6 research outputs found

    Accurate Computations with Collocation and Wronskian Matrices of Jacobi Polynomials

    Get PDF
    In this paper an accurate method to construct the bidiagonal factorization of collocation and Wronskian matrices of Jacobi polynomials is obtained and used to compute with high relative accuracy their eigenvalues, singular values and inverses. The particular cases of collocation and Wronskian matrices of Legendre polynomials, Gegenbauer polynomials, Chebyshev polynomials of the first and second kind and rational Jacobi polynomials are considered. Numerical examples are included. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

    Total positivity and high relative accuracy for several classes of Hankel matrices

    Get PDF
    Gramian matrices with respect to inner products defined for Hilbert spaces supported on bounded and unbounded intervals are represented through a bidiagonal factorization. It is proved that the considered matrices are strictly totally positive Hankel matrices and their catalecticant determinants are also calculated. Using the proposed representation, the numerical resolution of linear algebra problems with these matrices can be achieved to high relative accuracy. Numerical experiments are provided, and they illustrate the excellent results obtained when applying the theoretical results

    Accurate and efficient computations with Wronskian matrices of Bernstein and related bases

    Get PDF
    In this article, we provide a bidiagonal decomposition of the Wronskian matrices of Bernstein bases of polynomials and other related bases such as the Bernstein basis of negative degree or the negative binomial basis. The mentioned bidiagonal decompositions are used to achieve algebraic computations with high relative accuracy for these Wronskian matrices. The numerical experiments illustrate the accuracy obtained using the proposed decomposition when computing inverse matrices, eigenvalues or singular values, and the solution of some related linear systems. © 2021 John Wiley & Sons Ltd

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Positioning Control System for a Large Range 2D Platform with Submicrometre Accuracy for Metrological and Manufacturing Applications

    Get PDF
    The importance of nanotechnology in the world of Science and Technology has rapidly increased over recent decades, demanding positioning systems capable of providing accurate positioning in large working ranges. In this line of research, a nanopositioning platform, the NanoPla, has been developed at the University of Zaragoza. The NanoPla has a large working range of 50 mm × 50 mm and submicrometre accuracy. The NanoPla actuators are four Halbach linear motors and it implements planar motion. In addition, a 2D plane mirror laser interferometer system works as positioning sensor. One of the targets of the NanoPla is to implement commercial devices when possible. Therefore, a commercial control hardware designed for generic three phase motors has been selected to control and drive the Halbach linear motors.This thesis develops 2D positioning control strategy for large range accurate positioning systems and implements it in the NanoPla. The developed control system coordinates the performance of the four Halbach linear motors and integrates the 2D laser system positioning feedback. In order to improve the positioning accuracy, a self calibration procedure for the characterisation of the geometrical errors of the 2D laser system is proposed. The contributors to the final NanoPla positioning errors are analysed and the final positioning uncertainty (k=2) of the 2D control system is calculated to be ±0.5 µm. The resultant uncertainty is much lower than the NanoPla required positioning accuracy, broadening its applicability scope.<br /
    corecore