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a b s t r a c t

We present a method to derive new explicit expressions for bidiagonal decompositions
of Vandermonde and related matrices such as the (q-, h-) Bernstein-Vandermonde
ones, among others. These results generalize the existing expressions for nonsingular
matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above
classes, the new decompositions can be computed efficiently and to high relative
accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g.,
eigenvalue computation) can also be performed efficiently and to high relative accuracy.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A matrix is totally nonnegative (TN) if all of its minors are nonnegative [1–3]. The bidiagonal decompositions of the TN
matrices have become an important tool in the study of these matrices [4,5] and for performing matrix computations with
them accurately and efficiently [6–8]. The bidiagonal decompositions of many classical TN matrices such as Vandermonde
and many related matrices are well known, but contain singularities when some of the nodes coincide. For example, a
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3 × 3 Vandermonde matrix with nodes x, y, z is decomposed as [6]:⎡⎣ 1 x x2

1 y y2

1 z z2

⎤⎦ =

[ 1
1
1 1

]⎡⎣ 1
1 1

z−y
y−x 1

⎤⎦[ 1
y − x

(z − x)(z − y)

]

×

[ 1 x
1 y

1

][ 1
1 x

1

]
. (1)

This decomposition is undefined when x = y, which is unfortunate, since the Vandermonde matrix is very well defined
for any values of the nodes.

By relaxing the requirement that the bidiagonal factors have ones on the main diagonal, we show how to rearrange
the factors in (1), so that the new decomposition contains no singularities and is valid for any values of the nodes and is
thus valid for a Vandermonde matrix of arbitrary rank. For example, the 3 × 3 Vandermonde from (1) can be decomposed
as ⎡⎣ 1 x x2

1 y y2

1 z z2

⎤⎦ =

[ 1
1
1 z − y

][ 1
1 y − x

1 z − x

][ 1
1

1

]

×

[ 1 x
1 y

1

][ 1
1 x

1

]
, (2)

which is valid for any values of the nodes x, y, z.
Many classes of other TN matrices share the exact same singularities in their bidiagonal decompositions, e.g., the

Bernstein–Vandermonde, their q-, h-, and rational generalizations, Lupaş, Said-Ball matrices, etc. [6,9–16]. We call these
matrices Vandermonde-type below (see Section 3).

The method that allowed us to obtain the decomposition (2) from (1) applies to all Vandermonde-type matrices
(Section 5) and is the main contribution of this paper. The starting point for our method is the existing bidiagonal decom-
positions of the Vandermonde-type matrices, which are valid only when these matrices are both TN and nonsingular. Our
method takes these decompositions as a starting point and produces new bidiagonal decompositions valid for matrices
of arbitrary rank, regardless of whether they are TN or not — see Corollary 4.1.

While the computational complexity of the transformed bidiagonal decomposition of an n × n matrix remains O(n2),
the new expressions are simpler.

In terms of accuracy, just like their non-singular counterparts, the new decompositions remain insusceptible to
subtractive cancellation, and thus all of the entries of these decompositions can be computed to high relative accuracy
when the matrix is TN. By ‘‘high relative accuracy’’ we mean that for each entry its sign and most of its leading significant
digits are computed correctly (see Section 8).

The Vandermonde-type matrices have many applications that are well referenced in the papers we cite above that deal
with the nonsingular case. For example, the Lupaş matrices (Appendix A.1) have direct applications in CAGD [11,17]. For
TN Vandermonde-type matrices, the new results in this paper allow for matrix computations with them to be performed
to high relative accuracy very efficiently (in O(n3) time) using the methods of [8] now also when these matrices are
singular — see Section 9 for a numerical example.

The efficiency and high relative accuracy is particularly relevant, for example, in eigenvalue computations since the
corresponding matrices are unsymmetric. The error bounds for the eigenvalues computed by the conventional algorithms
(such as the ones in LAPACK [18]) [19] imply that none of the eigenvalues are guaranteed to be accurate, although the
largest ones typically are — see the example in Section 9. In contrast, the results of this paper now allow for all eigenvalues
to be efficiently computed to high relative accuracy and, in particular, the zero eigenvalues are computed exactly.

The paper is organized as follows. In Section 2 we review the bidiagonal decompositions of nonsingular TN matrices.
In Section 3 we present the formal definition of Vandermonde-type matrix and, in Section 4, we show how to remove
the singularities in its bidiagonal decomposition. We demonstrate how our method applies to the particular class of q-
Bernstein–Vandermonde matrices in Section 5. Our method is also directly applicable to derivative matrices, such as
generalized Vandermonde matrices, Laguerre matrices, etc., which are submatrices or products of Vandermonde matrices
and other nonsingular TN matrices (Section 6). In Section 7, we present a method to make the bottom right-hand corner
entry of all bidiagonal factors in the corresponding bidiagonal decompositions equal to 1 — this is a requirement for the
methods of [8] to work. We discuss accuracy issues in Section 8 and present numerical experiments in Section 9. The
explicit formulas for the decompositions of several Vandermonde-type matrices are in Appendix.

2. Bidiagonal decompositions of TN matrices

Our focus in this paper is on the class of TN matrices, but the formulas and methods we present are valid without the
requirement of total nonnegativity (Corollary 4.1 below). The bidiagonal decompositions of the TN matrices serve as a
major tool in their study and computations with them. We review those here [2,4].
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A nonsingular n × n TN matrix A can be uniquely factored as

A = L(1)L(2) · · · L(n−1)DU (n−1)U (n−2)
· · ·U (1), (3)

where L(i) are n × n nonnegative and unit lower bidiagonal, D is n × n nonnegative and diagonal, and U (i) are n × n
nonnegative and unit upper bidiagonal. For the nontrivial entries of the factors L(k) and U (k), respectively, we have
L(k)i+1,i = U (k)

i,i+1 = 0 for i < n − k.
We call the above decomposition (3), the ordinary bidiagonal decomposition of A to distinguish it from what we will

define below as the singularity-free bidiagonal decomposition of a TN matrix.
The decomposition (3) occurs naturally in the process of complete Neville elimination when adjacent rows and columns

are used for elimination [4,5].
There are exactly n2 nontrivial entries which parameterize the ordinary bidiagonal decomposition (3). Following [6,

sec. 4], those nontrivial entries can be conveniently stored in an n × n matrix M , denoted M = BD(A), where:

mij = L(n−i+j)
i,i−1 , i > j,

mij = U (n−j+i)
j−1,j , i < j, (4)

mii = Dii.

Namely, for k = 1, 2, . . . , n − 1,

L(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

mn−k+1,1 1
mn−k+2,2 1

. . .
. . .

mnk 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

U (k)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1 m1,n−k+1
1 m2,n−k+2

. . .
. . .

1 mnk
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

D = diag(m11,m22, . . . ,mnn).

For i ̸= j, the mij are the multipliers of the complete Neville elimination with which the (i, j) entry of A is eliminated
and mii are the diagonal entries of D.

For example, if A is the 3 × 3 Vandermonde matrix from (1), then the matrix M = BD(A) is:

M =

⎡⎣ 1 x x
1 y − x y
1 z−y

y−x (z − x)(z − y)

⎤⎦ . (5)

In this paper, we assume that explicit expressions for the entries of the ordinary bidiagonal decomposition (3) are given.
For the matrices we consider in this paper, those expressions contain singularities when some of the nodes coincide and
we work to remove those singularities.

To that end, we drop the requirement that the matrices L(i) and U (i) have ones on the main diagonal. We define a new
bidiagonal decomposition, which we call singularity-free bidiagonal decomposition and denote it by SBD(A), as

A = L1L2 · · · Ln−1DUn−1Un−2 · · ·U1. (6)

The matrix D is nonnegative and diagonal. The factors Li and Ui are nonnegative lower and upper bidiagonal, and have
the same nonzero patterns as L(i) and U (i), respectively, i = 1, 2, . . . , n − 1. Namely, (Lk)i+1,i = (Uk)i,i+1 = 0 for i < n − k
(see Theorem 2.1 in [6]).

Following [8], the nontrivial entries of SBD(A) are stored in two matrices: B, which is n × n and C , which is
(n + 1) × (n + 1):

[B, C] = SBD(A).

3
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As with BD(A), the matrix B stores the nontrivial offdiagonal entries of Li and Ui as well as the diagonal entries of D,
exactly as in (4):

bij = (Ln−i+j)i,i−1, i > j,
bij = (Un−j+i)j−1,j, i < j,
bii = Dii.

The matrix C stores the diagonal entries of Li and Ui as

cij =

{
(Ln−i+j)i−1,i−1, i > j,
(Un−j+i)j−1,j−1, i < j.

In this arrangement, cij, i > j, is the diagonal entry in Ln−i+j immediately above bij and similarly for i < j and Un−j+i. The
entries cii, i = 1, 2, . . . , n + 1 as well as the entries c1,n+1 and cn+1,1 are unused. This is the same construction as the
one given in formula (9) in [8], except that we now allow for the (n, n) entry in Li and Ui to be any nonnegative number
and not necessarily equal 1. This is the reason we need an (n + 1) × (n + 1) matrix to host the entries cij: the nontrivial
diagonal entries of L1, L2, . . . , Ln−1 are of lengths 2, 3, . . . , n, and similarly for the Ui’s.

As we explain in Section 7, we can always make the (n, n) entry in the Li’s and Ui’s equal to 1, so that the algorithms
of [8] be used, but the formulas are more elegant without that restriction, which can be imposed after in software.

Thus, in this paper we start with the known ordinary bidiagonal decomposition M = BD(A) of a nonsingular matrix
A, (3), and produce the singularity-free bidiagonal decomposition [B, C] = SBD(A), (6), which is defined for a matrix A of
arbitrary rank.

The new singularity-free bidiagonal decomposition (6) is not unique, but this is inconsequential — for the purposes of
accurate computations, any accurate decomposition of a TN matrix as a product of nonnegative bidiagonals is an equally
good input [6].

3. Vandermonde-type matrices

The ordinary Vandermonde matrices are the starting point of our investigation as the approach extends analogously
to all other classes of matrices in this paper.

An n × n Vandermonde matrix A with nodes x1, x2, . . . , xn is defined as

A =

[
xj−1
i

]n
i,j=1

. (7)

When the nodes are distinct, it has an ordinary bidiagonal decomposition (3), V = BD(A), such that [6]

vii =

i−1∏
k=1

(xi − xk), 1 ≤ i ≤ n,

vij =

i−2∏
k=i−j

xi − xk+1

xi−1 − xk
, 1 ≤ j < i ≤ n,

vij = xi, 1 ≤ i < j ≤ n.

(8)

In the following definition, we take a more general stance, where the lower bidiagonal factors and the diagonal have
additional factors, which contain no singularities.

Definition 1. An n × n matrix A =
[
aij
]n
i,j=1 is said to be of Vandermonde-type with nodes x1, x2, . . . , xn on an (open or

closed) interval D, if it satisfies all of the conditions below:

1. aij = fj(xi), where fj(x) is a rational function of x for i, j = 1, 2, . . . , n;
2. A is TN when x1 < x2 < · · · < xn and all xi ∈ D, i = 1, 2, . . . , n;
3. A has an ordinary bidiagonal decomposition, M = BD(A), such that

mij = sijvij, (9)

for 1 ≤ j ≤ i ≤ n, where vij are defined as in (8), and the entries sij for 1 ≤ j ≤ i ≤ n and the entries mji for
1 ≤ j < i ≤ n are rational functions of x1, x2, . . . , xn, with no singularities when xi ∈ D, i = 1, 2, . . . , n.

A Vandermonde-type matrix is thus fully specified by the entries sij for 1 ≤ j ≤ i ≤ n and the entries mji for 1 ≤ j < i ≤ n.

From the above definition, the ordinary Vandermonde matrix (7) is a Vandermonde-type matrix on (0, ∞) with sij = 1
for 1 ≤ j ≤ i ≤ n and mji = vji = xj for 1 ≤ j < i ≤ n.

In the literature, the Vandermonde-type matrices sometimes have n + 1 nodes, with the indexing starting at
0, e.g., x0, x1, . . . , xn. For consistency, in this paper, all Vandermonde-type matrices are n × n and their nodes are
x1, x2, . . . , xn.

4
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4. Singularity-free bidiagonal decompositions of Vandermonde-type matrices

In this section, we show how to remove the singularities in the ordinary bidiagonal decomposition (3) for Vandermonde-
type matrices and obtain a singularity-free bidiagonal decomposition (6).

If M = BD(A) is the ordinary bidiagonal decomposition (3) of a Vandermonde-type matrix, from (9) we have
mii = siivii, i = 1, 2, . . . , n, and thus the diagonal factor D can be factored as D = Dn · D′, so that

A = L(1)L(2) · · · L(n−1)
· Dn · D′

· U (n−1)
· · ·U (1),

where

Dn = diag(v11, . . . , vnn) (10)

and D′
= diag(s11, . . . , snn).

Since there are no singularities in the product D′
·U (n−1)

· · ·U (1), it suffices to remove the singularities in the remaining
factors, i.e., in the product

L(1)L(2) · · · L(n−1)Dn. (11)

Theorem 4.1. Let L(i), i = 1, 2, . . . , n − 1 be the lower bidiagonal factors in the ordinary bidiagonal decomposition (3) of a
Vandermonde-type matrix, whose nontrivial entries are defined as in (9) and Dn be defined as in (10). Then

L1L2 · · · Ln−1 = L(1)L(2) · · · L(n−1)Dn,

where

Li =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
sn−i+1,1 xn−i+1 − xn−i

sn−i+2,2 xn−i+2 − xn−i
. . .

. . .

sni xn − xn−i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Proof. It suffices to observe just the initial step, i.e., that

Dn−1 · Ln−1 = L(n−1)
· Dn, (13)

where Dn−1 is a diagonal matrix, such that (Dn−1)ii = 1 for i = 1, 2, and

(Dn−1)ii =

i−1∏
k=2

(xi − xk), i = 3, 4, . . . , n.

In other words, the (n − 1) × (n − 1) bottom right principal submatrix of Dn−1 is the diagonal factor in the ordinary
bidiagonal decomposition of an (n − 1) × (n − 1) ordinary Vandermonde matrix with nodes x2, x3, . . . , xn.

Since both Dn and Dn−1 are diagonal and both L(n−1) and Ln−1 are lower bidiagonal, we have bidiagonals on each side
of (13). To establish that those are equal, it suffices to show that the corresponding diagonal and offdiagonal entries are
the same. Since L(n−1) is unit lower bidiagonal, the diagonal entry in the product on the right, L(n−1)Dn is (Dn)ii. Thus, for
i > 1,

(Dn)ii =

i−1∏
k=1

(xi − xk) =

(
i−1∏
k=2

(xi − xk)

)
· (xi − x1) = (Dn−1)ii(Ln−1)ii,

since (Ln−1)ii = xi − x1 by (12). Also, (Dn)11 = 1, so the diagonal entries on both sides of (13) are equal.
Since (Ln−1)i+1,i = si+1,i, the offdiagonal entry in position (i + 1, i) on the left side of (13) is si+1,i(Dn−1)i+1,i+1. Also,

from (4),

L(n−1)
i+1,i = mi+1,i = si+1,ivi+1,i = si+1,i

i−1∏
j=1

xi+1 − xj+1

xi − xj

5
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and thus

si+1,i(Dn−1)i+1,i+1 = si+1,i

i∏
j=2

(xi+1 − xj)

= si+1,i

i−1∏
j=1

(xi+1 − xj+1)

= si+1,i

i−1∏
j=1

xi+1 − xj+1

xi − xj

i−1∏
j=1

(xi − xj)

= si+1,ivi+1,i(Dn)ii
= (L(n−1))i+1,i (Dn)ii,

which is the (i + 1, i) entry on the right hand side of (13).
Therefore the offdiagonal entries on each side of (13) are also equal and (13) is fully established.
Completely analogously, we establish that Dk−1Lk−1 = L(k−1)Dk for k = n− 1, n− 2, . . . , 2, and for the product (11) we

have

L(1)L(2) · · · L(n−1)Dn = L(1)L(2) · · · L(n−2)Dn−1Ln−1

= L(1)L(2) · · · L(n−3)Dn−2Ln−2Ln−1

= · · ·

= L(1)D2L2 · · · Ln−1

= D1L1L2 · · · Ln−1, and since D1 = I,
= L1L2 · · · Ln−1.

The factors that change on each step are underlined.
In other words, we ‘‘walk’’ the matrix Dn through the product (11) right-to-left, canceling the denominators in each L(k)

and factoring a slightly different diagonal matrix, Dk−1, out the left until we end up with just D1 = I , which we drop. □

The ordinary bidiagonal decompositions exist for nonsingular TN matrices, however very simple singular TN ma-
trices such as

[ 0 0
1 0

]
(let alone non-TN ones) do not have ordinary bidiagonal decompositions. Thus the fact that all

Vandermonde-type matrices have singularity-free bidiagonal decompositions regardless of their rank or total nonneg-
ativity is remarkable, which we prove below.

Corollary 4.1. The singularity-free bidiagonal decomposition (6) of a Vandermonde-type matrix A is valid for any complex
values of the nodes x1, x2, . . . , xn for which the matrices on both sides of (6) are defined.

Proof. Since it is derived from the ordinary bidiagonal decomposition (3), the singularity-free bidiagonal decomposition
(6) is valid when A is nonsingular and TN. This remains the case when all the nodes of A are strictly increasing inside an
open interval (a, b) contained in the interval D of total nonnegativity of A.

The (i, j)th entries on each side of (6) are rational functions of xi for all i, j = 1, 2, . . . , n. Indeed, on the left hand side,
aij = fj(xi), is a rational function of xi by Definition 1. On the right hand side, the (i, j)th entry is a polynomial in the
entries of the factors of (6). These entries are obtained via the construction in Section 4 from the entries of the ordinary
bidiagonal decomposition (3), which are rational functions of the nodes x1, x2, . . . , xn as either quotients of minors of A
or products of quotients of minors of A [6, Prop. (3.1)].

Since all rational functions are meromorphic on C, and the equality between the (i, j)th entries on each side of (6)
holds on an open interval in R containing xi: xi−1 < xi < xi+1, for 1 < i < n and a < x1 < x2, xn−1 < xn < b for
i = 1, i = n, respectively, the Identity Theorem [20, Thm. 3.2.6], implies that this equality holds for any complex values
of the nodes where these entries are defined. □

As a direct application to the ordinary Vandermonde matrices for example, as is evident from the formulas in
Section 5.1, the above Corollary immediately implies that their singularity-free bidiagonal decomposition is valid for any
complex nodes .

5. Our method and explicit formulas for Vandermonde-type matrices

Our method for producing a singularity-free bidiagonal decomposition for an n × n Vandermonde-type matrix A of
arbitrary rank works as follows:

6
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1. We start with the ordinary bidiagonal decomposition M = BD(A). Since A is Vandermonde-type, the entries mij
factor as:

mij = sijvij

for 1 ≤ j ≤ i ≤ n, where vij are defined in (8) and sij contain no singularities.
2. The singularity-free bidiagonal decomposition [B, C] = SBD(A), is then

bij = sij, 1 ≤ j ≤ i ≤ n, (14)

bij = mij, 1 ≤ i < j ≤ n, (15)

cij = xi−1 − xi−j, 2 ≤ j < i ≤ n + 1, (16)

cij = 1, j > i. (17)

In other words, to obtain the lower bidiagonal factors Li in (6) from the corresponding factors L(i) in (3), we remove
the factors vij from subdiagonal elements in L(i) and set the diagonal entries in L(i) as in (16).

To obtain the diagonal factor in (6) we remove the factors vii from the corresponding diagonal entry mii in the diagonal
factor in (3), i = 1, 2, . . . , n.

The upper bidiagonal factors U (i) remain intact, Ui = U (i), i = 1, 2, . . . , n − 1, as per (15) and (17).
To fully specify the entire decomposition, [B, C] = SBD(A), it suffices, therefore, to specify the entries sij, i ≥ j, and

mij, i < j, The rest of the entries in B and C are specified by (15) and (17).

5.1. Ordinary Vandermonde matrices

The ordinary bidiagonal decomposition of an ordinary Vandermonde matrix is given in (8).
Their singularity-free bidiagonal decomposition is such that

bij = 1

for i ≥ j and

bij = xj

for i < j and cij = xi−1 − xi−j for 2 ≤ j < i ≤ n + 1 and cij = 1 otherwise. In other words, the factors in (6) are

Li =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1 xn−i+1 − xn−i

1 xn−i+2 − xn−i
. . .

. . .

1 xn − xn−i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D = I and

Ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1 xn−i
. . .

. . .

1 xn−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The singularity-free bidiagonal decomposition of an ordinary Vandermonde matrix can be computed to high relative
accuracy in O(n2) time using the routine STNBDVandermonde in our package STNTool [21].

For example, if A is the 3 × 3 Vandermonde matrix in our example (2) from the Introduction, then its singularity-free
bidiagonal decomposition [B, C] = SBD(A) is such that

B =

[ 1 x x
1 1 y
1 1 1

]
and C =

⎡⎢⎣ 1 1 1 1
1 1 1 1
1 y − x 1 1
1 z − y z − x 1

⎤⎥⎦ .

The same technique applies to all Vandermonde-type matrices. We demonstrate the derivation of one non-trivial case,
the q-Bernstein Vandermonde matrices. In the Appendix (Appendix), we list the explicit formulas for several other classes
of Vandermonde-type matrices.

7
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5.2. q-Bernstein–Vandermonde matrices

The q-Bernstein–Vandermonde matrices are expressed in terms of q-integers and q-binomial coefficients: given q > 0
and any nonnegative integer r , a q-integer [r] is defined as

[r] =

{
(1 − qr )/(1 − q), q ̸= 1,
r, q = 1. (18)

For a nonnegative integer r , a q-factorial is defined as

[r]! =

{
[r][r − 1] · · · [1], r ̸= 1,
1, r = 0.

The q-binomial coefficient is defined as[n
r

]
=

[n][n − 1] · · · [n − r + 1]
[r]!

for integers n ≥ r ≥ 0 and as zero otherwise.
The q-Bernstein–Vandermonde matrices generalize the Bernstein–Vandermonde matrices [12,14], which are the q = 1

case. The nonsingular case was developed in [10].
The q-Bernstein polynomials of degree n for 0 < q ≤ 1 are defined in [22] as

bni,q(x) =

[n
i

]
xi

n−i−1∏
s=0

(1 − qsx), x ∈ [0, 1], i = 0, 1, . . . , n. (19)

An n × n q-Bernstein–Vandermonde matrix A with nodes x1, x2, . . . , xn is defined as

A =
[
bn−1
j−1,q(xi)

]n
i,j=1

(20)

and is TN when

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < 1. (21)

When the nodes xi, i = 1, 2, . . . , n, are also distinct, it has an ordinary bidiagonal decomposition M = BD(A) with
parameters [10]

mij =
1 − qn−jxi−j

1 − qn−jxi−1

n−1−j∏
s=0

1 − qsxi
1 − qsxi−1

i−2∏
k=i−j

xi − xk+1

xi−1 − xk  
vij

,

mji =
[n − i + 1]

[i − 1]
·

xj
1 − qn−ixj

j−1∏
k=1

1 − qn−i+1xk
1 − qn−ixk

, (22)

for 1 ≤ j < i ≤ n and

mii =

[
n − 1
i − 1

] ∏n−1−i
s=0 (1 − qsxi)∏i−1
k=1(1 − qn−ixk)

i−1∏
k=1

(xi − xk)  
vii

for 1 ≤ i ≤ n.
With the entries of the ordinary bidiagonal decomposition of the ordinary Vandermonde matrix vij defined as in (8),

we have that mij = sijvij for 1 ≤ j ≤ i ≤ n, where

sij =
1 − qn−jxi−j

1 − qn−jxi−1

n−1−j∏
s=0

1 − qsxi
1 − qsxi−1

, (23)

sii =

[
n − 1
i − 1

] ∏n−1−i
s=0 (1 − qsxi)∏i−1
k=1(1 − qn−ixk)

. (24)

The q-Bernstein–Vandermonde matrix is therefore a Vandermonde-type matrix on [0, 1).
As described at the beginning of this section, we obtain the singularity-free bidiagonal decomposition of A by removing

the factors vij from mij for i ≥ j and setting cij = xi−1 − xi−j for 2 ≤ j < i ≤ n + 1.
The decomposition [B, C] = SBD(A) is thus fully defined as in (14)–(17) with the sij, i ≤ j, defined in (23) and (24)

and mji, i > j, defined in (22).
The singularity-free bidiagonal decomposition of a q-Bernstein–Vandermonde matrix can be computed to high relative

accuracy in O(n2) time using the routine STNBDqBernsteinVandermonde in our package STNTool [21].

8
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6. Derivative Vandermonde matrices

Our results apply to other classes of matrices which are not directly Vandermonde-type. These include

• submatrices of Vandermonde-type matrices,
• products of Vandermonde-type matrices and other matrices, whose ordinary bidiagonal decompositions are known

and contain no singularities.

The former include the generalized Vandermonde matrices. The latter include the Laguerre matrices, the Bessel matrices,
and Wronskian matrices of a basis of exponential polynomials. We address these separately.

The generalized Vandermonde matrices

Gλ(x1, . . . , xn) =

[
x
j−1+λn−j+1
i

]n
i,j=1

are defined for integer partitions λ = (λ1, λ2, . . . , λn), where λi are integers such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. They
are submatrices of ordinary Vandermonde matrices (obtained by removing appropriate columns). Their singularity-free
bidiagonal decompositions can thus be obtained by starting with the singularity-free bidiagonal decomposition of the
ordinary Vandermonde matrix, derived in Section 5.1, and removing the appropriate columns employing the methods
of [8].

The singularity-free bidiagonal decomposition of a generalized Vandermonde matrix can be computed to high relative
accuracy in O(λ1n2) time using the STNBDGeneralizedVandermonde routine in our package STNTool [21].

Several classes of TN matrices are products of a TN ordinary Vandermonde matrix (call it V ) and a second TN matrix
(call it A) whose ordinary bidiagonal decomposition is known and contains no singularities. These include:

• Laguerre [23],
• Bessel matrices [24], and
• Wronskian matrices of a basis of exponential polynomials [25].

The singularity-free bidiagonal decomposition of the product VA (or AV ) can be obtained using the method for computing
the singularity-free bidiagonal decomposition of a product of TN matrices from [8, sec. 6] (implemented in the routine
STNProduct in our package STNTool [21]) with the singularity-free bidiagonal decomposition of V from Section 3 and
the ordinary bidiagonal decomposition of A.

7. The (n, n) entry of the bidiagonal factors must equal 1 for computations

The algorithms of [8] require that the (n, n) entry of every bidiagonal factor in the singularity-free bidiagonal
decomposition of a TN matrix be equal to 1. These algorithms rely heavily on this fact and it turns out that the assumption
that this is always the case can be made without any loss of generality.

To that end, in this section, we present a method to ‘‘fix’’ any singularity-free bidiagonal decomposition (6) so that the
bottom right-hand corner entries of all bidiagonal factors, L1, L2, . . . , Ln−1 and U1,U2, . . . ,Un−1 equal to 1.

We do so by ‘‘moving’’ the non-unit (n, n) entries of each lower bidiagonal factor into D and adjusting the (n, n − 1)
entries accordingly:

For any bidiagonal matrix Li and diagonal matrix Di = diag(1, 1, . . . , 1, xi), i = 1, 2, . . . , n−1, we can make the bottom
right hand corner entry of the product DiLi equal to one by factoring a new diagonal factor Di+1 out of the right. Namely,

DiLi = LiDi+1, (25)

where Li equals Li, except for (Li)nn = 1, (Li)n,n−1 = Ln,n−1xi. Then Di+1 = diag(1, 1, . . . , xiLnn).
This allows us, by starting with D1 = I , to move the bottom right hand corner entries of the lower bidiagonal factors

of SBD(A) into the diagonal factor, D:

A = L1L2 · · · Ln−1 · D · Un−1Un−2 · · ·U1 (26)
= D1L1L2 · · · Ln−1 · D · Un−1Un−2 · · ·U1, since D1 = I,

= L1D2L2 · · · Ln−1 · D · Un−1Un−2 · · ·U1, using D1L1 = L1D2 as in (25),
= · · ·

= L1L2 · · ·Dn−1Ln−1 · D · Un−1Un−2 · · ·U1

= L1L2 · · · Ln−1 · (DnD) · Un−1Un−2 · · ·U1

(the factors being transformed on each step using (25) are underlined).
The procedure is analogous for the upper bidiagonal factors.
Thus, if (26) is a singularity-free bidiagonal decomposition of the TN matrix A, then

A = L1L2 · · · Ln−1 · D · Un−1Un−2 · · ·U1

is a singularity-free idiagonal decomposition of A with all (n, n) entries of Li and U i, i = 1, 2, . . . , n, equal to 1.

9
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The matrices Li,U i, i = 1, 2, . . . , n − 1, and D differ from the matrices Li,Ui and D, respectively, only in

(Li)n,n = (U i)n,n = 1

and

(Li)n,n−1 = (Li)n,n−1

i−1∏
k=1

(Lk)n,n,

(U i)n,n−1 = (Ui)n,n−1

i−1∏
k=1

(Uk)n,n,

Dnn = Dnn

n−1∏
k=1

(Lk)n,n
n−1∏
k=1

(Uk)n,n.

The routine STNFixBottomRightOfBD in our package STNTool [21] implements the technique from this section.
For example, by implementing the technique from this section to the singularity-free bidiagonal decomposition of our

3 × 3 example (2) we obtain a new singularity-free bidiagonal decomposition with all (n, n) entries of all bidiagonal
factors now equal to 1:⎡⎣ 1 x x2

1 y y2

1 z z2

⎤⎦ =

[ 1
1
1 1

][ 1
1 y − x

1 1

][ 1
1

(z − y)(z − x)

]

×

[ 1 x
1 y

1

][ 1
1 x

1

]
.

8. Numerical accuracy

In the standard ‘‘1+ δ’’ model of floating point arithmetic [26], to which the IEEE 754 double precision arithmetic [27]
conforms, the result of any floating point calculation is assumed to satisfy

fl(a ⊙ b) = (a ⊙ b)(1 + δ), (27)

where ⊙ ∈ {+, −×, /}, |δ| ≤ ε, and ε is tiny and is called machine precision.
For a computed quantity, x̂ to have high relative accuracy, it means that it satisfies an error bound with its true

counterpart, x

|x̂ − x| ≤ θ |x|,

where θ is a modest multiple of ε. In other words, the sign and most significant digits of x must be correct. In particular,
if x = 0, it must be computed exactly.

The above model directly implies that the accuracy in numerical calculations is lost due to one phenomenon only,
known as subtractive cancellation [28]. It occurs when a subtraction of previously rounded off quantities results in the
loss of significant digits. Multiplication, division, and addition of same-sign quantities preserve the relative accuracy.
Subtraction of initial data such as the nodes xi is also fine, since initial data is assumed to be exact: (27) tells us the
result of that subtraction is computed to high relative accuracy. The only subtractions in any singularity-free bidiagonal
decomposition presented in this paper are between exact initial data: either in the form xi − xj between the nodes xi of
the Vandermonde-type matrix as in (16) or 1−xi between the exact double precision floating point number 1 and a node
xi as in (29), (31), and (32).

Detailed error analyses for the ordinary bidiagonal decompositions of all nonsingular TN Vandermonde-type ma-
trices presented in this paper have already been performed in the corresponding papers (e.g., [14] for the Bernstein–
Vandermonde matrices, etc.). All those decompositions are computable to high relative accuracy componentwise.

The new singularity-free bidiagonal decompositions inherit the same componentwise error bounds and are thus also
computable to high relative accuracy: the offdiagonal entries in the bidiagonal factors Li and Ui as well as the diagonal
entries of the diagonal factor D in the singularity-free bidiagonal decomposition (6) are the same as the corresponding
entries in the ordinary bidiagonal decomposition (3) except for the factors vij from (8). The diagonal entries in the
bidiagonal factors Li and Ui in (6) are either equal to 1 or are of the form xi − xj, the latter computable with relative
error bounded by the machine precision, ε, per (27).

9. Numerical experiments

We performed extensive numerical tests to verify the correctness of the formulas we derived in this paper as well as
their inherent accuracy in numerical computations. We present one illustrative example in Fig. 1. Using the formulas in

10
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Fig. 1. The eigenvalues of a 24 × 24 q-Bernstein–Vandermonde matrix as computed by the conventional eigenvalue algorithms of LAPACK as
implemented by MATLAB’s eig and also by forming the accurate singularity-free bidiagonal decomposition as in Section 5 and then using the
accurate eigenvalue algorithm of [8].

Section 5.2, we computed the eigenvalues of the 24 × 24 q-Bernstein–Vandermonde matrix A with parameter q = 0.1
and nodes

0.1, 0.2, 0.2, 0.2, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39,

0.5, 0.6, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.9.

A q-Bernstein–Vandermonde matrix with distinct nodes is nonsingular [10], thus the 17 rows corresponding to distinct
nodes are linearly independent. The repeated nodes (0.2, three times, and 0.7, six times) correspond to repeated rows in
the matrix and thus the rank of the matrix is 17.

We started with the singularity-free bidiagonal decomposition of A, computed using the formulas in Section 5.2, and
implemented in our software package STNTool [21] as the routine STNBDqBernsteinVandermonde. We computed the
eigenvalues using the algorithm STNEigenValues [8]. The matrix A is never explicitly formed or needed in this part of
the computation, which is not only accurate (as we see below), but also very efficient: The singularity-free bidiagonal
decomposition takes O(n2) time and the eigenvalues take an additional O(n3) time [8].

For comparison, in double precision floating point arithmetic [27], we formed A explicitly and computed its eigenvalues
using the conventional eigenvalue algorithm of LAPACK [18] (as implemented by eig in MATLAB [29]). As expected, only
the largest eigenvalues of A are computed accurately by eig. Further, since A is unsymmetric and its largest eigenvalue
is about 1, the complete loss of relative accuracy occurs in all eigenvalues smaller than about 10−12, a value much larger
machine precision (about 10−16). The zero eigenvalues are lost to roundoff. This behavior is fully expected and justified
for the general, structure-ignoring algorithms of LAPACK. It also underscores the utility of developing special algorithms
for structured matrices, which deliver results to high relative accuracy with the same O(n3) efficiency.

For verification, we formed A, then computed its eigenvalues, in 60 decimal digit arithmetic using the software package
Mathematica. All nonzero eigenvalues computed by STNEigenValues agreed with those computed by Mathematica to
at least 14 significant decimal digits. No amount of extra precision will allow us to reliably compute the zero eigenvalues
using the conventional eigenvalue algorithms of LAPACK, thus the only reason we know the algorithm from [8] computed
the correct number of zero eigenvalues (7) is because we know that the rank of the matrix is 17.1

MATLAB implementations of the algorithms described in this paper are available online [21].

Data availability

No data was used for the research described in the article.

1 Since the graph is log-scale, the zero eigenvalues are not depicted and the negative and complex eigenvalues returned by the conventional
algorithm are displayed by their absolute values.
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Appendix

Here we present the explicit formulas for the singularity-free bidiagonal decompositions of the following Vandermonde-
type matrices:

• h-Bernstein–Vandermonde
• Lupaş
• rational Bernstein–Vandermonde, and
• Cauchy–Vandermonde matrices with one multiple pole.

This is not a complete list of Vandermonde-type matrices as this is an active area of research, but since we derived these
formulas before realizing that all matrices of the Vandermonde-type follow the same pattern, we share them here and
have implemented them in software [21].

A.1. Lupaş matrices

The Lupaş q-analogues of the Bernstein functions of degree n for 0 < q ≤ 1 are defined as [30]

lni,q(x) =
ani,q(x)

wn
q (x)

, x ∈ [0, 1], i = 0, 1, . . . , n,

where

ani,q(x) =

[n
i

]
q

i(i−1)
2 xi(1 − x)n−i,

wn
q (x) =

n∑
i=0

ani,q(x) =

n∏
i=2

(1 − x + qi−1x).

For case q = 1 the Lupaş q-analogues of the Bernstein functions coincide with the Bernstein polynomials.
An n × n Lupaş matrix A with nodes x1, x2, . . . , xn is defined in [11] as

A =
[
ln−1
j−1,q(xi)

]n
i,j=1

.

For 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < 1, the matrix A is TN [11, Thm. 2.1]. It is also a Vandermonde-type matrix on [0, 1) with a
singularity-free bidiagonal decomposition [B, C] = SBD(A) defined as in (14)–(17) with parameters

sij =
(1 − xi)n−j(1 − xi−j−1)

(1 − xi−1)n+1−j

n−2∏
k=1

1 − xi−1 + qkxi−1

1 − xi + qkxi
,

mji =
[n − i + 1]qi−2xj
[i − 1](1 − xj)

,

for 1 ≤ j < i ≤ n and

sii =

[
n − 1
i − 1

]
q

(i−1)(i−2)
2 (1 − xi)n−i∏n−1

k=2(1 − xi + qk−1xi)
∏i−1

k=0(1 − xk)

for 1 ≤ i ≤ n.
The singularity-free bidiagonal decomposition of a Lupaş matrix can be computed to high relative accuracy in O(n2)

time using the routine STNBDLupas in our package STNTool [21].

A.2. h-Bernstein–Vandermonde matrices

These matrices are generalization of the Bernstein–Vandermonde matrices [12,14], which are the h = 0 case. The
nonsingular case was developed in [15].
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The h-Bernstein polynomials of degree n for a real parameter h ≥ 0 are defined in [15] as

bni,h(x) =

(n
i

) ∏i−1
k=0(x + kh)

∏n−i−1
k=0 (1 − x + kh)∏n−1

k=0(1 + kh)
, x ∈ [0, 1], 0 ≤ i ≤ n. (28)

An n × n h-Bernstein–Vandermonde matrix with nodes x1, x2, . . . , xn is defined as

A =
[
bn−1
j−1,h(xi)

]n
i,j=1

.

For 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn < 1, A is a TN Vandermonde-type matrix [15] on [0, 1) and has a singularity-free bidiagonal
decomposition [B, C] = SBD(A) defined as in (14)–(17) with parameters

sij =
1 − xi−j + (n − j)h
1 − xi−1 + (n − j)h

n−j−1∏
k=0

1 − xi + kh
1 − xi−1 + kh

, (29)

mji =
n − i + 1
i − 1

·
(xj + (i − j − 1)h)

∏j−1
k=1(1 − xk + (n − i + 1)h)∏j

k=1(1 − xk + (n − i)h)
,

for 1 ≤ j < i ≤ n and

sii =

(
n − 1
i − 1

) ∏n−i−1
k=0 (1 − xi + kh)∏n−i−1

k=1 (1 + kh)
∏i−1

k=1(1 − xk + (n − i)h)

for 1 ≤ i ≤ n.
The singularity-free bidiagonal decomposition of an h-Bernstein–Vandermonde matrix can be computed to high

relative accuracy in O(n2) time using the routine STNBDhBernsteinVandermonde in our package STNTool [21].

A.3. Rational Bernstein–Vandermonde matrices

A rational Bernstein–Vandermonde matrix with nodes x1, x2, . . . , xn and positive weights w1, w2, . . . , wn is defined
as [9]:

R =
[
rn−1
j−1 (xi)

]n
i,j=1

,

where

rn−1
j−1 (x) =

wj bn−1
j−1 (x)

W (x)
, x ∈ [0, 1], j ∈ {1, 2, . . . , n}, (30)

and W (x) =
∑n

j=1 wj bn−1
j−1 (x). The functions bnj (x) are the Bernstein polynomials of degree n. They equal the q-Bernstein

polynomials (19) for q = 1 and the h-Bernstein polynomials (28) for h = 0, i.e.,

bni (x) =

(n
i

)
xi(1 − x)n−i, i ∈ {0, 1, . . . , n}, x ∈ [0, 1].

For 0 < x1 ≤ x2 ≤ · · · ≤ xn < 1, the matrix R is TN [9, Thm. 3.1], which is of Vandermonde-type on (0, 1) and has a
singularity-free bidiagonal decomposition [B, C] = SBD(R) defined as in (14)–(17) with parameters

sij =
W (xi−1)(1 − xi)n−j(1 − xi−j)

W (xi)(1 − xi−1)n−j+1 , (31)

mji =
wi

wi−1
·
n − i + 1
i − 1

·
xj

1 − xj
, (32)

for 1 ≤ j < i ≤ n and

sii =

(
n − 1
i − 1

)
wi(1 − xi)n−i

W (xi)
∏i−1

k=1(1 − xk)

for 1 ≤ i ≤ n.
While we like the above expressions for their symmetry, an alternative singularity-free bidiagonal decomposition of R

can be obtained by recognizing, from (20) and (30), that R = W−1
1 AW2, where A is the q-Bernstein–Vandermonde matrix

for q = 1, and

W1 = diag(W (x1),W (x2), . . . ,W (xn))
W2 = diag(w1, w2, . . . , wn)

are positive diagonal matrices. Thus if SBD(A) is given by (6), then R has a singularity-free bidiagonal decomposition

R = (W−1
1 L1)L2 · · · Ln−1DUn−1Un−2 · · · (U1W2), (33)
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where the first and last factors in the parentheses, W−1
1 L1 and U1W2, are nonnegative bidiagonal matrices with the same

nonzero pattern as L1 and U1, respectively. Thus (33) is another bidiagonal decomposition of R and an example of how
the nonuniqueness of the singularity-free bidiagonal decomposition (6) can play out.

The singularity-free bidiagonal decomposition of a rational Bernstein–Vandermonde matrix can be computed to high
relative accuracy in O(n2) time using the routine STNBDRationalBernsteinVandermonde in our package STNTool [21].

A.4. Cauchy–Vandermonde matrices with one multiple pole

A Cauchy–Vandermonde matrix with nodes x1, . . . , xn and one pole d of multiplicity s ≥ 1 is defined as [31]

A =

⎡⎢⎢⎢⎢⎣
1

(x1+d)s · · ·
1

x1+d 1 x1 · · · xn−s−1
1

1
(x2+d)s · · ·

1
x2+d 1 x2 · · · xn−s−1

2
...

...
...

...
...

1
(xn+d)s · · ·

1
xn+d 1 xn · · · xn−s−1

n

⎤⎥⎥⎥⎥⎦
and is totally nonnegative when 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and d > 0. It is a Vandermonde-type matrix on [0, ∞) for d > 0
and has a decomposition [B, C] = SBD(A) with parameters

sij =

(
xi−1 + d
xi + d

)s

,

mji =

{
xj + d, 0 < i − j ≤ s
xj, i − j > s ,

for 1 ≤ j < i ≤ n and

sii =
1

(xi + d)s

for 1 ≤ i ≤ n.
The singularity-free bidiagonal decomposition of a Cauchy–Vandermonde matrix with one multiple pole can be

computed to high relative accuracy in O(n2) time using the routine STNBDCauchyVandermonde1pole in our package
STNTool [21].

A.5. Other Vandermonde-type matrices

The method presented in this section can be used analogously to derive singularity-free bidiagonal decompositions of
other Vandermonde-type matrices, for example:

• Said-Ball Vandermonde [13,16],
• Rational Said-Ball Vandermonde [9],
• Collocation and Wronskian matrices of Jacobi polynomials [32].

This is likely an incomplete list as this currently appears to be an area of active research.
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