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a b s t r a c t

The computation of the Moore–Penrose inverse of structured strictly totally positive
matrices is addressed. Since these matrices are usually very ill-conditioned, standard
algorithms fail to provide accurate results. An algorithm based on the QR factorization and
which takes advantage of the special structure and the totally positive character of these
matrices is presented. The first stage of the algorithm consists of the accurate computation
of the bidiagonal decomposition of thematrix. Numerical experiments illustrating the good

∧
behavior of our approach are included.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction1

The Moore–Penrose inverse of the matrix A ∈ Rm×n, usually denoted by A†, is the unique matrix X ∈ Rn×m satisfying the2

four Penrose conditions:3

(i) AXA = A,4

(ii) XAX = X ,5

(iii) (AX)T = AX ,6

(iv) (XA)T = XA,7

where BT is the transpose of thematrix B. It was first introduced and studied by E. H. Moore during the decade of 1910–1920,8

and later rediscovered independently by A. Bjerhammar and by R. Penrose during the decade of 1950–1960 [1].9

One of its main applications is to use it for solving least squares problems, and so the Moore–Penrose inverse arises10

in several fields such as orthogonal polynomials over discrete domains, computing multilinear regression coefficients [2],11

designing neural learning algorithms [3] or restoration of digital images [4]. A generalization of the Moore–Penrose inverse,12

called the weighted Moore–Penrose inverse, has recently been analyzed for instance in [5].13
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There are several types of methods for computing the Moore–Penrose inverse. The direct methods are usually based on 1

singular value decomposition (as for example the command pinv from Matlab) and QR factorization [6,7]. See also [8] for 2

a comparison of different direct methods. As for the iterative methods, some of them are based on generalizations of the 3

hyper-power method and the Schultz method as its particular case [9,10]. An iterative method based on Penrose equations 4

is presented in [11] and improved in [12]. 5

As recalled in [13], many types of structured matrices arising in applications are extremely ill-conditioned and therefore 6

standard algorithms applied to them do not guarantee relative accuracy. Fortunately, the specific structure of thosematrices 7

allows the design of algorithms that, taking that structure into account, will provide amore accurate solution in spite of their 8

high condition number. 9

In particular we will consider several classes of ill-conditioned totally positive matrices for which we will compute their 10

Moore–Penrose inverse accurately. A matrix is totally positive (or totally nonnegative) if all its minors are nonnegative. If all 11

its minors are positive the matrix is called strictly totally positive [14,15]. 12

As it can be read in [16,17], a crucial preliminary stage for our algorithms for the class of totally positive matrices is the 13

decomposition of the matrix as a product of bidiagonal factors. Starting from an accurate bidiagonal decomposition of Awe 14

develop a method for computing A† based on the QR factorization of A, which includes the inversion of an upper triangular 15

matrix. When A is strictly totally positive, the matrix R in A = QR is nonsingular totally positive. 16

The
∧
remainder of the paper is organized as follows. Section 2 introduces Neville elimination, a key theoretical tool for 17

our approach, and presents the results on the bidiagonal factorization of totally positive matrices, and of their inverses in 18

the square case. In Section 3 we provide an accurate algorithm for computing the Moore–Penrose inverse of a strictly totally 19

positive matrix, while Section 4 contains an algorithm for the computation of the inverse of a nonsingular totally positive 20

matrix. The error analysis of the algorithm is also included in this section. Several numerical experiments are presented in 21

Section 5, and Section 6 is devoted to conclusions. 22

2. Neville elimination and bidiagonal decomposition 23

To make this paper as self-contained as possible, we will briefly recall in this section some basic results on Neville 24

elimination, a fundamental theoretical tool for obtaining the results presented in this paper. 25

Neville elimination is a procedure that makes zeros in a matrix adding to a given row an appropriate multiple of the 26

previous one. Our notation follows the notation used in [18] and [19]. 27

Let A = (ai,j)1≤i,j≤n be a squarematrix of order n. The Neville elimination of A consists of n−1 steps resulting in a sequence 28

of matrices A1 := A → A2 → . . . → An, where At = (a(t)i,j )1≤i,j≤n has zeros below its main diagonal in the t − 1 first columns. 29

The matrix At+1 is obtained from At (t = 1, . . . , n − 1) by using the following formula: 30

a(t+1)
i,j :=

⎧⎪⎨⎪⎩
a(t)i,j , if i ≤ t

a(t)i,j − (a(t)i,t /a
(t)
i−1,t )a

(t)
i−1,j , if i ≥ t + 1 and j ≥ t + 1

0 , otherwise.

(2.1) 31

In this process the element 32

pi,j := a(j)i,j 1 ≤ j ≤ n, D Dj ≤ i ≤ n 33

is called (i, j) pivot of the Neville elimination of A. The process would break down if any of the pivots pi,j (j ≤ i < n) is zero. 34

In that case we can move the corresponding rows to the bottom and proceed with the newmatrix, as described in [18]. The 35

Neville elimination can be done without row exchanges if all the pivots are nonzero, as it will happen in our situation. The 36

pivots pi,i are called diagonal pivots. The elementQ3 37

mi,j =
pi,j

pi−1,j
1 ≤ j ≤ n − 1, j < i ≤ n, (2.2) 38

is called multiplier of the Neville elimination of A. The matrix U := An is upper triangular and has the diagonal pivots on its 39

main diagonal. 40

The complete Neville elimination of a matrix A consists of performing the Neville elimination of A for obtaining U and then 41

continue with the Neville elimination of UT . The (i, j) pivot (respectively, multiplier) of the complete Neville elimination of 42

A is the (j, i) pivot (respectively, multiplier) of the Neville elimination of UT , if j ≥ i. When no row exchanges are needed 43

in the Neville elimination of A and UT , we say that the complete Neville elimination of A can be done without row and 44

column exchanges, and in this case the multipliers of the complete Neville elimination of A are the multipliers of the Neville 45

elimination of A if i ≥ j and the multipliers of the Neville elimination of AT if j ≥ i (see p. 116 of [20]). 46

The extension of Neville elimination to the rectangular case is straightforward. 47

Neville elimination characterizes the strictly totally positive matrices and the nonsingular totally positive matrices as 48

follows [19]: 49

Theorem 2.1. A matrix is strictly totally positive (resp. nonsingular totally positive) if and only if its complete Neville elimination 50

can be performed without row and column exchanges, the multipliers of the Neville elimination of A and AT are positive (resp. 51

nonnegative), and the diagonal pivots of the Neville elimination of A are positive. 52
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Neville elimination also gives the bidiagonal decomposition of the inverse A−1 of a nonsingular totally positive matrix1

A [20,17]:2

Theorem 2.2. Let A = (ai,j)1≤i,j≤n be a nonsingular totally positive matrix. Then A−1 admits a factorization in the form3

A−1
= G1G2 · · ·Gn−1D−1Fn−1Fn−2 · · · F1,4

where Fi (i = 1, . . . , n − 1) are n × n bidiagonal matrices of the form5

Fi =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0 1
...

...
0 1

−mi+1,i 1
−mi+2,i 1

...
...

−mn,i 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,6

Gi (i = 1, . . . , n − 1) are n × n bidiagonal matrices of the form7

GT
i =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0 1
...

...
0 1

−m̃i+1,i 1
−m̃i+2,i 1

...
...

−m̃n,i 1

⎤⎥⎥⎥⎥⎥⎥⎦8

and D is a diagonal matrix of order n9

D = diag{p1,1, p2,2, . . . , pn,n}.10

The quantities mi,j, m̃i,j and pi,i are respectively the multipliers of the Neville elimination of A, the multipliers of the Neville11

elimination of AT , and the diagonal pivots of the Neville elimination of A.12

Nowwe present the bidiagonal decomposition of a strictly totally positive matrix A given by Neville elimination [20,17]:13

Theorem 2.3. Let A = (ai,j)1≤i≤l;1≤j≤n be a strictly totally positive matrix. Then A admits a factorization in the form14

A = Fl−1Fl−2 · · · F1DG1 · · ·Gn−2Gn−1,15

where Fi (i = 1, . . . , l − 1) are l × l bidiagonal matrices of the form16

Fi =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0 1
...

...
0 1

mi+1,1 1
mi+2,2 1

...
...

ml,l−i 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,17

GT
i (i = 1, . . . , n − 1) are n × n bidiagonal matrices of the form18

GT
i =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0 1
...

...
0 1

m̃i+1,1 1
m̃i+2,2 1

...
...

m̃n,n−i 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,19

and D is the l × n diagonal matrix20

D = (di,j)1≤i≤l;1≤j≤n = diag{p1,1, p2,2, . . . , pn,n}.21

The quantities mi,j, m̃i,j and pi,i are respectively the multipliers of the Neville elimination of A, the multipliers of the Neville22

elimination of AT , and the diagonal pivots of the Neville elimination of A.23

As it can be seen in [17], given am×n strictly totally positivematrix A, its bidiagonal factorization can be stored in am×n24

matrix called BD(A) whose diagonal elements are the diagonal pivots pi,i of the Neville elimination of A, the elements above25

its diagonal are themultipliersmi,j of the Neville elimination of A, and the elements below its diagonal are themultipliers m̃i,j26
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of the Neville elimination of AT . Let us observe that by Theorem 2.2 the matrix BD(A) also serves to represent the bidiagonal 1

factorization of A−1 when A is nonsingular. 2

Let us point out here that, although the Neville elimination is the theoretical tool that allows us to obtain the bidiagonal 3

factorization of a strictly totally positive matrix A, in practice the computation of the matrix BD(A) representing this 4

decomposition is carried out by means of algorithms that compute the pivots and the multipliers of A and the multipliers 5

of AT by using explicit expressions for them [17]. These algorithms are designed taking into account the specific structure 6

of the matrix A and guarantee high relative accuracy. Examples of different classes of totally positive matrices for which 7

BD(A) has been computed accurately are: Cauchy–Vandermonde [21,22], generalized Vandermonde [23], Vandermonde 8

and Cauchy [17], Bernstein–Vandermonde [24,25], collocation matrices of rational bases [26], Said–Ball–Vandermonde [27] 9

and Lupaş matrices [28]. 10

Let us observe that, following the ideas presented in [29], in [22,25,27] structured condition numbers for the computation 11

of the matrix BD(A) are found. 12

3. Computation of the Moore–Penrose inverse 13

Let A be a m × n (m ≥ n) strictly totally positive matrix. In this section we present an accurate algorithm for computing 14

the Moore–Penrose inverse A† of A. 15

It is based on the explicit expression of A† obtained by means of the QR factorization of A, as shown in the next theorem: 16

Theorem 3.1. Let A be an m × n matrix, m ≥ n, rank(A) = n. Let 17

A = QR, R =

(
R1
0

)
18

be the QR factorization of A, where Q is an m×m orthogonal matrix, R is an m×n upper triangular matrix with positive diagonal 19

entries and R1 is the n × n matrix with the first n rows of R. Let Q1 be the m × n matrix with the first n columns of Q , then the 20

pseudoinverse of A is 21

A†
= R−1

1 Q T
1 . 22

Proof. Taking into account that A†
= (ATA)−1AT (the four Moore–Penrose conditions are easily checked) and that 23

ATA =
(

RT
1 0

)
Q TQ

(
R1
0

)
= RT

1R1, 24

we have 25

A†
= (ATA)−1AT

= (RT
1R1)−1 (

RT
1 0

)
Q T

= R−1
1 R−T

1 RT
1Q

T
1 = R−1

1 Q T
1 . □ 26

For computing R1 and Q1 we must start from the accurate computation of the matrix BD(A) containing the bidiagonal 27

decomposition of A. The algorithm follows: 28

INPUT: The strictly totally positive matrix A. 29

OUTPUT: The Moore–Penrose inverse A† of A. 30

- Step 1: Computation of the matrix BD(A) containing the bidiagonal decomposition of A. For the structured matrices we 31

will be considering, the construction of A is not necessary for computing BD(A). 32

- Step 2: Given the result of Step 1, computation of the QR factorization of A by means of the algorithm TNQR. 33

- Step 3: Given the result of Step 2, computation of the inverse R−1
1 by using the algorithm TNInverseExpand. 34

- Step 4: Computation of R−1
1 Q T

1 . 35

The algorithm TNQR of P. Koev can be obtained from [30], and given BD(A) computes accurately the QR factorization of 36

A. It returns the m × m matrix Q and the matrix BD(R) representing the bidiagonal decomposition of the totally positive 37

matrix R of sizem × n. The computational complexity of TNQR is of O(m2n) arithmetic operations [17]. 38

TNInverseExpand is the name that we have given to the algorithm we present in Section 4 for computing the inverse 39

of a nonsingular totally positive matrix starting from its bidiagonal decomposition, and it has been included by P. Koev in his 40

package TNTool [30]. As we will see in the next section, it has high relative accuracy and its computational cost is of O(n2) 41

arithmetic operations. 42

The product in Step 4 is carried out by using the standard multiplication command fromMatlab. 43

Let us recall that when A has full column rank (which implies m ≥ n), then x = A†b is the unique solution (in the least 44

squares sense) of the overdetermined linear system Ax = b. 45

We will now see how this approach for computing A† can also be extended to the case m < n. In this situation the least 46

squares problem has not a unique solution, but we can also compute the (unique) Moore–Penrose inverse of A. 47

If A is a m × n strictly totally positive matrix with m < n, then B = AT has full column rank and so the results we have 48

presented above can be applied to B. Therefore we have B†
= (BTB)−1BT , which can be computed bymeans of our algorithm. 49
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Now we use the fact that (BT )† = (B†)T [31], and consequently1

A†
= (BT )† = (B†)T .2

For computing the bidiagonal factorization of B = AT we use the fact that BD(AT ) = (BD(A))T [17].3

Remark. In this case (m < n with rank(A) = m) the corresponding least squares problem is in fact an underdetermined4

linear system Ax = b. The unique solution with minimum norm ∥x∥2 is5

x† = A†b = (B†)Tb = ((BTB)−1BT )Tb = B(BTB)−1b = AT (AAT )−1b.6

Let us observe that:7

(i) x† is a solution of Ax = b, since Ax† = AAT (AAT )−1b = b.8

(ii) x† belongs to the row space of A, since it is a linear combination of the columns of AT .9

Consequently, the results included in Section 6.3 of [32] and in Section 2.1 of [33] show (without using the concept of10

singular value decomposition) that x† is the unique solutionwithminimumnorm ∥x∥2 of the underdetermined linear system11

Ax = b.12

4. Computation of the inverse13

In this section we present an accurate and fast algorithm for computing the inverse of a nonsingular totally positive14

matrix A starting from BD(A), the matrix representing the bidiagonal decomposition of A. This is the algorithm we use for15

computing the inverse of the upper triangular matrix R1 involved in the computation of theMoore–Penrose inverse of A (see16

Section 3). We have called it TNInverseExpand and its error analysis is also included in this section.17

The fact that the matrix BD(A) represents both the bidiagonal decomposition of A and of its inverse A−1 (see Section 2),18

and the algorithm of P. Koev TNExpand, which given BD(A) recovers the matrix A [30], have been the starting points in the19

development of our algorithm TNInverseExpand.20

Let A be the square matrix whose inverse C we are interested in computing, and let B be the matrix containing BD(A).21

The code inMatlab of the algorithm TNInverseExpand for the computation of C starting from B is the following:22

[n,n]=size(B);23

C=zeros(n,n);24

for i=1:n25

C(i,i)=1;26

end27

for i=1:n-128

for j=n:-1:i+129

C(:,j)=C(:,j)-B(i,j)*C(:,j-1);30

end31

end32

for i=1:n33

C(:,i)=C(:,i)/B(i,i);34

end35

for i=n-1:-1:136

for j=i:n-137

C(:,j)=C(:,j)-B(j+1,i)*C(:,j+1);38

end39

end40

Looking at the loops of the algorithm is enough to see that it has a computational cost of O(n2) arithmetic operations.41

The fact that all the diagonal entries of B are positive and all the non diagonal entries of B are nonnegative (B is the matrix42

containing BD(A), and A is nonsingular totally positive), and the checkerboard sign pattern of the identity matrix and of all43

thematrices C involved in the computation of A−1, guarantee that TNInverseExpand is
∧
subtraction free, and therefore, A−1

44

is computed with high relative accuracy once the matrix BD(A) is computed with high relative accuracy.45

For the error analysis of the algorithm we use the standard model of floating point arithmetic (see section 2.2 of [34]):46

Let x, y be floating point numbers and ϵ be themachine precision,47

fl(x ⊙ y) = (x ⊙ y)(1 + δ)±1, where D|δ| ≤ ϵ, D D⊙ ∈ {+, −, ×, /}.48

The following theorem shows the maximum relative error that can be committed by our algorithm TNInverseExpand49

when computing the inverse A−1 of a nonsingular totally positive matrix A starting from the matrix BD(A).50
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Table 1
Relative errors in the computation of the Moore–Penrose inverse of the Hilbert matrix 12 × 8 in Example 5.1.
κ2(A) TNBD MM pinv qrginv QRATS2

1.6e + 09 1.4e − 08 3.0e − 16 1.5e − 08 1.5e − 08 1.6e − 08

Theorem 4.1. Let A be a nonsingular totally positive matrix and C = (ci,j)1≤i,j≤n its exact inverse. Let (̂ci,j)1≤i,j≤n be the matrix 1

representing the inverse of A computed from BD(A), the matrix representing the bidiagonal decomposition of A, by means of the 2

algorithm TNInverseExpand in floating point arithmetic with machine precision ϵ. Then 3

|̂ci,j − ci,j| ≤
3nϵ

1 − 3nϵ
|ci,j|, D D Di, j = 1, . . . , n. 4

Proof. Looking at the loops of the algorithm and the arithmetic operations involved in each loop we observe that the entries 5

of the inverse matrix of A that require more arithmetic operations to be computed are the ones in the n − 2 column. As the 6

same type of calculations must be done for computing each ci,n−2 (i=1,. . . ,n), analyzing the relative errors accumulated when 7

computing one of them is enough for proving this theorem. 8

Proceeding in this way and accumulating the relative errors in the style of Higham (see Chapter 3 of [34,29], and [27]) in 9

the computation of ci,n−2 (i = 1, . . . , n) by means of the algorithm TNInverseExpandwe obtain 10

|̂ci,n−2 − ci,n−2| ≤
3nϵ

1 − 3nϵ
|ci,n−2|, D D Di = 1, . . . , n, 11

and therefore 12

|̂ci,j − ci,j| ≤
3nϵ

1 − 3nϵ
|ci,j|, D D Di, j = 1, . . . , n. □ 13

5. Numerical experiments 14

Several numerical experiments showing the good performance of our algorithm for computing the Moore–Penrose 15

inverse of a strictly totally positive matrix A are presented in this section. We compare the results obtained by using our 16

method for computing the Moore–Penrose inverse A† with the results obtained by other direct methods: the command 17

pinv from Matlab, and two algorithms which are good for general (i.e. unstructured) matrices, namely qrginv from [6] 18

and QRATS2 from [7]. 19

Let us observe that pinv is an SVD method for computing A†, while qrginv is based on the QR factorization of A and 20

QRATS2 on the QR factorization of AT . 21

We have also compared our results to the ones obtained by the functions ginv from [35] and geninv from [3]. As the 22

results obtained by these two functions are always worst than the ones obtained by using our method (from now onwewill 23

denote it by MM), pinv, qrginv and QRATS2, they are not reported here. 24

All the computations are done in Matlab and the relative error of the computed Moore–Penrose inverse A† is obtained 25

by means of: 26

err =
∥A†

− A†
e∥2

∥A†
e∥2

, 27

where A†
e is the exact Moore–Penrose inverse computed inMaple. 28

Example 5.1. LetA be theHilbertmatrix of size 12× 8. AsHilbertmatrices can be seen as Cauchymatrices, the first step of our 29

method, that is, the computation of BD(A), is developed in this case by using the algorithm for the accurate computation of 30

the bidiagonal decomposition of totally positive
∧
Cauchy–Vandermonde matrices presented in [22], an algorithm that works 31

for the particular case of Cauchy matrices and uses as input only the corresponding nodes and poles. 32

In order to show the importance of computing the matrix BD(A) with high relative accuracy for obtaining an accurate A†, 33

we also compare in this first experiment the results of our approach with the results obtained by the approach that we will 34

denote by TNBD and whose stages are: 35

1. The computation of the matrix BD(A) by means of classical Neville elimination without taking into account the 36

structure of the Hilbert matrix. It is carried out by using the command TNBD in the package TNTool of P. Koev [30], the 37

only function in the package that does not preserve high relative accuracy. 38

2. Steps 2, 3 and 4 of our algorithm (MM). 39

The relative errors obtained in the computation of A† by themethodswe have enumerated above are presented in Table 1. 40
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Table 2
Relative errors in the computation of the Moore–Penrose inverse of the Pascal matrix 15 × 10 in Example 5.2.
κ2(A) MM pinv qrginv QRATS2

1.3e + 09 3.7e − 16 2.3e − 09 2.0e − 10 3.1e − 09

Examining Table 1 we see that, although the condition number of the Hilbert matrix is high, our approach computes its1

Moore–Penrose inverse very accurately (with a relative error of 3.0e − 16). MM obtains the most accurate A† among all the2

approaches we have tested.3

The difference between the relative error obtained by our approach MM (3.0e−16) and by the approach TNBD (1.4e−08)4

shows that computing thematrixBD(A) with high relative accuracy is essential for obtaining an accurate A†. Classical Neville5

elimination does not guarantee the computation of BD(A) with high relative accuracy, and therefore it is important to6

develop new algorithms that, taking into account the structure of A, compute its BD(A) with high relative accuracy. Once7

BD(A) is computed with high relative accuracy we can do numerical linear algebra accurately for A [17].8

This observations do not contradict the results on componentwise backward error analysis of Neville elimination9

presented in [36]. As the author (following [17]) recalls in Section 3 of that paper, given BD(A) many matrix computations10

with A can be performed accurately. But of course this is true only if the entries of BD(A) are computed with high relative11

accuracy, which is not the case for Neville elimination.12

This is a new example of the situation described in Chapter 16 of [37]. In Theorem 10 of [36] (see also Example 2 related to13

Hilbert matrices) the product of not accurate bidiagonal factors of A gives an accurate A. As commented in [37] remembering14

Wilkinson, the errors in the bidiagonal factors must be ‘‘diabolically correlated’’.15

The result on backward stability presented in [36] is important when working with general totally positive matrices,16

but backward stability does not imply high relative accuracy in the computation of the entries of BD(A). This can only be17

obtained for structured matrices by means of algorithms which take that structure into account.18

Example 5.2. Let us consider the Pascal matrix of order 15, and let A be the submatrix of size 15 × 10 obtained by removing19

the last five columns. In this case BD(A) is the matrix with all its entries equal to 1 [38], and therefore the first step of MM has20

not to be computed. The relative errors obtained in the computation of the Moore–Penrose inverse A† of A by means of MM,21

pinv, qrginv and QRATS2 are presented in Table 2.22

The results in Table 2 are analogous to the ones obtained in Example 5.1.23

Example 5.3. Let us consider the nodes24

1
16

<
1
8

<
3
16

<
1
4

<
5
16

<
3
8

<
7
16

<
1
2

<
9
16

<
5
8

<
11
16

<
3
4

<
13
16

<
7
8

<
15
16

,25

and let V , BV and SBV be respectively the 15× 10 strictly totally positive Vandermonde,
∧
Bernstein–Vandermonde and

∧
Said–26

Ball–Vandermonde matrices for those nodes.27

In this example we compare the results obtained when using MM, pinv, qrginv and QRATS2 for computing the Moore–28

Penrose inverse for these three matrices.29

The accurate computation of the matrix BD(A) in the first step of MM is done by using:30

• In the Vandermonde case, the algorithm that given a rectangular strictly totally positive
∧
Cauchy–Vandermonde matrix31

Awith onemultiple pole computes BD(A) with high relative accuracy [21]. This algorithmworks for the particular case32

in which A is a Vandermonde matrix, and its implementation in Matlab for the square case is called TNBDCV and can33

be found in the package TNTool of P. Koev [30]. TNBDCV only needs as input the corresponding interpolation nodes.34

• In the
∧
Bernstein–Vandermonde case, the algorithm that given a rectangular strictly totally positive Bernstein-35

Vandermonde matrix A computes BD(A) with high relative accuracy [25]. Its implementation in Matlab is called36

TNBDBVR and can be obtained from the package TNTool of P. Koev [30]. TNBDBVR only needs as input the corresponding37

interpolation nodes.38

• In the
∧
Said–Ball–Vandermonde case, the algorithm for the accurate computation of the matrix BD(A) when A is a39

rectangular strictly totally positive
∧
Said–Ball–Vandermonde. Its pseudocode can be found in [27] and it only needs40

as input the corresponding interpolation nodes.41

The relative errors obtained in the computations are included in Table 3.42

Looking at Table 3, we observe that MM is the only algorithm that computes the Moore–Penrose inverse of V , BV and SBV43

accurately with relative errors of 5.9e − 16, 5.2e − 16 and 5.7e − 16, respectively. The other methods obtain better results44

(but much less accurate than MM) for BV and SBV , matrices that are better conditioned than V .45

The following example is similar to Example 5.3, but thematrices involved have
∧
greater condition numbers than the ones46

in Example 5.3. The results of the experiment show how our approach is still accurate when the condition number of the47

given matrices increases, while the approaches that do not take into account the structure of the initial matrices obtain less48

accurate results than in the previous example.49
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Table 3
Relative errors in the computation of the Moore–Penrose inverse of the Vandermonde,

∧
Bernstein–Vandermonde and

∧
Said–Ball–Vandermonde matrices in

Example 5.3.
Matrix κ2(A) MM pinv qrginv QRATS2

V 1.5e + 07 5.9e − 16 2.6e − 11 5.6e − 11 2.3e − 11
BV 2.0e + 02 5.2e − 16 3.7e − 14 6.4e − 14 5.5e − 14
SBV 4.0e + 03 5.7e − 16 1.1e − 13 1.9e − 13 1.3e − 13

Table 4
Relative errors in the computation of the Moore–Penrose inverse of the Vandermonde,

∧
Bernstein–Vandermonde and

∧
Said–Ball–Vandermonde matrices in

Example 5.4.
Matrix κ2(A) MM pinv qrginv QRATS2

V 5.5e + 13 2.8e − 15 2.4e − 04 3.5e − 04 3.3e − 05
BV 1.7e + 08 3.4e − 15 1.8e − 09 4.1e − 09 4.5e − 10
SBV 2.1e + 09 3.7e − 15 2.3e − 08 5.1e − 08 2.3e − 08

Example 5.4. Let us consider the nodes 1

1
40

<
1
35

<
1
30

<
1
25

<
1
20

<
1
15

<
1
10

<
1
8

<
1
6

<
1
4

<
1
2

<
11
21

<
19
36

< 2

3

15
28

<
13
24

<
17
30

<
13
22

<
3
5

<
5
8

<
7
10

<
9
10

, 4

and let V , BV and SBV be respectively the 21× 16 strictly totally positive Vandermonde,
∧
Bernstein–Vandermonde and

∧
Said– 5

Ball–Vandermonde matrices for those nodes. 6

The relative errors obtained in the computation of the Moore–Penrose inverses of the matrices V , BV and SBV by means 7

of MM, pinv, qrginv and QRATS2 are presented in Table 4. 8

Now we include an example in which the computation of the Moore–Penrose inverse is applied to the solution of a 9

polynomial regression problem in which the monomial basis and the Bernstein basis are considered. 10

Example 5.5. Let us consider the same nodes {xi}1≤i≤16 as in Example 5.4 and the data vector 11

f = (2, 0, −1, 3, 5, 1, −1, 0, 0, 4, −2, 3, 1, −4, −5, 0, 8, 0, −1, 1, −2)T . 12

Our first aim is to compute the polynomial P(x) =
∑15

i=0 cix
i such that 13

21∑
i=1

|fi − P(xi)|2 (5.1) 14

is minimum, what is equivalent to solve in the least squares sense the overdetermined linear system Vc = f , where V is 15

the Vandermonde matrix whose Moore–Penrose inverse has been computed in Example 5.4, and c the vector containing 16

the coefficients of the polynomial P expressed in the monomial basis. The solution of this least squares problem is c = V †f , 17

and we will compute it by using the same methods we have used in the previous examples. The comparison is included in 18

Table 5. 19

We also consider the same regression problem when the monomial basis is replaced by the Bernstein basis 20

Bn =
{
b(n)i (x) =

(
n
i

)
(1 − x)n−ixi, i = 0, . . . , n

}
. 21

So, now we are interested in computing the coefficients of P(x) =
∑15

i=0 ci
(n
i

)
(1 − x)n−ixi such that (5.1) is minimum. The 22

overdetermined linear system corresponding to this regression problem is Bc = f , where B is the
∧
Bernstein–Vandermonde 23

matrix whoseMoore–Penrose inverse has been computed in Example 5.4, and c is the vector with the coefficients of P in the 24

Bernstein basis. The solution of Bc = f in the least squares sense is c = B†f , and we will compute it by means of the same 25

procedures employed when the monomial basis is taken. The results are also presented in Table 5. 26

All the computations are done in Matlab and the relative error of the computed coefficient vector c is obtained by 27

means of: 28

err =
∥c − ce∥2

∥ce∥2
, 29

where ce is the exact coefficient vector computed inMaple. 30

The results in Table 5 show the better accuracy of our approach, as well as the convenience of using the Bernstein basis 31

(with any method) instead of the monomial basis in this application of the Moore–Penrose inverse to polynomial least 32

squares fitting. 33
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Table 5
Relative errors in the computation of the regression polynomial in Example 5.5 when the monomial and the Bernstein basis are used.
Basis κ2(A) MM pinv qrginv QRATS2

Monomial 5.5e + 13 9.6e − 15 2.7e − 06 3.2e − 04 2.2e − 05
Bernstein 1.7e + 08 4.8e − 15 1.4e − 09 1.4e − 10 2.0e − 10

Table 6
Relative errors in the computation of the Moore–Penrose inverse of the Vandermonde and

∧
Bernstein–Vandermonde matrices in Example 5.6.

Matrix κ2(A) MM pinv qrginv QRATS2

V 1.4e + 33 2.5e − 15 1.0e + 00 1.0e + 00 1.0e + 00
BV 3.3e + 14 3.0e − 15 1.0e + 00 1.0e + 00 1.0e + 00

Finally, we present an example in which, although the considered structured strictly totally positive matrices are of1

moderate size, their condition numbers are so large that the approaches that do not take into account the structure of these2

matrices give no accurate answer at all, while our algorithm still gives accurate results.3

Example 5.6. Let us consider the nodes
{ i
51

}
i=1,...,50 sorted in increasing ordering, and let V and BV be respectively the4

50 × 41 strictly totally positive Vandermonde and
∧
Bernstein–Vandermonde matrices for those nodes.5

The relative errors obtained in the computation of the Moore–Penrose inverses of the matrices V and BV by means of MM,6

pinv, qrginv and QRATS2 are presented in Table 6. The spectral condition numbers of both matrices are also included.7

Let us observe that the condition number of V computed by using the command cond(V,2) ofMatlab is 2.0e+18while8

the correct one is 1.4e + 33. This fact clearly shows that, although the involved matrices could be considered of moderate9

size, due to their high condition numbers it is difficult to work with them without using algorithm that take into account10

their structure.11

6. Conclusions12

In this paper we have presented an algorithm for computing the Moore–Penrose inverse of strictly totally positive13

matrices, and we have applied it to solve least squares problems with structured matrices (Vandermonde and
∧
Bernstein–14

Vandermonde) related to polynomial regression problems.15

As the numerical examples show, although the condition numbers of thesematrices are high, our algorithmgives accurate16

results. This is a consequence of the fact that our approach takes advantage of the total positivity and special structure of the17

matrices.18

In particular, theMatlab command pinv gives less accurate results since it is based on the singular value decomposition19

and, consequently, the difficulty of computing the small singular values of ill-conditionedmatriceswith standard algorithms20

implies that the singular value decomposition is not accurately computed.21
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