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Bidiagonal decomposition
High relative accuracy

1. Introduction

The h-Bernstein bases are a generalization of the Bernstein basis which for h > 0

share many properties with the standard Bernstein basis (the case h = 0). They were 

introduced in approximation theory by Stancu [27,28], and rediscovered in the field of 

Computer Aided Geometric Design by Goldman [15], and Barry and Goldman [1,2]. 

More recently the h-Bernstein bases have been studied also in this field in [26].

An h-Bernstein-Vandermonde matrix is a generalization of the Vandermonde matrix 

obtained when replacing the monomial basis by an h-Bernstein basis [24].

The design of accurate algorithms to work with structured totally positive matrices 

is a current topic of research in numerical linear algebra since, although numerical linear 

algebra problems can be solved for these matrices by means of standard algorithms, the 

usual ill-conditioning of structured totally positive matrices may cause inaccurate results 

when standard algorithms are used (see, for example, [19,9,20,21,4,22,5,23,6,7]).

Let us recall that a matrix is totally positive (resp. strictly totally positive) if all its 

minors are nonnegative (resp. positive), and they are also known in the literature as 

totally nonnegative (resp. totally positive) [10,25].

Our aim in this work is to continue the study of totally positive h-Bernstein-

Vandermonde matrices initiated in [24]. In particular, we will start with the extension 

to the rectangular case of the algorithm for computing with high relative accuracy the 

bidiagonal decomposition of square totally positive h-Bernstein-Vandermonde matrices 

presented in [24]. Then, we will focus on two research topics that have not been consid-

ered in the square case: the error analysis of the algorithm and the perturbation theory 

for the bidiagonal factorization of totally positive h-Bernstein-Vandermonde matrices. In 

addition, we will examine the solution of two important numerical linear algebra prob-

lems for these matrices, namely singular value computation and least squares problems.

Let us remind that an algorithm computes to high relative accuracy if it only multi-

plies, divides, adds (resp. subtracts) real numbers with like (resp. differing) signs, and 

otherwise only adds or subtracts input data [8].

The rest of the paper is organized as follows. Some basic results on Neville elimi-

nation, the main theoretical tool on which our algorithm for computing the bidiagonal 

decomposition is based, and on total positivity are summarized in Section 2. Section 3

is devoted to the bidiagonal decomposition of a rectangular h-Bernstein-Vandermonde 

matrix, along with the algorithm for computing it. In Section 4 the algorithms to com-

pute the singular values and to solve the least squares problems are presented. The error 

analysis of our algorithm for computing the bidiagonal factorization is carried out in 

Section 5, while the perturbation theory is addressed in Section 6. Finally, numerical 

experiments showing the good performance of our algorithms are included in Section 7.
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2. Basic results on Neville elimination and total positivity

Some basic results on Neville elimination and total positivity, which will be essential 

for obtaining the results presented in the next section, are briefly recalled here. Our 

notation follows the notation used in [11] and [13]. Given k, n ∈ N (1 ≤ k ≤ n), Qk,n

will denote the set of all increasing sequences of k positive integers less than or equal to 

n.

Let A be an l × n real matrix. For k ≤ l, m ≤ n, and for any α ∈ Qk,l and β ∈ Qm,n, 

we will denote by A[α|β] the k × m submatrix of A containing the rows numbered by α

and the columns numbered by β.

The fundamental theoretical tool for obtaining the results presented in this paper is 

the Neville elimination [11,13,14], a procedure that makes zeros in a matrix by adding 

to a given row an appropriate multiple of the previous one.

Let A = (ai,j)1≤i≤l;1≤j≤n be a matrix where l ≥ n. The Neville elimination of A

consists of n − 1 steps resulting in a sequence of matrices A1 := A → A2 → . . . → An, 

where At = (a
(t)
i,j )1≤i≤l;1≤j≤n has zeros below its main diagonal in the t −1 first columns. 

The matrix At+1 is obtained from At (t = 1, . . . , n − 1) by using the following formula:

a
(t+1)
i,j :=

⎧
⎪⎨
⎪⎩

a
(t)
i,j , if i ≤ t

a
(t)
i,j − (a

(t)
i,t /a

(t)
i−1,t)a

(t)
i−1,j , if i ≥ t + 1 and j ≥ t + 1

0 , otherwise.

In this process the element

pi,j := a
(j)
i,j 1 ≤ j ≤ n, j ≤ i ≤ l

is called (i, j) pivot of the Neville elimination of A. The process would break down if 

any of the pivots pi,j (1 ≤ j ≤ n, j ≤ i ≤ l) were zero. In that case we can move 

the corresponding rows to the bottom and proceed with the new matrix, as described 

in [11]. The Neville elimination can be done without row exchanges if all the pivots are 

nonzero, as it will happen in our situation. The pivots pi,i are called diagonal pivots. If 

all the pivots pi,j are nonzero, then pi,1 = ai,1 ∀i and, by Lemma 2.6 of [11]

pi,j =
det A[i − j + 1, . . . , i|1, . . . , j]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
1 < j ≤ n, j ≤ i ≤ l. (1)

The element

mi,j =
pi,j

pi−1,j

1 ≤ j ≤ n, j < i ≤ l, (2)

is called multiplier of the Neville elimination of A. The matrix U := An is upper trian-

gular and has the diagonal pivots on its main diagonal.
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The complete Neville elimination of a matrix A consists of performing the Neville 

elimination of A for obtaining U and then continue with the Neville elimination of UT . 

The (i, j) pivot (resp., multiplier) of the complete Neville elimination of A is the (j, i)

pivot (resp. multiplier) of the Neville elimination of UT , if j ≥ i. When no row exchanges 

are needed in the Neville elimination of A and UT , we say that the complete Neville 

elimination of A can be done without row and column exchanges, and in this case the 

multipliers of the complete Neville elimination of A are the multipliers of the Neville 

elimination of A if i ≥ j and the multipliers of the Neville elimination of AT if j ≥ i.

Let us point out here that our approach uses results related to Neville elimination as 

a theoretical tool but it does not apply the Neville elimination algorithm for obtaining 

the bidiagonal factorization of h-Bernstein-Vandermonde matrices.

Neville elimination characterizes the strictly totally positive matrices as follows [11]:

Theorem 1. A matrix is strictly totally positive if and only if its complete Neville elimi-

nation can be performed without row and column exchanges, the multipliers of the Neville 

elimination of A and AT are positive, and the diagonal pivots of the Neville elimination 

of A are positive.

As it is shown in [24], the h-Bernstein-Vandermonde matrices are strictly totally 

positive when h ≥ 0 and the nodes {xi}1≤i≤n satisfy 0 < x1 < x2 < . . . < xn < 1.

3. Bidiagonal decomposition

The h-Bernstein basis of the space Πn(x) of polynomials of degree less than or equal 

to n on the interval [0, 1] is

Bh,n =
{

Bn
i (x; h) =

(
n

i

)∏i−1
k=0(x + kh)

∏n−i−1
k=0 (1 − x + kh)

∏n−1
k=0(1 + kh)

: i = 0, . . . , n
}

,

where h ∈ R [26].

The matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

) ∏n−1
k=0 (1−x1+kh)∏n−1

k=0 (1+kh)

(
n
1

) x1

∏n−2
k=0 (1−x1+kh)∏n−1
k=0 (1+kh)

· · ·
(

n
n

) ∏n−1
k=0 (x1+kh)∏n−1
k=0 (1+kh)

(
n
0

) ∏n−1
k=0 (1−x2+kh)∏n−1

k=0 (1+kh)

(
n
1

) x2

∏n−2
k=0 (1−x2+kh)∏n−1
k=0 (1+kh)

· · ·
(

n
n

) ∏n−1
k=0 (x2+kh)∏n−1
k=0 (1+kh)

...
...

. . .
...

(
n
0

) ∏n−1
k=0 (1−xl+1+kh)∏n−1

k=0 (1+kh)

(
n
1

) xl+1

∏n−2
k=0 (1−xl+1+kh)∏n−1
k=0 (1+kh)

· · ·
(

n
n

) ∏n−1
k=0 (xl+1+kh)∏n−1

k=0 (1+kh)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is the h-Bernstein-Vandermonde matrix (hBV matrix in the sequel) for the h-Bernstein 

basis Bh,n and the nodes {xi}1≤i≤l+1. From now on, we will consider h ≥ 0, since it is 

the case in which h-Bernstein bases share many properties with the standard Bernstein 

basis (the case h = 0) [26], and we will assume 0 < x1 < x2 < · · · < xl+1 < 1. In this 
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situation, the hBV matrices are strictly totally positive [24] and the following theorem 

holds:

Theorem 2. Let A = (ai,j)1≤i≤l+1;1≤j≤n+1 be an hBV matrix whose nodes satisfy 0 <

x1 < x2 < . . . < xl < xl+1 < 1 and h ≥ 0. Then A admits a factorization in the form

A = FlFl−1 · · · F1DG1 · · · Gn−1Gn

where Fi (1 ≤ i ≤ l) are bidiagonal matrices of order l + 1 of the form

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1
. . .

. . .

0 1

mi+1,1 1

mi+2,2 1
. . .

. . .

ml+1,l+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

GT
i (1 ≤ i ≤ n) are bidiagonal matrices of order n + 1 of the form

GT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1
. . .

. . .

0 1

m̃i+1,1 1

m̃i+2,2 1
. . .

. . .

m̃n+1,n+1−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and D is the (l + 1) × (n + 1) diagonal matrix

D = diag{p1,1, p2,2, . . . , pn+1,n+1}.

The quantities mi,j are the multipliers of the Neville elimination of the hBV matrix A, 

and have the expression

mi,1 =

∏n−1
k=0(1 − xi + kh)

∏n−1
k=0(1 − xi−1 + kh)

, (3)

where i = 2, . . . , l + 1, and
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mi,j =
(1 − xi−j + (n − j + 1)h)

∏j−1
k=1(xi − xi−k)

∏n−j

k=0(1 − xi + kh)
∏j−1

k=1(xi−1 − xi−1−k)
∏n−j+1

k=0 (1 − xi−1 + kh)
, (4)

where j = 2, . . . , n + 1, i = j + 1, . . . , l + 1. The quantities m̃i,j are the multipliers of the 

Neville elimination of AT , and their expression is

m̃i,j =
n − i + 2

i − 1
·

(xj + (i − j − 1)h)
∏j−1

k=1(1 − xk + (n − i + 2)h)
∏j

k=1(1 − xk + (n − i + 1)h)
, (5)

where j = 1, . . . , n, i = j + 1, . . . , n + 1. Finally, the ith diagonal entry of D is the 

diagonal pivot of the Neville elimination of A and its expression is

pi,i =

(
n

i − 1

) ∏
k<i(xi − xk)

∏n−i

k=0(1 − xi + kh)
∏n−i

k=1(1 + kh)
∏i−1

k=1(1 − xk + (n − i + 1)h)
(6)

where i = 1, . . . , n + 1.

Proof. It is analogous to the one carried out in theorems 3.3 and 3.4 of [24] for the case 

in which A is a square hBV matrix. To obtain equations (3)-(6) explicit expressions of 

the determinants involved in (1) and (2) are calculated. �

Based on the previous theorem, we present a fast and accurate algorithm for comput-

ing the bidiagonal decomposition of a rectangular strictly totally positive hBV matrix 

A. From now on we will follow the notation in [19], where BD(A) is used for denoting 

the matrix containing the multipliers and pivots in the bidiagonal decomposition of the 

matrix A, as it is described below.

Given the degree n of the h-Bernstein basis we are considering, the value h ≥ 0 and the 

nodes {xi}1≤i≤l+1 (where 0 < x1 < x2 < . . . < xl+1 < 1 and l > n) corresponding to A, 

the algorithm we have called TNBDhBVR (see Algorithm 1) returns a matrix M = BD(A)

such that

Mi,i = pi,i i = 1, . . . , n + 1,

Mi,j = mi,j j = 1, . . . , n + 1; i = j + 1, . . . , l + 1,

Mi,j = m̃j,i i = 1, . . . , n; j = i + 1, . . . , n + 1,

where mi,j are the multipliers of the Neville elimination of A, m̃i,j are the multipliers of 

the Neville elimination of AT and pi,i are the diagonal pivots of the Neville elimination 

of A.

The algorithm, which does not construct the hBV matrix A, is an extension to the 

rectangular case of the algorithm presented in [24] for computing the bidiagonal de-

composition of a square strictly totally positive hBV matrix. In order to facilitate the 

understanding of the error analysis carried out in Section 5, the pseudocode of the algo-

rithm TNBDhBVR is included here.
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Algorithm 1
Input: The vector c containing the nodes {xi}1≤i≤l+1, the value h ≥ 0, and the degree n of the h-Bernstein 

basis.
Output: M = BD(A)
1: function z=TNBDhBVR(c, n, h)

- mi,j computation:

2: for i=2:l+1
3: aux = 1−xi

1−xi−1
;

4: for k=1:n-1
5: aux = aux · (1−xi)+kh

(1−xi−1)+kh
;

6: end

7: Mi,1 = aux;
8: end

9: for i=3:l+1
10: Mi,2 =

(xi−xi−1)((1−xi−2)+(n−1)h)

(xi−1−xi−2)((1−xi)+(n−1)h) Mi,1;

11: end

12: for j=2:n
13: for i=j+2:l+1

14: Mi,j+1 =
(xi−xi−j )((1−xi−j−1)+(n−j)h)((1−xi−1)+(n−j+1)h)

(xi−1−xi−j−1)((1−xi)+(n−j)h)((1−xi−j )+(n−j+1)h) Mi,j ;

15: end

16: end

- m̃i,j computation:

17: for j=2:n+1

18: M1,j = (n−j+2)(x1+(j−2)h)
(j−1)((1−x1)+(n−j+1)h) ;

19: end

20: for j=3:n+1
21: for i=1:j-2

22: Mi+1,j =
(xi+1+(j−i−2)h)((1−xi)+(n−j+2)h)

((xi+(j−i−1)h)((1−xi+1)+(n−j+1)h) Mi,j ;

23: end

24: end

- pi,i computation:

25: aux=1
26: for k=1:n
27: aux = aux · xn+1−xk

1−xk
;

28: end

29: Mn+1,n+1 = aux;
30: B=zeros(1,n+1);
31: B1 = 1;
32: for i=1:n
33: Bi+1 = n−i+1

i
Bi;

34: end

35: for i=1:n
36: aux = Bi(1 − xi);
37: for k=1:i-1
38: aux = aux · xi−xk

(1−xk)+(n−i+1)h
;

39: end

40: for k=1:n-i
41: aux = aux · (1−xi)+kh

1+kh
;

42: end

43: Mi,i = aux;
44: end

Looking at Algorithm 1 it is observed that TNBDhBVR preserves high relative accuracy, 

and it has a computational cost of O(ln) arithmetic operations. For a more detailed 

explanation see [24].
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4. Accurate computations with rectangular hBV matrices

Given a totally positive hBV matrix A, algorithms for solving two fundamental prob-

lems in numerical linear algebra, namely singular value computation and the least squares 

problem, are given in this section. In the particular case of A being square, accurate and 

efficient algorithms for solving linear systems, computing eigenvalues and calculating the 

inverse for these types of matrices can be found in [24].

The algorithms developed in this section are both accurate and efficient, and are based 

on the accurate algorithm for computing BD(A) presented in Section 3.

We must note that, due to the ill-conditioning of hBV matrices [24], standard algo-

rithms to solve the two previously cited problems will generally provide less accurate 

results. The reason is that, as these algorithms do not take into account the particular 

structure of the matrix, they can suffer from inaccurate cancellation. In our approach, 

on the contrary, the exploitation of the specific structure of hVB matrices will provide 

accurate results. This becomes clear in the numerical experiments of Section 7.

4.1. Singular values and condition number

Let A ∈ R
(l+1)×(n+1) be a rectangular hBV matrix for the nodes {xi}1≤i≤l+1, where 

0 < x1 < x2 < · · · < xl+1 < 1, l > n and h ≥ 0. For matrix A, Algorithm 2 computes 

the singular values of A with high relative accuracy.

Algorithm 2
Input: The vector c containing the nodes {xi}1≤i≤l+1, the value h ≥ 0, and the degree n of the h-Bernstein 

basis.
Output: A vector z ∈ R

n+1 containing the singular values of A.
1: function z=TNSingularValueshBVR(c, n, h)
2: B=TNBDhBVR(c, n, h);
3: z=TNSingularValues(B);

The command TNSingularValues provides the singular values of a totally positive 

matrix with bidiagonal decomposition stored in matrix B. Its implementation in Matlab

can be obtained from [18]. It preserves high relative accuracy and has a computational 

cost of O(ln2) arithmetic operations [19]. This cost dominates the computational cost 

of TNBDhBVR, which is O(ln) (see Section 3). Thus, the number of arithmetic operations 

required by Algorithm 2 is O(ln2).

Let us notice that the accurate computation of the singular values of A allows us to 

compute the 2-norm condition number of A accurately, just dividing the greatest by the 

smallest singular value of A. A numerical experiment showing this fact is included in 

Section 7.

4.2. The least squares problem

Let b ∈ R
l+1 be a data vector, and let us consider the overdetermined linear sys-

tem Ax = b, whose coefficient matrix A is the rectangular hBV matrix for the nodes 
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{xi}1≤i≤l+1 (where 0 < x1 < x2 < · · · < xl+1 < 1, l > n) and h ≥ 0. The least 

squares problem to be solved consists of computing a vector x ∈ R
n+1 which minimizes 

||b − Ax||2. Since A is a strictly totally positive matrix, it has full rank n + 1. Hence, 

the solution of the least squares problem is unique, and the method of G. H. Golub [16]

based on the QR decomposition is adequate for solving this least squares problem [3].

For completeness we include the following result (see Section 1.3.1 in [3]), which will 

be essential in the construction of our algorithm.

Theorem 3. Let Ax = b be a linear system where A ∈ R
(l+1)×(n+1), l ≥ n, x ∈ R

n+1 and 

b ∈ R
l+1. Assume that rank(A) = n + 1, and let the QR decomposition of A be given by

A = Q

[
R

0

]
,

where Q ∈ R
(l+1)×(l+1) is an orthogonal matrix and R ∈ R

(n+1)×(n+1) is an upper 

triangular matrix with positive diagonal entries. Then the solution of the least squares 

problem minx||b − Ax||2 is obtained from

[
d1

d2

]
= QT b, Rx = d1, r = Q

[
0

d2

]
,

where d1 ∈ R
n+1, d2 ∈ R

l−n and r = b − Ax. In particular ||r||2 = ||d2||2.

Algorithm 3 is based on Theorem 3 and provides the solution of the least squares 

problem we are considering.

Algorithm 3
Input: The vector c containing the nodes {xi}1≤i≤l+1, the value h ≥ 0, the degree n of the h-Bernstein 

basis, and the vector b ∈ R
l+1.

Output: The solution vector x ∈ R
n+1 and the minimum residual r = b − Ax.

1: function [x, r]=TNLeastSquareshBV(c, n, h, b)
2: B=TNBDhBVR(c, n, h);
3: [Q, R]=TNQR(B);

4: d =
[

d1

d2

]
= QT b;

5: x=TNSolve(R,d1);

6: r = Q 
(

0
d2

)
;

The algorithm TNQR has been developed by P. Koev and, given the bidiagonal factor-

ization of A, it computes the matrix Q and the bidiagonal factorization of the matrix R

with high relative accuracy. Let us point out here that if A is strictly totally positive, 

then R is totally positive, a fact carefully analyzed in [12]. TNQR is based on Givens 

rotations and has a computational cost of O(l2n) arithmetic operations if the matrix Q

is required [20]. Its implementation in Matlab can be obtained from [18].



JID:LAA AID:15644 /FLA [m1L; v1.297] P.10 (1-16)

10 A. Marco et al. / Linear Algebra and its Applications ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Lines 4 and 6 are performed by using the standard matrix multiplication command 

of Matlab.

The command TNSolve solves the linear system Ax = b, where A is a strictly totally 

positive matrix, starting from the bidiagonal decomposition of A and using backward 

substitution. Its implementation in Matlab is available in the package TNTool of P. 

Koev [18] and it guarantees high relative accuracy provided that the data vector has 

alternating sign pattern. The computational cost of applying it is of O(n2) arithmetic 

operations.

Taking into account that the cost of TNBDhBVR is O(ln) (see Section 3), the computa-

tional cost of the whole algorithm is O(l2n).

Although for the least squares problem our approach does not guarantee high rel-

ative accuracy, numerical experiments illustrating its good behaviour are presented in 

Section 7.

5. Error analysis

In this section the error analysis of the algorithm TNBDhBVR for computing the bidi-

agonal factorization of a rectangular totally positive hBV matrix included in Section 3

is accomplished.

For our error analysis we use the standard model of floating point arithmetic (see 

section 2.2 of [17]):

Let x, y be floating point numbers and let ǫ be the machine precision. Then we have

fl(x ⊙ y) = (x ⊙ y)(1 + δ)±1, where |δ| ≤ ǫ, ⊙ ∈ {+, −, ×, /}.

Our error analysis of algorithm TNBDhBVR (Algorithm 1) is summarized in the following 

theorem:

Theorem 4. Let A be an hBV matrix for the h-Bernstein basis Bh,n (h ≥ 0) and 

the nodes {xi}1≤i≤l+1, where 0 < x1 < x2 < . . . < xl+1 < 1 and l ≥ n. Let 

BD(A) = (bi,j)1≤i≤l+1;1≤j≤n+1 be the matrix representing the exact bidiagonal decompo-

sition of A and (̂bi,j)1≤i≤l+1;1≤j≤n+1 be the matrix representing the computed bidiagonal 

decomposition of A by means of the algorithm TNBDhBVR in floating point arithmetic with 

machine precision ǫ. Then

|̂bi,j − bi,j | ≤
(22n − 9)ǫ

1 − (22n − 9)ǫ
bi,j , i = 1, . . . , l + 1; j = 1, . . . , n + 1.

Proof. Accumulating the relative errors in the style of Higham (see Chapter 3 of [17], 

[9], [19] and [21]) in the computation of the multipliers mi,j by means of the algorithm

TNBDhBVR included in Section 3 we obtain

|m̂i,j − mi,j | ≤
(22n − 9)ǫ

1 − (22n − 9)ǫ
mi,j , j = 1, . . . , n + 1; i = j + 1, . . . , l + 1, (7)
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where m̂i,j are the multipliers mi,j computed in floating point arithmetic. Proceeding in 

the same way for the computation of the m̃i,j we derive

| ̂̃mi,j − m̃i,j | ≤
(12n − 5)ǫ

1 − (12n − 5)ǫ
m̃i,j , j = 1, . . . , n; i = j + 1, . . . , n + 1, (8)

where ̂̃mi,j are the multipliers m̃i,j computed in floating point arithmetic. Analogously

|p̂i,i − pi,i| ≤
(7n − 5)ǫ

1 − (7n − 5)ǫ
pi,i, i = 1, . . . , n + 1, (9)

where p̂i,i are the diagonal pivots pi,i computed in floating point arithmetic.

Therefore, looking at the inequalities given by (7), (8) and (9) and taking into account 

that m̂i,j , ̂̃mi,j and p̂i,i are the entries of (̂bi,j)1≤i≤l+1;1≤j≤n+1, we conclude that

|̂bi,j − bi,j | ≤
(22n − 9)ǫ

1 − (22n − 9)ǫ
bi,j , i = 1, . . . , l + 1; j = 1, . . . , n + 1. �

This result shows that TNBDhBVR computes the bidiagonal decomposition of an hBV 

matrix accurately in floating point arithmetic.

6. Perturbation theory

In his work [19], P. Koev showed that if a totally positive matrix A is represented 

as a product of nonnegative bidiagonal matrices, then small relative perturbations in 

the entries of the bidiagonal factors produce only small relative perturbations in the 

eigenvalues and singular values of A. More precisely, BD(A) determines the eigenvalues 

and the singular values of A accurately, and the appropriate structured condition number 

of each eigenvalue and/or singular value with respect to perturbations in BD(A) is at 

most 2n2 (see Corollary 7.3 in [19]).

These results reveal the importance of the study of the perturbation theory for the 

bidiagonal decomposition BD(A) of a totally positive matrix A. This study in the case 

in which A is a totally positive hBV matrix is carried out in this section, and so the 

sensitivity of its BD(A) with respect to perturbations in the nodes xi of A is analyzed. 

Specifically, we prove that small relative perturbations in the nodes of an hBV matrix 

A produce only small relative perturbations in its bidiagonal factorization BD(A).

We start by defining the quantities we need to find an appropriate condition number, 

in a similar way to the work developed in [19,21–23].

Definition 1. Let A be a strictly totally positive hBV matrix for the h-Bernstein basis 

Bh,n and the nodes {xi}1≤i≤l+1 and let x′
i = xi(1 + δi) be the perturbed nodes for 

1 ≤ i ≤ l + 1, where |δi| << 1. We define:
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rel_gapx ≡ min
i �=j

|xi − xj |

|xi| + |xj |
,

rel_gap1 ≡ min
i

|1 − xi|

|xi|
,

θ ≡ max
i

|xi − x′
i|

|xi|
= max

i
|δi|,

α ≡ min{rel_gapx, rel_gap1},

κh ≡
1

α
,

where θ << rel_gapx, rel_gap1.

The following theorem is the main result of this section.

Theorem 5. Let A and A′ be strictly totally positive hBV matrices for the h-Bernstein 

basis Bh,n and the nodes {xi}1≤i≤l+1 and x′
i = xi(1 + δi) for 1 ≤ i ≤ l + 1, where 

|δi| ≤ θ << 1. Let BD(A) and BD(A′) be the matrices representing the bidiagonal 

decomposition of A and the bidiagonal decomposition of A′, respectively. Then

|(BD(A′))i,j − (BD(A))i,j | ≤
(2n + 2)κhθ

1 − (2n + 2)κhθ
(BD(A))i,j .

Proof. Taking into account that |δi| ≤ θ, it can easily be shown that

x′
i − x′

j = (xi − xj)(1 + δi,j), |δi,j | ≤
θ

rel_gapx

, (10)

x′
j + kh = (xj + kh)(1 + δ′

j), |δ′
j | ≤ θ, (11)

and

1 − x′
j + kh = (1 − xj − kh)(1 + δ′′

j ), |δ′′
j | ≤

θ

rel_gap1
. (12)

Accumulating the perturbations in the style of Higham (see Chapter 3 of [17], [19]

and [21]) using the formulae (3) and (4) for the mi,j , and (10) and (12) we obtain

m′
i,j = mi,j(1 + δ̄), |δ̄| ≤

(2n + 2)κhθ

1 − (2n + 2)κhθ
,

where m′
i,j are the entries of BD(A′) below the main diagonal. Proceeding in the same 

way by using Equation (5), and (11) and (12) we get

m̃′
i,j = m̃i,j(1 + δ̄), |δ̄| ≤

(2n) θ
rel_gap1

1 − (2n) θ
rel_gap1

,
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where m̃′
i,j are the entries of BD(A′) above the main diagonal. Analogously, and using 

in this case Equation (6), and (10) and (12) we get

p′
i,i = pi,i(1 + δ̄), |δ̄| ≤

(2n + 1)κhθ

1 − (2n + 1)κhθ
,

where p′
i,i are the diagonal elements of BD(A′). Finally, considering the last three in-

equalities we conclude that

|(BD(A′))i,j − (BD(A))i,j | ≤
(2n + 2)κhθ

1 − (2n + 2)κhθ
(BD(A))i,j . �

Therefore, we see that the quantity (2n + 2)κh is an appropriate structured condition 

number of A with respect to the perturbations in the data xi. This result is analogous 

to the results of [9,19] in the sense that the relevant quantities for the determination 

of a structured condition number are the relative separations between the nodes. As it 

happens in [21,22], in this case important quantities for the determination of a structured 

condition number are also the relative distances between the nodes and 1.

Combining this theorem with Corollary 7.3 in [19], which states that small compo-

nentwise relative perturbations of BD(A) cause only small relative perturbation in the 

eigenvalues λi and singular values σi of A, we obtain that

|λ′
i − λi| ≤ O(n3κhθ)λi and |σ′

i − σi| ≤ O(n3κhθ)σi,

where λ′
i and σ′

i are the eigenvalues and the singular values of A′. That is, small relative 

perturbations in the nodes of an hBV matrix A produce only small relative perturbations 

in its eigenvalues and in its singular values.

7. Numerical examples

Two numerical tests illustrating the good behaviour of the algorithms developed in 

the previous sections are shown. In the first of them, the singular values of several 

rectangular hBV matrices are computed. Classical algorithms for calculating singular 

values of ill-conditioned totally positive matrices only compute the largest singular values 

with guaranteed relative accuracy, whereas the tiny singular values may be computed 

with no relative accuracy at all [19]. This fact has consequences in some applications, 

such as the computation of the condition number of a matrix as the ratio between its 

largest and its smallest singular value. The second example is devoted to the solution of 

three least squares problems.

Example 1. Let us consider the three h-Bernstein bases Bh,n for n = 20, and h = 0.2, 

h = 0.5 and h = 1. We also take the 31 nodes
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Table 1

Relative errors of the singular values of A0.2, A0.5 and A1.

h=0.2 h=0.5 h=1

σi Alg 2 svd σi Alg 2 svd σi Alg 2 svd

2.3e+00 3.9e−16 3.9e−16 2.6e+00 1.7e−16 1.7e−16 2.9e+00 3.1e−16 1.5e−16

1.6e+00 1.4e−16 1.4e−16 1.9e+00 9.3e−16 1.2e−16 2.2e+00 4.1e−16 0

8.2e−01 4.1e−16 4.1e−16 6.7e−01 8.3e−16 0 5.1e−01 4.3e−16 2.2e−16

5.4e−01 4.1e−16 2.1e−16 3.2e−01 5.2e−16 3.5e−16 1.7e−01 6.4e−16 1.6e−16

2.8e−01 7.9e−16 5.9e−16 1.1e−01 1.3e−16 3.9e−16 3.5e−02 6.0e−16 6.0e−16

1.3e−01 2.1e−16 2.1e−16 2.9e−02 1.2e−16 5.9e−16 5.6e−03 7.8e−16 1.4e−15

4.7e−02 5.9e−16 1.5e−16 6.0e−03 0 7.3e−16 6.6e−04 3.3e−16 6.6e−16

1.4e−02 7.3e−16 3.7e−16 9.8e−04 2.2e−16 2.0e−15 6.1e−05 1.2e−15 2.6e−14

3.8e−03 1.1e−16 9.2e−16 1.4e−04 6.0e−16 8.2e−14 4.7e−06 1.6e−15 1.0e−12

9.6e−04 1.2e−15 1.6e−14 1.7e−05 5.8e−16 7.3e−13 3.3e−07 8.0e−16 1.6e−11

1.9e−04 2.9e−16 1.4e−14 1.7e−06 8.5e−16 1.6e−12 1.8e−08 5.5e−16 1.1e−10

3.5e−05 3.9e−16 6.6e−13 1.6e−07 1.0e−15 3.5e−11 8.9e−10 5.8e−16 5.5e−09

5.5e−06 6.2e−16 3.0e−12 1.2e−08 1.4e−16 4.8e−10 3.7e−11 5.3e−16 8.4e−08

7.4e−07 7.2e−16 9.2e−12 7.9e−10 7.8e−16 9.7e−09 1.3e−12 0 4.1e−06

9.3e−08 2.9e−16 4.7e−11 4.8e−11 2.7e−16 1.9e−07 4.2e−14 1.1e−15 1.9e−05

9.5e−09 1.7e−16 1.0e−09 2.3e−12 1.2e−15 1.6e−06 1.1e−15 1.1e−15 1.9e−03

8.7e−10 7.1e−16 6.6e−09 1.0e−13 2.5e−16 5.0e−05 2.5e−17 0 1.6e−02

6.2e−11 8.3e−16 2.1e−08 3.4e−15 1.6e−15 1.8e−03 4.5e−19 4.3e−16 1.4e+01

3.7e−12 8.7e−16 6.0e−07 9.4e−17 1.3e−15 7.2e−02 6.7e−21 1.7e−15 9.3e+02

1.4e−13 1.7e−15 5.4e−05 1.7e−18 1.5e−15 1.1e+01 6.5e−23 4.0e−15 7.6e+04

5.3e−15 1.8e−15 1.6e−04 2.9e−20 6.1e−16 3.5e+02 5.9e−25 1.9e−15 4.5e+06
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4
<
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<
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7
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<

19
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<

39

40
<

99

100
.

We denote by A0.2, A0.5 and A1 the hBV matrices associated to the nodes above and 

the h-Bernstein bases B0.2,20, B0.5,20 and B1,20, respectively.

We compute the singular values σi (i = 1, . . . , 21) of A0.2, A0.5 and A1 by using Al-

gorithm 2 and the command svd of Matlab. In order to compare the relative errors 

obtained when computing the singular values by these two methods we use the singu-

lar values σi computed with Maple by means of the command SingularValues of the 

package LinearAlgebra as follows: the singular values are stored by Maple as the roots 

of polynomials by means of the function RootOf (which is a placeholder for representing 

the roots), and then they are evaluated to 50 digits by means of the command evalf. 

The results are given in Table 1.

In Table 2, the relative errors obtained when computing the 2-norm condition number 

of the matrices A0.2, A0.5 and A1 by using our approach and the command cond of Mat-

lab are presented. The condition number considered as exact κ2(A) is the one obtained 

in Maple by dividing the largest singular value of A by the smallest one computed as 

explained above. They are also showed in Table 2.

Looking at the results in Table 1 we observe that our algorithm computes all the 

singular values of the hBV matrices A0.2, A0.5 and A1 accurately, while the standard 

command svd of Matlab only computes accurately their largest singular values, and 
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Table 2

Relative errors of the 2-norm condition 
number of A0.2, A0.5 and A1.

h κ2 Alg 2 cond

0.2 4.3e + 14 1.2e − 15 1.6e − 04
0.5 8.9e + 19 9.2e − 16 1.0
1 4.9e + 24 1.3e − 15 1.0

Table 3

Relative errors of the least squares problem for A0.2, A0.5

and A1.

h (Alg 3)x (Alg 3)r (A\b)x (A\b)r

0.2 1.3e − 15 1.2e − 15 1.0e + 00 3.9e − 01
0.5 4.8e − 16 2.0e − 15 1.0e + 00 8.8e − 01
1 1.4e − 15 1.4e − 15 1.0e + 00 1.0e + 00

the smallest ones without any accuracy. The same situation appears when computing 

the condition number of A0.2, A0.5 and A1 (see Table 2). While our approach computes 

the three condition numbers accurately, the ones computed by cond of Matlab are not 

accurate at all.

Furthermore, we notice that our algorithm computes accurate singular values regard-

less of the 2-norm condition number of the hBV matrices, but this fact does not occur 

when using svd of Matlab (see Table 1 and Table 2).

Example 2. Let us consider the same hBV matrices A0.2, A0.5 and A1 as in Example 1, 

and the data vector

b = (−1, 0, 2, 2, 1, 3, −2, 6, 5, −3, 0, 4, 1, −2, −3, −1, 0, 6, −2, −4, 7, 0, 1, 5, 11, 2, 3, 1, 0, 5, −4)T
.

In Table 3 we present the relative errors obtained when solving the least squares problem 

minx||b − Ahx||2 (for h = 0.2, 0.5, 1) by means of Algorithm 3 and the command A\b

from Matlab. They are denoted by (Alg 3)x and (A\b)x, respectively. The relative 

errors corresponding to the computation of the minimum residual by using Algorithm 3

and A\b of Matlab by (Alg 3)r and (A\b)r, respectively. In the computation of the 

relative errors the exact solution vector and the exact minimum residual obtained in 

Maple are used.

Looking at Table 3 we notice that our approach computes accurately the solutions 

and the residuals of the considered least squares problems. In contrast, the command 

A\b of Matlab returns results no accurate at all.
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