6 research outputs found

    Accurate computations with collocation matrices of the Lupaş-type (p,q)-analogue of the Bernstein basis

    Get PDF
    A fast and accurate algorithm to compute the bidiagonal decomposition of collocation matrices of the Lupaş-type (p,q)-analogue of the Bernstein basis is presented. The error analysis of the algorithm and the perturbation theory for the bidiagonal decomposition are also included. Starting from this bidiagonal decomposition, the accurate and efficient solution of several linear algebra problems involving these matrices is addressed: linear system solving, eigenvalue and singular value computation, and computation of the inverse and the Moore-Penrose inverse. The numerical experiments carried out show the good behaviour of the algorithm.Agencia Estatal de Investigació

    Bidiagonal decompositions of Vandermonde-type matrices of arbitrary rank

    Get PDF
    We present a method to derive new explicit expressions for bidiagonal decompositions of Vandermonde and related matrices such as the (q-, h-) Bernstein-Vandermonde ones, among others. These results generalize the existing expressions for nonsingular matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above classes, the new decompositions can be computed efficiently and to high relative accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g., eigenvalue computation) can also be performed efficiently and to high relative accuracy

    Accurate computation of the Moore-Penrose inverse of strictly totally positive matrices

    Get PDF
    The computation of the Moore-Penrose inverse of structured strictly totally positive matrices is addressed. Since these matrices are usually very ill-conditioned, standard algorithms fail to provide accurate results. An algorithm based on the factorization and which takes advantage of the special structure and the totally positive character of these matrices is presented. The first stage of the algorithm consists of the accurate computation of the bidiagonal decomposition of the matrix. Numerical experiments illustrating the good behavior of our approach are included.Numerical experiments illustrating the good behavior of our approach are included

    Error analysis, perturbation theory and applications of the bidiagonal decomposition of rectangular totally-positive h-Bernstein-Vandermonde matrices

    Get PDF
    A fast and accurate algorithm to compute the bidiagonal decomposition of rectangular totally positive h-Bernstein-Vandermonde matrices is presented. The error analysis of the algorithm and the perturbation theory for the bidiagonal decomposition of totally positive h-Bernstein-Vandermonde matrices are addressed. The computation of this bidiagonal decomposition is used as the first step for the accurate and efficient computation of the singular values of rectangular totally positive h-Bernstein-Vandermonde matrices and for solving least squares problems whose coefficient matrices are such matrices.Agencia Estatal de Investigació

    Numerical methods and accurate computations with structured matrices

    Get PDF
    Esta tesis doctoral es un compendio de 11 artículos científicos. El tema principal de la tesis es el Álgebra Lineal Numérica, con énfasis en dos clases de matrices estructuradas: las matrices totalmente positivas y las M-matrices. Para algunas subclases de estas matrices, es posible desarrollar algoritmos para resolver numéricamente varios de los problemas más comunes en álgebra lineal con alta precisión relativa independientemente del número de condición de la matriz. La clave para lograr cálculos precisos está en el uso de una parametrización diferente que represente la estructura especial de la matriz y en el desarrollo de algoritmos adaptados que trabajen con dicha parametrización.Las matrices totalmente positivas no singulares admiten una factorización única como producto de matrices bidiagonales no negativas llamada factorización bidiagonal. Si conocemos esta representación con alta precisión relativa, se puede utilizar para resolver ciertos sistemas de ecuaciones y para calcular la inversa, los valores propios y los valores singulares con alta precisión relativa. Nuestra contribución en este campo ha sido la obtención de la factorización bidiagonal con alta precisión relativa de matrices de colocación de polinomios de Laguerre generalizados, de matrices de colocación de polinomios de Bessel, de clases de matrices que generalizan la matriz de Pascal y de matrices de q-enteros. También hemos estudiado la extensión de varias propiedades óptimas de las matrices de colocación de B-bases normalizadas (que en particular son matrices totalmente positivas). En particular, hemos demostrado propiedades de optimalidad de las matrices de colocación del producto tensorial de B-bases normalizadas.Si conocemos las sumas de filas y las entradas extradiagonales de una M-matriz no singular diagonal dominante con alta precisión relativa, entonces podemos calcular su inversa, determinante y valores singulares también con alta precisión relativa. Hemos buscado nuevos métodos para lograr cálculos precisos con nuevas clases de M-matrices o matrices relacionadas. Hemos propuesto una parametrización para las Z-matrices de Nekrasov con entradas diagonales positivas que puede utilizarse para calcular su inversa y determinante con alta precisión relativa. También hemos estudiado la clase denominada B-matrices, que está muy relacionada con las M-matrices. Hemos obtenido un método para calcular los determinantes de esta clase con alta precisión relativa y otro para calcular los determinantes de las matrices de B-Nekrasov también con alta precisión relativa. Basándonos en la utilización de dos matrices de escalado que hemos introducido, hemos desarrollado nuevas cotas para la norma infinito de la inversa de una matriz de Nekrasov y para el error del problema de complementariedad lineal cuando su matriz asociada es de Nekrasov. También hemos obtenido nuevas cotas para la norma infinito de las inversas de Bpi-matrices, una clase que extiende a las B-matrices, y las hemos utilizado para obtener nuevas cotas del error para el problema de complementariedad lineal cuya matriz asociada es una Bpi-matriz. Algunas clases de matrices han sido generalizadas al caso de mayor dimensión para desarrollar una teoría para tensores extendiendo la conocida para el caso matricial. Por ejemplo, la definición de la clase de las B-matrices ha sido extendida a la clase de B-tensores, dando lugar a un criterio sencillo para identificar una nueva clase de tensores definidos positivos. Hemos propuesto una extensión de la clase de las Bpi-matrices a Bpi-tensores, definiendo así una nueva clase de tensores definidos positivos que puede ser identificada en base a un criterio sencillo basado solo en cálculos que involucran a las entradas del tensor. Finalmente, hemos caracterizado los casos en los que las matrices de Toeplitz tridiagonales son P-matrices y hemos estudiado cuándo pueden ser representadas en términos de una factorización bidiagonal que sirve como parametrización para lograr cálculos con alta precisión relativa.<br /
    corecore