6,859 research outputs found

    Bootstrap methods for the empirical study of decision-making and information flows in social systems

    Get PDF
    Abstract: We characterize the statistical bootstrap for the estimation of information theoretic quantities from data, with particular reference to its use in the study of large-scale social phenomena. Our methods allow one to preserve, approximately, the underlying axiomatic relationships of information theory—in particular, consistency under arbitrary coarse-graining—that motivate use of these quantities in the first place, while providing reliability comparable to the state of the art for Bayesian estimators. We show how information-theoretic quantities allow for rigorous empirical study of the decision-making capacities of rational agents, and the time-asymmetric flows of information in distributed systems. We provide illustrative examples by reference to ongoing collaborative work on the semantic structure of the British Criminal Court system and the conflict dynamics of the contemporary Afghanistan insurgency

    DEVELOPMENT OF DIAGNOSTIC AND PROGNOSTIC METHODOLOGIES FOR ELECTRONIC SYSTEMS BASED ON MAHALANOBIS DISTANCE

    Get PDF
    Diagnostic and prognostic capabilities are one aspect of the many interrelated and complementary functions in the field of Prognostic and Health Management (PHM). These capabilities are sought after by industries in order to provide maximum operational availability of their products, maximum usage life, minimum periodic maintenance inspections, lower inventory cost, accurate tracking of part life, and no false alarms. Several challenges associated with the development and implementation of these capabilities are the consideration of a system's dynamic behavior under various operating environments; complex system architecture where the components that form the overall system have complex interactions with each other with feed-forward and feedback loops of instructions; the unavailability of failure precursors; unseen events; and the absence of unique mathematical techniques that can address fault and failure events in various multivariate systems. The Mahalanobis distance methodology distinguishes multivariable data groups in a multivariate system by a univariate distance measure calculated from the normalized value of performance parameters and their correlation coefficients. The Mahalanobis distance measure does not suffer from the scaling effect--a situation where the variability of one parameter masks the variability of another parameter, which happens when the measurement ranges or scales of two parameters are different. A literature review showed that the Mahalanobis distance has been used for classification purposes. In this thesis, the Mahalanobis distance measure is utilized for fault detection, fault isolation, degradation identification, and prognostics. For fault detection, a probabilistic approach is developed to establish threshold Mahalanobis distance, such that presence of a fault in a product can be identified and the product can be classified as healthy or unhealthy. A technique is presented to construct a control chart for Mahalanobis distance for detecting trends and biasness in system health or performance. An error function is defined to establish fault-specific threshold Mahalanobis distance. A fault isolation approach is developed to isolate faults by identifying parameters that are associated with that fault. This approach utilizes the design-of-experiment concept for calculating residual Mahalanobis distance for each parameter (i.e., the contribution of each parameter to a system's health determination). An expected contribution range for each parameter estimated from the distribution of residual Mahalanobis distance is used to isolate the parameters that are responsible for a system's anomalous behavior. A methodology to detect degradation in a system's health using a health indicator is developed. The health indicator is defined as the weighted sum of a histogram bin's fractional contribution. The histogram's optimal bin width is determined from the number of data points in a moving window. This moving window approach is utilized for progressive estimation of the health indicator over time. The health indicator is compared with a threshold value defined from the system's healthy data to indicate the system's health or performance degradation. A symbolic time series-based health assessment approach is developed. Prognostic measures are defined for detecting anomalies in a product and predicting a product's time and probability of approaching a faulty condition. These measures are computed from a hidden Markov model developed from the symbolic representation of product dynamics. The symbolic representation of a product's dynamics is obtained by representing a Mahalanobis distance time series in symbolic form. Case studies were performed to demonstrate the capability of the proposed methodology for real time health monitoring. Notebook computers were exposed to a set of environmental conditions representative of the extremes of their life cycle profiles. The performance parameters were monitored in situ during the experiments, and the resulting data were used as a training dataset. The dataset was also used to identify specific parameter behavior, estimate correlation among parameters, and extract features for defining a healthy baseline. Field-returned computer data and data corresponding to artificially injected faults in computers were used as test data

    Maximum entropy based analysis of a DS/SSMA diversity system

    Get PDF
    D.Ing.This thesis sets out to propose and analyze a cellular Direct Sequence Spread Spectrum Multiple Access (DSjSSMA) system for the Indoor Wireless Communication (IWC) Nakagami fading channel. The up- and downlink of the system implement Differential Phase Shift Keying (DPSK) and Coherent Phase Shift Keying (CPSK) as modulation schemes respectively, and are analyzed using Maximum Entropy (MaxEnt) principles due to its reliability and accuracy. As a means to enhance system capacity and performance, different forms of diversity are investigated; for the up- and downlink, respectively, RAKE reception and Maximum Ratio Combining (MRC) diversity together with Forward Error Control (FEC) coding are assumed. Further, the validity of the Gaussian Assumption (GA) is quantified and investigated under fading and non-fading conditions by calculating the missing information, using Minimum Relative Entropy (MRE) principles between the Inter- User Interference (IUI) distribution and a Gaussian distribution of equal variance

    Engineering evaluations and studies. Volume 2: Exhibit B, part 1

    Get PDF
    Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed

    Multilevel Power Estimation Of VLSI Circuits Using Efficient Algorithms

    Get PDF
    New and complex systems are being implemented using highly advanced Electronic Design Automation (EDA) tools. As the complexity increases day by day, the dissipation of power has emerged as one of the very important design constraints. Now low power designs are not only used in small size applications like cell phones and handheld devices but also in high-performance computing applications. Embedded memories have been used extensively in modern SOC designs. In order to estimate the power consumption of the entire design correctly, an accurate memory power model is needed. However, the memory power model commonly used in commercial EDA tools is too simple to estimate the power consumption accurately. For complex digital circuits, building their power models is a popular approach to estimate their power consumption without detailed circuit information. In the literature, most of power models are built with lookup tables. However, building the power models with lookup tables may become infeasible for large circuits because the table size would increase exponentially to meet the accuracy requirement. This thesis involves two parts. In first part it uses the Synopsys power measurement tools together with the use of synthesis and extraction tools to determine power consumed by various macros at different levels of abstraction including the Register Transfer Level (RTL), the gate and the transistor level. In general, it can be concluded that as the level of abstraction goes down the accuracy of power measurement increases depending on the tool used. In second part a novel power modeling approach for complex circuits by using neural networks to learn the relationship between power dissipation and input/output characteristic vector during simulation has been developed. Our neural power model has very low complexity such that this power model can be used for complex circuits. Using such a simple structure, the neural power models can still have high accuracy because they can automatically consider the non-linear power distributions. Unlike the power characterization process in traditional approaches, our characterization process is very simple and straightforward. More importantly, using the neural power model for power estimation does not require any transistor-level or gate-level description of the circuits. The experimental results have shown that the estimations are accurate and efficient for different test sequences with wide range of input distributions

    Exploration and Optimization of Noise Reduction Algorithms for Speech Recognition in Embedded Devices

    Get PDF
    Environmental noise present in real-life applications substantially degrades the performance of speech recognition systems. An example is an in-car scenario where a speech recognition system has to support the man-machine interface. Several sources of noise coming from the engine, wipers, wheels etc., interact with speech. Special challenge is given in an open window scenario, where noise of traffic, park noise, etc., has to be regarded. The main goal of this thesis is to improve the performance of a speech recognition system based on a state-of-the-art hidden Markov model (HMM) using noise reduction methods. The performance is measured with respect to word error rate and with the method of mutual information. The noise reduction methods are based on weighting rules. Least-squares weighting rules in the frequency domain have been developed to enable a continuous development based on the existing system and also to guarantee its low complexity and footprint for applications in embedded devices. The weighting rule parameters are optimized employing a multidimensional optimization task method of Monte Carlo followed by a compass search method. Root compression and cepstral smoothing methods have also been implemented to boost the recognition performance. The additional complexity and memory requirements of the proposed system are minimum. The performance of the proposed system was compared to the European Telecommunications Standards Institute (ETSI) standardized system. The proposed system outperforms the ETSI system by up to 8.6 % relative increase in word accuracy and achieves up to 35.1 % relative increase in word accuracy compared to the existing baseline system on the ETSI Aurora 3 German task. A relative increase of up to 18 % in word accuracy over the existing baseline system is also obtained from the proposed weighting rules on large vocabulary databases. An entropy-based feature vector analysis method has also been developed to assess the quality of feature vectors. The entropy estimation is based on the histogram approach. The method has the advantage to objectively asses the feature vector quality regardless of the acoustic modeling assumption used in the speech recognition system

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF
    corecore