a diverse set of client interfaces

in which the client can interact with the system efficiently. Besides having our open, rich

APIs, we support the visual and the command-line interfaces to illustrate the use of

PROBE. These interfaces allow clients to interact with PROBE, giving them the ability to

submit requests and to monitor and view the current state of resources and requests. Both

interfaces are easy to use and set the client free from coding. Batch mode is another way,

which may require some programming effort. This can be done by providing an interface

to an existing programming language such as Java, C, FORTRAN, etc. or by providing

some user-friendly scripting mechanism for the use of the client. We are planning to

support the batch mode in the near future. Below, we describe the supported interfaces.

63.1 Command-line Interface

The user-level prompt consists of “PROBE” followed by the angle bracket (>):

PROBE>

Fig. 44 provides a list of available commands that can be obtained using the To list the

“help” command.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

xterm I _ j! □ J X

PROBE> help
PROBE usage:
search I-xml XH.filei criteria : searches the Resource Repository based on the given criteria.
If the -xml option is given, it will generate the result in the given XML file

monitor resource_name interval : monitors the status of a resource in a regular bases,
submit XH.fi le : submits a request.
check request ID : checks the current status of an already submitted request,
stop requestID : stops an already submitted request,
resume requestID : resumes an already stopped request,
cancel requestID : cancels a submitted request.
get_output requestID: retrieves the output of an already submitted request.
h/help/H/Help : displays the usage message.
q/quit/Q/Quit : exits the program.
PR0BE> submit Test.xml
Your request id is : 1
PR0BE> check 1
The status of request: 1 is RUNNING
PR0B£> |___

Fig. 44. Command line interface of PROBE

6.3.2 Visual Interface

The Graphical User Interface (GUI) addresses usability concerns in order to ensure that a

novice user can quickly and easily leam to interact with PROBE. The GUI consists of the

following components: menus, request editor, monitoring windows, error messages, and

help features. Menus consist of a heading describing the options it provides and one or

more sublevels which contain the available commands. The following is a list of menus

and sub-menus of the main application:

• Resources

o Search

o Monitor

o Exit

• Requests

o New

o Check

o Retrieve Output

o Stop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

o Resume

o Cancel

• Help

o Help Topics

o About PROBE

Fig. 45 and Fig. 46 show some snapshots of the visual interface o f PROBE.

P R O H l M t i i n M e n u R e s o u r c e f m d e r ! _ X

R e s o u r c e M o n i t o r

\

v

Fig. 45. Snapshots o f the resource-related screens

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 46. Snapshots of the request-related screens

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

6.4 Package Design

The implementation of PROBE is structured into several Java packages. This includes:

probe, probe.common, probe.core, probe.repository, probe.resources, probe.jobs,

probe.daemons, probe.policy, probe.algorithms, probe.util and probe.client. The

following subsections give an overview of these packages.

6.4.1 Package probe

This is the main package, which contains the package hierarchy o f all the classes

necessary for the PROBE implementation.

6.4.2 Package probe.common

This package contains classes that are used across all the packages. This includes:

• Common data types.

o Constants.java: a holder class for global constants such as job status,

o Parameter.java: name and value pairs.

• XML Parsers.

o ResourceParaser.java: acts as a translator providing a one-to-one mapping

between the Resource object and its XML specification. It provides a

convenient API for creating, manipulating, and checking the validity of a

resource specification,

o RequestParser.java: provides a convenient API for creating, manipulating,

and checking the validity of a request specification.

• Plug-in Injector that provides mechanism for adding a plug-in on the fly. This

class inherits the ClassLoader abstract class provided by Java where it can

dynamically loads classes into RAM and then makes it easy to transfer them over

networks.

• Event notification wrappers that provide convenient classes that help in handling

Jini distributed events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

• Data locking wrapper that provides convenient classes where concurrency is

handled efficiently. It supports an easy to use interface where read and write lock

can be obtained and then released.

6.4.3 Package probe.core

This package provides classes and interfaces that are fundamental to the design of the

PROBE framework. Each module is represented by an interface, a wrapper, and sub-

modules, if any. The wrapper publishes the module’s proxy in the Module Lookup

Service (MLS), gets the references to other modules and renews the lease as and when

necessary. Below, we list the modules along with their corresponding classes:

• ClientlnterfaceModule

o ClientlnterfaceModule.java

o ClientlnterfaceModuleService.java

• ResourceRepository

o ResourceRepository .java

o ResourceRepositoryService.java

• JobRepository

o JobRepository.java

o JobRepositoryService.java

• ResourceBroker

o ResourceBroker.java

o ResourceBrokerService.java

o SchedulingAgent.java

o Schedule.java

o ScheduledTask.java

o AllocationAgent.java

o ReScheduIer.java

• PoIicyEnforcementManager

o PoIicyEnforcementManager.java

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

o PolicyEnforcementManagerService.java

o PoIicyKeeper.java

o PoIicyMatcher.java

o PolicyParser.java

o SLAMonitoringAgent.java

• JobMonitor

o JobMonitor.java

o JobMonitorService.java
o JobEvent.java

• ResourceMonitor

o ResourceMonitor.java

o ResourceMonitorService.java

6.4.4 Package probe.repository

The design of the repositories internal to the PROBE system is independent of the

underlying protocol. A protocol layer has been introduced which acts as an intermediate

layer between the protocol and the repository objects. It adapts the requests received from

the repository object to the appropriate protocol format and adapts the responses from the

protocol dependent objects to the internal format of PROBE. This package contains the

classes o f the various plug-in repository adaptors that the system possesses.

As shown in Fig. 47, this protocol layer is presented as a Repository/Adaptor abstract

class that needs to be implemented by the underlying protocol. It supports a set of

abstract methods where jobs and resources can be manipulated. We have implemented an

SQL-based repository adaptor and tested it using MySQL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

ReposioiyAdaptor
| fnmeoiB)

♦ReposftocyAdaptorO
+addResourceO

| *defeteResource()
+updateResouice()

[+queryReso uiceQ
! +addJabQ
: +deleteJob()

+updateJobO
: +queiyJobO

< J A '

/

>x \
\ \

SQLAdaptor j LDAPAdaptor 1 |
„ . i , , | (from core) i (fn m co e) i from core) |]------------------------------------■

; ♦SQLAdaptorO ; ♦LDAPAdaptorO | | * RatR,eAdaPtor0

Fig. 47. Class diagram of Repository Adaptors

6.4.5 Package probe.algorithms

This package contains the package hierarchy and the classes o f the various plug-in

scheduling and queuing algorithms the system supports. This includes:

• Package probe.algorithms.scheduling

o SchedulingAlgorithm.java

o SimpleAlgorithm.java

o Static_EACPM.java

• Package probe.algorithms.queuing

o QueuingAlgorithmjava

o FCFSqueuingAlgorithm.java

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Scheduling Algorithms

As shown in Fig. 48, SchedulingAlgorithm is an abstract class and needs to be

implemented by the provided algorithm. The Resource Broker has a unified interface to a

set of scheduling algorithms making the design independent of any scheduling algorithm.

Italic methods represent the abstract methods that need to be implemented by the added

scheduling algorithm. These methods are:

Dynamic_EACPM
(from scheduling)

*Oynamic_EACPM() '

Static_EACPM
(from scheduling) "

♦Statfc_EACPM()i

; SchedulingAlgorithm
| (from scheduling)

sName: String

Schedule
(from core)

| ♦ScheduIngAlgorithmO
 J +createScheduleO

- ^ 1 +isSchedulableQ
; +isDynamicO
j +updatBScheduloO ^
; ♦getNameO I

^vScheduledTasks: Vector j

♦ScheduleO |
♦addScheduledTask()
♦deleteScheduledTask()
*updateScheduledTask()
♦disp(aySchedule()

\ \

Static_EFCPM
(from scheduling)

*Static_EFCPM()i

SimpleAlgonthm
(tom scheduling)

♦SimpleAlgorjthm()

\
Dynamic_EFCPM j
(from schedUhg) j

♦Oynamic_EFCPM() I

Fig. 48. Class diagram of Scheduling Algorithms

• createSchedule, to create the corresponding Schedule. This is an active object that

has the order and placement of tasks that need to be allocated. The Schedule

provides an API where scheduled tasks can be manipulated. This is very useful in

rescheduling.

• IsSchedulable, to test whether or not the given problem can be scheduled.

Sometimes, the schedule might require some additional information. If this

information is missing, the scheduling algorithm can’t proceed.

• isDynamic, to denote whether or not this is a dynamic scheduling algorithm.

• updateSchedule, for dynamic scheduling. In some cases, the allocation decision

may need to be changed during execution. The Resource Broker calls this method

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

whenever the status of the job or one of its subtasks is changed. If the scheduling

algorithm supports dynamic scheduling, then this method has to be implemented.

• getName, to get the name of the scheduling algorithm.

We have added some scheduling algorithms by inheriting the SchedulingAlgorithm

abstract class and implementing its abstract methods. For example, we have developed a

static algorithm for Directed Acyclic Graph (DAG) based on the Critical Path Method

(CPM) [82] that yields assignment of high priority tasks. This algorithm, referred to as

Static EA-CPM and its Pseudo-algorithm is shown in Fig. 49. In this algorithm, each

node is associated with two numbers:

• Weight, representing the amount of computation it requires.

• Path Weight defined as:

o the Weight if it is a leaf node,

o and for a non-leaf node, its own Weight plus the largest Weight of its

children.

/. Initialization. Separates tasks into ready and waiting tasks and sets all the
available resources to idle.

2. Assigns ready tasks to idle resources.
2.1. Sorts ready tasks by their path weights
2.2. Sorts resources by their CPU speeds in descending order.
2.2. Assigns ready tasks until either no more available resources or no more

ready tasks.
3. Once task is done, update its resource status to be idle and update its

dependencies.
3.1. I f there are some ready tasks, then go to step 2.
3.2. I f both ready and waiting lists are empty, the stop.

Fig. 49. Pseudo-algorithm for the Static EA-CPM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

Queuing Algorithms

For jobs that can be satisfied, the Resource Broker maintains an internal queue where

such jobs are going to be held in a queue and based on a given queuing algorithm, the

Resource Broker is going to select one job at a time and re-schedule it.

As shown in Fig. 50, QueuingAlgorithm is an abstract class and needs to be

implemented by the provided queuing algorithm. The Scheduler Agent has a unified

interface to a set o f queuing algorithms. This makes the design independent o f any

queuing algorithm. It supports a set of methods where waiting jobs can be manipulated.

The addJob and getName are the abstract method that the added queuing algorithm needs

to implement. Other methods are common among all queuing algorithms. However, they

can be overridden, if necessary.

QueuingAlgorithm

+addJob()
*deleteJob()
♦updateJob()
♦getNextJob()
*getJobBylD()
♦getJobByNameO

^ +getName()
/ \/ / ,

/' / '
/

\

X
x

X
X

\
X

\
X

N
X

X
X

FIFO PriorityBased ! WeightBased | NewAlgorithm
"■ ■■ i ;---------------------- r ■ ■

Fig. 50. Class diagram of Queuing Algorithms

We have added a First-In First-Out (FIFO) queuing algorithm by inheriting the

QueuingAlgorithm and implementing the abstract methods. In this algorithm, the

awaiting jobs are put into an ordered list and the first one is selected for re-scheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

6.4.6 Package probe, util

This package provides some supporting utilities that can be used in conjunction with

PROBE. The current implementation supports a Plug-in Helper utility where various

plug-ins can be added on the fly, and a Resource Daemon Helper utility where the

resource provider can interact with resources local to their domain. Fig. 51 and Fig. 52

show some snapshots that demonstrate the use of the Plug-in Helper and Resource

Daemon Helper utilities.

x t e r m F I F T E ’

PiugInHelper> help
Welcome to PROBE PluglnHelper Utility ver. 1.0
PluglnHelper usage:
plgScheduiing SchedulirtgAlgor ithm: Plug-in a scheduling algorithm.
plgQueuing QueuingAlgorithm: Plug-in a queuing algorithm.
plgAction ActionPorcess: Plug-in an Action Processor.
h/help/H/Help : displays the usage message.
q/quit/Q/Quit : exits the program.
PluglnHelper> plgScheduiing probe.algorithms.scheduling.Static_EACPM
Pluging Scheduling Algorithm: probe.algorithms.scheduling.Static_EACPM
Scheduling Algorithm probe.algorithms.scheduling.Static_E(CPM has been added successfully.
PluglnHelper> plgQueuing probe.algorithms.queuing.FCFSqueuingAlgorithm
Pluging Queuing Algorithm: probe.algorithms.queuing.FCFSqueuingAlgorithm
Queuing Algorithm probe.algorithms.queuing.FCFSqueuingAlgorithm has been added successfully.
PlugInHelper> plgAction probe.policy.actions.EmailAction
Pluging Action Processor: probe.policy.actions.EmailAction
Action Processor probe.pol icy.actions.EmailAction has been added successfully.
PlugInHelper> |

Fig. 51. PROBE PluglnHelper Utility

x t e r m _ I' □ ■! X

ResourceDaemonHe1per> help
Welcome to PROBE ResourceDaemonHeIper Utility ver. 1.0
ResourceDaemonHe I per usage:
pushData resource_name: pushes the data to the Resource Monitor.
addLoaclPolicy resource_name PolicyName PolicyXMLfile; adds a local policy.
h/help/H/Help: displays the usage message.
q/quit/Q/Quit: exits the program.
ResourceOaemonHelper> pushData isis.cs.odu.edu
Data has been pushed to the Resource Monitor.
ResourceDaemonHelper> addLoaclPolicy isis.cs.odu.edu Warning Waming.xml
Local Policy Warning has been added successfully.
ResourceDaemonHelper> |__

Fig. 52. PROBE ResourceDaemonHelper Utility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

6.4.7 Package probe.resources

This package contains a list o f all the resource types supported by the system and their

associated classes. This includes the abstract class Resource that needs to be extended by

all the future resource classes as illustrated in Fig. 26. Currently, PROBE has only the

ComputationalResource class since the focus of the current prototype is on computational

grids.

6.4.8 Package probejobs

This package contains all the classes that are associated with the supported job types.

This includes the abstract class Job, as shown in Fig. 53, that needs to be extended by all

the future job classes. For simplification, we do not show data members and methods,

e.g., sets and gets, that do not add much to the model.

The Resource Broker and the Scheduling Algorithm have a unified interface to a set

of Job Types. This makes the design independent of any job type. Italic methods

represent the abstract methods that need to be implemented by the added job type. These

methods are:

• hasSubTasks, to indicate whether or not the application has some sub tasks.

• getContainedTaks, to get the contained sub-tasks, if any.

• updateJobStatus, to update the status of the job or one o f its contained sub-tasks.

• getReadyJobs, to obtain a list o f the tasks that are ready either at scheduling time

or allocation.

Each job has a unique ID, name, type, user, constraints and status. The

vAdditionallnfo container gives the flexibility where additional fields can be added. This

is very helpful for scheduling algorithms that require some additional information to be

given in advance prior to creating the schedule. For example, a scheduling algorithm

might require some profiling to be done and that the job’s execution time be known in

advance. The API is flexible so that such additional information can be easily

manipulated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

We have incorporated several types o f application by inheriting the Job abstract class

and implementing its abstract methods. These application types are:

• SingleJob, attributes specific to single application have been introduced.

• AggregatedJob, for this kind of application we have added a couple of methods

where the aggregated sub-tasks can be easily manipulated. These methods are:

Job

Additionallrfo
^ s N a m e : String ^
C^sValue: String

^ n J o b lD : int
fi^sJobName: String
GtsJobType: String
flb slfser: String

Constraints: String
flbnStatus: int

------ - ̂ A dditional Info : Additional InfbQ

+hasSub TasksQ
+getContainedTssksO
+updateJobStatus()
+getReadyJobsO
♦getAdditionalJoblnfoByNameO
♦getAdditionalJoblnfbO

P A \

/ 1
\
\

DAGJob 1 SingleJbb AggregatedJob
^ v N o d e s : Job Q
SfevEdges : EdgeQ

♦addNodeO
*deleteNodeO
*updateNodeO
*addEdge{)
*deleteEdgeO
*upadteEdgeO

j ^ E x e c u ta b le : String
| fifes RunDirectory : String

^ s A ig u m e rts : string

^ A g g reg a ted Jo b s : : Job Q

♦addAgg regatedJobO
♦deleteAggregatedJobO
♦updateAggregatedJobQi 1

ii

I

4

Edge i

^ n F ro m : int j
4^nTo: int !

i

Fig. 53. Class diagram o f Application Types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

o addAggregatedJob, where a sub-task can be added to the application,

o deleteAggregatedJob, where an existing sub-task can be removed from the

application.

o updateAggregatedJob, where the information of a sub-task can be

changed.

• DAGJob, we have added the following methods where contained sub-tasks and

their dependencies can be easily maintained:

o addNode, to add a new node to the DAG.

o deleteNode, to delete an existing node along with its dependencies from

the DAG.

o updateNode, to update the information o f an existing node,

o addEdge, to add a dependency between two existing nodes,

o deleteEdge, to delete an existing dependency,

o updateEdge, to update an existing dependency.

The abstract methods are implemented so as to fit the added job type. For example,

hasSubTasks returns true in case of DAG and Aggregated job types if the application has

at least one sub-task.

6.4.9 Package probe.daemons

This package contains all the classes and interfaces that are necessary to implement a

resource daemon.

• Daemon.java

• DaemonService.java

• ProtocolAdaptor.java

• PolicyMonitor.java

• JobThread.java

• TimerThread.java

• Platform Adaptors

o UnixAdaptor.java

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

o LinuxAdaptor.java

o Win32Adaptor.java

• Other Grids Adaptors

o Globus Adaptor.java

o GlobusJob.java

o SGEAdaptor.java

The resource daemon is the component that acts as a gateway between PROBE and

the managed resource. It can also be used as an integration base to interact with other grid

systems. As shown in Fig. 54, a protocol layer has been introduced which maps the data

collection and job execution/monitoring requests to the specific platform.

D a e m o n ^

(from daemons)

D a e m o n S e t v i c e
(from daemons)

♦ p u l l D a t a O
♦ p r o c e s s R e q u e s t))

♦ c a n c e l Q
♦ g e t O u t p u t O

♦ t r a c k J o b O
♦ a d d L o c a l P o l i c y ()

♦ d e i e t e L o c a l P o i i c y O
♦ a d d E x p r e s s i o n ()

♦ a d d E x t e r n a l E n t i t y O
♦ d e l e t e E x p r e s s i o n O

♦ d e l e t e E x t e m a l E n t i t y O

S G E A d a p t o r
from daemons)

♦ S G E A d a p t o r O

G l o b u s A d a p t o r
from daemons)

♦ G l o b u s A d a p t o r O
^submUab<)

♦ u p d a t e J o b S t a t u s ()

^ v d o b s : V e c t o r

♦ O a e m o n S e t v i c e ()
♦ p u l l D a t a O
♦ p r a c e s s R e q u e s t O
♦ c a n e d ()
♦ g e t O u t p u t O
♦ t r a c k J o b O
♦ a d d L o c a l P o i i c y O
♦ d e l e t e L o c a P d i c y O
♦ a d d E x p r e s s i o n O
♦ a d d E x t e m a i E n t i t y O
♦ d e l e t e E x p r e s s i o n O
♦ d e t e t e E x t e m a l E n t f t y O
♦ n o t i f y J o b O
♦ m a i n ()

J L
o P r o t o c o l A d a p t o r

Proioco/Adaptor
(fmmdaarmns)

♦ P r o t o c o l A d a p t o r O
+pullStaticDataO
+pullDynamicOataO
+executeRequest()
+cancelRequestO
♦ getOutputO

W l n 3 2 A d a p t o r
(from daemons)

♦ W i n 3 2 A d a p t o r O------------------

U n b t A d a p t o r
(from daemons)

♦ U n i x A d a p t o r O

L i n u x A d a p t o r
(from daemons)

♦ L i n u x A d a p t o r O

Fig. 54. Class diagram o f Resource Daemons

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

The protocol layer is presented as a ProtocolAdaptor abstract class that needs to be

implemented by the underlying daemon adaptor. It supports a set o f abstract methods

where statistics about the resource can be collected and tasks allocated and then

monitored. These methods are:

• pullStaticData, to collect static data about the resource. This mainly is called

whenever the resource daemon starts up.

• pullDynamicData, to collect dynamic data about the resource, this method is

going to be called based on the dissemination option (pull/puss, periodic/on-

demand).

• executeRequest, to handle the allocated task.

• cancelRequest, to cancel an already submitted task.

• getOutput, to retrieve the output of an already submitted task.

Integration with various platforms

We have developed several adaptors for different platforms as well as different grid

environments. These platforms are Unix, Win32 and Linux. The Data Collector relies on

the existing utilities that the platform supports.

Integration with various grid systems

Globus and Sun Grid Engine are the most popular grid systems that have wide acceptance

in the grid community. We described our efforts in integrating with these grid

environments.

We have integrated PROBE with Globus 2.0 using the Java Commodity Grid (CoG)

Kit 0.9.13 [77]. PROBE acts as a client for the Globus GRAM and generates RSL on the

fly for each job being submitted to a resource managed by Globus. We have used the

following packages:

• RSL. to manipulate the translated RSL request and check its validity.

• GRAM: to create, submit and monitor jobs with the RSL being created by the

RSL package.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

• MDS: to query and collect data about the status of the resources being managed by

Globus.

• GSI: to enable secure access to the resources.

We have also integrated with Sun Grid Engine 5.3 via the easy-to-use command line

interface. Grid Engine is an open source community effort sponsored by Sun

Microsystems and compatible with the Sun Grid Engine. Its main objective is to extend

Sun’s Grid Engine. We are planning to have a pure JNI adaptor that allows PROBE to

interact effectively with Sun Grid Engine 5.3 in the near future.

6.4.10 Package probe.policy

This package contains the package hierarchy and the classes that are necessary to

implement the policy framework.

• SLA.java

• Action.java

• Expression.java

• ExtemalEntity.java

• CachedResource.java

• Package probe.policy. actions

o ActionProcessor.java

o EmaiLAction.java

o ShellAction.java

Action Processors

An action processor is the component that handles specific kinds o f actions when policy

terms are not met. When an action is created, it gets assigned an action type specifying its

action processor and a set o f parameters. Each parameter is a name and value pair,

specifying the behavior the action processor has to take when the action is triggered. As

shown in Fig. 55, our infrastructure eases the plug-and-play for action processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

ActionProcessor is an abstract class that has some abstract methods that need to be

implemented by the underlying action processor. These methods are:

• getName, to get the name o f the action processor.

• takeAction, to take the supplied action.

We designed and implemented some action processors by inheriting the Action

Processor abstract class and implementing its abstract methods. The current

implementation o f PROBE supports Shell where a designated shell script is executed and

predefined arguments can be passed, and Email where a detailed email regarding the

violation is sent via email.

A c t t o n M a n a g e r
from com)

, % h m A c t i o n s : H a s h M a p

; ♦ A c t t o n M a n a g e r Q
♦ a d d A c t i o n P r o c a s s o r t)
♦ d e i e t e A c t i o n P r o c e s s o r Q
♦ g e t A c t i o n P r o c a s s o r t)

'■J
A ctionPnxessor

fiomactions)
A c t i o n

(Tom policy)

♦ A c t i o n P i o c a s s o r t)
♦ g vtNameO
♦ f a keActonO

_ _ _ _ _ _ _ _ _ _ _ _ _ ^ ^ m _ s A c t f o n T y p e : S t r i n g
£ m _ v P a r a m e t e r s : V e c t o r

. ♦ A c t i o n O I

~ < T '" A A
/

E m a i (A c t i o n | S h e l A c t i o n
((mm actions) j (tram actions)

C o m p e n s a t i o n
(from actions)

♦ E m a i l A c t i o n Q | ♦ S h e l l A c t i a n O , ♦ C o m p e n s a t i o n 0

Fig. 55. Class diagram of Action Infrastructure

6.4.11 Package probe.client

This package provides the classes necessary to interface with PROBE. The current

implementation o f PROBE supports visual and command-line interfaces where the client

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

can interact with the system. This package includes the package hierarchy and the classes

necessary to implement those interfaces. It has two packages:

• Package probe.client.cml

o InteractiveAPI.java

• Package probe.client.gui

o RMcIient.java

o Mainlnterface.java

o Searchlnterface.java

o Monitorlnterface.java

o MonitorThread.java

o NewRequestlnterface.java

o RequestManager.java

o About.java

6.5 Summary

In this chapter, we have described the current prototype implementation of PROBE. We

have presented the tools and environments that we have used to implement the current

prototype. We also described an enhancement for Jini in order to enable it across

networks that do not support multicasting. We presented two approaches to resolve this

issue, the Collaboration approach, which is a pure Jini solution that relies on the Jini’s

Lookup Service; and the Hierarchal Tunneling approach that relies on building a

hierarchy of Tunneling Services (TSs). As the number of participant TSs continues to

grow, the Hierarchal Tunneling approach is more scalable since it gives the ability of

performing several tunneling tasks concurrently. Our experiment shows that as the

number of TSs approaches 100, the broadcasting time is 5.71 times faster than that o f the

Collaboration approach and the delivery time is 3.02 times faster. Finally, we presented

how the implementation of the PROBE prototype is structured into functional modules

and packages using class diagrams and package overviews.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

CHAPTER VH

EVALUATION AND EXPERIMENTAL RESULTS

In this chapter, we describe the methodologies that we use to evaluate the effectiveness of

PROBE as a general-purpose policy-based resource brokering environment for

computational grids. We describe the experimental testbed that we use to carry out our

experimental results. We also present the results obtained when the PROBE framework is

applied in the context of different experiments. These results demonstrate the

effectiveness o f our approach.

7.1 Overview

Globus [42] and Sun Grid Engine [115] are the most popular and widely accepted grid

systems in the grid community. Besides having our own grid environments managed by

PROBE, we have layered PROBE on top of those two grid systems as shown in Fig. 56.

We start up with the basic skeleton o f PROBE and add various plug-ins. For example,

we add support for different kinds of applications such as Single, DAG and Aggregated;

implement a scheduling algorithm based on the classic Critical Path Method (CPM) to

schedule DAG into heterogeneous resources [82]; implement a First-In First-Out (FIFO)

queuing algorithms; etc. The flexible design of the system made it easy for us to

incorporate these plug-ins.

To conduct our test cases, we use different kinds of applications. For example, we use

Pathfinder, an aircraft preliminary Multidisciplinary Design Optimization application that

demonstrates the methodology for multidisciplinary communications and couplings

between several engineering disciplines. We also use some simulated problems

representing other application types.

The evaluation shows the flexibility and effectiveness o f PROBE as a general policy-

based resource brokering environment that can be utilized by various grid systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

7.2 Experimental Testbed

Most systems usually evaluate their work in a tightly coupled network (LAN) to avoid

issues such as heterogeneity and site autonomy that complicate the task of the resource

brokering environment.

As PROBE targets a loosely coupled network environment, we believe that our test

should prove that our system could map well in such an environment. We have chosen to

evaluate PROBE in a loosely coupled network (the Internet) with heterogeneous

resources. As shown in Fig. 56, our testbed environment, called PROBE Computational

Grid (PCG) testbed, is made up of the four loosely coupled administrative domains.

Globus Tool Kits
Sun Grid Engine

Fig. 56. PCG Test Bed Environment

In the first domain, we have installed Globus Tool Kits 2.0 on a 733 MHz PHI PC

with Redhat 7.2 Linux. This administrative domain has seven PCs. Some o f the resources

have a resource policy stating that the resource cannot be used when its free physical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

memory drops below 64 MB. A Globus adaptor has been installed where PROBE can

interoperate with Globus. Table 3 gives further specifications about this grid.

TABLE 3

FURTHER SPECIFICATIONS ABOUT GLOBUS DOMAIN

Host name Manufacturer Resource Type CPU OS Memory
globus Dell PHI/Dimension

L866r
900 Redhat 7.2

Linux
192

hesham Dell PIV/ Dimension
4300s

1600 Windows XP 256

imran Dell PIV/Dimension
4500s

1800 Windows XP 256

neptune Gateway PIH/GP7-450 733 Redhat 7.2
Linux

128

sanhour Dell PIV/Dimension
4500s

1800 Windows XP 256

riyadh Dell PIV/Dimension
4500s

1800 Windows XP 256

The second administrative domain belongs to a private organization called Trendium

Incorporation, hi this administrative domain, we have installed Sun Grid Engine 5.3 on

Sun ULTRAstation-10 workstation with Solaris 2.8. The administrative domain has 32

Sun ULTRAstation-10 workstations; each has Solaris 2.8, CPU o f 440 MHz and memory

o f 512. This administrative domain has a system wide policy that restricts resources from

being accessed between 9 AM and 5 PM. This administrative domain is accessible via a

Cisco Virtual Private Network (VPN) server. The VPN client is established at the first

domain. A resource daemon with a Sun Grid Engine (SGE) adaptor has been installed in

which PROBE can interoperate with the Sun Grid Engine.

In the third administrative domain, we have installed PROBE on Sun ULTRAstation-

10 workstation with Solaris 2.8. This administrative domain has 15 Sun workstations

with Solaris 2.8 and 3 PCs with Windows 2000. Some of the resources have a resource

policy stating that the resource cannot be used when the number o f interactive users

exceeds 5. Table 4 gives further specifications about this grid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

TABLE 4

FURTHER SPECIFICATIONS ABOUT PROBE I GRID

Host
name

Manufacturer Resource Type CPU OS Memory

brain Sun ULTRAstation-10 333 Solaris 2.8 128
cash Sun Sun-Blade-1000 750 Solaris 2.8 1024

cheeta Sun ULTRAstation-10 300 Solaris 2.8 128
dilbert Sun Sun-Ultra-250 400

(dual
processors)

Solaris 2.8 2084

dot Sun ULTRAstation-10 300 Solaris 2.8 128
escher Dell PIV/Dimension

4300s
1600 Windows

2000
128

egbert Sun Sun-Blade-1000 333 Solaris 2.8 128
grenada Sun ULTRAstation-10 300 Solaris 2.8 64
hutch Sun Sun-Blade-1000 750

(dual
processors)

Solaris 2.8 1024

isis Sun Sun-Blade-1000 750 Solaris 2.8 1024
labpc4 Dell Pin/Dimension

L866r
864 Windows

2000
265

labpc43 Dell Pin/Dimension
L1000R

1000 Windows
2000

128

o2 Sun Sun-Blade-1000 333 Solaris 2.8 128
pitfall Sun ULTRAstation-10 333 Solaris 2.8 128
puma Sun ULTRAstation-10 300 Solaris 2.8 128
tabby Sun ULTRAstation-10 333 Solaris 2.8 128
tango Sun Sun-Blade-1000 750

(dual
processors)

Solaris 2.8 1024

yakko Sun ULTRAstation-10 333 Solaris 2.8 128

The fourth administrative domain has 4 Sun workstations with Solaris 2.8 and 3 PCs

with Windows 2000. Some o f the resources have a resource policy stating that the

resource cannot be used when its load exceeds 50%. Table 5 gives further information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

about this grid. Resources in this domain are managed by PROBE running in the third

administrative domain.

TABLE 5

FURTHER SPECIFICATIONS ABOUT PROBE U GRID

Host name Manufacturer Resource Type CPU OS Memory
res-audio Sun ULTRAstation-

10
333 Solaris 2.8 128

res-clientl Sun ULTRAstation-
10

333 Solaris 2.8 to 0
0

res-iri Sun Sun-Ultra-30 296 Solaris 2.8 128
res-nt7 Dell PIV/Dimension

4500
1800 Windows

2000
128

res-nt9 Dell PIV/Dimension
4500

1800 Windows
2000

128

res-ntlO Dell PIV/Dimension
4500

1800 Windows
2000

128

res-video Sun Sun-Ultra-30 296 Solaris 2.8 128

The version numbers and release dates of the software packages used in the

experiments are shown in Table 6.

TABLE 6

VERSION NUMBERS OF THE SOFTWARE PACKAGES USED IN THE

EXPERIMENTS

Package Release
Java 1.4.1
Jini 1.1
MySQL 3.23
JAXP 1.2
xmloperator 1.11
Globus 2.0
Java Commodity Grid Kit 0.9.13
Sun Grid Engine 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

73 Test Applications

In order to evaluate the effectiveness of PROBE, we need to test it under different

scenarios. We use different kinds o f test applications. Some of which are real and some

are simulated. In this section, we describe the test applications that we use to conduct our

experiments along with their allocation constraints.

7.3.1 Single Job

We use different kinds of single jobs in our evaluation. In this subsection, we describe a

sample single job that represents a weather-modeling application. This application

requires a resource where the CPU load is less than 60% and the available scratch space

is greater than 20 GB. An FJL script representing the sample single job is given in Fig.

57.

<?xml version="1.0"?>
<!DOCTYPE Request SYSTEM "Request.dtd">
<Request>
<Single Name="WeatherModeling” Arguments=""
Executable="/hom e/theneyan/D em o/A ppl/w eather.csh"
RunDirectory=7hom e/theneyan/D em o/A ppl">
<Policy>
<Rule>
<AND>
<Condition Entity="res.ResourceLoad" Operator="LS" Value="60”x /C o n d itio n >
<Condition Entity="res.PreeSwapSpace" Operator="GR" V alue="20000000"x/C ondition>
</AND>
</Rule>
<Action Type="Sheir>
<AdditionalInfo Name=”ScriptName" Value=''compensation.sh"></Additionallnfo>
<AdditionalInfo Name="AccountNumer” V alue= "ll-22 -33"x /A dd itionalIn fo>
<AdditionalInfo Name=”Credit" Value="5”x /A dd itionalIn fo>
</Action>
</Policy>
</Single>
</R equest>

Fig. 57. FJL script representing a sample single application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

7.3.2 Co-Allocation Job

For this kind of application, we developed a simulated client-server application

representing one client and two servers. This kind of application requires that a set of

resources be available for use simultaneously. We specify that each resource needs to

have at least 128 MB of available physical memory. An FJL script representing the

sample single job application is given in Fig. 58.

<?xml version-’1.0"?>
<!DOCTYPE Request SYSTEM ”Request.dtd">
<Request>
<Aggregated Name=”CoAlIocationTest" Type="CoAllocation">

<Single Name="client” Arguments=""
Executable="/home/theneyan/Demo/Appl/client.csh"
RunDirectory="/home/theneyan/Demo/App 1 "x/Single>

<SingIe Name="serverl" Arguments=”"
Executable=''/home/theneyan/Demo/App 1/serverl .csh"
RunDirectory="/home/theneyan/Demo/App I "x/Single>

<Single Name="server2” Arguments=’"’
Executable=”/home/theneyan/Demo/Appl/server2.csh"
RunDirectory=”/home/theneyan/Demo/App I ”x/Single>
<Policy>
<Rule>
<Condition Entity="res.FreePhysicalMem" O perator= ,,GR'’ Value="128000"></Condition>
</Condition>
</Rule>
</Policy>
</Aggregated>
</Request>

Fig. 58. FJL script representing a Co-Allocation application

7 3 3 Parametric Job

We have a Computational Fluid Dynamics (CFD) simulation for polishing equipment. In

this application, a simulation program Polish(x,y) is repeatedly executed with different

initial conditions as a means of exploring the behavior of the polishing equipment. We

need to run the application for three different combinations of x and y. We specify that

each resource needs to have at least 128 MB o f available physical memory. An FJL script

representing the application is given in Fig. 59.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

<?xml version="1.0"?>
<!DOCTYPE Request SYSTEM "Requestdtd">
<Request>
<Aggregated Name="Polishing" Type="Parametric">

<SingIeName="SimuIationl" Arguments=”x= I y=l"
Executable="/home/theneyan/Demo/Appl/simulation.csh"
RunDirectory="/home/tbeneyan/Demo/App 1 ”x/Single>

<Single Name="Simulation2" Arguments="x=l y=2"
Executable="/home/theneyan/Demo/Appl/simulation.csh”
RunDirectory="/home/theneyan/Demo/App I "x/SingIe>

<Single Name="Simulation3" Arguments="x=2 y=2”
Executable="/home/theneyan/Demo/App l/simula tion.csh''
RunDirectory="/home/ theneyan/Demo/App I " x /S ing!e>
<Policy>
<Rule>
<Condition Entity=”res.FreePhysicalMem" Operator="GR" Value="128000">
</Condition>
</Rule>
</Policy>
</Aggregated>
</Request>

Fig. 59. FJL script representing a Parametric application

73.4 Pathfinder - Sample DAG application

The Multidisciplinary Design Optimization Branch (MDOB) at NASA Langley Research

Center (LaRC) is conducting basic research in Multidisciplinary Design Optimization

(MDO) methods and tools for the design and optimization of aerospace vehicles

throughout their flight envelope. Their main objective is to increase design confidence

and cut development time [87].

Pathfinder is an aircraft preliminary MDO system that demonstrates the methodology

for multidisciplinary communications and couplings between several engineering

disciplines. It has been developed jointly by the NASA/LaRC and Lockheed Martin

Engineering and Science Services. The current version consists of the disciplines of

aerodynamics and structures coupled aero-elastically. As shown in Fig. 60, these

disciplines, represented by multiple heterogeneous modules, interact with each other to

solve the overall design problem. Typically these modules consist of various Fortran and

C programs and have been developed as separate codes. These modules have been

integrated through the use of scripts that make the process of specifying and optimizing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

the overall design of such application a long and tedious process often taking several

weeks. A solution is reached when the design variables are no longer changing or a

satisfactory feasible design is obtained.

CYCLE

AERO FLUTT

PERF

GSE

OPTIMIZER

STRUCTURES

APPROXIMATION

Perturb Each Design Variable

Fig. 60. The Pathfinder System

The Pathfinder system has an outer analysis cycle and an inner system optimization

cycle. A solution is reached when the design variables are no longer changing or a

satisfactory feasible design is obtained. In our experiments, we focus only on one sweep

o f the Pathfinder system. We took out the scripts that integrate the Pathfinder’s modules,

and instead used FJL to integrate them and then used this application as one o f the

driving forces for our prototype. The FJL script representing the Pathfinder application is

given in Fig. 61.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

<?xml version="1.0"?>
<!DOCTYPE Request SYSTEM ”Request.dtd">
<Request>
<DAG Name="Pathfinder">

<Single Name="PERP Argum ents=“"
Executable=7home/theneyan/Demo/Pathfinder/PERF.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Single Name="AERO" Arguments=""

Executable="/home/theneyan/Demo/Pathfinder/AERO.csh"
RunDirectory=7hom e/theneyan/D em o/Pathfinder/”>

</Single>
<Single Name="STRUCTURES" Argum ents="“

Executable=7home/theneyan/Demo/Pathfinder/STRUCTURES.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Single Name="FLUTTER" Arguments=""

Executable=7home/theneyan/Demo/Pathfinder/FLUTTER.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Single Name="GSE" Argum ents=”"

Executable=7hom e/theneyan/Dem o/Pathfinder/GSE.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Single Name="APPROXIMATION" A rgum ents="”

Executable=7home/theneyan/Demo/Pathfinder/APPROXIMATION.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Single Name="OPTIMIZER" Arguments=""

Executable=7home/theneyan/Demo/Pathfinder/OPTIMIZER.csh"
RunDirectory=7hom e/theneyan/Dem o/Pathfinder/">

</Single>
<Dependency From="PERP To="A ERO "x/D ependency>
<Dependency From="PERP To="STRUCTURES"x/Dependency>
<Dependency From="PERP To="FLUTTER"x/Dependency>
< Dependency From="AERO" To="GSE”x /D e p e n d e n c y >
< Dependency From= "STRUCTURES" T o="G SE "x/D ependency>
< Dependency From="FLUTTER" T o="G SE "x/D ependency>
<Dependency From="GSE" To="APPROXIMATION"x/Dependency>
< Dependency From="APPROXIMATION" To="OPTIM IZER"x/Dependency>

<Policy>
<Rule>
<AND>

<Condition Entity=”res.CPUspeed" Operator="GR" V alue="700"x/C dndition>
<Condition Entity="res.FreePhysicalMem" Operator="GR" Value="128000”x /C o n d itio n >

</AND>
</Rule>
</Policy>
</DAG>
</R equest>

Fig. 61. FJL script representing the Pathfinder application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

7.4 Experiments

The overall objective of the evaluation is to evaluate the effectiveness of PROBE as a

general-purpose policy-based resource brokering environment for computational grids.

The evaluation of our work has been divided into two parts: Qualitative Evaluation, in

which we test whether or not the system delivers its promise; and Quantitative

Evaluation, in which we evaluate how effectively the system delivers its promise. We

conduct a number of experiments with different requirements to test the effectiveness of

our framework. In this subsection, we discuss these experiments to demonstrate the

effectiveness of PROBE. All these experiments were conducted using the PCG testbed.

7.4.1 Qualitative Experiments

In qualitative evaluation, we investigated whether or not the PROBE prototype delivers

what it promises in terms of functionalities and characteristics.

We tested PROBE within multiple administrative domains. In our experiments, each

domain, and in fact resources within each domain, specify their own set o f rules and

policies. Different policies are assigned at resources in the PCG testbed as the following:

o First domain, some o f the resources have a resource policy stating that the

resource cannot be used when its free physical memory goes below 64 MB.

o Second domain, we specify a system wide policy that all resources are not to

be accessed between 9 AM and 5 PM.

o Third domain, some of the resources have a resource policy stating that the

resource cannot be used when the number o f users exceeds 5.

o Fourth domain, some of the resources have a resource policy stating that the

resource cannot be used when its load exceeds 50%.

We submited different kinds of applications with varying allocation constraints.

PROBE was flexible enough to accommodate and adopt these policies. The rights of both

the resource provider and the resource consumer were respected. The XML-based Policy

Scripting Language (PSL) was flexible enough to provide the necessary richness for both

resource providers and consumers to express the diverse kinds o f policies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Also, we tested the ability of PROBE to run in a heterogeneous environment

consisting of different hardware and software platforms (e.g., Linux, MS Windows,

Solaris) without any modifications. No problems were encountered. On the other hand,

the PCG testbed has various kinds of resources, each with different architectures,

different operating systems, different configurations and different vendors. We make sure

that PROBE can accommodate all types o f resources and manage them efficiently.

H IwBM M B ■ H
Fig. 62. Basic PROBE with different plug-ins

As a general-purpose resource brokering environment framework, we made sure that

PROBE can be easily integrated with existing grid environments and incorporate

different grid requirements. As shown in Fig. 62, we started with the basic skeleton of

PROBE that has only the core components. Then, we integrated PROBE with different

plug-ins. In chapter VI, we have provided the details on how to incorporate different

plug-ins. As a sample below, we give a sequence o f steps that is necessary to plug-in the

static EA-CPM scheduling algorithm that we have explained earlier in 6.4.5:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

• Inherit the SchedulingAlgorithm abstract class and implement its abstract methods

as follow:

o createSchedule, we follow the Pseudo-algorithm shown in Fig. 49.

o isSchedulable, this algorithm requires some additional information such as

the node weight and the path weight. We test whether or not the supplied

job has this additional information. If not, this method returns false.

o isDynamic, since this is a static algorithm, this method returns false.

o updateSchedule, this method is meant for dynamic scheduling. Since this

algorithm is static, we ignore this method,

o getName, we return the name of the scheduling algorithm, “Static Early

Assignment CPM”.

• Compile the Java file.

• Now that we have the class file, we can plug-in this algorithm using two different

approaches:

o On the fly . the Plug-in Helper utility allows the injection o f different plug­

ins on the fly. It loads the provided classes into RAM and then makes it

easy to transfer them over networks,

o At start-up time: the Resource Broker provides the facility where

scheduling and queuing algorithms can be provided via the command-line.

It relies on the Plug-in Injector class where classes can be dynamically

loaded.

7.4.1.1 Brokering

In testing the functionalities of our brokering infrastructure, we touch upon different

aspects o f brokering such as:

• Submitting different kinds o f applications.

• Applying different scheduling techniques.

• Applying different queuing techniques.

• Rescheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

• Job Monitoring.

In this subsection, we describe typical brokering scenarios that occur within PROBE.

We discuss different cases and show how PROBE handles them.

Experiment 1: Successful Finish

Using the command-line client’s interface o f PROBE, we submitted two FJL-based

problem descriptions: one for a Single job as illustrated in Fig. 57, and the other for a job

o f type DAG representing the Pathfinder problem as illustrated in Fig. 60. We also

specified some application constraints. For the single job, we were looking for a resource

with a CPU load of less than 40%. For the Pathfinder problem, we were looking for seven

resources each o f at least 700 MHz and 128 MB o f Memory.

Each problem got forwarded to the Client Interface Module, which created the Job

object and then passed the request to the Resource Broker. Below, we summarize our

observations for these two problems:

• Single Job: A unique job identification is created and passed back to the Client

Interface Module for tracking purposes. The Scheduler Agent then consults with

the Policy Enforcement Manager. After enforcing all the policies and application

requirements, one resource (res-clientl/PROBE II) is made available for the job

and passed to the Scheduler Agent, which then creates the Schedule. Next, the

Allocation Agent allocates the job. When the job finishes successfully, the

Schedule is terminated by the Scheduler Agent. Fig. 63 illustrates the sequence of

operations involved in this experiment.

• DAG Job: After generating the unique IDs for the job and all its sub-tasks, the

Scheduler Agent consults with the Policy Enforcement Manager. Out of the 23

resources that are available in the system, the Policy Enforcement Manager

selects a subset of 4 appropriate resources (cash, hutch, isis and tango/ PROBE I)

and notifies the Scheduler Agent o f the selection. The selection is based on system

policies, resource policies and the application constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Job
Monitor

1
I T

Client Interface
Module

A -

r - L , F---
Resource Broker

Scheduler Agent 'I

Schedule

Awaiting
Job

Allocation

Agent

Resource/Daemon

Execution
Monitor

Policy
Enforcement

Manager

Resource
Monitor

Fig. 63. Steps involved in successful execution of a Single Job

Given this set of 4 resources, the Scheduler Agent constructs the appropriate

schedule. The underlying algorithm used for scheduling the DAG is a static CPM-

based, which first assigns high priority tasks to the required resources. As each

sub-task in the DAG gets allocated onto the designated resources, the Job Monitor

is informed so that it can keep track o f the job. After the successful completion of

the OPTIMIZER sub-task, the schedule is terminated by the Scheduler Agent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

Experiment 2: Schedule cannot be created

We set the underlying scheduling algorithm to be the static early assignment CPM-based

for DAG application that we described earlier in chapter VI. As we explain, this

algorithm requires that both the node weight and the path weight are known in advance.

We submit a DAG application that does not satisfy these requirements. The Resource

Broker denies the request after the underlying scheduling algorithm isSchedulable

method returns fa lse .

Experiment 3: Waiting/Rescheduling

The Resource Broker maintains an internal queue o f jobs currently in the system and that

have not been scheduled yet including those that failed and needs to be rescheduled. We

plug-in a First-In First-Out (FIFO) queuing algorithm that we described in the last

chapter.

We submitted some simple Single tasks where no resource is available to accept that job.

This is done by manipulating policies and running some consumers on the candidate

resources. The Resource Broker holds the jobs in the awaiting queue. From time to time,

it uses the FIFO queuing algorithm to select the next job to schedule. Once we terminate

the consumers, the candidate matches become available and the Resource Broker starts

rescheduling the awaiting jobs on a FIFO bases. Fig. 64 illustrates this experiment.

Experiment 4: Failure/Rescheduling

We submitted a simple Single task, and it took its normal path throughout the Resource

Broker till it gets allocated. We ran an interrupter job that caused our job to fail. Once the

job failed, the Job Monitor was notified which in turn notified the Resource Broker about

the change o f the job’s status. The Resource Broker put the job in the awaiting queue.

When the queuing algorithm selected the job again, the Resource Broker rescheduled it.

It then got allocated and finished successfully.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Jo b
M o n ito r

15

C lien t In te rfa c e
M o d u le

Resource Broker

S ch ed u le r A gen t

Schedule

' r 13 12

Awaiting
Job

Allocation

Agent

4 , 10

 ► Policy
E nfo rcem en t

M an ag e r

issource Daemon
Core

Daemon I Local
Policy

Enforcer/ t
Execution
Monitor

Data
Collector

R esource
M o n ito r

Fig. 64. Scenario of the waiting/rescheduling experiment

Experiment 5: Job Monitoring

We tested different scenarios o f job monitoring such as: canceling, stopping, resinning or

retrieving the standard output/error. PROBE was able to handle these issues in an

effective manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

7.4.1.2 Policy Framework

The two major functions that the Policy Enforcement Manager is tasked with are

resource matching and assurance. In the previous subsection, we demonstrated the

resource matching function via the different resource brokering experiments. In this

subsection, we describe some policy-based experiments that we conducted to test our

policy framework. These experiments include:

• SLA monitoring.

• SLA violation.

• Local policing.

Experiment 1: SLA monitoring

We submitted a simple Single job, which has one policy where no action is being

specified in case of violations. Once the job is allocated, a Service Level Agreement

(SLA) is established between the client and the resource provider based on the client’s

terms. The dissemination option in the allocated resources is periodic Push where the

resource daemon is asked to update the Resource Monitor about the status of the resource

every 30 seconds. Every time the Resource Monitor gets notified about the status of the

resource, it notifies the Policy Enforcement Manager where the associated SLA is

monitored as described below:

• associated SLA is fetched from the Policy Keeper.

• within that SLA, associated policy is parsed with the help of the Policy Parser

and violation, if any, is detected.

Once the job is terminated successfully, the Policy Enforcement Manager is notified

to terminate the associated SLA. Fig. 65 illustrates this experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

C lien t In te rfa c e

M odule

-3-
Resource Broker

S ch ed u le r A gent 4

I
Awaiting

Job

Schedule

Allocation

Agent

12

19

J o b
M o n ito r

13

R source Daemon
Core

Daemon,

9.2)

Policy Enforcement Manager

SLA
M o n ito rin g

A gen t

Policy
M atch e r

10,16

17 N

Policy
K eeper

Policy
P a rse r

Local
Policy

Enforcer
i t

14

13

Execution
Monitor

S T
Collector

15

R esource
M o n ito r

Fig. 65. Scenario o f the SLA monitoring experiment

Experiment 2: SLA violation

We ran the same scenario described in the previous experiment. This time, we specified a

policy so that the available physical memory is at least 128 MB. We specify two actions

to be taken in case o f violation of allocation terms: one is to run a shell script, and the

other is to send an e-mail to a pre-specified e-mail address. Once the job is allocated, we

run a competing application on the assigned resource so that the guaranteed level of

allocation is violated. Once the Policy Enforcement Manager was notified about the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

status of the resource, the associated policies were evaluated which resulted in a

violation. The two actions were then triggered.

Experiment 3: Local Policing

Resource providers can specify some local policies internal to their resources to ensure

that the appropriate action is taken before a violation occurs. These local policies can be

specified on the fly using the Resource Daemon Helper utility as explained in 6.4.6. The

API of the resource daemon is flexible enough to handle this issue.

We repeat the same scenario described above. Once the job is allocated, we specify a

local policy so that when the free physical memory approaches 140 MB (warning level) a

shell script should be triggered so that it kills some of the local jobs until the free physical

memory reaches 160 MB (safe level). Again, we ran a competing application on the

assigned resource in a manner so that the free physical memory drops below 140 MB.

Once the data collection is due, the local policy is evaluated locally at the resource

daemon, which results in a violation. The action associated with the local policy was

triggered which resulted in the competing application being terminated.

TABLE 7

SUMMARY OF THE QUALITATIVE EXPERIMENTS

Category Experiment Result

Ease o f Deployment

Application types Different application types have
been implemented including
Single, DAG and Aggregated.

Scheduling algorithms Two scheduling algorithms have
been implemented. This includes:
simple scheduling algorithm in
which resources are assigned in
First-Come-First-Serve (FCFS)
bases; and static EA-CPM that
yields assignment o f high priority
tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Table 7, continued

Queuing algorithms A First-In First-Out (FIFO)
queuing algorithm has been
implemented.

Repository adaptor We developed an SQL repository
adaptor using MySQL as
background infrastructure.

Daemon adaptors Daemons for different platforms
(Unix, Linux and Windows) and
different grid systems (Globus
and SGE) have been
implemented.

Action processors Shell and Email action processors
are supported.

Heterogeneity

System System modules can run in
heterogeneous environment in
terms of different software and
hardware platforms.

Resources PROBE can manage resources of
heterogeneous types.

Site Autonomy PROBE can handle different
policies being applied at different
sites and to resources within the
same site.

Brokering

Scheduling technique We plug-in the FIFS and the static
EA-CPM scheduling algorithms
via the command-line and on the
fly using the Plug-in Helper
utility. Scheduling has been tested
using different kinds of
applications.

Queuing technique We plug-in the FIFO queuing
algorithm via the command-line
and on the fly using the Plug-in
Helper utility. Rescheduling of
failed jobs and those that cannot
be scheduled has been tested
using this queuing algorithm.

Schedule cannot be

created

Jobs that cannot be scheduled due
to missing information required
by the scheduling algorithm are
rejected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

Table 7, concluded

Job cannot be scheduled Jobs that cannot be scheduled are
kept in the awaiting queue and
then rescheduled.

Failed jobs Failed jobs are rescheduled.

Stop Job can be stopped at any time.

Resume Stopped jobs can be resumed.

Cancel Job can be cancelled at any time.

Retrieve Output Standard output and errors can be
retrieved.

Allocation Assurance

SLA monitoring SLAs are monitored in near real­
time.

SLA violation Violations are captured as soon as
they occur.

Actions Specified actions are triggered
when violation occurs.

Local policing Local policies can be added on the
fly and then evaluated in the
appropriate way.

7.4.2 Quantitative Experiments

The objective of the quantitative evaluation is to evaluate how effectively the prototype

implementation o f PROBE delivers the promise. In order to evaluate the effectiveness of

PROBE, its performance needed to be evaluated under different scenarios. The brokering

time is dominated by the following factors:

• Parsing, the time it takes the Client Interface Module to parse the supplied FJL-

based request and construct the Job object.

• Matching, the time it takes the Policy Enforcement Manager to match resource(s)

for the supplied request.

• Scheduling, the time it takes the Resource Broker to construct the appropriate

schedule based on the underlying scheduling algorithm.

• Allocation, the time it takes the Resource Broker to implement the constructed

schedule and allocate the associated tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

• Communication, the overhead of communication among the involved

components.

We define the overall overhead of brokering that PROBE adds as:

Brokering = Parsing + Matching + Scheduling + Allocation + Communication

However, Scheduling time can vary from one algorithm to another and from one

application to another. Similarly, Allocation time can vary based on the number of sub­

tasks that need to be allocated and their allocated resources. In our brokering

experiments, we use a very simple scheduling algorithm that we have implemented that

assigns resources on a First-Come-First-Serve (FCFS) bases. Also, we run all the

modules in the same machine so that the overhead o f communication is relatively small.

Thus, our quantitative evaluation consists o f the following measurements:

• Cost of XML parsing: a major factor when PROBE interoperates with other grid

systems is to efficiently parse the exchanged resource and request specifications.

PROBE has some parsing tools where such specifications can be handled. In this

experiment, we measure the cost of the parsing tools for both requests and

resources.

• Performance of resource matching and SLA monitoring: to achieve high level

of scalability and performance, PROBE caches some policy related information

that it needs for resource matching and SLA monitoring. Internal cache reduces

the cost of loading the data from the Resource Repository for each request. In this

experiment, we measure the performance gained by caching for both resource

matching and SLA monitoring. One drawback of caching, in general, is that one

has to pay the price of the expensive use o f memory. We measure the memory

usage for the cached data as the underlying grid grows.

• Overall overhead of brokering: one o f the main objectives behind this effort is

to build an interoperable brokering infrastructure that acts as a mediator where a

grid system can use PROBE to discover and use resources controlled by other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

grid systems. We layer PROBE on top of Globus and Sun Grid Engine, the most-

widely accepted grid systems in the grid community. We then measure the

overhead due to these systems.

We conducted a number o f experiments with different requirements to evaluate the

performance of our framework. All these experiments were performed on our

experimental testbed. We make sure that allocated tasks are not interrupted by other

users. All the times are based on at least five measurements. Below, we discuss in detail

each of these experiments. The numerical data for all the experiments is given in

Appendix A.

7.4.2.1 XML parsing

PROBE provides two XML parsing utilities, the ResourceParser and the RequestParser.

These utilities provide convenient APIs for creating, manipulating, and checking the

validity o f a resource and request specifications respectively.

1000

980

"ST 960
E.
o 940
E
t- 920
o>e 900M
<5a. 880

860

840
Single Parametric CoAllocation DAG

Document Type
Resource

Fig. 66. Parsing time for different XML document

To measure the performance of our XML parsing utilities, we ran different

experiments in which we parsed different kinds of documents that we have proposed. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

ran our experiments on a Sun workstation with 750 MHz processor, 1024 MB of RAM

and Solaris 2.8. We used Sun’s JDK 1.4 and Sun's JAXP XML parser 1.2. We parsed

using SAX 2.0 with validation turned on. We measured the time it takes to parse each

XML document. The result of the experiment is shown in Fig. 66. The raw data is given

in (Appendix A - Table 11).

7.4.2.2 Performance of resource matching and SLA monitoring

In this experiment, we measured the performance gained by using caching versus loading

the data from the Resource Repository for both request matching and SLA monitoring.

We applied different data retrieval approaches including:

o Caching, where the Policy Enforcement Manager relies on the data that it

internally caches.

o Local Resource Repository, where the Policy Enforcement Manager consults with

a MySQL-based Resource Repository installed on the same machine,

o Remote Resource Repository, where the Policy Enforcement Manager consults

with a MySQL-based Resource Repository installed on a remote machine

connected via fast Ethernet (100 Mbps).

Caching Local Repository Remote
Repository

Data Retreival Approach

Fig. 67. Performance of Resource Matching under different data retrieval approaches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

We performed our experiments on a Sun workstation with 750 MHz processor, 1024

MB of RAM and Solaris 2.8. We submitted the Single job described earlier in this

chapter and discovered that the matching process, on average, takes 11.8 ms when values

were cached, 34.8 ms when we rely on a local Resource Repository and 55.6 ms when we

rely on remote Resource Repository. This implies that caching provides a factor of 2.95

performance gain compared to the local Resource Repository and 4.71 compared to the

remote Resource Repository. Fig. 67 illustrates the results that we obtained from this

experiment. The raw data o f the figure is given in (Appendix A, Table 12).

We also performed similar experiments to measure the performance of the SLA

monitoring process. As shown in Fig. 68, we found that on average, it takes 2.4 ms to

monitor an SLA when values were cached, 24.2 ms when we rely on a local Resource

Repository and 41.4 ms when we rely on remote Resource Repository. Thus, caching

provides a factor o f 10.08 performance gain compared to the local Resource Repository

and 17.25 compared to the remote Resource Repository. The data material o f the figure is

enclosed in (Appendix A, Table 13).

The runtime performance when policy-related information is not cached leads to poor

and unacceptable resource matching and SLA monitoring times that make the system

almost unusable for large grids.

4540
3 5

3 0

2 5

20

10

Caching Local Repository Remote
Repository

Data Retreival Approach

Fig. 68. Performance o f SLA Monitoring under different data retrieval approaches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

One drawback o f caching, in general, is the price o f memory usage. We analyze the

memory usage for different kinds of grids. We divided our experiments into 3 kinds of

grids:

• Small Grid: this grid is typical of small organizations where resources range from

10 to 90.

• Medium Grid: this grid is typical o f many administrative domains where

resources range from 1,000 to 9,000.

• Large Grid: this grid has a massive number of organizations, possibly on different

continents, where resources range from 10,000 to 90,000.

S 100

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

Kanber of ffcsources

m 5000

4000
5 3000

o 1000

t i t ' « * • © ■ * ^

Manber of Msources

Small grid Medium grid

4 0 0 0 0

3 5 0 0 0

3 0 0 0 0

20000
1 5 0 0 0

10000

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0

Number of Resources

Large grid

Fig. 69. Memory usage for different kinds o f grids where no SLAs are applied

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

The Policy Enforcement Manager caches two kinds of data: resource status,

associated policies and client’s SLAs. In order to simulate the massive number of

resources that Medium and Large grids require, we developed a simulation application

where we can simulate such huge numbers of resources. We apply average sizes for

names and policy scripts. For example, we used 15 characters as the average length o f the

resource name and 20 characters as the average length of the policy string for both

resource and SLAs.

£ 250

100

1 0 2 0 2 0 4 0 5 0 6 0 7 0 8 0 9 0

Mimber of ftosouress

ffl 8 0 0 0 X

3 4 0 0 0

S’ 2000

tfr* ^ “V*
Nimbsr of Resources

Small grid Medium grid

7 0 0 0 0

a
sc

6 0 0 0 0

&
(S0|

5 0 0 0 0

4 0 0 0 0
3 3 0 0 0 0
£
O 2 0 0 0 0
e

i
1 0 0 0 0

0

1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0

Number of Resources

Large grid

Fig. 70. Memory usage for different kinds o f grids with an average o f five SLAs per

resource

We ran two different simulations. In the first one, we monitored resources where no

SLA is applied. The result o f the experiment is shown in Fig. 69. On the average, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

memory usage increases by almost 0.4 kilobyte (KB) for each added resource. The data

material o f the figure is enclosed in (Appendix A, Tables 14-16).

In the second simulation, we applied five SLAs for each resource assuming that all

resources are occupied and each one has five allocated tasks. The result of this

experiment is shown in Fig. 70. On the average, the memory usage increases by almost

0.7 KB for each added resource. The data material of the figure is shown in (Appendix A,

Tables 17-19).

7.4.2.3 Overall overhead of Brokering

In order to measure the overall overhead of brokering and to avoid other factors that

might affect our measurements, we ran all the brokering experiments that we describe in

this section on the same machine. We designed a Single job representing a shell script

that sleeps for 100 seconds (100,000 ms) fro this experiment. We submitted the problem

to different execution environments including: Globus, Sun Grid Engine (SGE) and

PROBE layered on top of each one of these systems. The times quoted in this experiment

are the total elapsed time from when the client submits the request to PROBE until the

job is finished and its schedule gets terminated. As all the components run on the same

machine, the overhead o f communication is relatively small.

1 0 3 .2106.2

105.2
Globus PROBSGIoubus

Bcecution Environment
SGE PROBBSGE

Execution Environment

Fig. 71. Completion time o f a 100 seconds job under different execution environments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

Fig. 71 shows the completion time, in seconds, under different execution

environments. The runtime overhead in the SGE environment is approximately 2776 ms.

The overhead of brokering is increased with the Globus environment, 5809 ms, because

of the need to parse the Resource Specification Language (RSL) request and authenticate

that request, while in the case o f the SGE, the submitted request is directly executed.

However, when we repeated the same experiments using PROBE, it added 943 ms in

the case of the Globus system and 997 ms in the case o f the Sun Grid Engine. The raw

data o f the figure is given in (Appendix A, Table 20)

Bcecution Bwironment Bcecution Bwironment

PROBE/Globus PROBE/SGE

Fig. 72. Brokering overhead of a 100 seconds job under different execution environments

We also performed a brokering experiment with different job sizes in the

PROBE/Globus execution environment As shown in Fig. 73, as the size of the job

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

increases, the overhead o f the brokering decreases exponentially. Since PROBE is

targeted to large applications executing on grid systems, the overhead of brokering

should be acceptable. The raw data o f the figure is given in (Appendix A, Table 21).

| 80

| g 70

I M 60
| 1 50

2
| CO 40

| 30
1 a
i | 20

«
! <5 10

o

Job size (seconds)

Fig. 73. Brokering overhead for different job sizes under the PROBE/Globus execution

environment

7.5 Conclusion

In this chapter, we have presented the evaluation o f the PROBE prototype

implementation. We described the PROBE Computational Grid (PCG) experimental

testbed and presented the results that we have obtained when the PROBE framework is

applied in the context of different scenarios.

We divided our evaluation into two parts: qualitative evaluation, in which we

demonstrated that the system delivers what it promises in terms of functionalities and

characteristics; and quantitative evaluation, in which we tested the performance o f the

system.

In the qualitative evaluation, PROBE has been tested, running in a heterogeneous

environment in terms of software and hardware where we did not encounter any problem.

500 1000 5000 10000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

We started with the basic skeleton o f PROBE. Then, we showed how we can apply

different plug-ins. We tested PROBE within multiple administrative domains where not

only each administrative domain but also each resource owner identifies its own policies.

We tested the different functionalities of our brokering infrastructure and the policy

framework.

We have analyzed the performance of the PROBE prototype implementation. A

major benefit of caching is to decrease the matching time and the SLA monitoring time.

We have compared the performance o f different data retrieval approaches. Results show

that caching adds significant performance improvement. Our experiments show that the

average matching time using caching is 3 times faster than that of one not using caching

for resource matching and 10 times faster for the SLA monitoring. Thus, caching does

decrease response time and improves the overall performance. Examples of small,

medium and large grids have been presented. From these examples, it is easy to see that

on the average the memory usage increases by almost 0.4 KB for each added resource

and by 0.7 KB for each added resource when five SLAs, on the average, are assigned.

Interoperability is one of the main objectives behind this effort. Our brokering

infrastructure can act as a mediator where a grid system can use to discover and use

resources controlled by other grid systems. We layer our system on top of Globus and

Sun Grid Engine, the most widely accepted grid systems. We found that the overhead

added by our system is relatively small compared to the functionality it provides.

These experimental results demonstrate the effectiveness o f our technique and the

applicability of PROBE as a general-purpose resource brokering environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

CHAPTER V m

CONCLUSIONS AND FUTURE WORK

In this chapter, we draw conclusions from the work presented in this thesis and offer

some suggestions for further improvements and extensions.

8.1 Conclusions

Computational grids are evolving and are becoming a basic infrastructure for the future

of high performance and distributed computing. A critical component in such an

environment is the resource brokering environment that mediates and controls the access

and use of the underlying resources. Issues such as distribution, site autonomy and

resource heterogeneity complicate the task o f the resource brokering environment.

Several research groups are implementing resource brokering environments for grid

systems. Based on our review, we conclude that these systems are either specific to a

particular grid environment or have limited features that make them unsuitable for large

applications with heterogeneous requirements, and make interoperability with other grid

systems big concern. In addition, the issue of allocation assurance to users who are

looking for the satisfaction o f the job’s requirements during the lifetime of the allocation,

has not been addressed by most o f these brokering efforts.

The work presented in this thesis focuses on the problem of providing a general-

purpose brokerage infrastructure for computational grids that is flexible enough to be

utilized on various grid systems. Several contributions towards the resolution of this

problem have been made. In this thesis, we have discussed the analysis, design,

implementation and evaluation o f PROBE, a framework o f a policy-based resource

brokering infrastructure for computational grids that addresses this problem.

PROBE enables grid systems to evolve and expand. It has well-defined APIs that can

be utilized by grid environments to develop their brokering tools. The layered approach,

facade design pattern and the APIs give grid systems the flexibility to adopt different

approaches as their environments require.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Similarly, the policy-based approach provides one means of attracting grid users and

contributes to establishing credibility for existing grid environments by committing to

provide the guaranteed level of allocation with the right action (compensation, credit, etc)

if such guarantees are not met.

We have described a testbed for our experiments to evaluate PROBE with respect to

ease of use, deployment and performance. Interoperability is one of the main objectives

of this effort. PROBE can act as a mediator where a grid system can use it to discover

and use resources controlled by other grid systems. We layer PROBE on top of Globus

and Sun Grid Engine, the most widely accepted grid systems. We observed that the

overhead PROBE adds is relatively small compared to the functionality it provides.

However, the problem of having a generic brokering infrastructure is by no means

completely solved. The remainder of this chapter presents some future directions for

research in this area.

8.2 Future W ork

There are several areas of research that can be further explored. One of the recent

research directions is to apply economic principles to resource brokering. In

computational economy, grid users want to minimize the “cost” of their computation

whereas resource owners want to maximize their “profit”. This has been an active area of

research recently. Buyya [21] has proposed an economic-based model for the grid. Others

such as Java Market [11] and Popcorn [91] have models that are limited to specific

environments. The Resource Broker can be extended to adopt economic-based

scheduling policies via the Policy Enforcement Manager.

Also, for efficient scheduling of resources, it is more useful for PROBE to use an

estimate o f the performance in the near future rather than current performance. Based on

historical performance information, PROBE should be able to predict the performance

each resource is going to deliver at the time o f the allocation. This could result in a more

efficient scheduling o f the resources. Thus, another direction for future research is to

extend the model o f PROBE given in this thesis to handle predictions. As we describe in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

section 8.3, a new module, called Predictor, can be introduced for that purpose. The

Predictor is going to keep historical performance information and predict future

performance. Work plan to interface with the Network Weather Service (NWS) [119], a

Distributed Resource Performance Forecasting Service for computational grids by the

University of Tennessee.

Peer-to-peer (P2P) computing is an evolving approach to distributed computing

where each participant can be both a client and server. In the past few years, several P2P

systems have been widely used, especially Napster [90] and Gnutella [49]. Recently,

there has been an interest towards building P2P-based grid environments. Both P2P and

grid technologies focus on the flexible and innovative use of heterogeneous resources

distributed across networks. As a result, many of the challenges and standards are closely

related. Recently, the Global Grid Forum (GGF) joined forces with the P2PWG [97] to

combine efforts. A Peer-to-Peer area is being formed within the Global Grid Forum.

Also, as we explained in chapter II, JXTA [99] is an open research project by Sun

Microsystems that provides a P2P-base infrastructure for distributed computing

applications. JXTA is independent o f the transport protocol where implementation can be

done over TCP/IP, HTTP, etc. We believe that JXTA is going to play an important role in

building infrastructure for P2P grids. However, security and efficient message passing is

still a big concern. We are currently investigating on having a P2P version o f PROBE.

83 PROBE Extensions

As we have stated earlier in chapter II, our modular approach, the well-defined APIs and

the layered architecture make it easy to extend the system to handle future needs. In this

subsection, we describe a proposed extension to our brokering infrastructure. We propose

three additional modules:

• Predictor, predicts future performance o f resources based on historical

performance information that is provided by the Resource Repository. It also

provides a gateway to other prediction tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

• Fault Handler: handles heartbeat monitoring o f the underlying resources as well

as the PROBE’s modules and achieves fault-tolerance.

• Event Handler: handles scheduled brokering events within the system.

PROBE Clients

Fig. 74. Architecture of Extended PROBE

Fig. 74 illustrates the architecture o f the extended PROBE. Both Fault Handler and

Event Handler are expected to interact with all the other components and shown in

multidirectional arrows. Below, we give a brief description about these proposed

modules.

8.3.1 Predictor

Archived performance data can be used to predict the behavior of the resource in terms of

the performance that it is going to deliver in the future. The Predictor module is going to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

summarize this historical data and based on the underlying prediction technique, the

Predictor can forecast what the resource is going to deliver in the near future.

When the Policy Enforcement Manager tries to find the appropriate resource(s) that

can match the client’s request, it would rely on the summarized data being generated by

the Predictor so that it can match the best resource(s). Prediction is going to help in

minimizing SLA violations and thus reduce the resulting penalties a resource provider

has to pay in case of violations. Fig. 75 illustrates the prediction process.

Policy

Enforcement

Manager

Fig. 75. The Prediction Process

We are going to investigate in standard statistical prediction techniques such as

means, medians and autoregressive for use in prediction. We also are going to study

existing prediction tools [92],[120] and see how we can interface them with PROBE.

8J.2 Fault Handler

PROBE needs to be fault tolerant with respect to the failure o f its internal components.

The side effects caused by the failure of any component should be as low as possible

minimizing the drop in the performance o f the system. On the other hand, a failure can

happen at any time due to a hardware, software or network problem such that the

resource becomes unavailable. PROBE has to keep track of all the available resources

Summarizationrs.
Historical

DataPredictor
Summarized ------------------ ►

Data Summarized
Data

Resource

Repository

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

and be aware of the failures as soon as they occur. The Fault Handler module is the one

that is going to handle fault tolerance issues.

The Fault Handler module should provide a simple mechanism for monitoring the

status o f the distributed set of resources and modules of the system and handle faults as

they occur. Each service, acting on behalf of a resource or a module, generates a periodic

“I am alive” message. It also provides an API where the Fault Handler can register to

receive such a message. This API could be implemented on top o f Jini’s event

notification programming model.

The Fault Handler expects to receive the periodic frequent “I am alive” message

from the modules/resources that it tracks. However, there is no guarantee of receiving the

message as it may be lost, delayed or a failure may have occurred. Thus, if the message is

not received and the Fault Handler times out, it will examine that resource/module and

based on some set of useful failure-mode assumptions, it will determine whether or not

the resource/module has failed. Investigation needs to be done on efficient failure-mode

assumptions and how to handle them.

In case of a failure, the Fault Handler will inform the components that have an

interest in such failure. Also, it will keep track of the number of failures. In case of a

module failure, the Fault Handler will keep trying to restart the module a prespecified

number of times before assuming its failure.

Modules can detect failures when they try to contact each other or when they try to

contact the resources. The Fault Handler should provide an API where clients can report

faults o f other services. It should also provide an API where they can get information

about other’s faults.

Since the Fault Handler module may become a bottleneck, it may be replicated. As

we have stated before, the modular approach gives us high availability by allowing

multiple instances of the Fault Handler as well as other modules to be instantiated on

distributed hosts. Fault Handlers could keep a watch on each other as well as watching

their fellow modules/resources. When a service, representing a module or a resource, is

started, it has the option to notify one or more Fault Handlers, based on its importance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Fault Handlers will continuously exchange information about the states o f services in

order to maintain a consistent view of the system.

Checkpointing, process migration and recovery procedures will be needed for fault

tolerance. Application-specific fault recovery mechanisms can be built on top of the

Fault Handler or other modules of the system as required. For example, a component that

caches information such as the Policy Enforcement Manager could provide some

recovery procedures to restore the cached data in case of a failure.

8.3.3 Event Handler

Some grid users might prefer to schedule tasks on a regular basis or based on some

conditions. System administrators on the other hand might need to schedule some

administrative tasks internal to the system. We propose a new module, Event Handler, to

handle such events. Events could be:

o Periodic: run my simulation every Sunday.

o Conditional: after 5 pm, use scheduling algorithm B.

The Event Handler has been inspired by the task manager that Microsoft Outlook

supports. Recurrence options could take similar form to the ones the Microsoft Outlook

supports as shown in Fig. 76.

1 - _______ - ' - “ 1'iwuionw pauam ■
i~ pjjy j <*" Resjravary [I wea*fc)on

f? ! I~ Sunday f~ Monday TUasday Wadnesday*
r I r Ihtnday F ? Friday 1“ Saturday

(~ • fr a ftf 1 Rcganarata flaw task [I weatCsJaftaraaditasfciscoaipfaterf

i
1 __ -a_____________ 1

i iBufiBnw-----------
gart: |Fn 9/6/20C2

1
" jr | ^ Noanddate

(~ Enda^arr | i 0 ocarraocss

End by: |Frt 11/8/2002

| ■ « r Cancat [ĝ move Recurrence { |

Fig. 76. MS Outlook recurrence window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

The Event Handler needs to have a flexible API where events can be manipulated. An

XML-based specification will be provided where events can be specified and exchanged

with other systems.

8.4 Enhancing Jini to support Scalability

8.4.1 Overview

Most of the existing distributed computing technologies such as CORBA, DCOM, EJB,

RMI and Jini provide the infrastructure necessary to build a scalable distributed system.

Although they all give the flexibility of replicating and distributing the different

components of the system, none of these technologies has gone further by providing

some scalability features such as keeping track of the replicated component and achieving

load balancing among them.

On the other hand, most existing distributed computing environments want to take

advantage o f the growing network infrastructure. To achieve higher scalability, a service

is replicated and a load-balancing agent is added to keep track of the replicated services.

When requested, the load-balancing agent provides the client with the most appropriate

service based on a given load-balancing technique.

Each distributed technology has some version of a Naming Service, e.g., Lookup

Service in Jini, which serves as a repository of services available in the underlying

distributed system. We feel that the Naming Service is the appropriate place to embed

scalability logic where the Naming Service can act as a load-balancing agent keeping

track of the distributed replicated services and when requested provide the client with the

appropriate service.

In section 6.2, we described an enhancement that we have done to enable Jini across

networks that do not support multicasting. In this subsection, we describe a proposed

enhancement for Jini that allows it to provide an embedded scalability solution to

distributed applications. The multicasting enhancement described earlier along with the

scalability enhancement will allow Jini to scale up to the level o f the Internet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

8.4.2 Proposed Solution

Since Jini has the advantage o f the open source, we would like to make use o f this feature

and embed the scalability enhancement within Jini. The main objective is to make

enhancements to Jini that are compatible with its functionality. Thus, we would like the

scalability enhancements to be active in the background without making any changes, as

far as possible, to the behavior o f the clients and services.

We propose to have a scalability feature embedded within the Lookup Service (LS).

The LS is going to keep track of the replicated services, within its domain, along with

their loads. Based on the underlying discovery protocol and the load-balancing algorithm,

the different LS are going to consult with each other and provide the client with the

appropriate service instance.

As illustrated in Fig. 77, each service is going to inherit an abstract Load class and

implement the computeLoad abstract method where its load can be computed frequently

based on a given work-Ioad algorithm. This can vary from one module to another. For

example, the number of connected clients, cost o f parsing of the XML-based request can

be critical factors in measuring the load o f the Client Interface Module. Load will be

measured in the scale of 0-100 units, where 0 means an idle module and 100 means a

fully-occupied one.

 L o a d________

+ c o m p u t e L o a d f)
----------7 \-----------

S e r v i c e

Fig. 77. Implementing the Load class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Requests need to be distributed over the replicated services to avoid scalability

bottleneck. To ensure that the load is balanced among the replicated services, a load-

balancing algorithm is used to decide which service should be given a particular unit of

work. Common algorithms include server-Ioad, round robin, random, weight-based,

network-response time and user-specific algorithm [32].

In order to decouple the LS from the underlying load-balancing algorithm, a facade

object will be introduced to shield the LS from the load-balancing algorithm. As shown

in Fig. 78, LoadBalancingAlgorithm is an abstract class and needs to be implemented by

the provided load-balancing algorithm. It should support a set o f methods where services

can be manipulated. These methods are:

• addService, where a service can be added to the list o f services.

• deleteService, where an existing service can be removed from the list o f services.

• getNextService, where the next available service can be retrieved.

| LoadBalancingAlgorithm

j %addSenrice()
I +deleteService()
I +getNextSenriceO

LoadBased RoundRobin Random UserSpecified

Fig. 78. Implementing the Load-balancing algorithm

The LS will have a unified interface to a set of load-balancing algorithms. This makes

the design independent of any load-balancing algorithm. Initially, we plan to support the

following load balancing algorithms:

• Load-based, where the algorithm favorites certain services based on the load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

• Round Robin, where the algorithm cycles through the list o f services in

order.

• Random, where the algorithm chooses the next service randomly.

8.4.3 Scenario

In this subsection, we describe a typical scenario that will occur when we apply this load-

balancing enhancement in the context of the Jini infrastructure. The sequence of

operations are illustrated in Fig. 79.

S. Mohican mesg “A ny lookup lervice here?" (Discovery)
7. "Do yon hove lenrice S Rngutervd?" (Lookup)
11. ‘I need your service”

• I » • a.*
- l l / ^ . 5 t ^ t V

/ A U V ' • ■. : > * r . . ;

r> -r.

1. Multicast mesg "Any lookup service here?” (Discovery)

3. "Please Register me” (Join)

... L o o k u p
S e r v ic e

2. "I am here”
4. Periodically obtain the load of S
6 .‘I am here”
8. Consult with other LSs
9. Apply Load-balancing technique
10. "Yes, here it is.”

Fig. 79. Scenario of the load balancing process

• When a service starts, it registers with the Lookup Service (LS) offering service

S. Multiple instances may be started offering the same service. This could be in

the same LS or across different LSs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

• Each service computes its load frequently based on a given work-load algorithm.

The LS keeps track not only of the services but also their loads. LS periodically

probes services by calling the computeLoad method in order to get the up-to-date

load.

• Client sends a message to the LS(s) requesting service S. Based on the discovery

protocol and load-balancing algorithm in use, the LSs respond by consulting with

each other and the LS that holds the appropriate service (least load in case o f

load-based algorithm) will respond.

• Thereafter, the client communicates directly with the service.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

REFERENCES

[1] D. Abramson, J. Giddy, I. Foster, and L. Kotler, “High Performance Parametric

Modeling with Nimrod/G: Killer Application for the Global Grid?”, Proceedings o f

the International Parallel and Distributed Processing Symposium (IPDPS), pp.

520-528, Cancun, Mexico, May 2000.

[2] D. Abramson, R. Buyya and J. Giddy, “Nimrod/G: An Architecture of a Resource

Management and Scheduling System in a Global Computational Grid”, The HPC-

Asia 2000, pp. 283-289, Beijing, China, May 2000.

[3] D. Abramson, R. Sosic, J. Giddy and B. Hall, “Nimrod: A Tool for Performing

Parametised Simulations using Distributed Workstations ”, Proceedings o f the 4th

IEEE Symposium on High Performance Distributed Computing, pp. 112-121,

Virginia, August 1995.

[4] I. Ahmad, “Resource Management of Parallel and Distributed Systems with Static

Scheduling: Challenges, Solutions and New Problems”, Concurrency: Practice and

Experience, vol. 7, no. 5, pp. 339-348, August 1995.

[5] I. Ahmad, “Resource Management of Parallel and Distributed Systems: Dynamic

Scheduling”, Concurrency: Practice and Experience, vol. 7, no. 7, pp. 587-590,

October 1995.

[6] J. Almond and D. Snelling, “UNICORE: Uniform access to supercomputing as an

element o f electronic commerce”, Future Generation Computer Systems, vol. 15,

no. 5-6, pp. 539-548, October 1999, NH-Elsevier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

[7] A. Al-Theneyan, P. Mehrotra and M. Zubair, “A Resource Brokering Infrastructure

for Computational Grids”, To appear. Proceedings o f the 9th International

Conference on High Performance Computing (HiPC 2002), Bangalore, India,

December 2002.

[8] A. AI-Theneyan, A. Jakatdar, P. Mehrotra and M. Zubair, “XML-Based Visual

Specification of Multidisciplinary Applications”, The First IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGrid200l),

Brisbane, Australia, May 2001. Published in Future Generation Computer Systems

based on best papers from CCGrid2001, vol. 18, no. 4, pp. 539-548, March 2002,

NH-Elsevier.

[9] A. Al-Theneyan, P. Mehrotra and M. Zubair, “Enhancing Jini for Use Across Non-

Multicastable Networks”, Proceedings o f the First Saudi Technical Conference and

Exhibition, vol. H, pp. 18-23, Riyadh, Saudi Arabia, November 2000. Also in

Operating Systems Review, ACM SIGOPS, vol. 35, no. 2, pp. 21-30, April 2001.

[10] E. Akarsu, G. Fox, T. Haupt, A. Kalinichenko, K. Kim, Sheethaalnath and C.

Youn, “Using Gateway System to Provide a Desktop Access to High Performance

Computational Resources”, Proceedings o f the Eighth IEEE International

Symposium on High Performance Distributed Computing, Redondo Beach,

California, August 1999.

[11] Y. Amir, B. Awerbuch, R. Borgstrom, “A Cost-Benefit Framework for Online

Management o f a Metacomputing System”, The International Journal fo r Decision

Support Systems, Elsevier Science, vol. 28, no. 1-2, pp. 155-164, April 2000.

[12] P. Arbenz, W. Gander, and M. Oettli, "The Remote Computation System", Parallel

Computing, vol. 23, pp. 1421-1428, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

[13] D. Arnold, S. Blackford, J. Dongarra, V. Eijkhout and T. Xu, “Seamless Access to

Adaptive Solver Algorithms”, Proceedings o f the 16th IMACS World Congress on

Scientific Computation, Applied Mathematics and Simulation, Laussanne,

Switzerland, August 2000.

[14] K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo and A. Wollrath, “The Jini

Specification”, Addison-Wesley, ISBN: 0201616343, 1999.

[15] J. Basney and M. Livny, “Managing Network Resources in Condor”, Proceedings

o f the Ninth IEEE Symposium on High Performance Distributed Computing

(HPDC9). Pittsburgh, Pennsylvania, August 2000.

[16] A. Bayucan, R. L. Henderson, T. Proett, D. Tweten, and B. Kelly. Portable Batch

System External Reference Specification. NAS Scientific Computing Branch,

NASA Ames Research Center, California, June 1996.

[17] F. Berman and R. Wolski, “Scheduling from the Perspective of the Application”, In

Proceedings o f Symposium on High Performance Distributed Computing, pp. 100-

111, 1996.

[18] F. Berman and R. Wolski, “The AppLeS Project: A Status Report", Proceedings o f

the 8th NEC Research Symposium, Berlin, Germany, May 1997.

[19] F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao, “Application-Level

Scheduling on Distributed Heterogeneous Networks”, Proceedings o f

Supercomputing, 1996.

[20] D. C. Blight and T. Hamada, “Policy-Based Networking Architecture for QoS

Interworking in IP Management”, Proceedings o f Integrated Network

Management, pp. 811-826, Boston, Massachusetts, May 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

[21] R. Buyya, “Economic-based Distributed Resource Management and Scheduling for

Grid Computing”, Ph.D. Thesis, School o f Computer Science and Software

Engineering, Monash University, Melbourne, Australia, April 2002.

[22] R. Buyya, “High Performance Cluster Computing”, Prentice Hall, 1999.

[23] T. Casavant and J. Kuhl, “A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems”, IEEE Transactions on Software Engineering,

vol. SE-14, no. 2, pp. 141-154, 1988.

[24] H. Casanova, J. Dongarra and D. Doolin, “Java Access to Numerical Libraries”,

Concurrency: Practice and Experience, vol. 9, no. II, pp. 1279-1291, 1997.

[25] H. Casanova and J. Dongarra, “NetSolve: A Network Server for Solving

Computational Science Problems”, The International Journal o f Supercomputer

Applications and High Performance Computing, vol. 11, no. 3, pp. 212-223,1997.

[26] H. Casanova and J. Dongarra, “NetSolve: A Network Enabled Server, Examples

and Users”, Proceedings o f Heterogeneous Computing Workshop, pp. 19-28,

Orlando, Florida, 1998.

[27] H. Casanova, M. Kim, J. Plank and J. Dongarra, “Adaptive Scheduling for Task

Farming with Grid Middleware”, The International Journal o f Supercomputer

Applications and High Performance Computing, vol. 13, no. 3, pp. 231-240, 1999.

[28] C. Catlett and L. Smarr, “Metacomputing”, Communications o f the ACM, vol. 35,

no. 6, pp. 44-52, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

[29] S. Chapin, J. Karpovich and A. Grimshaw, “The Legion Resource Management

System”, Proceedings o f the 5th Workshop on Job Scheduling Strategies fo r

Parallel Processing (JSSPP '99), in conjunction with the International Parallel and

Distributed Processing Symposium (IPDPS '99), pp. 162-178, San Juan, Puerto

Rico, April 1999.

[30] B. Chapman, B. Sundaram, K. Thyagaraja, “EZ-Grid: Integrated Resource

Brokerage for Computational Grid”, Technical Report, Department of Computer

Science, University o f Houston, Houston, Texas.

[31] Z. Chen, K. Maly, P. Mehrotra and M. Zubair, “ARCADE: A Web-Java Based

Framework for Distributed Computing”, Proceedings o f the WebNet 99, October

1999.

[32] T. Chou and J. Abraham, “Load Balancing in Distributed Systems”, IEEE

Transactions on Software Engineering, vol. SE-8, no. 4, pp. 401-412, July 1982.

[33] Cray Research Incorporation, “Introducing NQE” IN-2153 2.0, Craysoft

Publications, May 1995.

[34] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed Systems: Concepts and

Design”, Second Edition, Addison-Wesley, 1996.

[35] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and S.

Tuecke, “A Resource Management Architecture for Metacomputing Systems”,

Processings o f the 4th Workshop on Job Scheduling Strategies fo r Parallel, pp. 62-

82, Springer-Verlag LNCS 1459, 1998.

[36] Distributed Component Object Model (DCOM) web site. [Online]. Available:

http ://www.microso ft.com/com/tech/dcom.asp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microso

185

[37] H. El-Rewini, H. Ali, and T. Lewis, ‘Task Scheduling in Multiprocessing

Systems”, IEEE Computer, vol. 28, no. 12, pp. 27-37, December 1995.

[38] Extensible Markup Language (XML) specification web site. [Online]. Available:

http ://www.xml.org.

[39] G. Fagg, K. Moore and J. Dongarra, “Scalable Networked Information Processing

Environment (SNIPE)”, International Journal on Future Generation Computer

Systems, Elsevier PubL, vol. 15, No 5-6, pp. 595-605, 1999.

[40] I. Foster and C. Kesselman, “The Grid: Blueprint for a Future Computing

Infrastructure”, Morgan Kaufmann Publishers, USA, 1999.

[41] I. Foster and C. Kesselman, “The Globus Project: A Status Report ”, Proceedings o f

the IPPS/SPDP '98 Heterogeneous Computing Workshop, pp. 4-18, 1998.

[42] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”,

International Journal o f Supercomputer Applications, vol. II, no. 2, pp. 115-128,

1997.

[43] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt and A. Roy, “A

Distributed Resource Management Architecture that Supports Advance

Reservations and Co-Allocation”, International Workshop on Quality o f Service,

1999.

[44] I. Foster, A. Roy and V. Sander, “A Quality o f Service Architecture that Combines

Resource Reservation and Application Adaptation”, Proceedings o f the 8th

International Workshop on Quality o f Service, pp. 181-188, June 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xml.org

186

[45] N. Furmento, S. Newhouse, and J. Darlington, “Building Computational

Communities from Federated Resources”, Proceedings o f the 7th International

European Conference on Parallel Processing, Manchester, UK, Springer-Verlag,

Lecture Notes in Computer Science, vol. 2150, pp. 855-863, 2001.

[46] W. Gentzsch, “Special Issue on Metacomputing: From Workstation Clusters to

Internet Computing”, Future Generation Computer Systems, no. 15, North Holland,

1999.

[47] Global Grid Forum web site. [Online]. Available: http://www.gridforum.org.

[48] Global Grid Forum. Information Service Area Group. [Online]. Available:

http ://www-unix.mcs.anl.gov/gridforum/gis/.

[49] Gnutella web site. [Online]. Available: http://www.gnutella.com.

[50] J. Gosling, B. Joy, and G. Steele, “The Java Language Specification”, The Java

Series. Addison Wesley Longman, 1996. ISBN 0-201-63451-1.

[51] T. Green. “DQS User Interface Preliminary Design Document”. Technical

Reference. Supercomputer Computations Research Institute, Florida State

University. [Online]. Aviliabie: http://www.scri.fsu.edu/~pasko/dqs_user_guide/

dqs user guide, html.

[52] Grid Interoperability Project (GRIP). [Online]. Available: http://www.grid-

interoperability.org/.

[53] A. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat”,

IEEE Computer, vol. 26, no. 5, pp. 39-51, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gridforum.org
http://www.gnutella.com
http://www.scri.fsu.edu/~pasko/dqs_user_guide/
http://www.grid-

187

[54] A. Grimshaw, A. Ferrari, F. Knabe and M. Humphrey, “Legion: An Operating

System for Wide-Area Computing”, IEEE Computer, vol. 32, no. 5, pp. 29-37,

1999.

[55] A. Grimsaw and W. Wulf, “Legion: A View From 50,000 Feet”, Proceedings o f

the Fifth IEEE International Symposium on High Performance Distributed

Computing, Los Alamitos, California, August 1996.

[56] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds, “A Synopsis of the

Legion Project”, UVa CS Technical Report CS-94-20, Department of Computer

Science, University of Virginia, June 1994.

[57] B. Hamidzadeh, D. J. Lilja, and Y. Atif, “Dynamic scheduling techniques for

heterogeneous computing systems”, Concurrency: Practice and Experience, vol. 7,

no. 7, pp. 633-652, October 1995.

[58] T. Haupt, E. Akarsu, G. Fox, C. Youn, "The Gateway system: uniform web access

to remote resources", Concurrency: Practice and Experience, 2000, vol. 12,

number 8, pp. 629-642,2000.

[59] K. Hawick, H. James, A. Silis, D. Grove, K. Kerry, J. Mathew, P. Coddington,

C. Patten, J. Hercus, and F. Vaughan, “DISCWorld: An Environment for Service-

Based Metacomputing”, Future Generation Computing Systems (FGCS), vol. 15,

pp. 623-635, 1999.

[60] S. Herbert. “Generic NQS - Free Batch Processing For UNDC’. Academic

Computing Services. The University Of Sheffield. UK. [Online]. Available:

http://www.shef.ac.uk/uni/projects/nqs/Product/Generic-NQS/v3.4x/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.shef.ac.uk/uni/projects/nqs/Product/Generic-NQS/v3.4x/

188

[61] Y. Ho finer, "The Management of Monitoring in Object-Based Distributed

Systems", Proceedings o f the Third International Symposium on Integrated

Network Management, San Franscisco, April 1993.

[62] T. Howes and M. Smith, “LDAP: Programming Directory-Enabled Applications

with Lightweight Directory Access Protocol”, Macmillan Technical Publishing,

ISBN 1-57870-000-0, 1997.

[63] Internet Backplane Protocol homepage. [Online]. Available:

http://www.cs.utk.edu/~plank/IBP. Last visit April 2002.

[64] H. James and K. Hawick, “Resource Descriptions for Job Scheduling in

DISCWorld”, Proceedings o f Integrated Data Environments (IDEA5) Workshop,

Australia, 1998.

[65] H. James, K. Hawick, and P. Coddington, “Scheduling Independent Tasks on

Metacomputers”, Proceedings o f the 12th International Conference on Parallel

and Distributed Computing Systems, pp. 156-162, August 1999.

[66] H. James, “Scheduling in Metacomputing Systems”, Ph.D. Thesis, Department of

Computer Science, University of Adelaide, A.delaide, Australia, July 1999

[67] J. Joyce, K. Slind, and B. Unger, "Monitoring Distributed Systems", ACM

Transactions on Computer Systems, vol. 5, no. 2, pp. 121-150, May 1987.

[68] International Business Machines Corporation. “Workload Management with

LoadLeveler”. [Online]. Available: http://pubIib-b.boulder.ibm.com/Redbooks.nsf7

RedbookAbstracts/ sg246038.html?Open.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.utk.edu/~plank/IBP
http://pubIib-b.boulder.ibm.com/Redbooks.nsf7

189

[69] Java 2 Platform, Enterprise Edition (J2EE). [Online]. Available: http://

java.sun.com/j2ee/.

[70] Java API for XML processing (JAXP). [Online]. Available:

http^/java. sun.com/xml/jaxp.

[71] Java Remote Method Invocation (RMI). [Online]. Available:

http://java.sun.com/products/jdk/rmi/.

[72] Jiro Technology Web Page. [Online]. Available: http://www.jiro.org.

[73] W. Keith, “Core Jini”, Prentice Hall, ISBN 013014469X, 1999.

[74] K. Keahey and D. Gannon, “PARDIS: CORBA-based Architecture for

Application-Level PARallel Distributed Computation”, Proceedings o f

Supercomputing '97, November 1997.

[75] K. Keahey and D. Gannon, “PARDIS: A Parallel Approach to CORBA”,

Proceedings of the 6th IEEE International Symposium on High Performance

Distributed Computing, August 1997.

[76] B. Kingsbury. “The Network Queueing System”. [Online]. Available:

http://power.curtin.edu.au/mirrors/nqs/Manuals/Papers/MNQS/MNQS0001/MNQS

0001.txt.

[77] G. Laszewski, I. Foster, J. Gawor, P. Lane, “A Java Commodity Grid Kit”,

Concurrency and Computation: Practice and Experience, vol. 13, Issues 8-9, pp.

643-662, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.com/products/jdk/rmi/
http://www.jiro.org
http://power.curtin.edu.au/mirrors/nqs/Manuals/Papers/MNQS/MNQS0001/MNQS

190

[78] G. Laszewski and S. Fitzgerald. “Representing Compute Resources for the Grid”.

Global Grid Forum, Information Service Area Group. Technical Report. GWD-

GIS-005. [Online]. Available: http://www-unix.mcs.anl.gov/gridforum/gis/old/

papers/resources.pdf.

[79] A. Lewis, A. and T. Peachy, "Nimrod/O: A Tool for Automatic Design

Optimization", Proceedings o f the 4th International Conference on Algorithms &

Architectures for Parallel Processing (ICA3PP 2000), Hong Kong, December 2000.

[80] M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter o f Idle Workstations”,

Proceedings o f the 8th International Conference o f Distributed Computing

Systems, pp. 104-111, June 1988.

[81] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, "Checkpoint and Migration

o f UNIX Processes in the Condor Distributed Processing System", University o f

Wisconsin-Madison, Computer Sciences Technical Report, no. 1346, April 1997.

[82] G. Liu, “Two Approaches to Critical Path Scheduling for a Hetrogeneous

Environment”, M.S. Thesis, Department of Computer Science, Old Dominion

University, Norfolk, VA, USA, October 1998.

[83] Live Networks Inc.. The ”liveGate” Multicast Tunneling Server. [Online].

Available: http://www.Ivn.com/liveGate/.

[84] V. Lo, “Heuristic Algorithms for Task Assignment in Distributed Systems”, IEEE

Transactions on Computers, vol. 37, no. 11, pp. 1384-1397, November 1988.

[85] K. Moore, S. Browne, J. Cox, and J. Gettler, “The Resource Cataloging and

Distribution System”, Technical Report UT-CS-97-346, Computer Science

Department, University o f Tennessee, December 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-unix.mcs.anl.gov/gridforum/gis/old/
http://www.Ivn.com/liveGate/

191

[86] G. Ma and P. Lu, “PBSWebrA Web-based Interface to the Portable Batch System”,

Proceedings o f the 12th International Conference on Parallel and Distributed

Computing and Systems (PDCS), pp. 24-30, Las Vegas, Nevada, November 2000.

[87] Multidisciplinary Optimization Branch (MDOB) at NASA Langley Research

Center. [Online]. Available: http://finad-www.Iarc.nasa.gov/mdob/MDOB/

index.html.

[88] MySQL web site. [Online]. Available: http://www.mysql.com.

[89] H. Nakada, M. Sato and S. Sekiguchi, “Design and Implementations o f Ninf:

Towards a Global Computing Infrastructure”, Future Generation Computing

Systems, Metacomputing Issue, vol. 15, Issues 5-6, pp. 649-658, 1999.

[90] Napster web site. [Online]. Available: http://www.napster.com.

[91] N. Nisan, S. London, 0 . Regev, N. Camiel, "Globally Distributed Computation

over the Internet - The POPCORN project", Proceedings o f the I8th International

Conference on Distributed Computing Systems, pp. 592-601, Amsterdam, The

Netherlands, May 1998.

[92] R. Nudd, D.J. BCerbyson, E. Papaefstathiou, J.S. Harper, S.C. Perry, and D.V.

Wilcox, “PACE: A Toolset for the Performance Prediction of Parallel &

Distributed Systems”, International Journal o f High Performance Computing

Applications, Special Issue on Performance Engineered Systems, vol. 14, no. 4, pp.

228-251, Fall 2000.

[93] OMG’s CORBA web site. [Online]. Available: http://www.corba.org.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://finad-www.Iarc.nasa.gov/mdob/MDOB/
http://www.mysql.com
http://www.napster.com
http://www.corba.org

192

[94] A. Oram, “Peer-to-Peer: Harnessing the Power of Disruptive Technologies”,

O ’Reilly Press, USA, 2001.

[95] P. Pames, K. Synnes, and D. Schefstrom, “Lightweight Application Level

Multicast Tunneling using mTunnel”, Journal o f Computer Communication, vol.

21, pp. 1295-1301, 1998.

[96] P. Pames, K.. Synnes, and D. Schefstrom, “mTunnel: A Multicast Tunneling

System With A User Based Quality-Of-Service Model”, Proceedings o f the

European Workshop on Interactive Distributed Multimedia Systems and

Telecommunication Services, 1997.

[97] Peer-to-Peer Working Group (P2PWG) web site. [Online]. Available:

http ://www.p2p wg.org.

[98] Platform Computing Corporation. “Load Sharing Facility”. [Online]. Available:

http://www.platform.com/products/wm/lsf7index.asp.

[99] Project JXTA web site. [Online]. Available: http://www.jxta.org/.

[100] R. Rajan, D. Verma, S. Kamat, E. Felstaine, and S. Herzog, "A policy framework

for integrated and differentiated services in the Internet", IEEE Network, vol. 13,

no. 5, pp. 36-41, September/October 1999.

[101] R. Raman, M. Livny and M. Solomon, “Matchmaking: Distributed Resource

Management for High Throughput Computing” Proceedings o f the Seventh IEEE

International Symposium on High Performance Distributed Computing, pp. 28-31,

Chicago, Illinois, July 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.p2p
http://www.platform.com/products/wm/lsf7index.asp
http://www.jxta.org/

193

[102] M. Romberg, “The UNICORE Architecture: Seamless Access to Distributed

Resources”, Proceedings o f the Eighth IEEE International Symposium on High

Performance Distributed Computing HPDC-8, IEEE Computer Society, Los

Alamitos, CA, pp. 287-293, August 1999.

[103] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima and H. Takagi,

“Ninf: A Network based Information Library for a Global World-Wide Computing

Infrastructure”, HPCN'97 (LNCS-1225), pp. 491-502, 1997.

[104] BC. Savetz, N. Randall and Y. Lepage, “MBONE: Multicasting Tomorrow's

Internet”, New Riders Publishing, ISBN 1-56205-397-3, 1996.

[105] U. Schwiegelshohn and R. Yahyapour. “Fairness in Parallel Job Scheduling”,

Journal o f Scheduling, vol. 3, no. 5, pp. 297-320, John Wiley, 2000.

[106] D. Schmidt, M. Stal, H. Rohnert and, F. Buschmann, “Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects”, Wiley & Sons,

ISBN 0-471-60695-2, 2000.

[107] S. Sekiguchi, M. Sato, H. Nakada and U. Nagashima, “Ninf: Network based

information library for globally high performance computing”, Proceedings o f

Parallel Object-Oriented Methods and Applications (POOMA), pp. 39-48,

February 1996.

[108] B. Shirazi, A. Husson, and K. Kavi, “Scheduling and Load Balancing in Parallel

and Distributed Systems, chapter Introduction to Scheduling and Load Balancing.

IEEE Computer Society Press, Los Alamitos, CA, 1995. ISBN 0-8186-6587-4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

[109] J. Skovira, W. Chan, and H. Zhou, “The EASY - LoadLeveler API Project”,

proceedings o f the IPPS workshop on Job Scheduling Strategies in Parallel

Processing, pp. 41-47, March, 1996.

[110] S. Smallen, W. Cime, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S.

Young and M. Ellisman, “Combining Workstations and Supercomputers to Support

Grid Applications: The Parallel Tomography Experience”, Proceedings o f the 9th

Heterogenous Computing Workshop (HCW 2000@IPDPS), pp. 241-252, Cancun,

Mexico, May 2000.

[111] D. Sneliing, S. Berghe, G. Laszewski, P. Wieder, J. MacLaren, J. Brooke, D.

Nicole and H. Hoppe. “A Unicore Globus Interoperability Layer”. Draft o f a Use

Case Study fo r GPA WG. [Online]. Available: http://www-unix.gridforum.org

/mail_archive/gpa-wg/doc00000.doc.

[112]N. Spring and R. Wolski, “Application Level Scheduling of Gene Sequence

Comparison on Metacomputers”, Proceedings o f the 12th ACM International

Conference on Supercomputing, pp. 141-184, Melbourne, Australia, July 1998.

[113] P. Stelling, I. Foster, C. Kesselman, C. Lee and G. von Laszewski, “A Fault

Detection Service for Wide Area Distributed Computations”, Proceedings o f the

7th IEEE Symposium on High Performance Distributed Computing, pp. 268-278,

1998.

[114] V. Sunderam, J. Dongarra, A. Geist, and R. Manchek, “The PVM concurrent

computing system: Evolution, experiences, and trends”, Parallel Computing, vol.

20, no. 4, pp. 531-547, April 1994.

[115] Sun Microsystems. Sun Grid Engine Software. [Online]. Available:

http://www.sun.com/software/gridware/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-unix.gridforum.org
http://www.sun.com/software/gridware/

195

[116] Sun Microsystems. “RMI over HOP”. [Online]. Available:

http://www.java.sun.com/products/rmi-iiop.

[117] S. Vadhiyar and J. Dongarra, “A Metascheduler For The Grid”, Proceedings o f the

Eleventh IEEE International Symposium on High Performance Distributed

Computing (HPDC), pp. 343-351, Edinburgh, Scotland, July 2002.

[118] D. Verma, M. Beigi, and R. Jennings, “Policy Based SLA Management in

Enterprise Networks”, Proceedings o f Policy Workshop 2001, pp. 29-31, Springer-

Verlag, January 2001.

[119] R. Wolski, “Dynamically Forecasting Network Performance Using the Network

Weather Service*4, Journal o f Cluster Computing, vol. 1, no. 1, pp. 119-132, 1998.

[120] R. Wolski, N. T. Spring and J. Hayes, “The Network Weather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing”, The

Journal o f Future Generation Computing Systems, vol. 15, no. 5-6, pp. 757-768,

October 1999.

[121] R. Wolski, N. Spring and J. Hayes, “Predicting the CPU Availability o f Time-

shared Unix Systems on the Computational Grid”, Journal o f Cluster Computing,

vol. 3, no. 4, pp. 293-301,2000.

[122] R. Wolski, N. Spring and C. Peterson, “Implementing a Performance Forecasting

System for Metacomputing: The Network Weather Service”, Proceedings o f the

ACM/IEEE Supercomputing Conference, San Jose, CA, November 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.java.sun.com/products/rmi-iiop

196

[123] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks in an Unbounded no.

of Processors”, IEEE Transactions on Parallel and Distributed Systems, vol. 5, no.

9, pp. 951-967, September 1994.

[124] H. Zhou, “Scheduling DAGs on a bounded number of processors - A new

approach”, Proceedings o f International Conference on Parallel and Distributed

Processing, Techniques and Applications, vol. 2, pp. 823-834, August 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

APPENDIX A

Experiment Results

A.1. Overhead of broadcasting/delivery for the Collaboration approach

TABLE 8

OVERHEAD OF BROADCASTING/DELIVERY FOR THE COLLABORATION

APPROACH

Number of
TSs

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Observation
6

Average

10 85 72 93 92 88 87 86.16667
20 147 126 130 119 142 148 135.3333
30 184 210 235 245 244 190 218
40 224 208 231 200 243 225 221.8333
50 235 216 248 220 277 237 238.8333
60 274 252 271 268 291 261 269.5
70 365 289 290 355 343 285 321.1667
80 549 433 389 385 426 377 426.5
90 532 512 415 412 444 502 469.5
100 485 639 481 495 491 492 513.8333

A.2. Overhead of broadcasting/delivery for the Hierarchal Tunneling approach.

TABLE 9

OVERHEAD OF BROADCASTING FOR THE HIERARCHAL TUNNELING

APPROACH

Number of
TSs

Observation
1

Observation
2

Observation
3

Observation
4

Observation
S

Observation
6

Average

10 88 83 81 68 84 90 8233333
20 71 66 92 100 90 88 84.5
30 86 83 75 100 94 103 90.16667
40 86 80 76 105 75 72 8233333
50 67 89 84 90 93 81 84
60 72 110 76 78 91 78 84.16667
70 79 63 81 78 109 84 8233333
80 95 121 84 86 92 84 93.66667
90 77 96 86 115 92 93 93.16667
100 87 80 109 97 72 94 89.83333

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

TABLE 10

OVERHEAD OF DELIVERY FOR THE HIERARCHAL TUNNELING APPROACH

Number of
TSs

Observation
I

Observation
2

Observation
3

Observation
4

Observation
5

Observation
6

Average

10 88 84 81 68 84 91 82.66667
20 86 75 102 122 102 92 96.5
30 108 102 109 141 121 128 118.1667
40 124 112 103 t39 109 101 114.6667
50 127 134 114 127 134 115 125.1667
60 112 150 114 122 148 111 126.1667
70 134 126 126 127 177 136 137.6667
80 157 177 172 145 155 154 160
90 140 166 165 191 166 146 1623333
100 170 165 181 178 149 175 169.6667

A.3. Overhead of XML Parsing

TABLE 11

PARSING TIME FOR DIFFERENT XML DOCUMENTS

XML
Document

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Average

Single 902 910 906 893 908 903.8
Parametric 912 892 904 897 889 898.8

CoAllocation 910 898 890 903 902 900.6
DAG 930 921 915 923 933 924.4

Resource 991 979 1004 998 1000 994.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

A.4. Performance of Resource Matching.

TABLE 12

PERFORMANCE OF RESOURCE MATCHING UNDER DIFFERENT DATA

RETRIEVAL APPROACHES

Methodology Observation Observation Observation Observation Observation Average
I 2 3 4 5

Caching 12 It 14 12 10 11.8
Local Repository 34 33 39 37 31 34.8

Remote Repository 56 54 60 59 49 55.6

A.5. Performance of SLA Monitoring.

TABLE 13

PERFORMANCE OF SLA MONITORING UNDER DIFFERENT DATA RETRIEVAL

APPROACHES

Methodology Observation Observation Observation Observation Observation Average
I 2 3 4 5

Caching 3 2 2 2 3 2.4
Local Repository 26 22 21 24 28 24.2

Remote Repository 40 41 43 38 45 41.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

A.6. Memory usage

TABLE 14

MEMORY USAGE FOR SMALL GRID WHEN NO SLAS ARE APPLIED

Number of
Resources

Memory
Usaee

10 124
20 132
30 136
40 144
50 148
60 152
70 156
80 160
90 164

TABLE 15

MEMORY USAGE FOR MEDIUM GRID WHEN NO SLAS ARE APPLIED

Number of
Resources

Memory
Usaee

1000 804
2000 1388
3000 1388
4000 1892
5000 2516
6000 2968
7000 3476
8000 3480
9000 4036

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

TABLE 16

MEMORY USAGE FOR LARGE GRID WHEN NO SLAS ARE APPLIED

Number of
Resources

Memory
Usage

10000 4368
20000 8692
30000 12520
40000 16300
50000 21512
60000 25804
70000 29904
80000 32316
90000 36408

TABLE 17

MEMORY USAGE FOR SMALL GRID WITH AN AVERAGE OF 5 SLAS PER

RESOURCE

Number of
Resources

Memory
Usage

10 144
20 156
30 168
40 180
50 192
60 204
70 212
80 228
90 242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

TABLE 18

MEMORY USAGE FOR MEDIUM GRID WITH AN AVERAGE OF 5 SLAS PER

RESOURCE

Number of
Resources

Memory
Usage

1000 1024
2000 2032
3000 2572
4000 3288
5000 3820
6000 4420
7000 5396
8000 6076
9000 6756

TABLE 19

MEMORY USAGE FOR LARGE GRID WITH AN AVERAGE OF 5 SLAS PER

RESOURCE

Number of
Resources

Memory
Usage

10000 7424
20000 14660
30000 21744
40000 29100
50000 36024
60000 42852
70000 50660
80000 57872
90000 65084

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

A.7. Overall Overhead of Brokering.

TABLE 20

COMPLETION TIME OF A 100000 ms JOB UNDER DIFFERENT EXECUTION

ENVIRONMENTS

Grid System Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Average

Globus 105844 106004 105466 106020 105710 105808.8
PROBE/Gloubus 106721 107128 106321 106939 106649 106751.6

SGE 103002 102943 102781 102558 102594 102775.6
PROBE/SGE 104424 103773 103593 103614 103461 103773

TABLE 21

BROKERING OVERHEAD FOR DIFFERENT JOB SIZES UNDER THE

PROBE/GLOBUS EXECUTION ENVIRONMENT

Job
Size

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Execution
Time

Brokering
Percentage

10 16538 16746 16901 16744 16667 16719.2 67.192
50 56642 56892 56721 56893 57014 56832.4 13.6648
100 106721 107128 106321 106939 106649 106751.6 6.7516
500 506412 506764 506827 506721 506926 506730 1.346
1000 1006728 1006886 1007032 1006753 1006544 1006788.6 0.67886
5000 5006876 5006784 5006511 5006778 5006835 5006756.8 0.135136
10000 10006631 10006743 10006741 10007004 10006906 10006805 0.06805

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

APPENDIX B

List o f Acronyms and Terms

API (Application Programming Interface)

AppLeS (Application Level Scheduling)

CFD (Computational Fluid Dynamics)

ClassAds (Classified Advertisement Language)

CM (Communication Manager)

CORBA (Common Object Request Broker Architecture)

DAG (Directed Acyclic Graph)

DCOM (Distributed Component Object Model)

DISCWorld (Distributed Information Systems Control World)

DM (Data Manager)

DQS (Distributed Queuing System)

DTD (Document Type Definition)

EJB (Enterprise JavaBeans)

EM (Execution Manager)

FJL (Flexible Job Language)

FMA (Federated Management Architecture)

GGF (Global Grid Forum)

GIS (Grid Information Service)

GNQS (Generic Network Queuing System)

GRAM (Globus Resource Allocation Manager)

GRIP (Grid Interoperability Project)

GTLS (Global Tunneling Lookup Service)

GUI (Graphical User Interface)

IBP (Internet Backplane Protocol)

HOP (Internet Inter-ORB Protocol)

J2EE (Java 2 Enterprise Edition)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

JAAS (Java Authorization and Authentication Service)

JAXP (Java API for XML Processing)

JDK (Java Development Kit)

JNDI (Java Naming and Directory Interface)

JRMP (Java Remote Method Protocol)

JVM (Java Virtual Machine)

LAN (Local Area Network)

LDAP (Lightweight Directory Access Protocol)

LS (Lookup Service)

LSF (Load Share Facility)

MDO (Multidisciplinary Design Optimization)

MDS (Metacomputing Directory Service)

MLS (Module Lookup Service)

NQS (Network Queuing System)

NWS (Network Weather Service)

OMG (Object Management Group)

ORB (Object Request Broker)

ORPC (Object Remote Procedure Call)

P2P (Peer-to-peer computing)

P2PWG (Peer-to-Peer Working Group)

PBS (Portable Batch System)

PCG (PROBE Computational Grid)

PSL (Policy Scripting Language)

PROBE (Policy-based ResOurce Brokering Environment)

PVM (Parallel Virtual Machine)

QoS (Quality Of Service)

RCDS (Resource Cataloging and Distribution System)

RLS (Resource Lookup Service)

RM (Resource Manager)

RMI (Remote Method Invocation)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

RPC (Remote Procedure Call)

RSL (Resource Specification Language)

SLA (Service Level Agreement)

SDK (Software Development Kit)

SGE (Sun Grid Engine)

SM (Security Manager)

TS (Tunneling Service)

UNICOR (UNiform Interface to Computing REsources)

VPN (Virtual Private Network)

W3C (World Wide Web Consortium)

WAN (Wide Area Network)

XML (extensible Markup Language)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

APPENDIX C

Glossary

Action

Actions are the result of some met policy conditions.

Cluster Computing

Many computational resources connected together by a local area network and can be

viewed as a unified resource.

Co-Allocation

This is the kind of job that requires that a set of resources is available for use

simultaneously.

CORBA

The Common Object Request Broker Architecture (CORBA) is a distributed computing

standard from the Object Management Group (OMG) for the development and

deployment o f applications in distributed, heterogeneous environments.

DAG

A Direct Acyclic Graph (DAG) represents an application program that consists of a

collection of heterogeneous modules (application codes from different disciplines) with

acyclic dependencies among the modules.

DCOM

The Distributed Component Object Modeling (DCOM) is a distributed object model

developed by Microsoft for the development o f distributed applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

Federated Management Architecture (FMA)

A specification from Sun Microsystems for heterogeneous storage resources and storage

network management.

Grid

An environment that combines geographically distributed heterogeneous resources in

independent administrative domains into a virtual metacomputer in support of large-size

problems.

Heterogeneous

An architecture in which the elements are of different types.

Homogeneous

An architecture in which each element is of the same type.

Jini

A connection technology introduced by Sun Microsystems that can be used to build a

flexible network of resources and services to be shared by a group o f clients, it is based

on the idea of federating groups of clients and the resources required by those clients.

Jiro

A pure Java technology-based implementation o f the Federated Management

Architecture (FMA) specification that provides developers with the infrastructure

required to build distributed resource management solutions.

Job

We use this term usually to refer to the application, or one of its sub-modules, being

created to satisfy the user’s request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

Load balancing

The degree by which the work is distributed equally among the available replicated

components in a typical distributed environment.

Metacomputing.

An approach in which more than the local resources are used to solve a large-scale

computational problem.

Middleware.

A layer between the application and the operating system that provides seamless services

to the high-level application.

Parametric Application

An application where the same program is repeatedly executed with different initial

conditions as a means of exploring the behavior of a complicated system across a

parameter space.

Policy

A set of conditions and actions that need to be taken when those conditions are met.

Policy-based ResOurce Brokering Environment (PROBE)

A general-purpose, stand-alone, heterogeneous, distributed Policy-based ResOurce

Brokering Environment that can be easily used by various grid environments.

Profiling

The measuring of the performance and resource requirements o f an application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

Resource

In a typical grid environment, a resource denotes any entity that is meant to be shared. It

could be computational, storage, software, network, etc.

Resource Brokering Environment

A middleware software application that mediates the discovery, access and usage of

distributed resources, often heterogeneous, in a grid environment.

RMI

Java Remote Method Invocation (RMI) is a distributed computing technology by Sun

Microsystems that provides a simple and direct model for distributed computation with

Java objects.

Service Level Agreement (SLA)

A formal negotiated agreement between two parties, the service provider and the service

consumer. This agreement provides a common understanding about quality of the service

and responsibilities of both parties.

Scalability

It is the degree by which a system or component continues to grow and maintain service

without fundamental change in the application’s architecture or major degradation of the

performance.

Scheduling

Order and placement of tasks into a set o f resources.

Task

Same as Job.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

Workflow Manager

A component within a typical grid environment that automates the business process of

the user.

XML

The extensible Markup Language (XML) is a specification for creating structured

documents and data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

APPENDIX D

Extended Bibliography

This appendix contains some references for efforts not covered in chapter II.

[1] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff, “Charlotte: Metacomputing on

the Web”, Proceedings o f the 9th International Conference on Parallel and

Distributed Computing Systems, pp.181-188, Dijon, France, September 1996.

[2] A. Baratloo, P. Dasgupta, and Z. Kedem, “Calypso: A novel software system for

fault-tolerant parallel processing on distributed platforms” Proceedings o f the 4th

IEEE International Symposium on High Performance Distributed Computing, pp.

122-129, 1995.

[3] D. Becker, T. Sterling, D. Savarese, J. Dorband, U. Ranawake and C. Packer,

“Beowulf: A Parallel Workstation for Scientific Computation”, Proceedings o f the

1995 International Conference on Parallel Processing, pp. 11-14, Oconomowoc,

Wisconsin, August 1995.

[4] P. Chandra, Y. Chu, A. Fisher, J. Gao, C. Kosak, T. Ng, P. Steenkiste, E.

Takahashi, and H. Zhang, “Darwin: Customizable Resource Management for

Value-Added Network Services”, IEEE Network, Number 1, vol. 15, January 2001.

[5] K. Chandy, A. Chelian, B. Dimitrov, Z. Dobes, J. Garnett, J. Kiniry, H. Le, J.

Mandelson, M. Richardson, A. Rifkin, E. Schooler, P. Sivilotti, W. Tanaka, and L.

Weisman, “A New Approach To Collaborative Distributed Computing”, newsletter

o f the Center fo r Research on Parallel Computation, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

[6] K. Chandy, A. Rifkin, P. Sivilotti, J. Mandelson, M. Richardson, W. Tanaka, and

L. Weisman, “A World-Wide Distributed System Using Java and the Internet”,

Proceedings o f the High Performance Distributed Computing (HPDC ’96), pp. 1l-

18, Syracuse, New York, March 1996.

[7] H. El-Rewini and T. Lewis, “Scheduling Parallel Program Tasks onto Arbitrary

Machines”, Journal o f Parallel and Distributed Computing, vol. 9, Number 2, pp.

138-153, 1990.

[8] G. Fox, W. Furmanski, M. Chen, C. Rebbi, J. Cowie, “WebWork: Integrated

Programming Environment Tools for National and Grand Challenges”, NPAC

Technical Report SCCS-715, Syracuse University, June 1995.

[9] R. Freund, T. Kidd, D. Hensgen, L. Moore, "SmartNet: A Scheduling Framework

for Heterogeneous Computing," Proceedings o f 2nd International Symposium on

Parallel Architectures. Algorithms, and Networks, pp. 514-521, Beijing, China,

June 1996.

[10] J. Gehring and A. Streit, “Robust Resource Management for Metacomputers”,

Proceedings o f the 9th IEEE International Symposium on High Performance

Distributed Computing (HPDC 2000), pp. 105-112, Pittsburgh, Pennsylvania,

2000.

[11] J. Gehring and A. Reinefeld, “MARS - A Framework for Minimizing Job

Execution Time in a Metacomputing Enviroment”, Future Generation Computer

Systems (FGCS), vol. 12, Numer 1, pp. 87-99, 1996.

[12] A. Gerasoulis and T. Yang, “A Comparison of Clustering Heuristics for Scheduling

Directed Acyclic Graphs on Multiprocessors”, Journal o f Parallel and Distributed

Computing, vol. 16, pp. 276-291, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

[13] D. Hensgen, T. Kidd, D. John, M. Schnaidt, H. Siegel, T. Braun, J. Kim, S. Ali, C.

Irvine, T. Levin, V. Prasanna, P. Bhat, R. Freund, and M. Gherrity, “An Overview

of the Management System for Heterogeneous Networks (MSHN)”, 8th Workshop

on Heterogeneous Computing Systems (HCW '99), pp. 184-198, San Juan, Puerto

Rico, April 1999.

[14] N. Kapadia and J. Fortes, “PUNCH: An Architecture for Web-Enabled Wide-Area

Network-Computing”, Cluster Computing: The Journal o f Networks, Software

Tools and Applications, vol. 2, Number 2, pp. 153-164, Baltzer Science Publishers,

The Netherlands, September 1999.

[15] D. Lifka, M. Henderson and K. Rayl, “Users Guide to the Argonne Sp Scheduling

System”, Mathematics and Computer Science Division Technical Memorandum

Number ANL/MCS-TM-201, Argonne National Laboratory, May 1995

[16] MAUI Scheduler web site. [Online]. Aviliable: http://supercluster.org/maui/.

[17] M. Migliardi and V. Sunderam, “The Harness Metacomputing Framework”,

Proceedings o f the Ninth SIAM Conference on Parallel Processing fo r Scientific

Computing, March 1999.

[18] MPI web site. [Online]. Aviliable: http://www-unix.mcs.anl.gov/mpi/.

[19] M. Neary, A. Phipps, S. Richman and P. Cappello, “Javelin 2.0: Java-Based

Parallel Computing on the Internet”, Proceedings o f European Parallel Computing

Conference (Euro-Par 2000), pp. 1231-1238, Germany, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://supercluster.org/maui/
http://www-unix.mcs.anl.gov/mpi/

215

[20] B. Neuman and S. Roa, “The Prospero Resource Manager: A Scalable Framework

for Processor Allocation in Distributed Systems”, Concurrency: Practice and

Experience, vol. 6, Number 4, pp. 339-355, June 1994.

[21] J. Pruyne and M. Livny, “Parallel Processing on Dynamic Resources with

CARMI”, Workshop on Job Scheduling Strategies fo r Parallel Processing (IPPS

’95), pp. 259-278, April 1995.

[22] PVM web site. [Online]. Aviliable: http://www.epm.oml.gov/pvm/.

[23] F. Ramme and K. Kremer, “Scheduling a Metacomputer by an Implicit Voting

System”, Proceedings o f the 3rd IEEE International Symposium on High-

Performance Distributed Computing, San Francisco, pp 106-113, 1994.

[24] J. Weissman, “Scheduling Multi-Component Applications in Heterogeneous Wide-

area Networks”, Heterogeneous Computing Workshop, International Parallel and

Distributed Processing Symposium IPDPS, pp. 209-215, May 2000.

[25] J. Weissman, “Prophet: Automated Scheduling o f SPMD Programs in Workstation

Networks”, Concurrency: Practice and Experience, vol. 11, Number 6, pp. 301-

321, November 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.epm.oml.gov/pvm/

216

VITA

Ahmed Hamdan AL-Theneyan was bom in Riyadh, Saudi Arabia, on March 9, 1974. He

received his Bachelor of Science in Computer and Information Sciences from King Saud

University, Riyadh, Saudi Arabia in 1995. He worked then as Lecturer for the

Department of Computer Science at Institute o f Public Administration (IP A) from 1995

to 1996. On 1996, Ahmed was awarded a scholarship from the Royal Embassy o f Saudi

Arabia and IPA for a Master’s degree program in Computer Science. In the Fall o f 1996,

Ahmed joined Old Dominion University and received his Master o f Science degree in

Computer Science in 1998. In August 1998 and after having finished his Master’s degree,

Ahmed was offered a teaching assistantship and was accepted in the Ph.D. program of the

same department. Ahmed was then awarded a fellowship grant from NASA Langley

Research Center in 1999. He worked as a Research Assistant in the Institute for

Computer Applications in Science and Engineering (ICASE) at NASA Langley Research

Center from 1999 to 2001. During his years at NASA and ODU, Ahmed has been

involved in a wide range o f network and distributed computing activities where he

explored the applicability o f Jini, CORBA and other distributed computing technologies

for distributed middleware applications. Ahmed is currently working as a senior member

o f technical staff at Trendium Incorporation. His current research focuses on Distributed

Computing, Resource Brokering, Computer Networks, Web Applications and Object-

Oriented Design.

Permanent Address: Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 2002

	A Policy-Based Resource Brokering Environment for Computational Grids
	Ahmed Hamdan Al-Theneyan
	Recommended Citation

	tmp.1550516389.pdf.mQVXw

