
Linear Algebra and its Applications 651 (2022) 312–331
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Accurate computations with collocation matrices of 
the Lupaş-type (p,q)-analogue of the Bernstein 

basis ✩

Ana Marco ∗, José-Javier Martínez, Raquel Viaña
Universidad de Alcalá, Departamento de Física y Matemáticas, Alcalá de Henares, 
Madrid 28871, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2022
Accepted 19 June 2022
Available online 23 June 2022
Submitted by S. Fallat

MSC:
65F05
65F15
65F20
65D05
65D17
15A23
15B48

Keywords:
Bidiagonal decomposition
(p,q)-Lupaş matrix
Totally positive matrix
Neville elimination
High relative accuracy

A fast and accurate algorithm to compute the bidiagonal 
decomposition of collocation matrices of the Lupaş-type 
(p,q)-analogue of the Bernstein basis is presented. The error 
analysis of the algorithm and the perturbation theory for the 
bidiagonal decomposition are also included. Starting from this 
bidiagonal decomposition, the accurate and efficient solution 
of several linear algebra problems involving these matrices is 
addressed: linear system solving, eigenvalue and singular value 
computation, and computation of the inverse and the Moore-
Penrose inverse. The numerical experiments carried out show 
the good behaviour of the algorithm.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

✩ This research has been partially supported by Spanish Research Grant PGC2018-096321-B-I00 from 
the Spanish Ministerio de Ciencia, Innovación y Universidades. The authors are members of the Research 
Group asynacs (Ref. CT-CE2019/683) of Universidad de Alcalá.
* Corresponding author.

E-mail addresses: ana.marco@uah.es (A. Marco), jjavier.martinez@uah.es (J.-J. Martínez), 
raquel.viana@uah.es (R. Viaña).
https://doi.org/10.1016/j.laa.2022.06.023
0024-3795/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.laa.2022.06.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2022.06.023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ana.marco@uah.es
mailto:jjavier.martinez@uah.es
mailto:raquel.viana@uah.es
https://doi.org/10.1016/j.laa.2022.06.023
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Marco et al. / Linear Algebra and its Applications 651 (2022) 312–331 313
1. Introduction

The Lupaş-type (p,q)-analogue of the Bernstein basis was introduced in [14] as a 
generalization of the Lupaş-type q-analogue of the Bernstein basis [18]. In that paper 
[14], the authors studied curves and surfaces associated to this new basis, and called them 
(p,q)-Bézier curves and surfaces. They involve (p,q)-integers as shape parameters, and in 
comparison to q-Bézier curves and surfaces based on Lupaş q-Bernstein functions they 
provide more flexibility in controlling the shapes of the associated curves and surfaces.

As it can be seen for instance in Section 5 of [8], in the field of Computer Aided 
Geometric Design the shape-preserving property of curves is closely related to the total 
positivity of the corresponding collocation matrices. Such matrices are defined as follows.

Definition 1.1. The collocation matrix of a system of functions (u0(x), u1(x), . . . , un(x))
on an interval I at x0 < x1 < · · · < xm in I is given by

M

(
u0, . . . , un

x0, . . . , xm

)
:= (uj(xi))i=0,...,m;j=0,...,n.

We recall that, classically, a matrix is called totally positive if all its minors are non-
negative and strictly totally positive if all its minors are positive [11,26]. Although we 
will follow such terminology, we must note that totally positive matrices and strictly 
totally positive matrices are also called totally nonnegative and totally positive matrices, 
respectively [7].

The properties of the (p,q)-Lupaş system of functions presented in [14], in particular 
the end-point interpolation property, the convex-hull property and the variation dimin-
ishing property, suggest that the corresponding collocation matrices are strictly totally 
positive when p, q > 0 and the nodes are in the interval (0, 1) sorted in increasing order-
ing [2]. Following a different approach, we will give a proof of this fact in Theorem 2. Let 
us notice that the technique we have chosen provides not only an elegant demonstration 
of this theorem, but also a clearer proof of Theorem 3 and Theorem 4.

Although numerical linear algebra for structured strictly totally positive matrices can 
be done by using standard numerical linear algebra algorithms, the ill conditioning of 
such matrices is the reason why these algorithms do not give accurate results (see, for 
example, [16]). Because of this, the design of efficient numerical linear algebra algorithms 
that, taking into account the structure of these totally positive matrices, provide accurate 
answers is a current topic of research in this area.

In his work in [16] and [17] P. Koev showed that, having the bidiagonal decomposition 
of a nonsingular totally positive matrix computed with high relative accuracy, virtually 
all linear algebra problems can be solved accurately for that matrix. That is, the bidi-
agonal decomposition is the adequate representation for doing accurate numerical linear 
algebra with nonsingular totally positive matrices. Given a nonsingular totally positive 
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matrix A, this decomposition can be stored in a matrix, denoted by P. Koev BD(A), of 
the same size as A.

Examples of structured totally positive matrices whose bidiagonal decomposition has 
been computed in a fast and accurate way are Bernstein-Vandermonde matrices [20], 
Cauchy-Vandermonde matrices [23], Lupaş matrices [4], collocation and Wronskian ma-
trices of Jacobi polynomials [19] or generalized Pascal matrices [3].

Our aim in this work is obtaining a fast and accurate algorithm for computing the 
bidiagonal decomposition BD(A) of a strictly totally positive collocation matrix of a 
Lupaş-type (p,q)-analogue of the Bernstein basis, and apply it to solve some fundamen-
tal linear algebra problems involving A. In our approach the main theoretical tool for 
obtaining BD(A) is Neville elimination, but it must be pointed out that we do not apply 
the Neville elimination algorithm since it does not provide accurate results. This fact 
is noted in [15], where the author indicates that the function TNBD for computing the 
BD(A) by means of Neville elimination does not guarantee high relative accuracy. Let us 
remind that an algorithm computes to high relative accuracy if it satisfies the so called 
NIC (no inaccurate cancellation) condition [5]:

NIC: The algorithm only multiplies, divides, adds (resp. subtracts) real numbers with 
like (resp. differing) signs, and otherwise only adds or subtracts input data.

Finally, let us recall some basic concepts on (p,q)-calculus needed in our work. More 
details on the subject can be found for instance in [13].

For any p > 0 and q > 0 the (p,q) integer [n]p,q is defined by

[n]p,q = pn−1 + pn−2q + pn−3q2 + · · · + pqn−2 + qn−1, n = 0, 1, 2, . . .

The (p,q) factorial [n]p,q! is defined as

[n]p,q! = [n]p,q[n− 1]p,q · · · [2]p,q[1]p,q, n = 0, 1, 2, . . . ,

and the (p,q) binomial coefficients
[
n
k

]
p,q

as

[
n

k

]
p,q

= [n]p,q!
[k]p,q![n− k]p,q!

, n = 0, 1, 2, . . . ; k = 0, 1, . . . , n.

The rest of the paper is organized as follows. In Section 2, basic results on Neville 
elimination and total positivity are given. Section 3 is devoted to obtain the bidiagonal 
decomposition of collocation matrices of Lupaş (p,q)-analogue of the Bernstein func-
tions, the corresponding algorithm being presented in Section 4. The error analysis of 
such algorithm is done in Section 5, while the perturbation theory of the bidiagonal de-
composition is studied in Section 6. Finally, in Section 7 numerical experiments showing 
the good results obtained when applying our approach to solve several linear algebra 
problems involving this type of matrices are included.
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2. Neville elimination and total positivity

In this section we will briefly recall some basic results on Neville elimination and total 
positivity which will be essential for obtaining the results presented in Section 3. Our 
notation follows the notation used in [9] and [10]. Given k, n ∈ N (1 ≤ k ≤ n), Qk,n will 
denote the set of all increasing sequences of k positive integers less than or equal to n.

Let A be a square real matrix of order n. For k ≤ n, m ≤ n, and for any α ∈ Qk,n

and β ∈ Qm,n, we will denote by A[α|β] the k ×m submatrix of A containing the rows 
numbered by α and the columns numbered by β.

The fundamental theoretical tool for obtaining the results presented in this paper is 
the Neville elimination [9–11], a procedure that makes zeros in a matrix by adding to a 
given row an appropriate multiple of the previous one.

Let A = (ai,j)1≤i,j≤n be a square matrix of order n. The Neville elimination of A
consists of n − 1 steps resulting in a sequence of matrices A1 := A → A2 → . . . → An, 
where At = (a(t)

i,j )1≤i,j≤n has zeros below its main diagonal in the t − 1 first columns. 
The matrix At+1 is obtained from At (t = 1, . . . , n − 1) by using the following formula:

a
(t+1)
i,j :=

⎧⎪⎨⎪⎩
a
(t)
i,j , if i ≤ t

a
(t)
i,j − (a(t)

i,t /a
(t)
i−1,t)a

(t)
i−1,j , if i ≥ t + 1 and j ≥ t + 1

0 , otherwise.
(1)

In this process the element

pi,j := a
(j)
i,j 1 ≤ j ≤ n, j ≤ i ≤ n

is called (i, j) pivot of the Neville elimination of A. The process would break down if 
any of the pivots pi,j (j ≤ i < n) is zero. In that case we can move the corresponding 
rows to the bottom and proceed with the new matrix, as described in [9]. The Neville 
elimination can be done without row exchanges if all the pivots are nonzero, as it will 
happen in our situation. The pivots pi,i are called diagonal pivots. If all the pivots pi,j
are nonzero, then pi,1 = ai,1 ∀i and, by Lemma 2.6 of [9]

pi,j = detA[i− j + 1, . . . , i|1, . . . , j]
detA[i− j + 1, . . . , i− 1|1, . . . , j − 1] 1 < j ≤ i ≤ n. (2)

The element

mi,j = pi,j
pi−1,j

1 ≤ j ≤ n− 1, j < i ≤ n, (3)

is called multiplier of the Neville elimination of A. The matrix U := An is upper trian-
gular and has the diagonal pivots on its main diagonal.

The complete Neville elimination of a matrix A consists of performing the Neville 
elimination of A for obtaining U and then continue with the Neville elimination of UT . 
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The (i, j) pivot (respectively, multiplier) of the complete Neville elimination of A is the 
(j, i) pivot (respectively, multiplier) of the Neville elimination of UT , if j ≥ i. When 
no row exchanges are needed in the Neville elimination of A and UT , we say that the 
complete Neville elimination of A can be done without row and column exchanges, and 
in this case the multipliers of the complete Neville elimination of A are the multipliers 
of the Neville elimination of A if i ≥ j and the multipliers of the Neville elimination of 
AT if j ≥ i (see p. 116 of [11]).

The Neville elimination characterizes the strictly totally positive matrices as follows 
[9]:

Theorem 1. A matrix is strictly totally positive if and only if its complete Neville elimi-
nation can be performed without row and column exchanges, the multipliers of the Neville 
elimination of A and AT are positive, and the diagonal pivots of the Neville elimination 
of A are positive.

3. Bidiagonal decomposition

Lupaş (p,q)-analogue of the Bernstein functions (rational) of degree n for p > 0, q > 0
were introduced in [14], where they were defined as

br,np,q(t) =

[
n
r

]
p,q

p
(n−r)(n−r−1)

2 q
r(r−1)

2 tr(1 − t)n−r∏n
k=1(pk−1(1 − t) + qk−1t)

, t ∈ [0, 1], r = 0, 1, . . . , n.

Lupaş (p,q)-Bézier curves of degree n are defined also in [14] as

P(t; p, q) =
n∑

r=0
Pr br,np,q(t),

where Pr ∈ R3 (r = 0, . . . , n) are the control points.
Let us observe that when p = 1, Lupaş (p,q)-analogue of the Bernstein functions 

coincide with the Lupaş q-analogue of the Bernstein functions [18], and when p = q = 1
with the classical Bernstein polynomials [8].

The matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
n
0
]
p,q

p
n(n−1)

2 (1−t1)n∏n
k=1(pk−1(1−t1)+qk−1t1)

[
n
1
]
p,q

p
(n−1)(n−2)

2 t1(1−t1)n−1∏n
k=1(pk−1(1−t1)+qk−1t1)

···
[
n
n

]
p,q

q
n(n−1)

2 tn1∏n
k=1(pk−1(1−t1)+qk−1t1)

[
n
0
]
p,q

p
n(n−1)

2 (1−t2)n∏n
k=1(pk−1(1−t2)+qk−1t2)

[
n
1
]
p,q

p
(n−1)(n−2)

2 t2(1−t2)n−1∏n
k=1(pk−1(1−t2)+qk−1t2)

···
[
n
n

]
p,q

q
n(n−1)

2 tn2∏n
k=1(pk−1(1−t2)+qk−1t2)

...
...

. . .
...[

n
0
]
p,q

p
n(n−1)

2 (1−tl+1)n∏n
k=1(pk−1(1−tl+1)+qk−1tl+1)

[
n
1
]
p,q

p
(n−1)(n−2)

2 tl+1(1−tl+1)n−1∏n
k=1(pk−1(1−tl+1)+qk−1tl+1)

···
[
n
n

]
p,q

q
n(n−1)

2 tnl+1∏n
k=1(pk−1(1−tl+1)+qk−1tl+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is the collocation matrix of the Lupaş (p,q)-analogue of the Bernstein functions 
(b0,np,q , b

1,n
p,q , . . . , b

n,n
p,q ) at {ti}1≤i≤l+1. From now on, we assume l ≥ n and 0 < t1 < t2 <
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· · · < tl+1 < 1, and we call the matrix above (p,q)-Lupaş matrix for the (p,q)-analogue 
of the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1.

Let us point out that, when l = n, collocation matrices arise in Lagrange interpolation 
problems as the coefficient matrices of the corresponding linear systems. In our case the 
collocation matrix A is the coefficient matrix of the linear system associated with the 
following interpolation problem in the (p,q)-analogue of the Bernstein basis (br,np,q)0≤r≤n: 
given the interpolation nodes {ti : i = 1, · · · , n +1}, where 0 < t1 < t2 < · · · < tn+1 < 1, 
and the interpolation data {bi : i = 1, · · · , n + 1} find the polynomial

p(t) =
n∑

r=0
arb

r,n
p,q(t)

such that p(ti) = bi for i = 1, · · · , n + 1.
In the next theorem, the strict total positivity of (p,q)-Lupaş matrices is established.

Theorem 2. The (p,q)-Lupaş matrix for the (p,q)-analogue of the Bernstein functions 
(br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1, where 0 < t1 < t2 < · · · < tl+1 < 1, is strictly 
totally positive.

Proof. Let A be the (p,q)-Lupaş matrix for the (p,q)-analogue of the Bernstein functions 
(br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1, where 0 < t1 < t2 < · · · < tl+1 < 1. It can be 
seen that A can be factorized as A = WCZ, where W is the (l + 1) × (l + 1) diagonal 
matrix whose i-th diagonal entry is

wi,i =
( n∏

k=1

(pk−1(1 − ti) + qk−1ti

)−1
,

C =

⎛⎜⎜⎜⎜⎝
(1 − t1)n t1(1 − t1)n−1 · · · tn1
(1 − t2)n t2(1 − t2)n−1 · · · tn2

...
...

. . .
...

(1 − tl+1)n tl+1(1 − tl+1)n−1 · · · tnl+1

⎞⎟⎟⎟⎟⎠
and Z is the (n + 1) × (n + 1) diagonal matrix whose i-th diagonal entry is

zi,i =
[

n

i− 1

]
p,q

p
(n−i+1)(n−i)

2 q
(i−1)(i−2)

2 .

Taking into account that 0 < t1 < . . . < tl+1 < 1, p > 0 and q > 0, the diagonal 
matrices W and Z are nonsingular totally positive matrices.

Since each minor of C has the same strict sign as the corresponding minor of the 
Bernstein-Vandermonde matrix at the nodes {ti}1≤i≤l+1 (0 < t1 < t2 < · · · < tl+1 < 1), 
and this Bernstein-Vandermonde matrix is strictly totally positive (see [20]), the matrix 
C is strictly totally positive.
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Therefore, since the product of a strictly totally positive matrix by a nonsingular 
totally positive matrix is a strictly totally positive matrix [1], A = WCZ is strictly 
totally positive and the proof is complete. �

In the following theorem a bidiagonal factorization of a (p,q)-Lupaş matrix is stated. 
It must be observed that this bidiagonal decomposition is the one needed to compute 
BD(A), it is not derived directly from the factorization A = WCZ and it is unique.

Theorem 3. Let A = (ai,j)1≤i≤l+1;1≤j≤n+1 be the (p,q)-Lupaş matrix for the (p,q)-
analogue of the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1, where 0 <
t1 < t2 < · · · < tl+1 < 1. Then A admits a factorization in the form

A = FlFl−1 · · ·F1DG1 · · ·Gn−1Gn (4)

where Fi (1 ≤ i ≤ l) are bidiagonal matrices of order l + 1 of the form

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . . . . .
0 1

mi+1,1 1
mi+2,2 1

. . . . . .
ml+1,l+1−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

GT
i (1 ≤ i ≤ n) are bidiagonal matrices of order n + 1 of the form

GT
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . . . . .
0 1

m̃i+1,1 1
m̃i+2,2 1

. . . . . .
m̃n+1,n+1−i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

and D is the (l + 1) × (n + 1) diagonal matrix

D = diag{p1,1, p2,2, . . . , pn+1,n+1}. (7)

The quantities mi,j are the multipliers of the Neville elimination of the (p,q)-Lupaş 
matrix A, and have the expression
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mi,j =
(1 − ti)n−j+1(1 − ti−j)

∏j−1
k=1(ti − ti−k)

∏n
k=2(pk−1(1 − ti−1) + qk−1ti−1)

(1 − ti−1)n−j+2 ∏j
k=2(ti−1 − ti−k)

∏n
k=2(pk−1(1 − ti) + qk−1ti)

, (8)

where j = 1, . . . , n + 1, i = j + 1, . . . , l+ 1. The quantities m̃i,j are the multipliers of the 
Neville elimination of AT , and their expression is

m̃i,j = [n− i + 2]p,q tjq
i−2

[i− 1]p,q(1 − tj)pn−i+1 , (9)

where j = 1, . . . , n, i = j + 1, . . . , n + 1. Finally, the i-th diagonal entry of D is the 
diagonal pivot of the Neville elimination of A and its expression is

pi,i =

[
n

i−1
]
p,q

p
(n−i+1)(n−i)

2 q
(i−1)(i−2)

2 (1 − ti)n−i+1 ∏
k<i(ti − tk)∏n

k=2(pk−1(1 − ti) + qk−1ti)
∏i−1

k=1(1 − tk)
, (10)

where i = 1, . . . , n + 1.

Proof. As we have seen in Theorem 2, the matrix A is strictly totally positive and 
therefore, by Theorem 1, the complete Neville elimination of A can be performed without 
row and column exchanges providing the factorization of A in (4), (5), (6) and (7) (see 
[9,10]).

The multipliers mi,j and the diagonal pivots pi,i of the Neville elimination of A will 
be computed by means of formulas (2) and (3), so det(A[i − j + 1, . . . , i|1, . . . , j]) has to 
be computed first. Factorizing A[i − j + 1, . . . , i|1, . . . , j] analogously as we did for A in 
the proof of Theorem 2, and taking into account that

det

⎛⎜⎜⎜⎜⎝
(1 − t1)k t1(1 − t1)k−1 · · · tk1
(1 − t2)k t2(1 − t2)k−1 · · · tk2

...
...

. . .
...

(1 − tk+1)k tk+1(1 − tk+1)k−1 · · · tkk+1

⎞⎟⎟⎟⎟⎠ =
∏

1≤u<s≤k+1

(ts − tu) (11)

(see Corollary 3.2 in [20]), we obtain that

det(A[i− j + 1, . . . , i|1, . . . , j]) =∏j−1
k=0

[
n
k

]
p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2
∏j−1

k=0(1 − ti−k)n−j+1 ∏
i−j+1≤u<s≤i(ts − tu)∏j−1

s=0
(∏n

k=1(pk−1(1 − ti−s) + qk−1ti−s)
) . (12)

Using this formula and (2) we obtain the expression (10) for the diagonal pivots pi,i, and 
using it, as well as (2) and (3), the expression (8) for the multipliers mi,j of the Neville 
elimination of A is established.

Now, in order to compute the multipliers of the Neville elimination of AT we have to 
compute det(AT [i − j + 1, . . . , i|1, . . . , j]). Proceeding similarly as we have done in the 
case of det(A[i − j + 1, . . . , i|1, . . . , j]) we get
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det(AT [i− j + 1, . . . , i|1, . . . , j]) =∏i−1
k=i−j

[
n
k

]
p,q

p
(n−k)(n−k−1)

2 q
k(k−1)

2
∏j

k=1 t
i−j
k

∏j
k=1(1 − tk)n−i+1 ∏

1≤u<s≤j(ts − tu)∏j
s=1

(∏n
k=1(pk−1(1 − ts) + qk−1ts)

) .

(13)
Considering this last formula, (2) and (3), the expression (9) for the multipliers m̃i,j of 
the Neville elimination of AT is obtained. �

Next, a bidiagonal factorization of the inverse of a (p,q)-Lupaş matrix is given.

Theorem 4. Let A = (ai,j)1≤i,j≤n+1 be the (p,q)-Lupaş matrix for the (p,q)-analogue of 
the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤n+1, where 0 < t1 < t2 <

· · · < tn+1 < 1. Then A−1 admits a factorization in the form

A−1 = G1G2 · · ·GnD
−1FnFn−1 · · ·F1,

where Fi, Gi (i = 1, . . . , n) are (n + 1) × (n + 1) bidiagonal matrices of the form

Fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . . . . .
0 1

−mi+1,i 1
−mi+2,i 1

. . . . . .
−mn+1,i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

GT
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . . . . .
0 1

−m̃i+1,i 1
−m̃i+2,i 1

. . . . . .
−m̃n+1,i 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and D is the diagonal matrix of order n + 1

D = diag{p1,1, p2,2, . . . , pn+1,n+1}.

The expressions of the multipliers mi,j (1 ≤ j < i ≤ n + 1) of the Neville elimination 
of A, the multipliers m̃i,j (1 ≤ j < i ≤ n + 1) of the Neville elimination of AT , and the 
diagonal pivots pi,i (i = 1, . . . , n +1) of the Neville elimination of A are also in this case 
given by (8) and (9), and (10), respectively.
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Proof. Since, by Theorem 2, the matrix A is strictly totally positive, by Theorem 1 the 
complete Neville elimination of A can be performed without row and column exchanges, 
providing the bidiagonal factorization of A−1 in the statement of this theorem (see [11]). 
The rest of the proof is the same as in Theorem 3. �

It must be observed that although the Neville elimination of A and AT gives us the 
bidiagonal factorization of A and A−1, the matrices Fi (i = 1, . . . , n) and the matrices 
Gj (j = 1, . . . , n) that appear in the bidiagonal factorization of A are not the same 
bidiagonal matrices that appear in the bidiagonal factorization of A−1 nor their in-
verses (see Theorem 3 and Theorem 4). A detailed explanation of this fact can be found 
in [11].

4. Algorithm for the bidiagonal decomposition

In this section we present a fast and accurate algorithm to compute the bidiagonal fac-
torization of a strictly totally positive (p,q)-Lupaş matrix A for the (p,q)-analogue of the 
Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1 (0 < t1 < t2 < · · · < tl+1 < 1) 
introduced in Section 3. Previously we include an auxiliary algorithm (Algorithm 1) that 
computes recursively the (p,q)-integers [k]p,q for k = 0, 1, . . . , n by taking into account 
the relationship:

[i]p,q = p[i− 1]p,q + qi−1, i = 1, . . . , n.

Algorithm 1
Input: p, q and n, where n = 0, 1, 2, . . .
Output: [k]p,q, k = 0, 1, . . . , n
1: function pq=pqNumbers(p, q, n)
2: pq=zeros(1,n);
3: pq(1)=1;
4: qpot=1;
5: for j=2:n
6: qpot=qpot*q;
7: pq(j)=p*(pq(j-1))+qpot;
8: end;

Just by looking at the code of Algorithm 1, we can assert that it preserves high relative 
accuracy because it satisfies NIC condition.

Algorithm 2 is the main algorithm of this section. Starting from the nodes {ti}1≤i≤l+1, 
p > 0, q > 0 and the number of columns of matrix A (n1 in Algorithm 2) it computes the 
matrix BD(A) [16] containing the bidiagonal decomposition of A given by Theorem 3. 
This matrix, which in the pseudocode of our algorithm is denoted by M , satisfies

Mi,i = pi,i i = 1, . . . , n + 1,
Mi,j = mi,j j = 1, . . . , n + 1; i = j + 1, . . . , l + 1,
M = m̃ i = 1, . . . , n; j = i + 1, . . . , n + 1,
i,j j,i
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where pi,i are the diagonal pivots of the Neville elimination of A, mi,j are the multipliers 
of the Neville elimination of A and m̃i,j are the multipliers of the Neville elimination of 
AT .

Taking into account Theorem 3 and Theorem 4, we note that the matrix BD(A) stores 
factorizations of both A and A−1.

Algorithm 2
Input: The vector c containing the nodes {ti}1≤i≤l+1, p > 0, q > 0 and n1 the number of columns of matrix 

A.
Output: M = BD(A)
1: function M=TNBDpqLupas(c, p, q, n1)

2: n=n1-1
3: M=zeros(l+1,n+1);

- [k]p,q computation:

4: pq=pqNumbers(p,q,n);

-
∏n

k=1(p
k−1(1 − ti) + qk−1ti) computation:

5: α=zeros(1,l+1);
6: for i=1:l+1
7: αi = 1;
8: for k=2:n
9: αi = αi(pk−1(1 − ti) + qk−1ti);

10: end
11: end

- mi,j computation:

12: for i=2:l+1
13: auxM = (1−ti)n

(1−ti−1)n+1
αi−1
αi

;
14: Mi,1 = (1 − ti−1)auxM ;
15: k=min(i-2,n);
16: for j=1:k
17: auxM = auxM

(1−ti−1)(ti−ti−j)
(1−ti)(ti−1−ti−j−1)

;
18: Mi,j+1 = (1 − ti−j−1)auxM ;
19: end
20: end

- m̃i,j computation:

21: for j=1:n
22: cj = tj

1−tj
;

23: for i=j+1:n+1
24: ai = pqn−i+2q

i−2

pqi−1pn−i+1 ;
25: Mj,i = cj · ai;
26: end
27: end

Observing Algorithm 2, we notice that it preserves high relative accuracy because 
it satisfies NIC condition. It has a computational cost of O(n2) arithmetic operations 
and it does not construct the (p,q)-Lupaş matrix A since it only works with the nodes 
{ti}1≤i≤l+1, what implies an additional saving in storage space.
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- pi,i computation:

28: r = p
n(n−1)

2 ;
29: M1,1 = r (1−t1)n

α1
;

30: for i=1:n
31: r = pqn−i+1

pqi

pi−nqi−1

1−ti
r;

32: aux=1;
33: for k=1:i
34: aux = aux(ti+1 − tk);
35: end
36: Mi+1,i+1 = r

(1−ti+1)n−i

αi+1
aux;

37: end
38: M;

5. Error analysis

The error analysis of the algorithm TNBDpqLupas (Algorithm 2) to compute the bidi-
agonal decomposition of a totally positive (p,q)-Lupaş matrix presented in the previous 
section is carried out in this section.

In our error analysis we use the standard model of floating point arithmetic (see 
section 2.2 of [12]):

Let x, y be floating point numbers, fl(·) be the evaluation of an expression in floating 
point arithmetic, and ε be the machine precision. Then we have

fl(x� y) = (x� y)(1 + δ)±1, where |δ| ≤ ε, � ∈ {+,−,×, /}.

Our error analysis of algorithm TNBDpqLupas is summarized in the following theorem:

Theorem 5. Let A be a (p,q)-Lupaş matrix for the (p,q)-analogue of the Bernstein func-
tions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1, where 0 < t1 < t2 < · · · < tl+1 < 1. Let 
BD(A) = (bi,j)1≤i≤l+1;1≤j≤n+1 be the matrix representing the exact bidiagonal decompo-
sition of A and (̂bi,j)1≤i≤l+1;1≤j≤n+1 be the matrix representing the computed bidiagonal 
decomposition of A by means of the algorithm TNBDpqLupas in floating point arithmetic 
with machine precision ε. Then

|̂bi,j − bi,j | ≤
(4n2 + 4n− 4)ε

1 − (4n2 + 4n− 4)εbi,j , i = 1, . . . , l + 1; j = 1, . . . , n + 1.

Proof. Accumulating the relative errors in the style of Higham (see Chapter 3 of [12]) in 
the computation of the multipliers mi,j by means of the algorithm TNBDpqLupas included 
in Section 4 we obtain

|m̂i,j −mi,j | ≤
(n2 + 17n− 3)ε

1 − (n2 + 17n− 3)εmi,j , j = 1, . . . , n + 1; i = j + 1, . . . , l + 1, (14)

where m̂i,j are the multipliers mi,j computed in floating point arithmetic. Proceeding in 
the same way for the computation of the m̃i,j we derive
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| ̂̃mi,j − m̃i,j | ≤
(3n− 1)ε

1 − (3n− 1)εm̃i,j , j = 1, . . . , n; i = j + 1, . . . , n + 1, (15)

where ̂̃mi,j are the multipliers m̃i,j computed in floating point arithmetic. Analogously

|p̂i,i − pi,i| ≤
(4n2 + 4n− 4)ε

1 − (4n2 + 4n− 4)εpi,i, i = 1, . . . , n + 1, (16)

where p̂i,i are the diagonal pivots pi,i computed in floating point arithmetic.
Therefore, looking at the inequalities given by (14), (15) and (16) and taking into 

account that m̂i,j , ̂̃mi,j and p̂i,i are the entries of (̂bi,j)1≤i≤l+1;1≤j≤n+1, we conclude 
that

|̂bi,j − bi,j | ≤
(4n2 + 4n− 4)ε

1 − (4n2 + 4n− 4)εbi,j , i = 1, . . . , l + 1; j = 1, . . . , n + 1. �
This result shows that TNBDpqLupas computes the bidiagonal decomposition of a 

(p,q)-Lupaş matrix very accurately in floating point arithmetic.

6. Perturbation theory

Given a totally positive matrix A represented as a product of nonnegative bidiagonal 
matrices, in [16] it was proved that small relative perturbations in the entries of the 
bidiagonal factors produce only small relative perturbations in both the eigenvalues 
and the singular values of matrix A. Furthermore, as stated in Corollary 7.3 of [16], 
the bidiagonal decomposition BD(A) accurately determines both the singular values 
and the eigenvalues of A, and the appropriate structured condition number of each 
eigenvalue and/or singular value with respect to perturbations in BD(A) is at most 2n2. 
The analysis of the perturbation theory for BD(A) of a totally positive matrix A is thus 
of great relevance.

In this section, the sensitivity of the bidiagonal factorization BD(A) with respect 
to perturbations in the nodes ti will be studied, where A is the (p,q)-Lupaş matrix 
for the (p,q)-analogue of the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1
(0 < t1 < t2 < · · · < tl+1 < 1). In particular, we show that small relative perturbations 
in the nodes of A produce only small relative perturbations in its BD(A).

Following the approaches in [16,21–23,25] we define next some quantities required to 
state an appropriate condition number.

Definition 1. Let A be a strictly totally positive (p,q)-Lupaş matrix for the (p,q)-analogue 
of the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1 (0 < t1 < t2 < · · · <
tl+1 < 1) and let t′i = ti(1 +δi) be the perturbed nodes for 1 ≤ i ≤ l+1, where |δi| << 1. 
We define:

rel_gapt ≡ min |ti − tj |
,

i�=j |ti| + |tj |
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rel_gap1 ≡ min
i

|1 − ti|
|ti|

,

θ ≡ max
i

|ti − t′i|
|ti|

= max
i

|δi|,

α ≡ min{rel_gapt, rel_gap1},

κp,q ≡ 1
α
,

where θ << rel_gapx, rel_gap1.

The following theorem is the major result of this section.

Theorem 6. Let A and A′ be strictly totally positive (p,q)-Lupaş matrices for the (p,q)-
analogue of the Bernstein functions (br,np,q)0≤r≤n and the nodes {ti}1≤i≤l+1 and t′i =
ti(1 + δi) for 1 ≤ i ≤ l+ 1, where |δi| ≤ θ << 1. Let BD(A) and BD(A′) be the matrices 
representing the bidiagonal decomposition of A and the bidiagonal decomposition of A′, 
respectively. Then

|(BD(A′))i,j − (BD(A))i,j | ≤
4nκp,qθ

1 − 4nκp,qθ
(BD(A))i,j .

Proof. Taking into account that |δi| ≤ θ, it can easily be shown that

t′i − t′j = (ti − tj)(1 + δi,j), |δi,j | ≤
θ

rel_gapt
, (17)

1 − t′i = (1 − ti)(1 + δ′i), |δ′i| ≤
θ

rel_gap1
, (18)

and

pk(1 − t′i) + qkt′i = (pk(1 − ti) + qkti)(1 + δ′′i ), |δ′′i | ≤
θ

rel_gap1
. (19)

Accumulating the perturbations in the style of Higham (see Chapter 3 of [12]) using 
the formulae (8) for the mi,j , and (17), (18) and (19) we obtain

m′
i,j = mi,j(1 + δ̄), |δ̄| ≤ 4nκp,qθ

1 − 4nκp,qθ
,

where m′
i,j are the entries of BD(A′) below the main diagonal. Proceeding similarly but 

now using (9) and (18) we have

m̃′
i,j = m̃i,j(1 + δ̄), |δ̄| ≤

2 θ
rel_gap1

1 − 2 θ
,

rel_gap1
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where m̃′
i,j are the entries of BD(A′) above the main diagonal. Analogously, and using 

in this case formulae (10), and (17), (18) and (19) we get

p′i,i = pi,i(1 + δ̄), |δ̄| ≤ (3n− 1)κp,qθ

1 − (3n− 1)κp,qθ
,

where p′i,i are the diagonal elements of BD(A′). In the end, considering the last three 
inequalities we conclude that

|(BD(A′))i,j − (BD(A))i,j | ≤
4nκp,qθ

1 − 4nκp,qθ
(BD(A))i,j . �

From this result we infer that the quantity 4nκp,q is an adequate structured condition 
number of A with respect to the perturbations in the data ti and so, important quantities 
in the determination of a structured condition number are the relative separation between 
the nodes and the relative distances between the nodes and 1 [21,25]. Similar results 
involving only in the determination of the structured condition number the relative 
separation between the nodes can be found in [6,16].

Combining this theorem with Corollary 7.3 in [16], which states that small compo-
nentwise relative perturbations of BD(A) cause only small relative perturbations in the 
eigenvalues λi and singular values σi of A, we obtain that

|λ′
i − λi| ≤ O(n3κp,qθ)λi and |σ′

i − σi| ≤ O(n3κp,qθ)σi,

where λ′
i and σ′

i are the eigenvalues and the singular values of A′. That is, small rel-
ative perturbations in the nodes of a (p,q)-Lupaş matrix A cause only small relative 
perturbations in its eigenvalues and singular values.

7. Numerical experiments

Let A be the strictly totally positive (p,q)-Lupaş matrix for the (p,q)-analogue of the 
Bernstein functions (br,np,q)0≤r≤n, with nodes {ti}1≤i≤l+1, 0 < t1 < t2 < · · · < tl+1 <

1. In this section, algorithm TNBDpqLupas (Algorithm 2) to compute the bidiagonal 
factorization of A is applied to solve some fundamental problems in linear algebra. In 
the square case, the problems chosen have been linear system solving and computation of 
both the eigenvalues and the inverse of matrix A. In the rectangular case, the problems 
considered have been the computation of both the singular values and the Moore-Penrose 
inverse of A. All the problems in this section have been solved in an efficient and accurate 
way.

7.1. Linear system

Given the linear system
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Ax = b,

where b has an alternating sign pattern, we obtain its solution by first computing accu-
rately the bidiagonal decomposition of A with the algorithm TNBDpqLupas. Then, taking 
into account that A is a strictly totally positive matrix, the command TNSolve, provided 
by P. Koev [15], can be applied. It takes as input the matrix BD(A) containing the bidi-
agonal decomposition of A and vector b, and gives as output the solution of the linear 
system Ax = b. Provided b has an alternating sign pattern, the high relative accuracy of 
the solution is ensured [17].

Regarding the computational cost of the process, it depends on the costs of both 
algorithms TNBDpqLupas and TNSolve. As shown in Section 4, the cost of applying the 
former is O(n2) arithmetic operations. The implementation of the latter in Matlab

requires also O(n2) arithmetic operations. Thus, obtaining the solution of the linear 
system with our method has a total computational cost of O(n2) arithmetic operations.

Example 1. To show the performance of our proposal we have taken p = 2.5, q = 0.5 and 
n = 15. The nodes considered are

{ti}1≤i≤16 =
{

1
17 ,

2
17 ,

3
17 ,

4
17 ,

5
17 ,

6
17 ,

7
17 ,

8
17 ,

9
17 ,

10
17 ,

11
17 ,

12
17 ,

13
17 ,

14
17 ,

15
17 ,

16
17 ,

}
,

and the vector b of the linear system is

b = (1,−2, 4,−1, 3,−2, 5,−1, 3,−4, 2,−5, 2,−2, 6,−1)T .

We have compared the exact solution of the linear system, computed in Mathematica
with exact arithmetic, with the approximated solutions obtained with both our algorithm 
and the command A\b of Matlab. The comparison is performed by means of the relative 
errors of each approximated solution, that is

Error = ||x− xe||2
||xe||2

,

where xe is the exact solution, and x is the corresponding approximated solution. The 
results are shown in the first two columns of Table 1. As we can observe, the solution 
obtained with the command A\b of Matlab is not accurate at all. With our proposal 
(MMV), on the contrary, a very accurate result is obtained.

7.2. Eigenvalues

Now we consider the problem of computing the eigenvalues of the (p,q)-Lupaş matrix 
A. They are obtained by first computing accurately its bidiagonal decomposition with 
the command TNBDpqLupas, and then applying the command TNEigenValues, provided 
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Table 1
In this table the results of the experiments performed in Exam-
ples 1, 2 and 3 are shown.

Linear system Eigenvalues Inverse
A\b MMV eig MMV inv MMV
1.2e+00 5.6e-16 2.6e-08 6.2e-15 6.6e+01 7.1e-15

by P. Koev [15], which takes as input the matrix BD(A) containing the bidiagonal de-
composition of a totally positive matrix A and gives as output the eigenvalues of A with 
high relative accuracy.

The computational cost of TNEigenValues is of O(n3) arithmetic operations [16], 
which dominates the O(n2) computational cost of TNBDpqLupas (see Section 4). There-
fore, the total cost of computing the eigenvalues os A is O(n3).

Example 2. Taking the same matrix A as in the previous example, that is, the (p,q)-Lupaş 
matrix with p = 2.5, q = 0.5, n = 15 and the equidistant nodes 

{
i
17
}
, i = 1, · · · , 16, its 

eigenvalues are computed in Mathematica with a precision of 100 digits, and they are 
taken for the sake of comparison as the exact eigenvalues. The maxima of the relative 
errors of the approximated eigenvalues of A obtained with both our method (MMV) and 
the eig command of Matlab are computed. The results obtained are shown in columns 
three and four of Table 1, where we observe that the proposed method outperforms the 
result offered by Matlab.

7.3. Inverse

We consider now the last of the problems involving the strictly totally positive square 
matrix A. As in the two previous problems, the structure of A is exploited by first using 
algorithm TNBDpqLupas to obtain accurately a matrix BD(A) containing its bidiagonal 
decomposition. Then, the command TNInverseExpand, developed by A. Marco and J.J. 
Martínez in [24] and implemented in Matlab in [15], is applied to BD(A) and provides 
the inverse of A with high relative accuracy.

The computational cost of algorithms TNBDpqLupas and TNInverseExpand is O(n2), 
what determines the same cost for computing the inverse of A.

Example 3. To evaluate the performance of our proposal, the same matrix A as the one 
appearing in the two previous experiments is taken. The exact inverse of A is computed 
with Mathematica with exact arithmetic. The approximate inverses of A are computed 
by using our proposal (MMV) and with the command inv of Matlab. In the last two 
columns of Table 1 the corresponding maxima of the componentwise relative errors are 
included. They show that the algorithm proposed in this paper computes accurately the 
inverse of A, whereas the inv command produces an inverse not accurate at all.
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7.4. Singular values

Let us assume now that A is a (p,q)-Lupaş rectangular matrix of dimension (l+1) ×(n +
1). The first step for computing the singular values of A consists of applying algorithm
TNBDpqLupas to obtain matrix BD(A), which contains the bidiagonal decomposition of 
A. Then, the TNSingularValues command [15] is applied to BD(A), providing with high 
relative accuracy the singular values of A.

As for the computational cost, the cost of algorithm TNBDpqLupas is O(ln), and the 
cost of TNSingularValues is O(ln2) arithmetic operations. Therefore, our proposal com-
putes the singular values of A at a cost of O(ln2) arithmetic operations.

As a byproduct, the accurate computation of the 2-norm condition number of A can be 
calculated accurately, since it can be computed by dividing the greatest by the smallest 
singular values of A.

Example 4. To illustrate the good performance of our algorithm, we take the particular 
values p = 0.7, q = 2.5, n = 10, l = 15, and the vector of nodes

{ti}1≤i≤16 =
{

1
10 ,

1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ,

9
16 ,

5
8 ,

2
3 ,

7
10 ,

7
8 ,

9
10 ,

14
15

}
.

The first two columns of Table 2 show the maximum relative errors obtained by our 
method (MMV) and by the command svd of Matlab. The singular values considered as 
exact are obtained with the command SingularValueList of Mathematica with a precision
of 100 digits. Besides, Table 2 shows in its third and fourth columns the relative errors 
obtained when computing the 2-norm condition number of A with our approach (MMV) 
and with the command cond of Matlab. To perform the comparison, the considered 
exact condition number κ2(A) is obtained in Mathematica by dividing the largest singular 
value of A by the smallest one.

Looking at Table 2 we notice that our approach computes both the singular values 
and the condition number of A accurately, and that commands cond and svd of Matlab

do not produce accurate results at all.

7.5. Moore-Penrose inverse

The matrix A we consider in this section is the same rectangular matrix as the matrix 
in the previous section. To compute accurately the Moore-Penrose inverse of A, first the 
bidiagonal decomposition of A, stored in matrix BD(A), is obtained with high relative 
accuracy using algorithm TNBDpqLupas. Matrix BD(A) is the input of the algorithm TNQR
[15], which gives with high relative accuracy the QR decomposition of A. Finally, the 
inverse of the submatrix of the nonsingular totally positive triangular matrix R formed 
by its first n + 1 rows is computed by the algorithm TNInverseExpand [24], and such 
inverse is multiplied by the transpose of the submatrix of Q formed by its last n + 1
columns. The result is the Moore-Penrose inverse of A.



330 A. Marco et al. / Linear Algebra and its Applications 651 (2022) 312–331
Table 2
This table shows the results of the experiments 4 and 5.

Singular Values Condition Number Moore-Penrose inverse
svd MMV cond MMV pinv MMV
1.0e+01 5.7e-16 9.5e-01 3.5e-15 1.9e+01 9.2e-14

The computational cost of both TNBDpqLupas and TNInverseExpand is O(n2). The 
command TNQR requires O(l2n) arithmetic operations [16]. Thus, the total cost to accu-
rately compute the Moore-Penrose inverse of A is O(l2n) arithmetic operations.

Example 5. The numerical experiment we perform here considers the same particular 
values as in Example 4, that is, p = 0.7, q = 2.5, n = 10, l = 15, and the same 
vector of nodes. The exact Moore-Penrose inverse of A is obtained with Mathematica in 
exact arithmetic, and it is used to compute the maximum componentwise relative error 
obtained with our method (called MMV) and with the command pinv of Matlab. 
Such relative errors are shown in Table 2. We notice that the Moore-Penrose inverse of 
A obtained with the method proposed in this paper is accurate, whereas the application 
of the pinv command does not produce an accurate result.

To conclude, we observe that in all the experiments performed in this section for the 
five considered problems our proposal has given accurate results, clearly outperforming 
the corresponding commands of Matlab. The reason of this is that we take into account 
the structure of matrix A, whereas Matlab does not. The ill-conditioning of matrix A
makes that the results obtained with Matlab are far from being accurate. Specifically, 
in the first three problems the square matrix A taken to perform the experiments has 
2-norm condition number κ2 =1.5e+75, and for the rectangular matrix of the last two 
problems, the 2-norm condition number of A is κ2 =2.2e+22. The ill-conditioning of A
makes that general methods are not appropriate to make computations directly on A. 
Our method, on the contrary, takes into account the structure of A to compute accurately 
its bidiagonal decomposition. Moreover, none of the algorithms presented in this paper 
requires the matrix A to be constructed, working in all of them only with the nodes 
{ti}1≤i≤l+1. As a result, very accurate results are obtained.
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