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Summary
Gramian matrices with respect to inner products defined for Hilbert spaces
supported on bounded and unbounded intervals are represented through a bidi-
agonal factorization. It is proved that the considered matrices are strictly totally
positive Hankel matrices and their catalecticant determinants are also calcu-
lated. Using the proposed representation, the numerical resolution of linear
algebra problems with these matrices can be achieved to high relative accuracy.
Numerical experiments are provided, and they illustrate the excellent results
obtained when applying the theoretical results.
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1 INTRODUCTION

A Hankel matrix (also called catalecticant matrix) is a square matrix, in which each ascending skew-diagonal from left
to right is constant. Under certain conditions, Hankel matrices are strictly totally positive, that is, all their minors are
positive (cf. sect. 4.6 of Reference 1). The determinant of a Hankel matrix is called Hankel (or catalecticant) determinant.
Hankel determinants have important applications in random matrix theory. In Reference 2, Hankel determinants of mass
matrices A = (ai,j)1≤i,j≤n+1, with

ai,j =
∫

∞

0
ti+j−2u(t) dt,

are computed asymptotically for weight functions u(t) supported in a semi-infinite interval. For finite intervals, this type
of Hankel determinants have been considered in References 3,4.

In Numerical Linear Algebra, Hilbert matrices

Hn =
(

1
i + j − 1

)
1≤i,j≤n

, n ∈ N,
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are well-known Hankel matrices. Their inverses and determinants have explicit formulas, however they are very
ill-conditioned for moderate values of their dimension. Therefore, they can be used to test numerical algorithms and see
how they perform on ill-conditioned or nearly singular matrices. The determinant of the n × n Hilbert matrix Hn is

det Hn =
p4

n

p2n
, pn ∶=

n−1∏
k=1

k!,

(see Reference 5) which goes to zero very quickly as the dimension n increases. In fact, the determinant of Hn is practically
zero for n > 5 and then, most numerical algorithms would conclude that Hn is singular.

Hilbert matrices can be considered as Gramian (mass) matrices of polynomial monomial bases on [0, 1] and belong
to the class of totally positive matrices, whose minors are nonnegative (see References 6,7). Totally positive matrices
can be expressed in terms of bidiagonal matrices (see References 8,9). As we shall see in this paper, the mentioned
factorization provides an explicit expression for the determinant of totally positive matrices. Furthermore, in Refer-
ences 6,7, this factorization is used to obtain an appropriated representation of Hilbert matrices allowing to derive
algorithms to high relative accuracy for the resolution of relevant linear algebra problems, such as the computation
of their singular values or inverses. Excellent results have also been obtained when dealing with Gramian matrices of
other bases, such as Poisson and Bernstein bases on the interval [0, 1] and bases {tie𝜆t} (see References 10, 11 and 7,
respectively).

During the last years, the design of algorithms adapted to the structure of totally positive matrices, allowing the accu-
rate resolution of linear algebra problems independently of their classical condition numbers has attracted the interest of
many researchers (see References 7,10–30). It is very important to achieve algorithms to high relative accuracy because
their relative errors will have the order of the machine precision and will not be drastically affected by the dimension
or conditioning of the considered matrices. It is well known that algorithms avoiding inaccurate cancelations, that is,
requiring the computation of multiplications, divisions, additions of numbers with the same sign, can be performed to
high relative accuracy (see p. 52 in Reference 17). Moreover, if the floating-point arithmetic is well-implemented the
subtraction of initial data can also be allowed without losing high relative accuracy (see p. 53 in Reference 17).

This paper provides many examples of strictly totally positive Hankel matrices and catalecticant determinants. In turn,
these matrices can lead to new strictly totally positive matrices, since in addition to the ordinary product (see theorem
3.1 of Reference 31) the Hadamard product of strictly totally positive Hankel matrices is also a strictly totally positive
Hankel matrix (cf. sect. 4.10 of Reference 1). In particular, Gramian matrices of several polynomial and exponential bases
with respect to inner products supported on bounded and unbounded intervals are considered. By means of Neville elim-
ination, their total positivity is analyzed and a bidiagonal factorization of the considered matrices and their inverses is
derived. Let us observe that the bidiagonal factorization of Gramian matrices can be considered for the accurate resolu-
tion of the linear system of normal equations when approximating in the least-squares sense. On the other hand, many
degree reduction methods also require an inversion of these matrices, and they will become more efficient if the matrix
inverses are explicitly expressed.

In order to make this paper as self-contained as possible, Section 2 recalls basic concepts and results on total pos-
itivity, Neville elimination and high relative accuracy that will be crucial to derive factorizations and procedures to
achieve computations to high relative accuracy with the considered Gramian matrices. Section 3 focuses on Gramian
matrices of monomial bases with respect to several inner products defined on compact intervals. On the other hand,
Section 4 deals with fundamental solution sets of differential equations and inner products defined for Hilbert spaces
on unbounded intervals. Gramian matrices of even power bases are also analyzed in Section 5. Finally, the performed
numerical experimentation is illustrated in Section 6.

2 BASIC ASPECTS ON TOTAL POSITIVITY, NEVILLE ELIMINATION AND
HIGH RELATIVE ACCURACY

Let us suppose that U is an (n + 1)-dimensional Hilbert space of functions under an inner product ⟨⋅, ⋅⟩. Given linearly
independent functions v0, … , vn in U, the corresponding Gramian matrix is the symmetric matrix G =

(
gi,j

)
1≤i,j≤n+1 with

gi,j ∶= ⟨vi−1, vj−1⟩, 1 ≤ i, j ≤ n + 1.
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A real value y ≠ 0 is said to be computed to high relative accuracy (HRA) whenever the obtained ỹ satisfies

|y − ỹ|
|y| < ku,

where u is the unit round-off (or machine precision) and k > 0 is a constant, which does not depend on the arithmetic
precision.

As explained in the Introduction, bidiagonal factorizations are very useful to achieve computations to high relative
accuracy with totally positive matrices. As we are going to see, the Neville elimination provides a representation of this
class of matrices that can lead to algorithms with high relative accuracy for the computation of their eigenvalues, singular
values or inverses (cf. References 8,9,32).

The essence of the Neville elimination procedure is to make zeros in a column of a given matrix A ∈ R(n+1)×(n+1) by
adding to each row an appropriate multiple of the previous one. In every major step, the Neville elimination calculates a
matrix A(k+1), k = 1, 2, … ,n, from the matrix A(k), previously obtained, with A(1) ∶= A. In more detail, A(k+1) is computed
from A(k) according to the following formula

a(k+1)
i,j ∶=

⎧⎪⎪⎨⎪⎪⎩

a(k)i,j , if 1 ≤ i ≤ k,

a(k)i,j −
a(k)i,k

a(k)i−1,k

a(k)i−1,j, if k + 1 ≤ i, j ≤ n + 1, and a(k)i−1,j ≠ 0,

a(k)i,j , if k + 1 ≤ i ≤ n + 1, and a(k)i−1,k = 0.

(1)

The process finishes when U ∶= A(n+1) is an upper triangular matrix. The entry

pi,j ∶= a(j)i,j , 1 ≤ j ≤ i ≤ n + 1, (2)

is the (i, j) pivot and pi,i is called the i-th diagonal pivot of the Neville elimination of A. If all the pivots are nonzero, they
can be expressed, in terms of minors with consecutive columns, as follows:

pi,1 = ai,1, 1 < i ≤ n + 1,

pi,j =
detA[i − j + 1, … , i|1, … , j]

detA[i − j + 1, … , i − 1|1, … , j − 1]
, 1 < j ≤ i ≤ n + 1,

(see lemma 2.6 of Reference 32). The Neville elimination of A can be done without row exchanges if all the pivots are
nonzero. Then, the value

mi,j ∶= a(j)i,j∕a(j)i−1,j = pi,j∕pi−1,j, 1 ≤ j < i ≤ n + 1, (3)

is called the (i, j) multiplier.
The complete Neville elimination of A consists of performing the Neville elimination to obtain the upper triangular

matrix U = A(n+1) and next, the Neville elimination of the lower triangular matrix UT .
A matrix is said to be totally positive or TP if all its minors are nonnegative and strictly totally positive or STP if all its

minors are positive (see Reference 31). A given matrix A is STP (resp. nonsingular TP) if and only if its complete Neville
elimination can be performed without row and column exchanges, the multipliers of the Neville elimination of A and
AT are positive (resp. nonnegative), and the diagonal pivots of the Neville elimination of A are positive (see theorem 4.1,
corollary 5.5 of Reference 32 and the arguments of p. 116 of Reference 9).

In Reference 9, it is shown that a nonsingular totally positive matrix A ∈ R(n+1)×(n+1) can be decomposed as follows,

A = FnFn−1 · · ·F1DG1G2 · · ·Gn, (4)

where Fi ∈ R(n+1)×(n+1) (respectively, Gi ∈ R(n+1)×(n+1)), i = 1, … ,n, are the totally positive, lower (respectively, upper)
triangular bidiagonal matrices of the following form
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Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
⋱

1
mi+1,1 1

⋱ ⋱

mn+1,n+1−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, GT
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
⋱

1
m̃i+1,1 1

⋱ ⋱

m̃n+1,n+1−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

and D is a diagonal matrix whose diagonal entries are pi,i > 0, i = 1, … ,n + 1. The diagonal elements pi,i are the diagonal
pivots of the Neville elimination of A. Moreover, the elements mi,j and m̃i,j are the multipliers of the Neville elimination
of A and AT , respectively.

The transpose of A is also totally positive and, using the factorization (4), can be written as follows

AT = GT
n GT

n−1 · · ·G
T
1 DFT

1 FT
2 · · ·F

T
n .

If, in addition, A is symmetric, then we can deduce that Gi = FT
i , i = 1, … ,n, and then

A = FnFn−1 · · ·F1DFT
1 FT

2 · · ·F
T
n . (6)

Using theorem 2.2 of Reference 28, the inverse matrix A−1 can also be factorized as product of bidiagonal matrices,

A−1 = ̂G1̂G2 · · · ̂GnD−1
̂Fn̂Fn−1 · · · ̂F1, (7)

where ̂Fi ∈ R(n+1)×(n+1) (respectively, ̂Gi ∈ R(n+1)×(n+1)), i = 1, … ,n, are the lower (respectively, upper) triangular bidiag-
onal matrices whose off-diagonal entries can also be obtained from the multipliers mi,j and m̃i,j of the Neville elimination
as follows

̂Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
⋱

1
−mi+1,i 1

⋱ ⋱

−mn+1,i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
̂GT

i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
⋱

1
−m̃i+1,i 1

⋱ ⋱

−m̃n+1,i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Under certain conditions, the factorizations (4) and (7) are unique and in Reference 12 more general classes of matri-
ces admitting this bidiagonal factorization were obtained. Moreover, the previous bidiagonal decompositions can be
represented in a compact matricial form by means of BD(A) = (BD(A)i,j)1≤i,j≤n+1, with

BD(A)i,j ∶=
⎧⎪⎨⎪⎩

mi,j, if i > j,
pi,i, if i = j,
m̃j,i, if i < j,

(9)

(see Reference 19).
If BD(A) can be obtained to high relative accuracy, then the MATLAB functions TNEigenValues, TNSingular-

Values, TNInverseExpand and TNSolve available in the software library TNTool in Reference 33 take as input
argument BD(A) and compute to high relative accuracy the eigenvalues and singular values of A, the inverse matrix
A−1 (using the algorithm presented in Reference 28) and even the solution of linear systems Ax = b, for vectors b with
alternating signs.

The following auxiliary result can easily be proved and will be useful in next sections.
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Lemma 1. Let 𝛼 > 0 and A ∈ R(n+1)×(n+1) be a nonsingular totally positive matrix whose factorization (4) is

A = FnFn−1 · · ·F1DG1G2 · · ·Gn.

Then, the factorization (4) of the scaled matrix Ã ∶= 𝛼A is

̃A = FnFn−1 · · ·F1̃DG1G2 · · ·Gn,

where ̃D = 𝛼D. Then

BD(̃A)i,j ∶=

{
BD(A)i,j, if i ≠ j,
𝛼BD(A)i,i, if i = j,

(10)

Proof. The result follows taking into account that 𝛼Fi = Fi𝛼, i = 1, … ,n. ▪

Let us notice that, taking into account the diagonal and bidiagonal structure of the matrix factors in (4), the deter-
minant of nonsingular totally positive matrices can be expressed as the product of the diagonal pivots of their Neville
elimination. This fact is stated in the following result that we shall use in forthcoming sections to derive Hankel (or
catalecticant) determinants.

Lemma 2. Let A ∈ R(n+1)×(n+1) be a nonsingular totally positive matrix. Then,

det A =
n+1∏
i=1

pi,i, (11)

where pi,i are the diagonal pivots of the Neville elimination of A given by (2).

Proof. Let A = Fn · · ·F1DG1 · · ·Gn the factorization (4) of A. Since det Gi = det Fi = 1, i = 1, … ,n, we have
det A = det D =

∏n+1
i=1 pi,i. ▪

In the following sections we are going to use the following generalization of combinatorial numbers. Given 𝛼 ∈ R and
n ∈ N,

(
𝛼

n

)
∶= 𝛼(𝛼 − 1) · · · (𝛼 − n + 1)

n!
,

(
𝛼

𝛼 − n

)
∶=

(
𝛼

n

)
. (12)

It can be checked that these combinatorial numbers satisfy the following useful identities

𝛼

n

(
𝛼 − 1
n − 1

)
=
(
𝛼

n

)
,

𝛼 − n
n

(
𝛼 − 1
n − 1

)
=
(
𝛼 − 1

n

)
,

𝛼

𝛼 − n + 1

(
𝛼 − 1
n − 1

)
=
(

𝛼

n − 1

)
. (13)

3 GRAMIAN MATRICES OF MONOMIAL BASES ON COMPACT
INTERVALS

Let Pn(I) be the (n + 1)-dimensional linear space formed by all polynomials in the variable t defined on a real interval
I and whose degree is not greater than n, that is, Pn(I) ∶= span{1, t, … , tn}, t ∈ I. It is well known that Pn([0, 1]) is a
Hilbert space under the inner product

⟨p, q⟩ ∶=
∫

1

0
p(t)q(t) dt. (14)

The (n + 1) × (n + 1) Gramian matrix of the power basis (1, … , tn) with respect to (14) is:

Hn+1 ∶=
(
∫

1

0
ti+j−2 dt

)
1≤i,j≤n+1

=
(

1
i + j − 1

)
1≤i,j≤n+1

. (15)
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The matrix Hn+1 is called Hilbert matrix. Note that Hn+1 = (Hi,j)1≤i,j≤n+1 is a Hankel matrix because it has constant values
along its antidiagonals, that is,

Hi,j = Hi+k,j−k, k = 1, … , j − i, i < j.

It is well known that Hilbert matrices are strictly totally positive. The factorization (4) of Hn+1 can be accurately computed
in O(n2) time (see formulae (3.6) of sect. 3 of Reference 19). Moreover, in Reference 7, the pivots and the multipliers of
the Neville elimination of Hn+1 are explicitly derived.

In this section we shall generalize Hilbert matrices, by considering Gramian matrices of monomial bases (1, … , tn),
n ∈ N, with respect to more general inner products defined on compact intervals.

First, let us generalize (14) by introducing a Chebyshev-type weight w(t) = ta(1 − t)b as follows

⟨u, v⟩a,b ∶=
∫

1

0
ta(1 − t)bu(t)v(t) dt. (16)

For any a, b > −1, Pn([0, 1]) is a Hilbert space under the inner product (16). The Gramian matrix of (1, … , tn)with respect
to (16) is the symmetric matrix G(a,b)

n = (G(a,b)
i,j )1≤i,j≤n+1, such that

G(a,b)
i,j ∶=

∫

1

0
ta+i+j−2(1 − t)b dt = 𝛽(a + i + j − 1, b + 1), 1 ≤ i, j ≤ n + 1, (17)

where 𝛽 is the well-known Euler Beta function. We shall say that the matrix (17) is a Chebyshev Gramian matrix. Note
that G(a,b)

n is a Hankel matrix.
The following result provides explicit expressions for the diagonal pivots and multipliers of the Neville elimination

of the Chebyshev Gramian matrices and then, their bidiagonal factorization (4). As a consequence, the analysis of their
total positivity will also be performed.

Theorem 1. For any a, b > −1, the diagonal pivots and multipliers of the Neville elimination of the Chebyshev
Gramian matrix G(a,b)

n in (17) satisfy

p1,1 = 𝛽(a + 1, b + 1), pi+1,i+1 =
i(a + i)(b + i)(a + b + i)

(a + b + 2i)2(a + b + 2i − 1)(a + b + 2i + 1)
pi,i, 1 ≤ i ≤ n. (18)

mi,j = m̃i,j =
(a + i − 1)(a + b + i − 1)

(a + b + i + j − 1)(a + b + i + j − 2)
, 1 ≤ j < i ≤ n + 1. (19)

Proof. Let G(k) = (G(k)
i,j )1≤i,j≤n+1, k = 1, … ,n + 1, be the matrices obtained after k − 1 steps of the Neville

elimination of G(a,b)
n , with G(1) ∶= G(a,b)

n . We are going to see that

G(k)
i,j =

(
j−1
k−1

)
(

a+b+i+k−2
k−1

)𝛽(a + i + j − k, b + k), 1 ≤ i, j ≤ n + 1, (20)

by induction on k and considering the generalization of combinatorial numbers (12). For k = 1, equality (20)
is deduced from (17). Now, let us suppose that (20) holds for some k ∈ {1, … ,n}. Then, taking into account
the following properties of Euler Gamma and Beta functions

𝛽(x, y) =
Γ(x)Γ(y)
Γ(x + y)

, Γ(x + 1) = xΓ(x), (21)

we can write

G(k)
i,k

G(k)
i−1,k

= (a + i − 1)(a + b + i − 1)
(a + b + i + k − 1)(a + b + i + k − 2)

.
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Note that G(k+1)
i,j is obtained as explained in (1) and then,

G(k+1)
i,j = G(k)

i,j −
(a + i − 1)(a + b + i − 1)

(a + b + i + k − 1)(a + b + i + k − 2)
G(k)

i−1,j. (22)

Now, defining

̃G(k+1)
i,j ∶=

(
a+b+i+k−2

k−1

)
(

j−1
k−1

) G(k+1)
i,j ,

and using (13), (20), (21) and (22), the following identities are obtained

̃G(k+1)
i,j = 𝛽(a + i + j − k − 1, b + k)

(
a + i + j − k − 1
a + b + i + j − 1

− a + i − 1
a + b + i + k − 1

)

= 𝛽(a + i + j − k − 1, b + k)
(b + k)(j − k)

(a + b + i + j − 1)(a + b + i + k − 1)

=
(j − k)

(a + b + i + k − 1)
𝛽(a + i + j − k − 1, b + k + 1)

and, finally,

G(k+1)
i,j =

(
j−1

k

)
(

a+b+i+k−1
k

)𝛽(a + i + j − k − 1, b + k + 1), (23)

confirming formula (20) for k + 1.
By (2) and (20), the pivots pi,j of the Neville elimination of G(a,b)

n satisfy

pi,j = G(j)
i,j =

1(
a+b+i+j−2

j−1

)𝛽(a + i, b + j), 1 ≤ j ≤ i ≤ n + 1, (24)

and, for i = j, we have

pi,i =
1(

a+b+2i−2
i−1

)𝛽(a + i, b + i), i = 1, … ,n + 1. (25)

Using (25), it can be checked that

p1,1 = 𝛽(a + 1, b + 1),
pi+1,i+1

pi,i
= i(a + i)(b + i)(a + b + i)
(a + b + 2i)2(a + b + 2i − 1)(a + b + 2i + 1)

, i = 1, … ,n,

and so, (18) is confirmed.
Finally, using (3) and (24), the multipliers of the Neville elimination can be written as in (19). Taking into

account that G(a,b)
n is a symmetric matrix, we conclude that m̃i,j = mi,j, 1 ≤ j < i ≤ n + 1 (see (6)). ▪

Taking into account formula (25) for the diagonal pivots, we can derive an explicit expression for the Hankel
determinant det G(a,b)

n .

Corollary 1. Let a, b > −1 and G(a,b)
n be the Chebyshev Gramian matrix in (17). Then

det G(a,b)
n =

n+1∏
i=1

𝛽(a + i, b + i)(
a+b+2i−2

i−1

) .
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8 of 21 MAINAR et al.

Furthermore, a simple inspection of the sign of the pivots and multipliers of the Neville elimination given in
Theorem 1, provides the values of a and b guaranteeing the total positivity of Chebyshev Gramian matrices (see
Section 2). In addition, (18) can be used in order to find the following sufficient conditions for obtaining the bidiagonal
decompositions (and so, the remaining linear algebra calculations) to high relative accuracy.

Corollary 2. For any a, b > −1 such that a + b > −1, the Chebyshev Gramian matrix G(a,b)
n in (17) is STP. In

addition, if Γ(a + 1), Γ(b + 1) and Γ(a + b + 2) can be evaluated to high relative accuracy, then G(a,b)
n and its

inverse matrix can also be computed to high relative accuracy.

Given a compact interval I = [t0, t1], we can also consider the basis (1, t − t0, … , (t − t0)n) of Pn(I). The following result
generalizes Theorem 1, deriving the bidiagonal factorization (4) of the Gramian matrix of this basis, with respect to the
inner product defined by

⟨u, v⟩a,b ∶=
∫

t1

t0

(t − t0)a(t1 − t)bu(t)v(t) dt, (26)

with a, b > −1 to guarantee integrability.

Theorem 2. The diagonal pivots and multipliers of the Neville elimination of the Gramian matrix ̃G(a,b)
n of the

basis (1, t − t0, … , (t − t0)n) with respect to the inner product (26) satisfy

p1,1 = (t1 − t0)a+b+1
𝛽(a + 1, b + 1),

pi+1,i+1 = (t1 − t0)2
i(a + i)(b + i)(a + b + i)

(a + b + 2i)2(a + b + 2i − 1)(a + b + 2i + 1)
pi,i, 1 ≤ i ≤ n,

mi,j = m̃i,j = (t1 − t0)
(a + i − 1)(a + b + i − 1)

(a + b + i + j − 1)(a + b + i + j − 2)
, 1 ≤ j < i ≤ n + 1.

Given a, b > −1 such that a + b > −2, ̃G(a,b)
n is STP. If, in addition, Γ(a + 1), Γ(b + 1) and Γ(a + b + 2) can be

evaluated to high relative accuracy, then ̃G(a,b)
n , its inverse matrix and their respective bidiagonal decompositions

can also be computed to high relative accuracy.

Proof. Using the change of variable t = (𝜏 − t0)∕(t1 − t0), we can write

̃G(a,b)
i,j =

∫

t1

t0

(𝜏 − t0)i+j+a−2(t1 − 𝜏)b d𝜏 = (t1 − t0)i+j+a+b−1
∫

1

0
ti+j+a−2(1 − t)b dt

= (t1 − t0)i+j+a+b−1G(a,b)
i,j , 1 ≤ i, j ≤ n + 1, (27)

where ̃G(a,b)
n = (̃G(a,b)

i,j )1≤i,j≤n+1 and G(a,b)
n = (G(a,b)

i,j )1≤i,j≤n+1 is the Gramian matrix (17). Then

̃G(a,b)
i,j = (t1 − t0)i+j+a+b−1G(a,b)

i,j (28)

Since (t1 − t0)i+j+a+b−1
> 0 and, under the considered conditions, G(a,b)

n is strictly totally positive (see Corol-
lary 2), we conclude that ̃G(a,b)

n is also a strictly totally positive matrix. Taking into account formulae (25) and
(19) for the diagonal pivots and multipliers of the Neville elimination of G(a,b)

n , we deduce from Lemma 1
that the entries of BD(̃G(a,b)

n ) are described by (27). Analyzing the sign of the entries of BD(̃G(a,b)
n ), the

result follows. ▪

By Theorem 2, the decomposition (4) of ̃G(a,b)
n and (7) of (̃G(a,b)

n )−1, can be stored by means of BD(̃G(a,b)
n ) =

(BD(̃G(a,b)
n )i,j)1≤i,j≤n+1, with

BD(̃G(a,b)
n )i,j ∶=

⎧⎪⎪⎨⎪⎪⎩

(t1 − t0) (a+i−1)(a+b+i−1)
(a+b+i+j−1)(a+b+i+j−2)

, if i > j,

(t1 − t0)a+b+2i−1 1(
a+b+2i−2

i−1

)𝛽(a + i, b + i), if i = j,

(t1 − t0) (a+j−1)(a+b+j−1)
(a+b+i+j−1)(a+b+i+j−2)

, if i < j.

(29)
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MAINAR et al. 9 of 21

4 GRAMIAN MATRICES ON UNBOUNDED INTERVALS

In this section, we are going to consider the system of functions

(e𝜆t
, te𝜆t

, … , tne𝜆t), 𝜆 ∈ R, (30)

which forms a fundamental solution set of the differential equation

y(n) + an−1y(n−1) + · · · + a1y′ + a0y = 0,

with the characteristic equation F(t) = (t − 𝜆)n = 0. Clearly, the basis (30) becomes the polynomial monomial basis for 𝜆 =
0. In Reference 34, the relevance and interesting applications to spectral and Lyapunov stability theory of their Wronskian
and Gramian matrices is illustrated. In Reference 7, it is shown that for 𝜆 < 0 the Gramian matrix of (30) with respect to
the inner product

⟨f , g⟩ ∶=
∫

+∞

0
f (t)g(t) dt, (31)

is strictly totally positive and its bidiagonal factorization (4) is obtained.
In this section we shall consider the more general inner product obtained with generalized Laguerre weights w(t) =

tae−t,

⟨u, v⟩a ∶=
∫

∞

0
tae−tu(t)v(t) dt, a > −1. (32)

For 𝜆 < 1∕2, the Gramian matrix of the basis (30) with respect to (32) is the symmetric matrix G(a,𝜆)
n =

(
G(a,𝜆)

i,j

)
1≤i,j≤n+1

with

G(a,𝜆)
i,j ∶= ⟨ti−1e𝜆t

, tj−1e𝜆t⟩ =
∫

+∞

0
ta+i+j−2e(2𝜆−1)t dt,

for 1 ≤ i, j ≤ n + 1. By means of the change of variable 𝜏 ∶= −(2𝜆 − 1)t, we have

G(a,𝜆)
i,j =

∫

+∞

0
ta+i+j−2e(2𝜆−1)t dt = 1

(1 − 2𝜆)a+i+j−1∫

+∞

0
𝜏

a+i+j−2e−𝜏 dt = 1
(1 − 2𝜆)a+i+j−1Γ(a + i + j − 1). (33)

Clearly, G(a,𝜆)
n is a Hankel matrix. We shall say that G(a,𝜆)

n is a Laguerre Gramian matrix.
The following result derives the pivots and multipliers of the Neville elimination of the Laguerre Gramian matrix

G(a,𝜆)
n and then, its bidiagonal factorization (4).

Theorem 3. Given a > −1 and 𝜆 < 1∕2, the diagonal pivots and multipliers of the Neville elimination of the
Laguerre Gramian matrix G(a,𝜆)

n described by (33) satisfy

p1,1 =
1

(1 − 2𝜆)a+1Γ(a + 1), pi+1,i+1 =
i(a + i)
(1 − 2𝜆)2

pi,i, 1 ≤ i ≤ n, (34)

mi,j = m̃i,j =
a + i − 1
1 − 2𝜆

, 1 ≤ j < i ≤ n + 1. (35)

Proof. Let G(k) = (G(k)
i,j )1≤i,j≤n+1, k = 1, … ,n + 1, be the matrices obtained after k − 1 steps of the Neville

elimination of G(a,𝜆)
n , with G(1) ∶= G(a,𝜆)

n . By induction on k, we are going to see that

G(k)
i,j = (k − 1)!

(
j − 1
k − 1

)
Γ(a + i + j − k)
(1 − 2𝜆)a+i+j−1 , 1 ≤ i, j ≤ n + 1. (36)
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10 of 21 MAINAR et al.

By (33), equality (36) readily follows for k = 1. Now, assuming that (36) holds for some k ∈ {1, … ,n} and
taking into account that Γ(x + 1) = xΓ(x), we can write

G(k)
i,k

G(k)
i−1,k

= 1
1 − 2𝜆

Γ(a + i)
Γ(a + i − 1)

= a + i − 1
1 − 2𝜆

. (37)

The element G(k+1)
i,j is obtained as explained in (1). Then, defining

̃G(k+1)
i,j ∶= (1 − 2𝜆)a+i+j−1

(k − 1)!
(

j−1
k−1

)G(k+1)
i,j ,

and using (21), (37) and (36), we can write

̃G(k+1)
i,j = Γ(a + i + j − k) − (a + i − 1)Γ(a + i + j − k − 1) = (j − k)Γ(a + i + j − k − 1),

and, finally,

G(k+1)
i,j = k!

(
j − 1

k

)
Γ(a + i + j − k − 1)
(1 − 2𝜆)a+i+j−1 ,

which corresponds to formula (36) for k + 1.
Now, by (2) and (36), the pivots pi,j of the Neville elimination of G(a,𝜆)

n satisfy

pi,j = G(j)
i,j = (j − 1)! Γ(a + i)

(1 − 2𝜆)a+i+j−1 , (38)

for 1 ≤ j ≤ i ≤ n + 1. The diagonal pivots are obtained for i = j,

pi,i = (i − 1)! Γ(a + i)
(1 − 2𝜆)a+2i−1 , 1 ≤ i ≤ n + 1. (39)

Then, it can easily be checked that

p1,1 =
Γ(a + 1)
(1 − 2𝜆)a+1 ,

pi+1,i+1

pi,i
= i!
(i − 1)!

1
(1 − 2𝜆)2

Γ(a + i + 1)
Γ(a + i)

= i(a + i)
(1 − 2𝜆)2

,

for i = 1, … ,n and so, (34) holds. Finally, using (3) and (38), the multipliers mi,j, 1 ≤ j < i ≤ n + 1, can be
written as

mi,j =
pi,j

pi−1,j
= Γ(a + i)
(1 − 2𝜆)Γ(a + i − 1)

= a + i − 1
1 − 2𝜆

.

Taking into account the symmetry of the Gramian G(a,𝜆)
n , we conclude that m̃i,j = mi,j, 1 ≤ j < i ≤ n + 1. ▪

As a consequence of Theorem 3, and taking into account formula (39) for the diagonal pivots of the Neville elimination,
we can derive an explicit expression for the Hankel determinant det G(a,𝜆)

n .

Corollary 3. Let G(a,𝜆)
n the Laguerre Gramian matrix in (33) for a > −1 and 𝜆 < 1∕2. Then

det G(a,𝜆)
n =

n+1∏
i=1
(i − 1)! Γ(a + i)

(1 − 2𝜆)a+2i−1 .

Using Theorem 3, the decomposition (4) of G(a,𝜆)
n as well as the decomposition (7) of (G(a,𝜆)

n )−1, can be represented
through BD(G(a,𝜆)

n ) = (BD(G(a,𝜆)
n )i,j)1≤i,j≤n+1 such that
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MAINAR et al. 11 of 21

BD(G(a,𝜆)
n )i,j ∶=

⎧⎪⎨⎪⎩

a+i−1
1−2𝜆

, if i > j,
(i − 1)! Γ(a+i)

(1−2𝜆)a+2i−1 , if i = j,
a+j−1
1−2𝜆

, if i < j.

(40)

Let us observe that the matrix BD(G(0,𝜆)
n ) provides the bidiagonal factorization of the Gramian matrices of the monomial

basis (1, t, … , tn), with respect to the Laguerre inner product (32).
The total positivity of Laguerre Gramian matrices G(a,𝜆)

n can be derived by analysing the sign of the entries of BD(G(a,𝜆)
n ).

Corollary 4. For any a > −1 and 𝜆 < 1∕2, the Laguerre Gramian matrix G(a,𝜆)
n in (33) is STP. If, in addition,

Γ(a + 1) can be evaluated to high relative accuracy, then G(a,𝜆)
n and its inverse matrix can also be computed to

high relative accuracy.

Finally, we are going to consider Hermite weights w(t) = e−t2 . The polynomial space Pn(R) is a Hilbert space under
the inner product

⟨u, v⟩H ∶=
∫

∞

−∞
e−t2 u(t)v(t) dt. (41)

The Gramian matrix of (1, t, … , tn) with respect (41) is GH = (Gi,j)1≤i,j≤n+1 with

Gi,j ∶= ⟨ti−1
, tj−1⟩H =

∫

∞

−∞
ti+j−2e−t2 dt, 1 ≤ i, j ≤ n + 1. (42)

We shall say that G in (42) is a Hermite Gramian matrix. The following result proves these matrices are not TP.

Theorem 4. For n ≥ 2, the Hermite Gramian matrix (42) is not TP.

Proof. It can easily be checked that

Gi,j =
∫

∞

−∞
ti+j−2e−t2 dt =

{
0, if i + j is odd,
> 0, if i + j is even.

(43)

Consequently, det G[2, 3|1, 2] = G2,1G3,2 − G3,1G2,2 = −G3,1G2,2 = −G2
3,1 < 0. ▪

5 GRAMIAN MATRICES OF MONOMIAL BASES OF EVEN DEGREE

In this section we shall consider the basis (1, t2
, … , t2n) of the (n + 1)-dimensional space ̃P

2n
of even polynomials of degree

not greater than 2n in the variable t. This space is a Hilbert space under the following Chebyshev-type inner product,

⟨u, v⟩a,b ∶=
∫

1

0
t2a(1 − t2)bu(t)v(t) dt, a > −1∕2, b > −1. (44)

In order to deduce the expression of the entries of the Gramian matrix Ga,b
n of the even power basis (1, t2

, … , t2n)with
respect (44), let us first observe that

2
∫

1

0
t2a+2i+2j−4(1 − t2)b dt =

∫

1

0
𝜏

a+i+j−5∕2(1 − 𝜏)b d𝜏 = 𝛽(a + i + j − 3∕2, b + 1). (45)

Consequently, we have:

Ga,b
n ∶= 1

2
(𝛽(a + i + j − 3∕2, b + 1))1≤i,j≤n+1. (46)

Clearly, Ga,b
n is a Hankel matrix. In the following result the pivots and multipliers of its Neville elimination are derived.
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12 of 21 MAINAR et al.

Theorem 5. The diagonal pivots and multipliers of the Neville elimination of the Gramian matrix Ga,b
n in (46)

satisfy

p1,1 =
1
2
𝛽

(
a + 1

2
, b + 1

)
,

pi+1,i+1 =
i(a + i − 1∕2)(a + b + i − 1∕2)(b + i)

(a + b + 2i − 3∕2)(a + b + 2i − 1∕2)2(a + b + 2i + 1∕2)
pi,i, i = 1, … ,n,

(47)

mi,j = m̃i,j =
(2a + 2i − 3)(2a + 2b + 2i − 3)

(2a + 2b + 2i + 2j − 3)(2a + 2b + 2i + 2j − 5)
, 1 ≤ j < i ≤ n + 1. (48)

Proof. Let G(k) = (G(k)
i,j )1≤i,j≤n+1, k = 1, … ,n + 1, be the matrices obtained after k − 1 steps of the Neville elim-

ination of Gn, with G(1) ∶= Ga,b
n . Considering the generalization of combinatorial numbers (12), let us prove

by induction on k that

G(k)
i,j =

1
2

(
j − 1
k − 1

)
𝛽(a + i + j − k − 1∕2, b + k)∕

(
a + b + i + k − 5∕2

k − 1

)
, (49)

for 1 ≤ i, j ≤ n + 1. Since Ga,b
n is defined by (46), equality (49) clearly holds for k = 1. Suppose that (49) holds

for 1 ≤ k ≤ n. Using the well-known formulae (21) satisfied by the Γ and 𝛽 functions, as well as (12), the
following identity can be easily derived

G(k)
i,k

G(k)
i−1,k

= (2a + 2i − 3)(2a + 2b + 2i − 3)
(2a + 2b + 2i + 2k − 3)(2a + 2b + 2i + 2k − 5)

. (50)

The generalized combinatorial numbers in (12) satisfy

𝛼 + 1
𝛼 − n + 1

(
𝛼

n

)
=
(
𝛼 + 1

n

)
,

then we have

a + b + i + k − 5∕2
a + b + i − 3∕2

(
a + b + i + k − 7∕2

k − 1

)
=
(

a + b + i + k − 5∕2
k − 1

)
. (51)

Then, using (51), and taking into account identities (1), (49) and (50), we have

G(k+1)
i,j = G(k)

i,j −
G(k)

i,k

G(k)
i−1,k

G(k)
i−1,j =

(
j−1
k−1

)

2
(

a+b+i+k−5∕2
k−1

) Γ(b + k)Γ(a + i + j − k − 3∕2)
Γ(a + b + i + j − 3∕2)

Fi,j, (52)

where

Fi,j ∶ =
a + i + j − k − 3∕2
a + b + i + j − 3∕2

−
a + i − 3∕2

a + b + i + k − 3∕2
=

(b + k)(j − k)
(a + b + i + j − 3∕2)(a + b + i + k − 3∕2)

.

Finally, taking into account identities (13), we can write

G(k+1)
i,j = 1

2

(j − k)
(

j−1
k−1

)

(a + b + i + k − 3∕2)
(

a+b+i+k−5∕2
k−1

) Γ(a + i + j − k − 3∕2) (b + k)Γ(b + k)
(a + b + i + j − 3∕2)Γ(a + b + i + j − 3∕2)

= 1
2

(
j − 1

k

)/(
a + b + i + k − 3∕2

k

)
Γ(a + i + j − k − 3∕2) Γ(b + k + 1)

Γ(a + b + i + j − 1∕2)

= 1
2

(
j − 1

k

)
𝛽(a + i + j − k − 3∕2, b + k + 1)

/(
a + b + i + k − 3∕2

k

)
,
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MAINAR et al. 13 of 21

corresponding to identities (49) for k + 1.
Taking into account (2) and (49), the pivots pi,j of the Neville elimination of G can be described as follows

pi,j = G(j)
i,j =

1
2
𝛽(a + i − 1∕2, b + j)

/(
a + b + i + j − 5∕2

j − 1

)
, 1 ≤ i, j ≤ n + 1, (53)

and the diagonal pivots pi,i are

pi,i =
1
2
𝛽(a + i − 1∕2, b + i)

/(
a + b + 2i − 5∕2

i − 1

)
, i = 1, … ,n + 1. (54)

It can be checked that p1,1 = 𝛽(a + 1∕2, b + 1)∕2 and

pi+1,i+1

pi,i
=

i(a + i − 1∕2)(a + b + i − 1∕2)(b + i)
(a + b + 2i − 3∕2)(a + b + 2i − 1∕2)2(a + b + 2i + 1∕2)

,

so, (47) holds. Formula (48) for the multipliers mi,j, 1 ≤ j < i ≤ n + 1 is obtained using (3) and (53). Finally,
taking into account that the Gramian matrix Ga,b

n is a symmetric matrix, we conclude that m̃i,j = mi,j,
1 ≤ j < i ≤ n + 1. ▪

As a consequence of Theorem 5, and taking into account formula (54) for the diagonal pivots of the NE, we can derive
an explicit expression for the Hankel det Ga,b

n .

Corollary 5. Let Ga,b
n the Gramian matrix in (46) for a > −1∕2 and b > −1. Then

det Ga,b
n = 1

2n+1

n+1∏
i=1

𝛽(a + i − 1∕2, b + i)(
a+b+2i−5∕2

i−1

) .

Moreover, by Theorem 5, BD(Ga,b
n ) = (BD(Ga,b

n )i,j)1≤i,j≤n+1 satisfies

BD(Ga,b
n )i,j ∶=

⎧⎪⎪⎨⎪⎪⎩

(2a+2i−3)(2a+2b+2i−3)
(2a+2b+2i+2j−3)(2a+2b+2i+2j−5)

, if i > j,
1
2
𝛽(a + i − 1∕2, b + i)∕

(
a+b+2i−5∕2

i−1

)
, if i = j,

(2a+2j−3)(2a+2b+2j−3)
(2a+2b+2i+2j−3)(2a+2b+2i+2j−5)

, if i < j.

(55)

Let us notice that the diagonal pivots and multipliers of the Neville elimination of the Gramian matrices Ga,b
n in (46)

are positive for any a > −1∕2 and b > −1. Then, the strict total positivity of these matrices is deduced.

Corollary 6. For any a > −1∕2 and b > −1, the Gramian matrix Ga,b
n in (46) is STP. If, in addition, Γ(a + 1∕2)

and Γ(b + 1) can be evaluated to high relative accuracy, then Ga,b
n and its inverse matrix can also be computed to

high relative accuracy.

Now, we are going to consider Hermite weights of the form w(t) = t2ae−t2 . The polynomial space ̃P
2n
(R) is a Hilbert

space under the inner product

⟨u, v⟩a ∶=
∫

∞

−∞
t2ae−t2 u(t)v(t) dt, a > −1∕2. (56)

In order to deduce the expression of the entries of the Gramian matrix of (1, t2
, … , t2n) with respect the inner product

(56), let us first observe that, for a > −1∕2,

∫

∞

−∞
t2ae−t2 dt = 2

∫

∞

0
t2ae−t2 dt =

∫

∞

0
𝜏

a−1∕2e−𝜏 d𝜏 = Γ(a + 1∕2). (57)
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14 of 21 MAINAR et al.

Consequently, the Gramian matrix G(a)
n = (G(a)

i,j )1≤i,j≤n+1 with respect to (56) can be described as

G(a)
i,j ∶= ∫

∞

−∞
t2(i+j+a−2)e−t2 dt = Γ(i + j + a − 3∕2), (58)

and can be considered as a Hankel matrix. The following result derives the pivots and multipliers of its Neville elimination.

Theorem 6. The diagonal pivots and multipliers of the Neville elimination of the Gramian matrix G(a)
n in (58)

satisfy

p1,1 = Γ(a + 1∕2), pi+1,i+1 = i(i + a − 1∕2)pi,i, 1 ≤ i ≤ n. (59)

mi,j = m̃i,j = a + i − 3∕2, 1 ≤ j < i ≤ n + 1. (60)

Proof. Let G(k) = (G(k)
i,j )1≤i,j≤n+1, k = 1, … ,n + 1, be the matrices obtained after k − 1 steps of the Neville

elimination of G(a), with G(1) ∶= G(a)
n . By induction on k, we shall see that

G(k)
i,j = (k − 1)!

(
j − 1
k − 1

)
Γ(i + j + a − k − 1∕2), 1 ≤ i, j ≤ n + 1. (61)

Taking into account (58), equality (61) clearly holds for k = 1. Suppose that (61) holds for 1 ≤ k ≤ n. Using
(21), it can be checked that

G(k)
i,k

G(k)
i−1,k

=
Γ(i + a − 1∕2)
Γ(i + a − 3∕2)

=
(i + a − 3∕2)Γ(i + a − 3∕2)

Γ(i + a − 3∕2)
= i + a − 3∕2. (62)

Defining

̃G(k+1)
i,j ∶= 1

(k − 1)!
(

j−1
k−1

)G(k+1)
i,j ,

and using (1), formula (61) and (62), we can write

̃G(k+1)
i,j = Γ(i + j + a − k − 1∕2) − (i + a − 3∕2)Γ(i + j + a − k − 3∕2) = (j − k)Γ(i + j + a − k − 3∕2)

and, finally,

G(k+1)
i,j = k!

(
j − 1

k

)
Γ(i + j + a − k − 3∕2),

confirming identities (61) for k + 1.
Now, using (2) and (61), we derive that the pivots pi,j can be described as follows

pi,j = G(j)
i,j = (j − 1)!Γ(i + a − 1∕2), 1 ≤ i, j ≤ n + 1, (63)

Then, the diagonal pivots pi,i are

pi,i = (i − 1)!Γ(i + a − 1∕2), 1 ≤ i, j ≤ n + 1, (64)

and satisfy p1,1 = Γ(a + 1∕2) and

pi+1,i+1

pi,i
= i
Γ(i + a + 1∕2)
Γ(i + a − 1∕2)

= i
(i + a − 1∕2)Γ(i + a − 1∕2)

Γ(i + a − 1∕2)
= i(i + a − 1∕2),
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MAINAR et al. 15 of 21

and so, (59) holds. Now, for the multipliers of the NE, we have by (3) and (63) that

mi,j =
pi,j

pi−1,j
=
Γ(i + a − 1∕2)
Γ(i + a − 3∕2)

= i + a − 3∕2,

and formula (60) holds. Finally, taking into account that the Gramian matrix G(a)
n is a symmetric matrix, we

conclude that m̃i,j = mi,j, 1 ≤ j < i ≤ n + 1. ▪

As a consequence of Theorem 6, and taking into account formula (64) for the diagonal pivots of the NE, we can derive
an explicit expression for the Hankel det G(a)

n .

Corollary 7. Let G(a)
n the Gramian matrix in (58) for a > −1∕2. Then

det G(a)
n =

n+1∏
i=1
(i − 1)!Γ(i + a − 1∕2).

Taking into account Theorem 6, BD(G(a)
n ) = (BD(G(a)

n )i,j)1≤i,j≤n+1 satisfies

BD(G(a)
n )i,j ∶=

⎧⎪⎨⎪⎩

a + i − 3∕2, if i > j,
(i − 1)!Γ(i + a − 1∕2), if i = j,
a + j − 3∕2, if i < j.

(65)

Let us notice that the diagonal pivots and multipliers of the Neville elimination of the Gramian matrices G(a)
n in (58)

are positive for any a > −1∕2. Then the strict total positivity of these matrices is deduced.

Corollary 8. For any a > −1∕2, the Gramian matrix G(a)
n in (58) is STP. If, in addition, Γ(a + 1∕2) can be

evaluated to high relative accuracy, then G(a)
n and its inverse matrix can also be computed to high relative

accuracy.

6 NUMERICAL EXPERIMENTS

Some numerical tests are presented in this section supporting the obtained theoretical results. In this context, we have
implemented different MATLAB functions in O(n2) time for computing the bidiagonal factorizations (4) proposed in the
previous sections stored in the matrix form (9). For the Gramian matrix ̃G(a,b)

n of the basis (1, t − t0, … , (t − t0)n) with
respect to the inner product (26), using Theorem 2, we have implemented a MATLAB function for computing BD(̃G(a,b)

n )
(see (29)). Let us observe that, in the case that t0 = 0 and t1 = 1, the mentioned function can compute BD(G(a,b)

n ) for the
Chebyshev Gramian matrix G(a,b)

n in (17). Moreover, for the Laguerre Gramian matrix G(a,𝜆)
n described by (33), considering

Theorem 3, we have also implemented a MATLAB function for computing BD(G(a,𝜆)
n ) (see (40)). Furthermore, for the even

monomial basis (1, t2
, … , t2n) we have implemented two MATLAB functions. One of them, using Theorem 5, computes

BD(Ga,b
n ) (see (55)) for the Gramian matrix Ga,b

n in (46), and the other, considering Theorem 6, computes BD(G(a)
n ) (see

(65)), for the Gramian matrix G(a)
n in (58).

In the rest of the Section, for the sake of brevity, all the Gramian matrices will be denoted as G, and their corresponding
bidiagonal decompositions will be denoted by BD(G).

In order to check the accuracy of our algorithms, we have considered different STP Gramian matrices G with
dimension n + 1 = 4, 5, … , 20. Moreover, having in mind that for 𝛼 ∈ N ∪ {0}, Γ(𝛼 + 1) = 𝛼! and Γ(n + 1∕2) = (2n)!

4nn!

√
𝜋,

n ∈ N, we have chosen parameters a and b so that the conditions provided in Corollary 2 (for Chebyshev Gramian
matrices), Corollary 4 (for Laguerre Gramian matrices), Corollary 6 (for Gramian matrices (46)) and Corollary 8
(for Gramian matrices (58)) are fulfilled and so, we can guarantee HRA in the computation of BD(G). In partic-
ular, we have considered Chebyshev Gramian matrices (17) for (a, b) = (1∕2, 1∕2), Laguerre Gramian matrices (33)
for (a, 𝜆) = (1, 0) and (a, 𝜆) = (1, 1∕3), Gramian matrices (46) for (a, b) = (2,−1∕2), and finally, Gramian matrices (58)
for a = 1.
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16 of 21 MAINAR et al.

F I G U R E 1 The 2-norm conditioning of Gramian matrices G.

In addition, we have performed with these matrices several matrix computations which include computing singular
values (which coincide with the eigenvalues because the matrices are symmetric), inverses and linear equation solving.
All the approximations computed by our algorithms have been compared with the respective approximations obtained
by traditional methods provided in MATLAB R2022b. In this context, the values provided by Wolfram Mathematica 13.1
with 100-digit arithmetic have been taken as the exact solution of the considered linear algebra problem. Finally, the
relative error of each approximation has also been computed in Mathematica with 100-digit arithmetic.

In addition, we have also computed the 2-norm condition number of all considered matrices. The conditioning
obtained in Mathematica is depicted in Figure 1. It can easily be observed that the conditioning drastically increases with
the size of the matrices. Due to the ill-conditioning of these matrices, standard routines do not obtain accurate solutions
because they can suffer from inaccurate cancelations. In contrast, the algorithms using the factorizations obtained in
this paper exploit the structure of the considered matrices achieving, as we will see, numerical results to high relative
accuracy.

6.1 Computation of singular values

Given B = BD(A) to high relative accuracy, the MATLAB function TNSingularValues(B) available in Refer-
ence 33 computes the singular values of a matrix A to high relative accuracy. Its computational cost is O(n3)
(see Reference 19).

In this context, we have compared the smallest singular value obtained using TNSingularValues(BD(G)) and
the MATLAB command svd. The values provided by Mathematica using 100-digit arithmetic have been considered as
the exact solution of the linear algebra problem and the relative error e of each approximation has been computed as
e ∶= |a − ã|∕|a|, where a denotes the singular value computed in Mathematica and ã the singular value computed in
Matlab.

The relative errors are shown in Figure 2. Note that our approach computes accurately the smallest singular value
regardless of the 2-norm condition number of the considered matrices. In contrast, the MATLAB command svd returns
results that are not accurate at all.

6.2 Computation of inverses

Given B = BD(A) to high relative accuracy, the MATLAB function TNInverseExpand(B) available in Reference 33
returns A−1 to high relative accuracy, requiring O(n2) arithmetic operations (see Reference 28).
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MAINAR et al. 17 of 21

F I G U R E 2 Relative error of the approximations to the smallest singular value of Gramian matrices G.

In addition, we have compared the inverses obtained using TNInverseExpand(BD(G)) and the MATLAB command
inv. To look over the accuracy of these two methods we have compared both approximations with the inverse matrix A−1

computed by Mathematica using 100-digit arithmetic, taking into account the formula e = ||A−1 − ̃A−1||2∕||A−1||2 for the
corresponding relative error, where ̃A−1 denotes the inverse computed in Matlab.

As shown in Figure 3, our algorithm provides results to high relative accuracy. On the contrary, the results obtained
with MATLAB reflect poor accuracy.

6.3 Resolution of linear systems

Given B = BD(A) to high relative accuracy and a vector d with alternating signs, the MATLAB function TNSolve(B, d)
available in Reference 33 returns the solution c of Ac = d to high relative accuracy. It requires O(n2) arithmetic operations
(see Reference 33).
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18 of 21 MAINAR et al.

F I G U R E 3 Relative error of the approximations to the inverse of Gramian matrices G.

For all considered Gramian matrices, we have compared the solution of the linear system Gc = d
obtained using TNSolve(BD(G), d) and the MATLAB command ⧵. The solution provided by Mathemat-
ica using 100-digit arithmetic has been considered as the exact solution c. Then, we have computed
in Mathematica the relative error of the computed approximations c̃, taking into account the formula
e = ||c − c̃||2∕||c||2.

As opposed to the results obtained with the command ⧵, the proposed algorithm preserves the accuracy for all the
considered dimensions. Figure 4 illustrates the relative errors.
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MAINAR et al. 19 of 21

F I G U R E 4 Relative error of the approximations to the solution of the linear systems Gc = d, where d = ((−1)i+1di)1≤i≤n+1 and di,
i = 1, … ,n + 1 are random nonnegative integer values.
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