13 research outputs found

    Differences in Prefrontal, Limbic, and White Matter Lesion Volumes According to Cognitive Status in Elderly Patients with First-Onset Subsyndromal Depression

    Get PDF
    The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs) in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We performed a cross-sectional study comparing patients with subsyndromal depression and nondepressed controls with normal cognition (n = 59),MCI (n = 27),and AD (n = 27),adjusting for sex, age, years of education, and results of the Mini-Mental State Examination. Frontal WML volume was greater, and right medial orbitofrontal cortical volume was smaller in cognitively normal participants with subsyndromal depression than in those without subsyndromal depression. No volume differences were observed in medial prefrontal, limbic, or WML volumes according to the presence of subsyndromal depression in cognitively impaired patients. The absence of these changes in patients with MCI and AD suggests that brain changes associated with AD pathology may override the changes associated with subsyndromal depression

    Energy Preserved Sampling for Compressed Sensing MRI

    Get PDF
    The sampling patterns, cost functions, and reconstruction algorithms play important roles in optimizing compressed sensing magnetic resonance imaging (CS-MRI). Simple random sampling patterns did not take into account the energy distribution in k-space and resulted in suboptimal reconstruction of MR images. Therefore, a variety of variable density (VD) based samplings patterns had been developed. To further improve it, we propose a novel energy preserving sampling (ePRESS) method. Besides, we improve the cost function by introducing phase correction and region of support matrix, and we propose iterative thresholding algorithm (ITA) to solve the improved cost function. We evaluate the proposed ePRESS sampling method, improved cost function, and ITA reconstruction algorithm by 2D digital phantom and 2D in vivo MR brains of healthy volunteers. These assessments demonstrate that the proposed ePRESS method performs better than VD, POWER, and BKO; the improved cost function can achieve better reconstruction quality than conventional cost function; and the ITA is faster than SISTA and is competitive with FISTA in terms of computation time

    Accurate template-based correction of brain MRI intensity distortion with application to dementia and aging

    No full text
    This paper examines an alternative approach to separating magnetic resonance imaging (MRI) intensity inhomogeneity from underlying tissue-intensity structure using a direct template-based paradigm. This permits the explicit spatial modeling of subtle intensity variations present in normal anatomy which may confound common retrospective correction techniques using criteria derived from a global intensity model. A fine-scale entropy driven spatial normalisation procedure is employed to map intensity distorted MR images to a tissue reference template. This allows a direct estimation of the relative bias field between template and subject MR images, from the ratio of their low-pass filtered intensity values. A tissue template for an aging individual is constructed and used to correct distortion in a set of data acquired as part of a study on dementia. A careful validation based on manual segmentation and correction of nine datasets with a range of anatomies and distortion levels is carried out. This reveals a consistent improvement in the removal of global intensity variation in terms of the agreement with a global manual bias estimate, and in the reduction in the coefficient of intensity variation in manually delineated regions of white matter

    Efficient automatic correction and segmentation based 3D visualization of magnetic resonance images

    Get PDF
    In the recent years, the demand for automated processing techniques for digital medical image volumes has increased substantially. Existing algorithms, however, still often require manual interaction, and newly developed automated techniques are often intended for a narrow segment of processing needs. The goal of this research was to develop algorithms suitable for fast and effective correction and advanced visualization of digital MR image volumes with minimal human operator interaction. This research has resulted in a number of techniques for automated processing of MR image volumes, including a novel MR inhomogeneity correction algorithm derivative surface fitting (dsf), automatic tissue detection algorithm (atd), and a new fast technique for interactive 3D visualization of segmented volumes called gravitational shading (gs). These newly developed algorithms provided a foundation for the automated MR processing pipeline incorporated into the UniViewer medical imaging software developed in our group and available to the public. This allowed the extensive testing and evaluation of the proposed techniques. Dsf was compared with two previously published methods on 17 digital image volumes. Dsf demonstrated faster correction speeds and uniform image quality improvement in this comparison. Dsf was the only algorithm that did not remove anatomic detail. Gs was compared with the previously published algorithm fsvr and produced rendering quality improvement while preserving real-time frame-rates. These results show that the automated pipeline design principles used in this dissertation provide necessary tools for development of a fast and effective system for the automated correction and visualization of digital MR image volumes

    Active contours for intensity inhomogeneous image segmentation

    Get PDF
    La “inhomogeneidad” (falta d'homogeneïtat) d'intensitat és un problema ben conegut en la segmentació d'imatges, la qual cosa afecta la precisió dels mètodes de segmentació basats en la intensitat. En aquesta tesi, es proposen mètodes de contorn actiu basat en fronteres i regions per segmentar imatges inhomogènies. En primer lloc, s'ha proposat un mètode de contorn actiu basat en fronteres mitjançant Diferència de Gaussianes (DoG), que ajuda a segmentar l'estructura global de la imatge. En segon lloc, hem proposat un mètode de contorn actiu basat en regions per corregir i segmentar imatges inhomogènies. S'ha utilitzat un nucli de transformació de fase (phase stretch transform - PST) per calcular noves intensitats mitjanes i camps de polarització, que s'empren per definir una imatge ajustada de polarització. En tercer lloc, s'ha proposat un altre mètode de contorn actiu basat en regions utilitzant un funcional d'energia basat en imatges ajustades locals i globals. El camp de polarització s'aproxima amb una distribució Gaussiana i el biaix de les regions no homogènies es corregeix dividint la imatge original pel camp aproximat de polarització. Finalment, s'ha proposat un mètode híbrid de contorns actius multifàsic (quatre fases) per dividir una imatge de RM cerebral en tres regions diferents: matèria blanca (WM), matèria grisa (GM) i líquid cefaloraquidi (CSF). En aquest treball, també s'ha dissenyat un mètode de post-processat (correcció de píxels) per millorar la precisió de les regions WM, GM i CSF segmentades. S'han utilitzat resultats experimentals tant amb imatges sintètiques com amb imatges reals de RM del cervell per a una comparació quantitativa i qualitativa amb mètodes de contorns actius de l'estat de l'art per mostrar els avantatges de les tècniques de segmentació proposades.La “inhomogeneidad” (falta de homogeneidad) de intensidad es un problema bien conocido en la segmentación de imágenes, lo que afecta la precisión de los métodos de segmentación basados en la intensidad. En esta tesis, se proponen métodos de contorno activo basado en bordes y regiones para segmentar imágenes inhomogéneas. En primer lugar, se ha propuesto un método de contorno activo basado en fronteras mediante Diferencia de Gaussianas (DoG), que ayuda a segmentar la estructura global de la imagen. En segundo lugar, hemos propuesto un método de contorno activo basado en regiones para corregir y segmentar imágenes inhomogéneas. Se ha utilizado un núcleo de transformación de fase (phase stretch transform - PST) para calcular nuevas intensidades medias y campos de polarización, que se emplean para definir una imagen ajustada de polarización. En tercer lugar, se ha propuesto otro método de contorno activo basado en regiones utilizando un funcional de energía basado en imágenes ajustadas locales y globales. El campo de polarización se aproxima con una distribución Gaussiana y el sesgo de las regiones no homogéneas se corrige dividiendo la imagen original por el campo aproximado de polarización. Finalmente, se ha propuesto un método híbrido de contornos activos multifásico (cuatro fases) para dividir una imagen de RM cerebral en tres regiones distintas: materia blanca (WM), materia gris (GM) y líquido cefalorraquídeo (CSF). En este trabajo, también se ha diseñado un método de post-procesado (corrección de píxeles) para mejorar la precisión de las regiones WM, GM y CSF segmentadas. Se han utilizado resultados experimentales tanto con imágenes sintéticas como con imágenes reales de RM del cerebro para una comparación cuantitativa y cualitativa con métodos de contornos activos del estado del arte para mostrar las ventajas de las técnicas de segmentación propuestas.Intensity inhomogeneity is a well-known problem in image segmentation, which affects the accuracy of intensity-based segmentation methods. In this thesis, edge-based and region-based active contour methods are proposed to segment intensity inhomogeneous images. Firstly, we have proposed an edge-based active contour method based on the Difference of Gaussians (DoG), which helps to segment the global structure of the image. Secondly, we have proposed a region-based active contour method to both correct and segment intensity inhomogeneous images. A phase stretch transform (PST) kernel has been used to compute new intensity means and bias field, which are employed to define a bias fitted image. Thirdly, another region-based active contour method has been proposed using an energy functional based on local and global fitted images. Bias field is approximated with a Gaussian distribution and the bias of intensity inhomogeneous regions is corrected by dividing the original image by the approximated bias field. Finally, a hybrid region-based multiphase (four-phase) active contours method has been proposed to partition a brain MR image into three distinct regions: white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). In this work, a post-processing (pixel correction) method has also been devised to improve the accuracy of the segmented WM, GM and CSF regions. Experimental results with both synthetic and real brain MR images have been used for a quantitative and qualitative comparison with state-of-the-art active contour methods to show the advantages of the proposed segmentation techniques

    Segmentation of brain MRI during early childhood

    No full text
    The objective of this thesis is the development of automatic methods to measure the changes in volume and growth of brain structures in prematurely born infants. Automatic tools for accurate tissue quantification from magnetic resonance images can provide means for understanding how the neurodevelopmental effects of the premature birth, such as cognitive, neurological or behavioural impairment, are related to underlying changes in brain anatomy. Understanding these changes forms a basis for development of suitable treatments to improve the outcomes of premature birth. In this thesis we focus on the segmentation of brain structures from magnetic resonance images during early childhood. Most of the current brain segmentation techniques have been focused on the segmentation of adult or neonatal brains. As a result of rapid development, the brain anatomy during early childhood differs from anatomy of both adult and neonatal brains and therefore requires adaptations of available techniques to produce good results. To address the issue of anatomical differences of the brain during early childhood compared to other age-groups, population-specific deformable and probabilistic atlases are introduced. A method for generation of population-specific prior information in form of a probabilistic atlas is proposed and used to enhance existing segmentation algorithms. The evaluation of registration-based and intensity-based approaches shows the techniques to be complementary in the quality of automatic segmentation in different parts of the brain. We propose a novel robust segmentation method combining the advantages of both approaches. The method is based on multiple label propagation using B-spline non-rigid registration followed by EM segmentation. Intensity inhomogeneity is a shading artefact resulting from the acquisition process, which significantly affects modern high resolution MR data acquired at higher magnetic field strengths. A novel template based method focused on correcting the intensity inhomogeneity in data acquired at higher magnetic field strengths is therefore proposed. The proposed segmentation method combined with proposed intensity inhomogeneity correction method offers a robust tool for quantification of volumes and growth of brain structures during early childhood. The tool have been applied to 67 T1-weigted images of subject at one and two years of age

    Efficient dense non-rigid registration using the free-form deformation framework

    Get PDF
    Medical image registration consists of finding spatial correspondences between two images or more. It is a powerful tool which is commonly used in various medical image processing tasks. Even though medical image registration has been an active topic of research for the last two decades, significant challenges in the field remain to be solved. This thesis addresses some of these challenges through extensions to the Free-Form Deformation (FFD) registration framework, which is one of the most widely used and well-established non-rigid registration algorithm. Medical image registration is a computationally expensive task because of the high degrees of freedom of the non-rigid transformations. In this work, the FFD algorithm has been re-factored to enable fast processing, while maintaining the accuracy of the results. In addition, parallel computing paradigms have been employed to provide near real-time image registration capabilities. Further modifications have been performed to improve the registration robustness to artifacts such as tissues non-uniformity. The plausibility of the generated deformation field has been improved through the use of bio-mechanical models based regularization. Additionally, diffeomorphic extensions to the algorithm were also developed. The work presented in this thesis has been extensively validated using brain magnetic resonance imaging of patients diagnosed with dementia or patients undergoing brain resection. It has also been applied to lung X-ray computed tomography and imaging of small animals. Alongside with this thesis an open-source package, NiftyReg, has been developed to release the presented work to the medical imaging community

    NON-INVASIVE IMAGE ENHANCEMENT OF COLOUR RETINAL FUNDUS IMAGES FOR A COMPUTERISED DIABETIC RETINOPATHY MONITORING AND GRADING SYSTEM

    Get PDF
    Diabetic Retinopathy (DR) is a sight threatening complication due to diabetes mellitus affecting the retina. The pathologies of DR can be monitored by analysing colour fundus images. However, the low and varied contrast between retinal vessels and the background in colour fundus images remains an impediment to visual analysis in particular in analysing tiny retinal vessels and capillary networks. To circumvent this problem, fundus fluorescein angiography (FF A) that improves the image contrast is used. Unfortunately, it is an invasive procedure (injection of contrast dyes) that leads to other physiological problems and in the worst case may cause death. The objective of this research is to develop a non-invasive digital Image enhancement scheme that can overcome the problem of the varied and low contrast colour fundus images in order that the contrast produced is comparable to the invasive fluorescein method, and without introducing noise or artefacts. The developed image enhancement algorithm (called RETICA) is incorporated into a newly developed computerised DR system (called RETINO) that is capable to monitor and grade DR severity using colour fundus images. RETINO grades DR severity into five stages, namely No DR, Mild Non Proliferative DR (NPDR), Moderate NPDR, Severe NPDR and Proliferative DR (PDR) by enhancing the quality of digital colour fundus image using RETICA in the macular region and analysing the enlargement of the foveal avascular zone (F AZ), a region devoid of retinal vessels in the macular region. The importance of this research is to improve image quality in order to increase the accuracy, sensitivity and specificity of DR diagnosis, and to enable DR grading through either direct observation or computer assisted diagnosis system
    corecore