35 research outputs found

    Real-Time Hand Tracking Using a Sum of Anisotropic Gaussians Model

    Full text link
    Real-time marker-less hand tracking is of increasing importance in human-computer interaction. Robust and accurate tracking of arbitrary hand motion is a challenging problem due to the many degrees of freedom, frequent self-occlusions, fast motions, and uniform skin color. In this paper, we propose a new approach that tracks the full skeleton motion of the hand from multiple RGB cameras in real-time. The main contributions include a new generative tracking method which employs an implicit hand shape representation based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is smooth and analytically differentiable making fast gradient based pose optimization possible. This shape representation, together with a full perspective projection model, enables more accurate hand modeling than a related baseline method from literature. Our method achieves better accuracy than previous methods and runs at 25 fps. We show these improvements both qualitatively and quantitatively on publicly available datasets.Comment: 8 pages, Accepted version of paper published at 3DV 201

    3-D motion recovery via low rank matrix analysis

    Get PDF
    Skeleton tracking is a useful and popular application of Kinect. However, it cannot provide accurate reconstructions for complex motions, especially in the presence of occlusion. This paper proposes a new 3-D motion recovery method based on lowrank matrix analysis to correct invalid or corrupted motions. We address this problem by representing a motion sequence as a matrix, and introducing a convex low-rank matrix recovery model, which fixes erroneous entries and finds the correct low-rank matrix by minimizing nuclear norm and `1-norm of constituent clean motion and error matrices. Experimental results show that our method recovers the corrupted skeleton joints, achieving accurate and smooth reconstructions even for complicated motions

    How much Sample Rate is actually needed? Arm Tracking in Virtual Reality

    Get PDF
    There are plenty of studies dealing with the delays and other relations between head movements and visual response on Virtual Reality setups using head mounted displays. Most of those studies also present some consequences of deviating from those values. Yet, the rest of the human body remains relatively unmapped. In this paper, we present the data found during our research about vision-arm coordination. This data can be used to help build better and more efficient human computer interfaces, especially those that rely on a virtual avatar with a body and have resource restriction like battery or bandwidth. We tested body tracking Sample Rates ranging from 15 Hz up to 120 Hz (corresponding to total latencies ranging from 37 ms to 95.4 ms) and found out no significant user performance differences. We did, however, find that a small percentage of users are, indeed, capable of noticing the changes in Sample Rate. Based on the found results, we advise that, if one is trying to save battery, bandwidth or processor cycles, a low body tracking Sample Rate could be used with no negative effects on user performance.info:eu-repo/semantics/publishedVersio

    Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties

    Full text link
    Model-based approaches to 3D hand tracking have been shown to perform well in a wide range of scenarios. However, they require initialisation and cannot recover easily from tracking failures that occur due to fast hand motions. Data-driven approaches, on the other hand, can quickly deliver a solution, but the results often suffer from lower accuracy or missing anatomical validity compared to those obtained from model-based approaches. In this work we propose a hybrid approach for hand pose estimation from a single depth image. First, a learned regressor is employed to deliver multiple initial hypotheses for the 3D position of each hand joint. Subsequently, the kinematic parameters of a 3D hand model are found by deliberately exploiting the inherent uncertainty of the inferred joint proposals. This way, the method provides anatomically valid and accurate solutions without requiring manual initialisation or suffering from track losses. Quantitative results on several standard datasets demonstrate that the proposed method outperforms state-of-the-art representatives of the model-based, data-driven and hybrid paradigms.Comment: BMVC 2015 (oral); see also http://lrs.icg.tugraz.at/research/hybridhape

    3-D motion recovery via low rank matrix restoration on articulation graphs

    Get PDF
    This paper addresses the challenge of 3-D skeleton recovery by exploiting the spatio-temporal correlations of corrupted 3D skeleton sequences. A skeleton sequence is represented as a matrix. We propose a novel low-rank solution that effectively integrates both a low-rank model for robust skeleton recovery based on temporal coherence, and an articulation-graph-based isometric constraint for spatial coherence, namely consistency of bone lengths. The proposed model is formulated as a constrained optimization problem, which is efficiently solved by the Augmented Lagrangian Method with a Gauss-Newton solver for the subproblem of isometric optimization. Experimental results on the CMU motion capture dataset and a Kinect dataset show that the proposed approach achieves better recovery accuracy over a state-of-the-art method. The proposed method has wide applicability for skeleton tracking devices, such as the Kinect, because these devices cannot provide accurate reconstructions of complex motions, especially in the presence of occlusion

    Anatomical Mirroring: Real-time User-specific Anatomy in Motion Using a Commodity Depth Camera

    Get PDF
    International audienceThis paper presents a mirror-like augmented reality (AR) system to display the internal anatomy of a user. Using a single Microsoft V2.0 Kinect, we animate in real-time a user-specific internal anatomy according to the user’s motion and we superimpose it onto the user’s color map. The user can visualize his anatomy moving as if he was able to look inside his own body in real-time. A new calibration procedure to set up and attach a user-specific anatomy to the Kinect body tracking skeleton is introduced. At calibration time, the bone lengths are estimated using a set of poses. By using Kinect data as input, the practical limitation of skin correspondance in prior work is overcome. The generic 3D anatomical model is attached to the internal anatomy registration skeleton, and warped on the depth image using a novel elastic deformer, subject to a closest-point registration force and anatomical constraints. The noise in Kinect outputs precludes any realistic human display. Therefore, a novel filter to reconstruct plausible motions based onfixed length bones as well as realistic angular degrees of freedom (DOFs) and limits is introduced to enforce anatomical plausibility. Anatomical constraints applied to the Kinect body tracking skeleton joints are used to maximize the physical plausibility of the anatomy motion, while minimizing the distance to the raw data. At run-time,a simulation loop is used to attract the bones towards the raw data, and skinning shaders efficiently drag the resulting anatomy to the user’s tracked motion.Our user-specific internal anatomy model is validated by comparing the skeleton with segmented MRI images. A user study is established to evaluate the believability of the animated anatomy

    Estudio del estado del arte de los métodos de estimación de la pose humana en 3D

    Get PDF
    El modelado 3D basado en cámaras RGBD, como por ejemplo la popular Kinect, es una disciplina de intensa actividad investigadora y cuyos resultados empiezan a consolidarse proporcionando un alto potencial desde el punto de vista de la transferencia investigadora. En este proyecto se plantea el uso de cámaras RGBD (Kinect) para el modelado 3D del cuerpo humano completo. El objetivo es extraer representaciones tridimensionales del cuerpo humano lo más precisas y versátiles posibles para la tecnología planteada. Además se plantea el análisis de la evolución temporal de las representaciones 3D. El estudio persigue múltiples aplicaciones en el campo médico, como pueden ser el análisis del crecimiento de niños o la evolución de pacientes en tratamiento dietético

    VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera

    Full text link
    We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e. it works for outdoor scenes, community videos, and low quality commodity RGB cameras.Comment: Accepted to SIGGRAPH 201

    EventCap: Monocular 3D Capture of High-Speed Human Motions using an Event Camera

    No full text
    The high frame rate is a critical requirement for capturing fast human motions. In this setting, existing markerless image-based methods are constrained by the lighting requirement, the high data bandwidth and the consequent high computation overhead. In this paper, we propose EventCap --- the first approach for 3D capturing of high-speed human motions using a single event camera. Our method combines model-based optimization and CNN-based human pose detection to capture high-frequency motion details and to reduce the drifting in the tracking. As a result, we can capture fast motions at millisecond resolution with significantly higher data efficiency than using high frame rate videos. Experiments on our new event-based fast human motion dataset demonstrate the effectiveness and accuracy of our method, as well as its robustness to challenging lighting conditions
    corecore