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The sampling patterns, cost functions, and reconstruction algorithms play important roles in optimizing compressed sensing
magnetic resonance imaging (CS-MRI). Simple random sampling patterns did not take into account the energy distribution in
k-space and resulted in suboptimal reconstruction of MR images. Therefore, a variety of variable density (VD) based samplings
patterns had been developed. To further improve it, we propose a novel energy preserving sampling (ePRESS) method. Besides,
we improve the cost function by introducing phase correction and region of support matrix, and we propose iterative thresholding
algorithm (ITA) to solve the improved cost function. We evaluate the proposed ePRESS sampling method, improved cost function,
and ITA reconstruction algorithm by 2D digital phantom and 2D in vivo MR brains of healthy volunteers. These assessments
demonstrate that the proposed ePRESS method performs better than VD, POWER, and BKO; the improved cost function can
achieve better reconstruction quality than conventional cost function; and the ITA is faster than SISTA and is competitive with

FISTA in terms of computation time.

1. Introduction

Reduction of scan time remains one of the most important
areas of emphasis for methodological development in mag-
netic resonance imaging (MRI) for more than three decades
[1, 2]. A variety of fast MRI methods has been developed.
One kind of fast MRI techniques reduce scan time by using
short repetition time (TR), such as steady state free precession
(SSEP) [3], or increasing number of frequency encoding (FE)
lines within one TR, such as echo planar imaging (EPI) [4].
These methods acquire all points in k-space. Another kind
of fast MRI techniques is based on reducing the number
of sampling points in k-space and includes partial Fourier
and parallel MRI [5-7]. Partial Fourier acquires a little more
than half of the k-space and makes use of the conjugate
property of the k-space data to fill offline the missing data
points by the complex conjugate of the acquired ones [8].
Parallel MRI technique employs an array of surface coils
whose spatially varying sensitivities can provide a mechanism
of effective spatial encoding that allows one to regularly skip

some, for example, every other, phase encoding (PE) lines.
Most recently, compressed sensing (CS) was introduced into
MRI (CS-MRI) [9], which randomly skips some PE lines, thus
reducing scan times.

CS is a technique that acquires signals at sampling
rates lower than those indicated by conventional sampling
theorems such as the Nyquist theorem, which states that
acquisition rates must exceed by 2-fold the highest frequency
of the band-limited signal if the signal is to be reconstructed
without alias artifacts. When the sampling rate drops below
the Nyquist frequency (i.e., when the data are undersampled),
alias or folder-over will occur in the high frequency portion
of the signal. In many imaging applications such as MRI,
in which signals are not band-limited, the acquisition rate
of k-space data is determined by the desired field of view
(FOV). Acquiring data at a rate lower than 1/FOV produces
the artifact of image fold-over, portions of the object outside
of the FOV will be mapped into the FOV. Yet, acquiring
full k-space data at a rate that avoids fold-over can be time-
consuming. CS allows acquisition of k-space signal at random



points and lower rates than 1/FOV and reconstruction of the
magnetic resonance (MR) images from thus undersampled
data [9].

The application of CS to MRI generally entails random
undersampling (RAND) of k-space data in the PE direc-
tion(s), as well as a specialized algorithm for reconstructing
the MR images from data that are so drastically under-
sampled. As RAND will cause noise-like aliasing artifacts,
the reconstruction of the CS-MRI is actually a procedure
of unaliasing. Previous investigators [9] have proposed a
random sampling scheme, named variable density (VD),
which samples more densely in the inner than outer region
of k-space, so that image components with high energy and
low frequency alias less than those do with lower energy
and higher frequency, thus yielding reconstructed MR images
of acceptable quality. Subsequently, several groups have
proposed methods to improve the VD sampling patterns so
as to optimize reconstruction of CS-MRI [10, 11]. One group
[11] based the pattern of RAND on the power spectrum of the
k-space data of the reference images, showing that it could
achieve better image quality than nonoptimized sampling
patterns did at the same acceleration rate.

The algorithms for reconstruction of MR images also
play important roles in the application of CS to MRI data.
The reconstructions of CS-MRI can be obtained by solving
constrained optimization problems. The classical approach
to such problems is the least squares method, also known as
L, norm minimization [12], even though this approach may
yield poor restoration results for some practical applications,
as the unknown coefficients seldom have minimal energy
[10]. To enforce the sparsity constraint when solving these
underdetermined linear equations, the L; norm should be
minimized [13]. Special techniques for solving L, norm
have been developed and include interior points [14], con-
vex set projections [15], message-passing [16], iterative soft
thresholding [17], and iterative reweighted least squares [18].
One group proposed specifically for CS-MRI a method that
employs nonlinear conjugate gradients and a back-tracking
line search [9]. The above mentioned L; norm minimization
techniques belong to the 1st generation solver. Recently, new
CS techniques are proposed. SPGLI is a Matlab solver for
large-scale one-norm regularized least squares [19]. NESTA
is a fast and robust first-order method than solves basis-
pursuit problems and a large number of extensions (including
tv-denoising) [20]. FISTA preserves the computational sim-
plicity of iterative shrinkage/thresholding algorithm (ISTA)
but with a global rate of convergence which is proven to
be significantly better [21]. SISTA is an extension of ISTA,
but it can adaptably choose subband-dependent steps and
thresholds [22]. C-SALSA is more general than SPGL1 in the
sense that it can be used with any convex regularizer ¢ [23].
FWISTA combines the advantages of generic step method,
wavelet-subband-dependent methods, and random shifting
technique [24].

The contribution of the present paper is triple: first, we
propose a new pattern of data sampling for CS-MRI, which
samples the k-space data points with statistically high energy
based on the reference images. This method is similar to
power (Knoll's adapted random sampling pattern method
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[11]) but prefers to sample high energy points. We name our
method energy preserved sampling (ePRESS). Second, we
revise the cost function, adding phase correction matrix and
region of support (ROS) matrix, to accelerate the convergence
and alleviate background noise. Third, to solve the revised
cost function, we propose an iterative thresholding algorithm
that is as fast as the existing CS-MRI reconstruction algo-
rithms.

2. Materials and Methods

2.1. Related Work. In Lustig’s work [25], they presented
the VD function based on a polynomial function of the
distance to the origin. Suppose k, and k, denote the k-space
coefficients in the two phase encoding direction and N and M
are the number of phase encoding steps in y and z direction,
the pdf of VD is given by

(-mmBeE) o

Here p is a parameter to adjust the shape of the PDE A
question arises: how to choose the appropriate p? Addi-
tionally, suboptimal choosing of p leads to significantly low
reconstruction quality [11]. Besides, the VD function cannot
contain the information of brain structure within a simple
mathematical formula. In this study, we developed a non-
parametric method that bears the information of reference
images, in light of the known fact that reference image and
test image are similar; we can design the sampling trajectory
from the reference images which is proven to perform better
than existing sampling methods.

2.2. ePRESS Sampling. 'The magnitudes of the k-space data
points can be regarded as the power distribution of the
k-space signals. The ePRESS is based on the hypotheses
that the k-space data are correlated to the structure of the
object, in addition to the parameters of the pulse sequences,
and that similar structures of the objects will result in
statistically similar k-space data. ePRESS sampling patterns
were obtained based on probability distribution function
(PDF) in three steps.

Step I (determine the initial probability distribution function
(iPDF)). We generated the iPDF by summarizing the magni-
tudes of k-space data of the reference scans along the readout
direction (k,) and by summarizing all the references, before
normalizing to unity. Figure 1 shows how to form an iPDF
from reference k-spaces.

Step 2 (calculate the windowed probability distribution func-
tion (wPDF)). The iPDF tends to emphasize the high-energy
and low-frequency data points at the center of k-space and
ignore high-frequency data points at the outer portions of k-
space, which risks a loss of high frequency information in the
reconstructed images. We addressed this problem by applying
a hamming window function to the iPDF (3), a function that
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FIGURE 1: From references k-spaces to iPDF (x, y, z: the 3D
coordinates in image space; k,, k, k,: the 3D coordinates in k-space;
r: the reference index).
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FIGURE 2: A 128 x 128 hamming window.

is optimized to minimize the maximum sidelobe. The 2D
hamming window function is given as

w(m,n) = (0.54 —0.46 cos (271%))

X (0.54 —0.46 cos (27‘[%)) , 0<m, n<N.
(2)

Here m, n are auxiliary parameters of the window and w is
the window function. The advantages of hamming windows
(Figure 2) are that they can minimize the maximum sidelobe.
We then calculated the wPDF as
PDF

WPDE = = 3)
where « is an empirical parameter adjusting the distribution
of the wPDE, in which values of « larger than 1 increase
the probability of sampling the outer portion of k-space.
The hamming window gives wPDF incoherence that is the
required component of CS.

Step 3 (select the indexes of the sampling points). Indexes of
sample points were selected from the wPDF according to a
level or threshold determined by the number of data points
(Figure 3). The points above the threshold represent high-
energy points that will be selected. The threshold decreases

until predetermined number of sampling points are reached.
There is no exact formula to describe the curve of the number
sampled against the threshold. The users need to employ 1D
numerical optimization method (such as Newton-Raphson
method or BFGS method) to get the exact threshold for a
given acceleration factor.

The ePRESS sampling method can be applied to 2D, MS-
2D, and 3D MRI. For 2D MRI, we perform 1D undersampling
in the same way on each slice. For MS-2D, we performed
different 1D undersampling on each slice. 3D MRI is the
preferred imaging method because (1) it is more flexible to
choose random points, (2) the k,-k -k, plane is sparser, and
(3) the k,-k,-k, plane resists in-plane motion efficiently;
however, it is still sensitive to out-of-plane rotation. Figure 4
shows the whole procedure of 2D, MS-2D, and 3D sampling.
In the following text, we take one slice from 3D MRI
as example for simplicity and suppose k, and k, are PE
directions. This hypothesis can reach the fullest expression as
found in other literature [9, 11, 25].

2.3. Improved Cost Function. Mathematically, images are
reconstructed by solving a constrained optimization problem
[9, 26]. The cost function (CF) is written as

min ||Wx||;

(4)
s.t. ||Fux - y||2 <g

where y denotes the sparse transform matrix, F,, denotes the
undersampled Fourier transform, x denotes the estimated
signal or image, y denotes the measured full k-space data
from the MRI scanner, € controls the fidelity of reconstruction
to the measured data, and s.t. denotes “subject to.”

We improved above cost function by employing ROS and
the phase correction matrix [27, 28] in order to accelerate
convergence of the estimation and to reduce background
noise [29]. The phase correction matrix is obtained similar
to the PCCS method, using symmetric points near central
rows of k-space. Suppose K, represents the symmetric points
of the k-space and I, represents its corresponding image
obtained by inverse discrete Fourier transform (IDFT). The
phase correction matrix can be written as

I, = IDFT (K,),

(5)
P = exp (—i * angle (1))
The improved cost function (ICF) is therefore given as
min [|Wx]|,
{ |F.Px - y], <, (©)
s.t.
x = Sx,

where P is a phase correction matrix whose entries give the
estimated phase of each pixel [30] and S is a matrix defined
as element 1 corresponding to the ROS. S can be obtained
from a previous coarse scan or other imaging modality. The
equation x = Sx defines the region containing nonzero signal
intensities.
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FIGURE 3: From wPDF to sampling patterns at 4 different levels: (a) 0.76, (b) 0.70, (c) 0.64, and (d) 0.58.

2.4. Reconstruction of CS-MRI. Conventional methods such
as FISTA and SISTA are not applicable for the improved
cost function. We proposed an iterative threshold algorithm
(ITA) to solve formula (6) by iteratively finding successive
approximations to the solution.

Step 1 (initialization). Suppose Max; sz denotes the maxi-
mum number of iterations, T denotes a series of numerical
thresholds decreasing linearly, and T; and T/, represent the
initial and final value of T, respectively. Every component of
T can be written as

T,-T,
-——x(k-1),
Maxypgg — 1 7)

k = 1, 2, PN MaXITER.

T(k) =T,

Step 2 (set x;). The initial point x, is the IDFT of the zero-
padding of y.

Step 3 (minimize 1-norm of y(x)). Transform x to the sparse
domain; keep the sparsity coefficients unchanged if they are
greater than the ith threshold T}; otherwise, set them to zero:

x(k+1) =y [y(x(k)>T]. (8)
Here x(k) represents the value of x at kth step.

Step 4 (satisfy the st subjection). Transform x to the k-space;
replace the undersampled position with the realistic sampling
results y and transform back to the image space:

x(k+1) =P 'F ' [FP(x (k+ 1)), x y]. )

Step 5. Satisfy the 2nd subjection:
x(k+1)=Sxx(k+1). (10)
Step 6. Repeat until termination criteria are reached.

This method is simple and easy to realize. Almost every
CS-MRI method uses discrete Fourier transform (DFT) and
discrete wavelet transform (DWT) which are fast and save
memory storage; however, some methods have to use other
time-consuming techniques which cost lots of computation
resources. Our ITA method only uses the two mature tech-
niques (DFT and DWT) and can achieve the reconstruction
goal, so it is reasonable to expect it as comparable to existing
fastest CS-MRI algorithms.

The proposed ITA method is different from and cannot
be replaced with ISTA and its derivations. First, ITA is only
suitable for the proposed improved cost function, which
ISTAs cannot solve. Second, ISTA combined the Fourier
encoding matrix and wavelet transform matrix together,
while our ITA method treated them in different steps. Third,
ISTA has a parameter L that should be greater or equal to
the Lipschitz constant of the gradients of IIF‘I’xllg, and the
proposed ITA method has two parameters T; and T';.

The termination criteria of ITA are set as follows: when
the x is no longer improved (measured by a fixed amount
F) over continuous I iterations or the iteration reaches the
predefined maximal iterative number, then the algorithm
should stop:

if ||xxs1 — xi|| < F over I continuous iterations or

(1)

k > Maxyrgg, then algorithm stops.
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FIGURE 4: The sampling designs of 2D, MS-2D, and 3D MRIL

This type of termination criterion is commonly used in other
literature [31-33].

2.5. Implementation and Evaluation. We implemented all
experiments in Matlab 2013a on a 64bit core i3 laptop, 2 GHz
clock rate, 2GB random-access memory, and Win 7 OS.
The method was tested and demonstrated using 2D digital
phantoms and 2D in vivo MRIs from the brains of healthy
participants. The MRI protocol was approved by the New
York State Psychiatric Institute IRB (Institutional Review
Broad) and written informed consent was obtained from the
subjects prior to MR scans.

In the first experiment, we conducted a 2D phantom
experiment to show each step of our proposed method.
The sparse transform is chosen as haar wavelet with 3
decomposition levels [34, 35]. First, we generated 21 different
128 x 128 images from the Shepp Logan head phantom
using image distortion, translation, and rotation operators
randomly. The six important parameters of the ellipse are
A (additive intensity value of the ellipse), a (the length of
horizontal semiaxis of the ellipse), b (the length of vertical
semiaxis of the ellipse), x, (the x-coordinate of the center
of the ellipse), y, (the y-coordinate of the center of the
ellipse), and ¢ (the angle between the horizontal semiaxis

of the ellipse and the x-axis of the image). We added
Gaussian white noise with mean 0 and variances vector
as [0.1 0.05 0.05 0.05 0.05 10] to them. Twenty images
were used as reference images and the last as the test
image (Figure 5). To assess the quality of different sampling
methods, we calculated the correlation coefficient between
the k-space of test image and the estimated map (obtained
using both VD and ePRESS). Afterwards, we applied VD,
power, and ePRESS samplings, each with the corresponding
sampling ratio (reciprocal of acceleration factor) ranging
from 0.5 to 0.05 in —0.05 decrements (Table 1). We calculated
the energy preserving ratio (EPR, defined as the energy ratio
of the sampled k-space points to the full k-space) against
acceleration factors for each of the three sampling patterns.
The parameter o in ePRESS is set as 0.8.

The goal of the second experiment is to assess perfor-
mance of different sampling methods using 2D in vivo brain
images from healthy participants. We used conventional CF
and FISTA reconstruction algorithm. First we used eleven
256 x 256 transverse MRI brain images, 10 of which were
used as reference to generate the ePRESS (« = 1.4) pattern.
The last was used as a test image, which was transformed
to k-space and then resampled with acceleration factors of
4 to provide three different sampling patterns, namely, low
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(b)

FIGURE 5: Materials of 2D SL Phantom CS-MRI: (a) twenty reference phantom images and a test phantom image and (b) their corresponding

k-spaces.
TaBLE 1: The sampling points of VD, power, and ePRESS.
Method Sampling ratio
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
VD
Power
ePRESS

resolution (scan the central part of k-space), VD, and ePRESS.
Next, we used eleven 256 x 256 sagittal brain images with
the same setting as aforementioned and compared ePRESS
with BKO (Seeger’s Bayesian k-space optimization) [10] and
power methods [11]. The sparse transform is chosen as bior4.4
wavelet at level 6 [36-38]. Two popular error indicators,
median absolute error (MAE) and median square error
(MSE), were used for the assessment.

The third experiment is designed with the aim of com-
paring conventional cost function with the proposed ICE. For
conventional CF, we solved it by FISTA. For the proposed ICE,
we solved it by the proposed ITA method, since FISTA did
notinvolve phase correction matrix and ROS matrix. We used
VD and ePRESS sampling methods. The sparse transform is
chosen as bior4.4 wavelet at level 6.

Finally, we compared ITA method with FISTA and SISTA
in terms of computation time. ITA is designed specifically
to solve the improved cost function as formula (6). FISTA
and SISTA can only solve the conventional CF as formula
(4). We iteratively performed all algorithms and recorded

the consumed time under the condition when each algorithm
obtained nearly the same MAE.

3. Results

3.1 2D SL Phantom Illustration. Figure5 shows the 20
reference images and 1 test image. They differ considerably
not only in the spatial image but also in the k-spaces.
Figures 6(a)-6(b) show the differences between ePRESS iPDF
and VD PDE Parameter p of VD is chosen as 10 by trial-and-
error method. Figure 6(c) shows the 1D row-wise correlation
coefficients between the maps (ePRESS iPDF and VD PDF)
and k-space of the test image. We found that ePRESS is more
highly related to the test image than VD. The 2D correlation
coefficient is 0.942 for ePRESS, higher than that for VD
(0.531).

It is easily perceived that in Figure 6(a) there are regular
textures that correspond to the brain structure in the image
space, which demonstrate that the optimal PDF maps found



Computational and Mathematical Methods in Medicine

0.8 A

0.6

0.4 4

1D correlation coefficient

0.2 1

-60 —40 =20

—— ePRESS

FIGURE 6: Comparisons of ePRESS and VD: (a) ePRESS map, (b) VD Map, and (c) 1D row-wise coeflicients of correlation with the k-space
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FIGURE 7: The curve of EPR versus sampling ratio.

by ePRESS are much more complicated than VD. The correla-
tion coeflicient curve in Figure 6(c) indicates that the ePRESS
map is more similar to the k-space data of the test phantom
than VD, and therefore the reference images can act as a priori
information that predicts the k-space of the individual brain

to be scanned and guides the subsequent design of sampling
points.

Then, we generate the sampling trajectory from ePRESS
iPDE, VD PDE and power PDE Table 1 shows the sampling
points are sparser as the sampling ratio decreases. Figure 7
shows the curve of EPR versus the sampling ratio. It proves
the energy of sampling points of ePRESS is always higher than
VD and power methods, despite the fact that the latter two
methods provide denser sampling trajectories than ePRESS
does.

Results in Table 1indicate that power is similar to ePRESS,
but the main difference falls within the procedures from
PDF/iPDF map to sampling points. Power used a random
number generator, and a point was selected if the random
number was lower than the corresponding value of PDF map.
The proposed ePRESS first used hamming window to change
the iPDF map to wPDF map so that the high frequency
points stand more chances to be selected and then used a
thresholding method to select the sampling points.

Figure 7 indicates that the ePRESS method is superior
to the other two methods in the respect of preserving
energy, especially when the sampling ratio is less than 0.15.
Besides, the EPR curve of ePRESS decreases dramatically if
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FIGURE 8: Preprocessing of ePRESS: (a) ePRESS iPDF; (b) k-space of test image; (c) row-wise coeflicients correlation between (a) and (b).
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FIGURE 9: Sampling method comparison on transverse plane with 4x acceleration: the sampling patterns (a), k-space (b), reconstruction (c),

and the zoom-in of the reconstruction (d).

the sampling ratio is less than 0.1. Therefore, the appropriate
acceleration factor of the proposed ePRESS method is less
than 10.

3.2. Sampling Trajectories Comparison. Figure 8 shows the
preprocessing of ePRESS. Figure 8(a) gives the iPDF obtained
from 10 reference images. Figure 8(b) gives the k-space of the
test image that looks similar to the iPDFE, which demonstrates

the effectiveness of ePRESS. Figure 8(c) shows the 1D row-
wise correlation coeflicients curve between the ePRESS iPDF
and the k-space of test image. Their 2D correlation coefficient
is 0.949.

Three different sampling patterns: low resolution, VD,
and ePRESS, with their corresponding k-spaces and CS
reconstructions shown in Figure 9. Conventional CF and
FISTA were employed. The results showed that low resolu-
tion lost high frequency information of the original image,



Computational and Mathematical Methods in Medicine

(a) (b) (c)

FIGURE 10: Sampling comparison on sagittal plane of 2D normal brain: (a) original; (b): BKO (EPR = 0.68, MAE = 2.84, and MSE = 16.98);
(c) power (EPR = 0.69, MAE = 2.60, and MSE = 12.18); (d) ePRESS (EPR = 0.72, MAE = 2.29, and MSE = 9.24).

VD Enlarged ePRESS Enlarged

CF

(a)

FIGURE 11: Comparison between conventional CF and ICF with 4x acceleration.

TABLE 2: Sampling method comparison on transverse planes of 2D
normal brains with 4x acceleration.

Sampling methods MAE MSE
Low resolution 2.56 26.02
VD 2.70 14.92
ePRESS 2.05 11.14

resulting in edge blurring. VD got clear brain with notice-
able background noise. Nevertheless, the proposed ePRESS
method reconstructed the clearest brain. Table 2 shows the
MAE and MSE between the reconstruction and ground-
truth image. The data indicate that ePRESS obtains the best
recovery quality.

Except above conventional methods, we compared
ePRESS with BKO [10] and power methods [11] on a sagittal

section of a normal brain (Figure 10). Eleven sagittal planes
are selected, ten of which as reference images and the rest
as test image. Parameters are set in the same way as above.
Our ePRESS method achieved the highest EPR as 0.72 and
the least MAE as 2.29 and MSE as 9.24.

3.3. Cost Function Comparison. Figure 11 and Table 3 illus-
trate comparison between CF and ICE. They show that the
proposed ICF model achieves better reconstruction than
conventional CF does. Besides, “ePRESS + ICF” model
achieved better result results than “ePRESS + CE” “VD + CE’
and “VD + ICF”

Revisiting what has been mentioned in Figure 9, Figure 11
again indicates that the proposed ePRESS method outper-
forms VD due to the ignorable noises and well-preserved
edges as shown in the gap of the lateral ventricles located in
the center of the brain.
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TaBLE 3: Comparison between conventional CF and ICF with 4x
acceleration.

Sampling Cost function MAE MSE
VD Conventional CF 2.70 14.92
ICF 2.65 14.30
<PRESS Conventional CF 2.05 11.14
ICF 1.99 10.72

TaBLE 4: Computation time comparison on 2D normal brain with
4x acceleration.

MAE Time (s)

FISTA SISTA ITA
2.3 6.3 41 9.1
2.2 8.8 75 11
2.1 14 137 19

3.4. Reconstruction Algorithm Comparison. Table 4 shows the
comparison of ITA with FISTA and SISTA. ITA is employed
to solve the ICF as formula (6), while FISTA and SISTA
are employed to solve conventional CF as formula (4). As
the iteration runs till the MAE between the reconstruction
and ground-truth image reached predefined value (2.3, 2.2,
and 2.1), the time of FISTA, SISTA, and ITA are recorded.
We found that SISTA converges the most slowly due to its
subband processing property. FISTA converges the fastest.
However, those two methods cannot be applied to solve our
model. The ITA is comparable to FISTA and much faster than
SISTA.

4. Discussion

The ePRESS method was motivated by the idea of energy-
preserving. The high-value energy points in the central part
of k-space correspond to the common features and the low-
value energy points to individual features. The points cor-
responding to common features increase remarkably faster
than those points to individual features during which k-
space data of the references are summed up. Therefore, the
iPDF can be regarded as a map of common features and
the ePRESS can retain high signal-to-noise ratio (SNR) of
the reconstructed CS-MRI because high energy points are
preserved. The individual features of the brains seemingly do
not benefit as much as the common features from the ePRESS
from the point of view of the PDE, as preference of data
selection was given to high energy points. But information of
the individual features is duly included in the selected points
because of the property of Fourier encoding or the relation
between the image and the k-space data. This means that
ePRESS does not introduce extra loss of information for the
individual features.

The above analysis and conclusion are of importance
for the applications of ePRESS. The reference scans used
for the PDF were from healthy subjects and the ePRESS
tends to preserve energy contributed from global or common
features of the brains. Therefore, the ePRESS method is most
suitable for MRI studies of normal appearing brains such
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as those in psychiatric studies. In most cases of occupying
lesions, common features of the brains are still dominant and
the ePRESS method is expected to perform well-preserving
energy and retaining SNR. The advantage of ePRESS may
be slightly compromised, however, when the structure of the
brain severely deviates from normal.

A concern about the ePRESS is whether the size of a head
can affect the performance of the ePRESS. Indeed, the energy
distributions of k-space data will shrink or expand when
the sizes of the brains increase or decrease, according to the
property of Fourier transform. However, our method used
reference images of heads of different sizes, and the common
features of these energy distributions will be preserved in
the sense of statistics. Therefore, small changes in the head
size will not influence the performance of ePRESS. This was
demonstrated by the simulation using Shepp-Logan digital
phantom.

A shortcoming of the ePRESS is that, in some extreme
cases (sampling ratio < 0.1), the number of selected high
frequency points will decrease sharply, and, consequently, the
recovery of high-frequency is not ensured. We note that the
10x acceleration is not practical in most real cases. Should
there be such a need, the factor « in the wPDF should be
increased to sample more high frequency points.

The number of reference k-space datasets is limited by the
size of available images with the same parameters of pulse
sequence. The more reference datasets are used, the more
accurate the PDF map will be. There is no need to adjust the
reference images to the same contrast and position, according
to the shift invariability of DFT.

Our scheme is suitable for 3D scan, in which the random
points are located in the PE plane not the FE direction.
Besides, the proposed method can be revised and used for 2D
scan where only 1 direction is set as PE and the other direction
is set as FE.

Parameter o is an empirical parameter adjusting the
distribution of the wPDE For the 2D phantom, which
contains mostly the piecewise-constant objects, we found o =
0.8 is appropriate. For the 2D realistic brain, which contains
complex textures, we found « = 1.4 is suitable. Besides the
content of the imaging subject, the acceleration factor also
influenced the selection of «. In practice, we used trial-and-
error method to choose the optimal value of «; namely, let
« vary from the lower bound 0.5 to upper bound 2 with
increment as 0.1 and choose the one corresponding to the
best reconstruction quality. How to determine the best value
remains a challenge for the proposed algorithm, but we will
try to solve it in our future research.

The contribution of the paper falls within the following
three points: (1) we designed a new variable sampling method,
ePRESS, based on the energy-preserving concept; (2) we
introduced an improved cost function model as formula (6)
that took into account the phase correction matrix and ROS;
and (3) we proposed an ITA method to solve our ICF model.
In the experiments, we compared them with existing methods
and models using data sets from 2D phantom and in vivo 2D
MR images.

The future research contains the following issues: (1) using
more patients to validate our method; (2) generalizing our
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method to other MR modalities including fMRI, DTI, and
MRSI; (3) comparing haar and bior4.4 with other wavelets
and making a tentative test to include the complex dualtree
wavelet for potential better results; (4) design an automatic
method to choose the optimal decomposition level.

Acronyms
(F)(S)ISTA: (Fast) (subband adaptive) ISTA

(DCEF: (Improved) cost function

(I)DFT: (Inverse) discrete Fourier
transform

CS: Compressed sensing

DWT: Discrete wavelet transform

EPL Echo planar imaging

EPR: Energy preserving ratio

ePRESS:  Energy preserving sampling

FE: Frequency encoding
FOV:

Field of view

ISTA: Iterative shrinkage/thresholding
algorithm

ITA: Iterative thresholding algorithm

MAE: Median absolute error

MRI: Magnetic resonance imaging

MS: Multislice

MSE: Median square error

PE: Phase encoding

RAND: Random sampling

ROS: Region of support

SSEP: Steady state free precession

TR: Repetition time

VD: Variable density.

Highlights

(1) We propose ePRESS sampling method based on energy-
preserving concept; (2) we improve the cost function by
introducing phase correction and region of support matrix,
to accelerate the convergence and alleviate background noise;
(3) to solve the improved cost function, we propose ITA
method that is comparable to FISTA.
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