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                                                       Abstract 

New and complex systems are being implemented using highly advanced Electronic 

Design Automation (EDA) tools. As the complexity increases day by day, the dissipation of 

power has emerged as one of the very important design constraints. Now low power designs are 

not only used in small size applications like cell phones and handheld devices but also in high-

performance computing applications.  

          Embedded memories have been used extensively in modern SOC designs. In order to 

estimate the power consumption of the entire design correctly, an accurate memory power model 

is needed. However, the memory power model commonly used in commercial EDA tools is too 

simple to estimate the power consumption accurately.  

         For complex digital circuits, building their power models is a popular approach to estimate 

their power consumption without detailed circuit information. In the literature, most of power 

models are built with lookup tables. However, building the power models with lookup tables 

may become infeasible for large circuits because the table size would increase exponentially to 

meet the accuracy requirement.  

        This thesis involves two parts. In first part it uses the Synopsys power measurement tools 

together with the use of synthesis and extraction tools to determine power consumed by various 

macros at different levels of abstraction including the Register Transfer Level (RTL), the gate 

and the transistor level. In general, it can be concluded that as the level of abstraction goes down 

the accuracy of power measurement increases depending on the tool used. In second part a novel 

power modeling approach for complex circuits by using neural networks to learn the relationship 

between power dissipation and input/output characteristic vector during simulation has been 

developed. Our neural power model has very low complexity such that this power model can be 

used for complex circuits. Using such a simple structure, the neural power models can still have 

high accuracy because they can automatically consider the non-linear power distributions. Unlike 

the power characterization process in traditional approaches, our characterization process is very 

simple and straightforward. More importantly, using the neural power model for power 

estimation does not require any transistor-level or gate-level description of the circuits. The 

experimental results have shown that the estimations are accurate and efficient for different test 

sequences with wide range of input distributions. 
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                                                                                                  Chapter 1 

 Introduction  
 

1.1 Motivation 
 

        With the increasing usage of electronics devices and Internet appliances, there is a 

corresponding increased need for employing low-power design methodologies. One of the 

important requirements to know during a design process is how much power the circuit should 

dissipate considering its application. So after the designer writes the required code, keeping in 

mind all the specifications that have been given to him, a power calculation needs to be done to 

confirm if the design meets the required specification. This is done prior to sending the chip for 

fabrication. So it is extremely important to get accurate power values using power determining 

tools running them at certain input conditions.         

            Numerous EDA (Electronic Design Automation) tools have been developed to not only 

determine power but also help in power reduction. The usage of these tools is classified 

depending on the layer of abstraction they are used in. The three main layers of abstraction 

include the RTL (Register Transfer Level), the gate and the transistor level. Though there are 

numerous tools that can be used at each of these levels, this thesis mainly concentrates on using 

Synopsys tools.  

          System-on-a-chip (SOC) is a trend of system integration in recent years. For SOC designs, 

most design teams will not design all circuit blocks in the system by themselves. Instead, they 

integrate many well-designed circuit blocks called intellectual properties (IPs) and some self-

designed circuit blocks to build up the complex system in a short time. While designing such 

complex systems, power consumption is also a very important design issue because of the 

increasing requirement on operating time of portable devices. Traditionally, power estimation is 

often performed at transistor-level by SPICE-liked simulation at the end of design flow, as 

shown in Figure 1-1. At this moment, it is often too late to obtain the information of power 

dissipation at transistor-level. In order to avoid costly redesign steps for such complex design, 

designers have to estimate the power consumption at higher design stage to understand whether 

more improvements are required. Furthermore, this SPICE-liked approach will become 

unpractical for SOC designs because the transistor-level description of whole designs is often too 
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large to be simulated and IP vendors may not provide such low-level description for an IP to 

protect their knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

                      

                      Figure 1-0-1A Design Flow of CMOS Digital Circuit 

 

       For this application, power models may provide an efficient solution to estimate power 

consumption of complex circuits without transistor-level even gate-level circuit descriptions. 

After a power characterization process with detailed circuit information, we can build a power 

model that describes the relationship between high-level power characteristics and real power 

consumption under specific input sequences or input/output signal statistics. With this power 

model, users can obtain the power consumption of the circuits without detailed circuit 

information because it can be derived from the power model and the high-level power 

characteristics directly. Lookup table is the most commonly used power model. In other research 

areas, neural networks are widely used in many applications such as classification, clustering, 

pattern recognition, control application, etc. Because of the self-learning capability of neural 

networks, they can recognize complex characteristics by using several simple computation 

elements with proper training. Therefore, in this thesis, we propose a novel power model for 

complex digital circuits that uses neural networks to learn the power characteristics during 

simulation. The complexity of our neural power model has no relationship with circuit size and 

Behavior-Level 

Representation 

RT-Level  

Representation 

Gate-Level 

Representation 

Transistor-Level 

Representation 

         GDS2 



4 
 

number of inputs and outputs such that this power model can be kept very small even for 

complex circuits. More importantly, using the neural power model for power estimation does not 

require any transistor-level or gate-level description of the circuits, which is very suitable for IP 

protection. 

 

1.2 Goals and contributions   

        

     The main goal of this thesis is to calculate the power of several digital circuits which vary in 

complexity from a 500-transistor net-list to one containing more than 150,000 transistors. The 

next goal of this thesis is to develop a power model to calculate the dynamic power dissipation, 

which is based on neural network. 

For each of the benchmark circuit, power will be calculated at various levels of 

abstraction using two EDA tools supplied by Synopsys: Power Estimator, Power Compiler. The 

purpose and functionality of each of tools will be discussed in the later chapters. Scripts will be 

developed to implement the various results. The following Figure 1.2 shows the design flow 

involved in the thesis in calculating the power values at different levels of abstraction.   

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 1-0-2Design Methodology showing power calculation using different power   
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Then a novel power modeling approach will be developed based on neural network back 

propagation algorithm to calculate the power by taking the gate level power report as the basic 

building for power model. 

 

Thesis Organization 

      

       Chapter 2 mainly reviews the literature related to the various tools that have been used in 

this work and briefly discusses about different types of power along with high level power 

estimation. Chapter 3 discusses the artificial neural network and different training algorithms. 

Chapter 4 covers with the power modeling approach using neural network. Chapter 5 presents 

the experimental design of benchmark circuit C 432. In chapter 6 results from power compiler 

and different algorithms will be compared. Finally the conclusions, and future works are given in 

chapter 7. 
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                                                                                      Chapter 2 

Background 

2.1 Need for Low Power Design  

            In the early 1970’s designing digital circuits for high speed and minimum area were the main 

design constraints. Most of the EDA tools were designed specifically to meet these criteria. Power 

consumption was also a part of the design process but not very visible. The reduction of area of 

digital circuits is not as big issue today because with new IC production techniques, many millions of 

transistors can be fit in a single IC. However, shrinking sizes of circuits have paved the way for 

reduced power consumption in order to have an extended battery life. Also in submicron 

technologies, there is a limitation on the proper functioning of circuits due to heat generated by 

power dissipation. Market forces are demanding low power for not only better life but also reliability, 

portability, performance, cost and time to market. This is very true in the field of personal computing 

devices, wireless communications systems, home entertainment systems, which are becoming 

popular now-a-days. Devices that are also used for high-performance computing particularly need to 

dissipate less power to function correctly and for a long period of time [1].  Keeping all these in 

mind, low power design has become one of the most important design parameters for VLSI (Very 

Large Scale Integration) systems. 

 

2.1.1 Design Flow with and without Power 

      A top-down ordinary VLSI design approach is illustrated in Figure 2.1. The figure 

summarizes the flow of steps that are required to follow from a system level specification to the 

physical design. The approach was aimed at performance optimization and area minimization. 

However, introducing the third parameter of power dissipation made the designers to change the 

flow as shown in the right-hand side of the Figure 2.1. 

     In each of the design levels are two important power factors, namely power optimization and 

power estimation. Power optimization is defined as the process of obtaining the best design 

knowing the design constraints and without violating design specifications. In order to meet the 

design and required goal, a power optimization technique unique to that level should be 

employed. Power estimation is defined as the process of calculating power and energy dissipated 

with a certain percentage of accuracy and at different phases of the design process. Power 
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estimation techniques evaluate the effect of various optimizations and design modifications on 

power at different abstraction levels. 

     Generally a design performs a power optimization step first and then a power estimation step, 

but within a certain design level there is no specific design procedure. Each design level includes 

a large collection of low power techniques. Each may result in a significant reduction of power 

dissipation. However, a certain combination of low power techniques may lead to better results 

than another series of techniques. 

    Generally, power is consumed when capacitors in the circuits are either charged or discharged 

due to switching activities. So at higher levels of a system this power dissipation is conserved by 

reducing the switching activities which is done by shutting down portions of the system when 

they are not needed. Large VLSI circuits contain different components like a processor, a 

functional unit and controllers. The idea of power reduction is to stop any of the components of 

the processor when they are not needed so that less power will be dissipated when the processor 

is operating [2]. 

 

2.2 Relationship Between Different Abstraction Levels 

      

The relationship between design abstraction level and power estimation techniques is shown as 

Figure 2.2. The power estimation at higher level is much faster, but the accuracy will become 

worse due to the limited design information A number of CAD techniques for power estimation 

at lower levels of abstraction, such as transistor-level [2-4] or gate-level [5], have been proposed. 

 
Figure 2-0-4Relationship between different abstraction level & Power estimation techniques 
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       Generally speaking, they can provide more accurate estimation results. However, they may 

become unpractical for complex designs due to the whole system simulation requires too much 

computation resources in such low abstract levels. In addition, when the design has been 

specified down to gate level or lower, it may be too expensive to go back to fix high-power 

problems. Most importantly, IP vendors may not provide such low-level description for an IP to 

protect their knowledge. 

 

2.3 Basic Concepts for Power 

        The power dissipation of digital CMOS circuits can be described by 

                              P
avg = 

P 
dynamic 

+ P 
short-circuit 

+ P 
leakage 

+ P 
static

 

P
avg 

is the average power dissipation, P 
dynamic 

is the dynamic power dissipation due to switching of 

transistors, P 
short-circuit 

is the short-circuit current power dissipation when there is a direct current path 

from power supply down to ground , P 
leakage 

is the power dissipation due to leakage currents, P 
static 

and is the static power dissipation [2][4] 

 2.3.1 Static Power 

Static power is the power dissipated by a gate when it is not switching that is, when it is 

inactive or static. Ideally, CMOS (Complementary Metal Oxide Semiconductor) circuits 

dissipate no static (DC) power since in the steady state there is no direct path from V
dd 

to ground. 

This scenario can never be realized in practice, since in reality the MOS transistor is not a perfect 

switch. There will always be leakage currents, sub threshold currents, and substrate injection 

currents, which give rise to the static component of power dissipation. The largest percentage of 

static power results from source-to-drain sub threshold voltage, which is caused by reduced 

threshold voltages that prevent the gate from completely turning off [2][4].  

2.3.2  Dynamic Power  

Dynamic power is the power dissipated when the circuit is active. A circuit is active 

anytime the voltage on net changes due to some stimulus applied to the circuit. In other words, 

dynamic power dissipation is caused by the charging. Because voltage on an input net can 

change without necessarily resulting in logic transition in the output, dynamic power can be 
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dissipated even when an output net doesn’t change its logic state. This component of dynamic 

power dissipation is the result of charging and discharging parasitic capacitances in the circuit 

[2][4]. 

Dynamic power of a circuit is composed of  

a) Switching power  

b) Internal power  

2.3.2.1 Switching power  

     The switching power of a driving cell is the power dissipated by the charging and discharging 

of the load capacitance at the output of the cell. The total load capacitance at the output of a 

driving cell is the sum of the net and gate capacitances on the driving output. The charging and 

discharging are result of logic transitions. Switching power increases as logic transitions 

increase. Therefore, the switching power of a cell is a function of both the total load capacitance 

at the cell output and the rate of logic transitions. Switching power comprises 70-90 percent of 

the power dissipation of an active CMOS circuit [2][4]. 

2.3.2.2 Internal power  

     Internal power is any power dissipated within the boundary of a cell. During switching, a 

circuit dissipates internal power by the charging or discharging of any existing capacitances 

internal to the cell. Internal power includes power dissipated by a momentary short circuit 

between the P and N transistors of a gate, called short-circuit power. 

2.3.3 Short-Circuit Power  

     The short-circuit power consumption, P 
short-circuit, 

is caused by the current flow through the direct 

path existing between the power supply and the ground during the transition phase. 

2.3.4 Leakage Power    

   The PMOS and NMOS transistors used in a CMOS logic circuit commonly have non-zero 

reverse leakage and sub-threshold currents. These currents can contribute to the total power 

dissipation even when the transistors are not performing any switching action. The leakage 

power dissipation, P 
leakage 

is caused by two types of leakage currents.   
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       The leakage power dissipation, P 
leakage 

is caused by two types of leakage currents  

a) Reverse-bias diode leakage current  

            b) Sub threshold current through a turned-off transistor channel 

 

2.4 Overview of Power Estimation Techniques 

 
        In our research, we focus on estimating the dynamic power dissipation of digital circuit, 

which is directly related to chip heating and battery lifetime. This is quite different from 

estimating the worst case of instantaneous power. Because this is a strongly input pattern 

dependent problem, several solutions [3][6][20] are proposed to overcome this problem by using 

the probabilistic measures. In those approaches, they use probabilities as a compact way to 

describe a large set of possible logic signals. Another approach for average power estimation is 

to obtain the current waveform by performing a simulation. We refer these methods as 

simulation-based techniques. In the literature, many simulation-based approaches have been 

proposed at various kinds of abstraction level [21]. Generally speaking, the comparison of the 

accuracy and speed among those approaches can be summarized in figure 2.2. 

      Those most accurate power estimation approaches is to perform transistor-level simulation, 

because the detailed information of the whole design is known. However, it has the worst 

because it requires too much computation resources efficiency and it takes too much time for 

simulation. Gate-level power simulation techniques can provide a better trade-off between 

accuracy and efficiency, but it may still cost a lot of redesign time to solve power problems when 

the design is already at gate-level. Compared to other approaches, high-level power estimation is 

much harder to obtain high accurate results, because the detail information of the design is 

already loss too much. However, if the accuracy can be improved to an acceptable region, high-

level power estimation techniques will become very useful because we can detect the power 

problems much earlier and more quickly. In following section, the high-level power estimation 

will be introduced. 

 

2.5 High-Level Power Estimation 

       In order to avoid costly redesign steps for such complex design, designers have to estimate 

the power consumption at higher design stage to understand whether more improvements are 
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required. It is unpractical for SOC designs to use the traditional SPICE-liked simulation at 

transistor-level as mentioned in Chapter 1. Therefore, a number of CAD techniques have been 

proposed for gate-level power estimation [3]. However, when the design has been implemented 

to the gate level, it may still too late or too expensive to improve the design for power 

consumption problems. It implies that high-level power estimation techniques are essential for 

designing such a complex design to shorten redesign cycles. 

 

 

           Input Sequence 

 

 

 

 

 

 

 

                                                               Dynamic Power 

                                        Figure 2-3 A usage of high-level power model 

 

    A number of high-level power estimation techniques have been proposed as surveyed in [5]. 

They are often classified as top-down and bottom-up styles [6]. In the top-down techniques, a 

circuit is specified as a Boolean function without detail information of the circuit structure. Top-

down methods usually use some abstract measurements such as entropy to measure of the 

amount of information change as the power consumption values [4][18]. They would be useful 

when designing a logic block that was not previously designed. 

      High-level power estimation techniques can be roughly divided into two categories: top-

down and bottom-up. In the top-down techniques, a combinational circuit is specified only as a 

Boolean function without information on the circuit implementation. 

 

  Power Characteristics 
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                            Figure 2-4 High Level power modeling concept 

     

Normally, they will estimate the switching activity of circuits by using entropy. Entropy is a 

characterization of a random variable or a random process which is commonly used in the 

information theory [17] as a measure of information-carrying capacity. These kind of top-down 

techniques are useful when one is designing a logic block that was not previously designed 

because they can provide a rough measurement about the trend of power consumption before 

implementation. However, they may not have very good accuracy due to the lack of 

implementation details. 

         In contrast, bottom-up methods are useful when reusing a previously designed logic block 

so that all detailed internal structures of the circuit are known. A power macro-model will be 

built for such logic blocks in this kind of methods. When this logic block is used in another 

application, the corresponding power macro-model can be used to estimate the power dissipation 

of this block without performing any simulation at gate-level or transistor-level. The usage of 

power model has been showing Figure 2.3. This kind of power modeling approach will be very 

useful in the IP-based SOC designs. 

 

2.6 Tools Used  

There has been a variety of tools involved in this thesis. Even though, this thesis is all about 

power calculations of macros which are done using tools; there are other tools that have been 

used prior to the usage of power tools to give the required input to the power tools. More 



14 
 

emphasis is given to these tools that are mainly involved in power estimation. The usage of tools 

has been classified as Power tools and Non-Power tools. 

 

2.6.1 Non-Power Tools  

     Non-power tools include Simulation tools, Synthesis tools, Layout tools, Extraction tools and 

Waveform viewers.  The tools that are discussed in this chapter are some of the non-power tools 

involved in the entire design flow. A short description of each of these tools along with their 

working flow is given in this chapter to understand their functionality. The subsequent chapter 

discusses each of the power tools in detailed manner as most of the thesis involves the use of 

these power tools. The following chapter also discusses the design flow from code writing to 

spice net-list simulation, clearly explaining the usage of these tools at the respective level. 

2.6.1.1 Simulation Tool  

     Initially, Verilog or VHDL code for a particular design is written and tested. Simulation is 

done using Mentor’s Modelsim for both VHDL Verilog and other Verilog simulators. ModelSim 

is a simulation and a debugging tool for VHDL, Verilog, and other mixed-language designs from 

Mentor Graphics [21]. The basic simulation flow is as shown in Figure 2.5. Initially, a working 

library is created and the code is compiled using the commands depending upon whether the 

code is VHDL or Verilog. 

 

 

 

 

 

 

 

 

                                       Figure 2-5Modelsim simulation flow 
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      Verilog Compiled Simulator (VCS) [22] from Synopsys is a high-performance, high-capacity 

Verilog simulator that incorporates advanced high-level abstraction, verification into an open 

platform. The basic work flow for VCS consists of two basic steps:  

a) Compiling source files into executable binary files  

b) Running the executable binary file  

   This two step approach simulates the design faster and uses less memory than other 

interpretive simulators. The basic design flow is given in Figure 2. 

 

           compilation 

 

 

                   

                simulation                         

 

 

 

 

 

                                                Figure 2-6VCS work flow 

 

2.6.1.2 Synthesis Tool  

Design Compiler [24] is the core of the Synopsys synthesis software products. It comprises tools 

that synthesize HDL designs into optimized technology-dependent, gate-level designs. It 

supports a wide range of hierarchical design styles and can optimize both combinational and 

sequential designs for speed, area, and power. 

The basic Design Compiler(Design Vision) synthesis process is given in Figure 2.7. 

The Design Compiler is a powerful tool that other products can be run inside its environment 

using specific commands. Some of the products that can be accessed are HDL compiler,      
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      Automated chip synthesis, FPGA compiler, Behavioral compiler and Power Compiler. HDL 

compiler reads and writes Verilog or VHDL design files. The Verilog or VHDL compiler reads 

the HDL files and performs translation and architectural optimization of the designs. The 

appropriate HDL compiler is automatically called by Design Compiler when it reads an HDL 

design file. 

 

 
 

 

 

 

 

 

                                                 Figure 2-7Design compiler synthesis process 

2.6.2 Power Tools  

    This thesis involves the usage of Synopsys power tools. The power products are tools that 

comprise a complete methodology for low-power design. Synopsys power tools offer power 

analysis and optimization throughout the design cycle, from RTL to the gate level. Analyzing 

power early in the design cycle can significantly affect the quality of the design. Improvements 

made to the design while it is at RTL level can get even better results eventually. Not only these 

power tools do accurate measurements but also can help in calculating power quicker. 

 Power consumption is calculated at three levels of abstraction. The tools used at these 

levels are  

      a) RTL Level - RTL Power Estimator  

     b) Gate Level – Power Compiler (based on switching activity),  

                 c) Transistor Level – NanoSim  
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2.6.2.1 Power Compiler  

      Power Compiler [28] is an add-on product to Design Compiler. The Power Compiler tool 

optimizes the design for power. Working in conjunction with the Design Compiler tool, Power 

Compiler provides simultaneous optimization for timing, power and area. In addition to the 

standard inputs to synthesis (RTL or gate-level net-list, technology library, design constraints, 

and parasitics), Power Compiler uses two other inputs: Switching activity of design elements and 

power constraints. It contains all the analysis capabilities of Design Power. 

Power Compiler uses the same power analysis engine as Design Power. This allows Power 

Compiler to the use the same switching activity for optimization that Design Power uses for 

analysis. It accepts either user-defined switching activity, switching activity from simulation, or 

a combination of both. It provides RTL clock gating and optimizes the circuit based on circuit 

activity, capacitance, and transition times. Power Compiler cannot only be used as a standalone 

product but also can be used in coordination with Design Compiler, Module Compiler, Physical 

Compiler and Floor plan Manager. 

2.6.2.1.1 Power Compiler Methodology  

       Power Compiler is used at RTL and Gate level to calculate power and do power 

optimization depending on the need. At each level of abstraction, simulation, analysis and 

optimization can be performed to refine the design before moving to the next lower level. 

Simulation and the resultant switching activity gives the analysis and optimization the necessary 

information to refine the design before going to next lower level of abstraction. The higher the 

level of design abstraction, the greater the power savings can be achieved. The following Figure 

2.8 describes the power flow at each of the abstraction level. Figure 2.9 shows power flow from 

RTL to Gate level. 

 Cell internal power and net toggling directly affect dynamic power of a design. To report 

or optimize power, Power Compiler requires toggle information for the design. This toggle 

information is called Switching Activity. 
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                         Figure 2-8Power flow at each of the abstraction level 
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                                    Figure 2-9power flow from RTL to Gate level 

Power Compiler models switching activity in terms of static probability and toggle rate. 

Static probability is the probability that a signal is at a certain logic state and is expressed as a 

number between 0 and 1. It is calculated during simulation of the design by comparing the time 

of a signal at a certain logic state to the total time of the simulation. Toggle rate is the number of 

logic-0-to-logic-1 and logic-1-to-logic-0 transitions of a design object per unit of time. 
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                                             Figure 2-0-50Power methodology in power compiler 

 

       The following Figure 2.10 shows the methodology of power calculation using the 

combination of Power Compiler and Design Compiler. The flow of data between the different 

steps and tools used are also shown. Before starting to calculate power using Power Compiler the 

desired gate-level net-list of the design should be first generated. The power methodology starts 

with the RTL design and finishes with a power-optimized gate-level net-list. Ultimately, Power 

Compiler is used to calculate power using the gate-level net-list produced by the Design 

Compiler or power-optimized gate net-list produced by Power Compiler itself. As seen in the 

figure most of the processes that take place are using Design Compiler, but the simulation 

process that is shown is outside Design Compiler tool and is done as part of power calculation. 

The main purpose of simulation is to generate information about the switching activity of the 
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design and create a file called Back-annotation. This file can contain switching activity from 

RTL simulation or gate-level simulation. Initially, the RTL design is given to the HDL compiler 

to create a technology-independent format called as GTECH design. This is as a result of 

analyzing and elaborating the design by HDL compiler. This formatted design is given as an 

input to Design Compiler. Before it is compiled by the Design Compiler, “rtl2saif” command is 

used to create forward-annotation file which is later used for simulation. The formatted design 

GTECH is later given as input to Design Compiler which produces an output which is given to 

Power Compiler. 

      The Forward-annotation SAIF file is given as an input to do RTL simulation which gives a 

back-annotation SAIF file which is used by Power Compiler. This forward annotated file 

contains directives that determine which design elements to be traced during simulation. Gate-

level simulation can also use a library forward-annotation file. This forward-annotation file used 

for gate level simulation has different information compared to RTL forward-annotation file. 

This file contains information from the technology library about cells with state and path-

dependent power models. “Lib2saif” command is used to get this forward-annotation file.  

During power analysis, Power Compiler uses the annotated switching activity to evaluate 

the power consumption of the design. During power optimization, Power Compiler uses the 

annotated switching activity to make decisions about the design. 
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                                                                                                               Chapter 3 

 Artificial Neural Network 

3.1 Introduction 

     

         Although today’s computers are extremely fast and precise, there are still many tasks that 

the human brain can compute more efficiently than a computer in real world. For example: 

reading handwritten characters automatically, recognizing the words spoken by any speaker, 

driving a car, walking and running as an animal or human being, etc. These works are easy for us 

but not for computers because of the special ability of biological brain – recognition and 

learning. This is why we called it “computer”, not “electric brain”. 

    In a conventional computer, the instructions are executed sequentially in a fast and 

complicated single processor. The speed of the processor in a computer is more than 100 times 

faster than the basic processing element of the brain called neuron. It is worthy to note that even 

the neurons are slower than electrical processor, the brain can still perform many tasks much 

faster than any conventional computer. This is because the brain has a massively parallel 

structure of biological neural networks. 

 

3.2 Biological Neurons vs. artificial neurons 

3.2.1 Biological Neurons 

      It is claimed that the human brain consists of a large number (approximately 10
11

) [8][9] of 

highly connected (approximately 10
4
 connections per element) elements called neurons. They 

communicate through a connection network of axons and synapses [8]. It can be considered that 

the brain is a densely connected electrical switching network that is operated by the biochemical 

processes. These neurons have three principle components [9]: the cell body, which is also called 

the soma, the axon, and the dendrites as shown in Figure 3-1. The dendrites are tree-like 

receptive networks of nerve fibers that carry electrical signals into soma. Soma sums these 

incoming signals and judges the threshold effectively. The axon is a single long fiber that carries 

the electrical signal from soma to other neurons. The contact point between an axon of one cell 

and a dendrite of another cell is called a synapse. The information transfer is across a synapse, 
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which is controlled by biochemical agents [10]  a process that is modeled in electronic neurons 

by the changing of synaptic weights. Thus, the process of learning is to alter these various 

synapses. It is believed that the new memories are formed by modification of these synaptic 

strengths. 

 

                     Figure 3-0-6 A simplified schematic diagram of two biological neuron 

3.2.2 Artificial Neurons 

   After we briefly described the operations of biological neurons, we will introduce the 

simplified mathematical model of the neurons and will explain how these artificial neurons 

operate. Since the neural computing is a mathematical model inspired by biological models, this 

computing system is also made up of a number of artificial neurons and a huge number of 

interconnections between them. 

    The basic unit in a neural network is an artificial neuron as shown in Figure 3-2. In Figure 3-2, 

x1 to xN are the input data for the neuron, w1 to wN are the weights of input x1 to xN individually 

that represent the contribution from each input, and s is the summation of x1w1 to xNwN and the 

bias factor x0w0. In most cases, x0 is fixed as 1 such that the training algorithm, which will be 

discussed on later chapter, only adjusts the weight w0 to wN. f is the transfer function that 

converts s into y, which is often a non-linear function and can be arbitrarily decided by users. As 

a summary, the output of a neuron can be expressed as Equation (3-1). 

 

  y wixi 
 )                                            3.1 

      Comparing the both models, inputs (x) in the artificial model are similar to the input 

electrical signals in biological neurons. Outputs (y) in the artificial model are similar to the 

output of biological neurons. Weights (w) in the artificial model correspond to the synaptic 
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strength connections in biological neurons. And the transfer function is analogous to the firing 

frequency of the biological neurons. 

3.3Feed-Forward Neural Network 

 
   A neural network is a set of interconnected neurons, where the outputs of neurons act as the 

inputs of other neurons. Although there are many connection configurations for neural networks, 

we choose the multi-layer feed-forward network architecture as the first study case for the new 

application, high-level power estimation, in VLSI/CAD field. 

    Feed-forward neural network is one of the most popular models of neural networks. Basically, 

it is a layered acyclic network in which the neurons are separated into several layers and 

connections are only allowed from the neurons in layer l to the neurons in layer l+1. For 

example, a full-connected 3-layered feed-forward neural network is illustrated as Figure 3-3. In 

this architecture, the neurons in one layer get their inputs from the previous layer and feed their 

output to the next layer. The input layer is made up of special input neurons that transmit the 

applied external inputs to their outputs. The last layer of neurons is called the output layer and 

the layers between the input and output layers are called the hidden layers. If there are only input 

layer and output layer in a network, it is called a single layer network. If there are one or more 

hidden layers, such networks are called multi-layer networks. For a feed-forward network, there 

always exists an assignment of indices to neurons so that the weight matrix can be kept triangular 

to have smaller indices. Furthermore, if the diagonal entries are zero, it means that there is no 

self-feedback on the neurons. 

3.4 Operations of Neural Network 

 
In this section, we are going to explain the detailed operations of neural networks. They can be 

separated into two phases: learning (also called training) phase and recalling phase. The learning 

approaches of neural networks can be further divided into two categories: supervised learning 

and unsupervised learning structures. In supervised learning [8][10], the network is “taught” 

what response it should make to each input that it received. We assume that at each instant of 

time when the input x is applied, the desired response d of the system is provided by the teacher 

as illustrated in Figure 3-4a. The distance ρ[d,o] between the actual response (o) and the desired 

response (d) serves as an error measurement to modify the parameters in the network. Those 



24 
 

parameters, including weights and bias factor matrix, will be modified according to the error 

measurement such that the error can be decreased. 

    This mode of learning is commonly used in many situations of natural learning. A set of inputs 

and desired output patterns, which are called training set, are required for this learning mode. In 

our case, we use the supervised learning method, backpropagation [8][9], to learn the 

relationship between the power dissipation and the status of primary input/output signals. The 

learning capability can also be built in the networks without teachers. Unsupervised 

networks[8][10] can also learn by using built-in rules for self-modification. In other words, the 

weights and biases are modified in response to the inputs of network only as illustrated in Figure 

3-4b. There are no target outputs to act as a teacher that can help us to modify the network 

parameters.  While the weights and bias matrixes are fixed after learning phase, the computation 

of o for a given x performed by the network is the recalling phase. The operation in this phase 

can be viewed as a simple number calculation process to decode the stored contents that have 

been encoded in the network at learning phase. 

 

3.5 Training Algorithms 

 
The target of training algorithms is to minimize an error function by adjusting the corresponding 

weight matrix in the neural network. In this work, the error function is chosen as the mean square 

error defined in Equation (3-2) because it is widely used and there are many existed training 

algorithms for minimizing this error function. In Equation (3-2), W = [w1 w2 … wQ ]T consists 

of all weights including biases of the network, yi is the output value of the ith input vector and Q 

is the number of weights. There are many training algorithms for feedforward neural networks 

that can select suitable weights to minimize the error function in Equation (3-2). Some methods 

such as steepest descent algorithm, conjugate gradients algorithm and quasi-Newton algorithm 

[12] are general optimization methods. In this work, we choose both steepest descent approach 

and Levenberg-Marquardt algorithm [12][14][15] to train our neural power models because they 

are very suitable to minimize the error functions that arise from a squared-error criterion. In the 

following descriptions, we will try to briefly explain the operations of both training algorithms. 
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3.5.1 Levenberg Marquardt algorithm 

       For Levenberg-Marquardt algorithm the equations are shown below. In this algorithm 

basically the input to hidden layer transfer function log sigmoid, whereas hidden to output layer 

transfer function is pure linear. 

              Log sigmoid-------------- f(s)=  

  F(W) (yi-ti)
2          

                                              3.2
        

 

  Equation (3-2) can be rewritten as Equation (3-3), where E=[e1 e2 … eP]T and ei=yi-ti, 

i=1,…,P. If we define the Jacobian matrix as Equation (3-4), the weights in Equation (3-4) can 

be calculated iteratively using Equation (3-5), where I is the identify unit matrix, u is learning 

parameter, and r is the number of iterations. A large value of u will lead to a faster learning 

process but the weights may become more unstable. On the contrary, a small value of u implies a 

slower learning process but the results are more stable. In our work, we will fixed this parameter 

as 0.003. 

           F(W) = E
T
 E                                                        3.3 
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W 
m

 is weight of the mth layer of the network, and b 
m

 is bias of the mth layer of the network.  

Steepest Descent Algorithm 

    Backpropagation algorithm is used as the training method of the designed artificial neural 

network. The backpropagation algorithm includes the following steps: 

1. Initialize weights and biases to small random numbers. 

2. Present a training data to neural network and calculate the output by propagating the input 

forward through the network using (11). 

3. Propagate the sensitivities backward through the network: 

 

=-2 ( )(t-a) 

 

4. Calculate weight and bias updates 

 

 

Where is learning rate 

 

5. Update the weights and biases 

 

(k+1)= (k)+  

(k+1)= (k)+  

 

6. Repeat step 2 – 5 until error is zero or less than a limit Value. 
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3.6 The Properties of Neural Network 

 

i. Fast processing time 

Because of the parallel structure, all neurons will perform their computation concurrently in the 

ideal artificial neural networks. Therefore, the processing time of a neural network is very fast. If 

we refer the speed of the processing time as intelligence, the comparison of “intelligence” is 

shown in Figure 3-5[13][10]. 

ii. High storage capacity 

Because of the highly connected neurons, it can have amazing large memory storage according 

to the Kolmogorov theory [11]. It showed that every continuous function of several variables 

with a closed and bounded input domain can be represented as the superposition of a small 

number of functions of one variable. 

 

                   Figure 3-0-7 The comparison of neural creatures 
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iii.Learning capability 

   A neural system may learn the rules simply from a set of examples. The learning capability of 

a neural network enables it to give a satisfactory response for an input which is not part of the set 

of training examples. 

iv. Distributed memory and fault tolerance 

   In neural networks, “memory” corresponds to an activation map of the neurons. Memory is 

thus distributed over many units that gives resistance to noise. In distributed memories, such as 

neural networks, it is possible to start with noisy data and recall the correct data. Distributed 

memory also has a benefit for fault tolerance. In most neural networks, if some PEs are destroyed 

or altered slightly on their connections, the behavior of the entire network is not changed too 

much. 

Summary 
 

        It is noted that neural network is not an all-purpose solution. The premise to use this 

algorithm is that the problem to solve is a learnable case. It means that there must exists a 

relationship between the inputs and outputs of neural network; otherwise, it will become hard to 

be trained in contradiction cases. In our case, we are going to build the power model by using 

neural network to learn the relationship between real power dissipation and input/output status. 

In the CMOS digital circuit, the total power dissipation is dominated by dynamic power 

dissipation, which is input pattern-dependence. It implies that this kind of relationship should be 

able to be learned. 
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                                                                                                                   Chapter  4 

 

Power Modeling with Neural Network 
 

4.1 Introduction 
       In chapter 3 we have discussed the basic feed forward neural network and training 

algorithms. After detailed analysis, we have realized that the logic level of the unchanged signal 

must be considered because they might be a control signal that controls the internal signal 

switching propagation. We will focus not only on the the novel modeling approach but also  look 

into the parameters of neural network that are required for the basic building block of the 

algorithm. power modeling research is to develop a model that can be used easily and efficiently 

and has enough accuracy. It means that, the characterization process must be as simple as 

possible. 

 As mentioned in Chapter 3, we choose the fully feed forward connection configuration to be our 

neural network architecture in our first study.The first parameter to be decided is the input data 

format, which is mentioned as the characteristic value of the input patterns in the circuit. Because 

the total power dissipation of CMOS circuit is dominated by dynamic power dissipation that 

depends on the circuit input switching activity, the total power dissipation will also depend on 

the switching activity. Therefore, in the first try of our work, we choose the transition status of 

every input pin and output pin as the input data of our power model.  

  The minimal number of neurons in the hidden layer depends on the complexity of the 

relationship between input data and output data. However, according to the experience in neural 

network researches, there is no easy or general way to determine the optimal solution for the 

number of neurons to be used [17]. Therefore, in this work, we start from a small number and 

add more neurons until the neural network can learn the properties with desired accuracy. In our 

experiment, h will be small than 15. It shows that, the complexity of our neural power model is 

only linearly proportional to the number of inputs and outputs. Finally, the output layer has only 

one neuron. Its output is the estimation for the power consumption of this circuit under given 

input patterns. The overall picture of this neural power model is shown in Figure 4.1. 
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                                  Figure 4-1Power model construction procedure 
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4.2 Parameters of Neural Network 

 
According to the experience we learned by reading different articles, we will try to consider the 

signal transition statistics as well as probability values at the inputs and outputs pins. We set the 

inputs of the neural network as some real numbers between one and zero, which are the signal 

transition statistics of an input pattern pair and its corresponding output pattern pair individually. 

Therefore, the number of neurons in the input layer is fixed as 8, which are PI00, PI01, PI10, PI11, 

PO00, PO01, PO10 and PO11 that represent the ratio of each case in this pattern pair. Here, PIxy 

represents the ratio of input signals change from logic state x to y and POxy represents the ratio of 

output signals change from logic state x to y in a pattern pair. It can be noted that 

PI00+PI01+PI10+PI11=1 and PO00+PO01+PO10+ PO11=1. An example of the input data format is 

shown in Figure 4.2 

                  PI                                                                                                    PO 

             0  0  1  0  1                                                                                         1  0  0  1 

             1  1  0  0  1                                                                                         0  0  0  1 

             1  1  1  1  1                                                                                         1  1  1  0 

             0  0  0  1  0                                                                                         0  1  0  1                                                             

 

                                         Input & Output pattern pair of a circuit 

 

 

                     PI00      0.2     0        0 

                     PI01    0.4    0.4      0 

                     PI10      0.2     0      0.8 

                              PI11      0.2    0.6    0.2 

                                                                                                                                            Estimate                                              

                 PO00       0.5        0      0                                                                                        Power 

                 PO01      0       0.75  0.25 

                 PO10     0.25   0.25  0.5 

                        PO11      0.25      0     0.25 

                                                                                                     Neurons:  Input layer = 8 

                                                                                                                   Output layer = 1 

                        Figure 4-2An example of the signal transition statistics 

 circuit 

 neural 
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 Therefore, the model will be built as shown in Figure 4.3 . The complexity of this neural power 

model has no relationship with circuit size and number of inputs and outputs such that this power 

model can be kept very small even for complex circuits. 

 

 

 

                     

                        Figure 4-3Illustration of the neural power model 
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                                                                                                               Chapter 5 

Experimental Design 

5.1 Introduction 

     In this section, we will demonstrate the accuracy and efficiency of our power model with 

ISCAS’85 benchmark circuit C432, which is synthesized by Synopsys Design Compiler using 

0.065um cell library. The neural networks for the power models of those circuits are built on 

TURBO C++ and performed on a laptop with Intel Centrino Duo 1.6GHz  CPU and 1GB RAM. 

    In the training phase, the input sequences are randomly generated by iteratively changing the 

average signal transition density such that the neural models can learn many different cases. In 

our experiments, the neural networks of the circuit are trained with 65 input patter pairs. The real 

power of those input pattern pairs is estimated by Power Compiler such that dynamic power 

dissipation can be characterized in the power model. 

   The mean square error and the learning rate of the training target is set as 10
-8

 and 0.003 

respectively. When the training process goes through the whole training set, we will check the 

mean square error of the estimation results. If the error is not small enough, the training process 

will be executed again until the training target is satisfied. 

5.2 Bench mark circuit description(C432)  

Statistics: 36 inputs; 7 outputs; 160 gates; bus translations 

Function: c432 is a 27-channel interrupt controller. The input channels are grouped into three 9-

bit buses (we call them A, B and C), where the bit position within each bus determines the 

interrupt request priority. A forth 9-bit input bus (called E) enables and disables interrupt 

requests within the respective bit positions. The figure above concisely represents the circuit. 

The figure above contains the modules labeled M1, M2, M3, M4, and M5, which contain the 

underlying logic.  

       The interrupt controller has three interrupt request buses A, B and C, each having nine bits 

or channels, and one channel-enable bus D. The following priority rules apply: A[i] > B[j] > 

C[k], for any i, j, k; i.e., bus A has the highest priority and bus C the lowest. Within each bus, a 

http://www.eecs.umich.edu/~jhayes/iscas/c432bus.html
http://www.eecs.umich.edu/~jhayes/iscas/c432m1.html
http://www.eecs.umich.edu/~jhayes/iscas/c432m2.html
http://www.eecs.umich.edu/~jhayes/iscas/c432m3.html
http://www.eecs.umich.edu/~jhayes/iscas/c432m4.html
http://www.eecs.umich.edu/~jhayes/iscas/c432m5.html
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channel with a higher index has priority over one with a lower index; for example, A[i] > A[j], if 

i > j. If D[i] = 0, then the A[i], B[i], and C[i] inputs are disregarded. 

      The seven outputs PA, PB, PC and out[3:0] specify which channels have acknowledged 

interrupt requests. Only the channel of highest priority in the requesting bus of highest priority is 

acknowledged. One exception is that if two or more interrupts produce requests on the channel 

that is acknowledged, each bus is acknowledged. For example, if A[4], A[2], B[6] and C[4] have 

requests pending, A[4] and C[4] are acknowledged. Module M5 is a 9-line-to-4-line priority 

encoder. The output line numbered 421 actually produces the inverted out[3] response of that 

shown in the truth table. We have taken the liberty of adding an inverter to output 421 to form 

out[3] for this table (but not in the models).  

I/O bus              Function ISCAS-85 Netlist numbers 

A[8:0] Highest priority input bus 1, 11, 24, 37, 50, 63, 76, 89, 102 

B[8:0] Middle priority input bus 8, 21, 34, 47, 60, 73, 86, 99, 112 

C[8:0] Lowest priority input bus 14, 27, 40, 53, 66, 79, 92, 105, 115 

D[8:0] Channel enable input bus 4, 17, 30, 43, 56, 69, 82, 95, 108 

PA,PB,PC Requesting bus output 223, 329, 370 

Out[3:0] Requesting channel output 421, 430,  431, 432 

 

                          Table 5-0-1C432 benchmark circuit pin description 

 

 

 

 

 

 

 

 

 

 

http://www.eecs.umich.edu/~jhayes/iscas/c432m5tt.html


35 
 

5.3 Power Estimation Techniques  

          Power values for each of these macros are done using four power tools of  Synopsys spread 

through three levels of abstraction, RTL level, Gate level and Transistor level and in overall 5 

different values for a macro being calculated. Power calculation for each of the tools at a specific 

level is done using a different methodology and with other non-power tools involved. One of the 

major non-power tools involved in this is an extraction tool. A table is built summarizing all the 

values.  

     The first method of power calculation is done using Power Estimator which is used at the 

RTL level. The second method involves using Power Compiler with RTL level switching 

activity and the third method involves using Power Compiler with Gate Level switching activity. 

The fourth method is by using Prime Power which also comes at Gate level. The final and the 

most accurate fifth method is by using NanoSim which is at the transistor level. The accuracy of 

the power values obtained using these tools gets better as we move from RTL level to transistor 

level. This is because the information required for calculating accurate power of a macro is given 

in more detail as the level goes to the lower levels of abstraction and also the tools involved get 

more complex at those levels. Finally, a table is made with power values filled for each of the 

macros together with the simulation time required to get those. 

5.4 Basic design flow  

The following Figure 3.1 gives a basic idea of the design flow that takes place from code 

writing of the macro to sending the final macro output for fabrication. Initially to start with the 

VHDL or Verilog hardware description language is used to describe the design. The design is 

verified using one of the different simulators to test its functionality. Once the test is fine, the 

next process of creating the net-list is carried out. The gate-level net-list is created using Design 

Compiler. Additionally, the power tools are used to estimate power at different levels depending 

on the tool used at a specific level of abstraction. The next sections in this chapter describe the 

process and methodology used in each of the power tools and how the power is calculated.  

       The following are the different methods of calculating power  

a) Power Estimator using RTL level switching activity ( Pre-Synthesis)  

b) Power Compiler using Gate level net-list with RTL level switching activity  

c) Power Compiler using Gate level net-list with Gate-level switching activity  
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5.5 Power Estimation at the Register Transfer Level  

The RTL Power Estimator enables to obtain design power estimates early in the design 

process. Its pre-synthesis simulation capabilities enable to analyze the power consumption of the 

design at the RTL. These Architectural or RTL level tools can be used to quickly understand 

which modules in the entire design consume the largest amount of power. This is also the best 

level to evaluate the usage of clock gating strategies which are primarily used to reduce power 

consumption. The run time efficiency of running the tools at this level is also used to calibrate 

the fastness of the tool. Some of the features of using Power Estimator are  

a) Obtain quick power estimation early in the design  

b) Perform architectural tradeoffs early in the design flow  

5.5.1 Methodology  

            The following is the approach that has been followed to calculate power using  Power 

Estimator which is part of the Power Compiler tool. Figure5.1  gives the flow. As shown in the 

figure, the RTL design is first taken. There are two flows from the RTL design. One is the RTL 

code which is simulated using ModelSim simulator to get Back Switching SAIF file which 

contains the switching activity of the design and it is used to create power model for the design 

using “create_power_model” command. Then the design is annotated using the back 

annotated switching activity and power is reported using “report_rtl_power” command. All 

the commands can be added up in a script which can be used by invoking “pp_shell” 

command. 

5.5.2 Capturing Forward and Backward Switching Activity  

         Power Compiler requires information about the switching activity of the design to do 

power analysis. The forward and back-annotation files are in SAIF format. SAIF is an ASCII 

format developed at Synopsys to facilitate the interchange of information between simulators and 

Synopsys power tools. Some of the power tools cannot understand SAIF file so in that case VCD 

file is used. Depending on the tool, either RTL level switching activity or Gate-level switching 

activity is used. Power Compiler has a methodology that enables the use of switching activity 

from RTL simulation as well as from Gate-level simulation. Using gate-level simulation the 

power values are much more accurate but doing that is time consuming. During RTL and gate 

level simulation the designer can direct the simulator to monitor and write out the switching 
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activity of certain important elements in the design. For accurate analysis, synthesis-invariant 

elements should be closely monitored during RTL simulation. These are the elements that are not 

changed during simulation like primary inputs, sequential elements, black boxes, three-state 

devices and hierarchical ports. 

 

                                                      Forward SAIF 

                                                   

 

 

 

 

 

                                                read_saif 

 

 

                                              report_rtl_power 

                      

                      Figure 5-0-8Power Analysis flow in Power Estimator 

5.5.2.1 SAIF file and RTL simulation  

A SAIF forward-annotation file directs the simulation to monitor primary inputs and 

other synthesis-invariant elements. The backward SAIF file generated from the simulation 

contains the resultant switching activity of the elements monitored during the RTL simulation. 

Synopsys power tools can read the information in the back-annotation file and annotate it on the 

compiled design. The following steps as shown in the Figure 5.2 are done to get forward and 

finally the back switching activity file  

a) Set the variable “power_preserve_rtl_hier_name = true”  

b) Create a SAIF forward-annotation file from “dc_shell”  

      RTL Design 

Create Power model 

Report power       

   estimates 

   Target Library 

Annotate activity 

   RTL simulation 

    Back SAIF File 
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c) Include the SAIF forward-annotation file in simulation using ModelSim  

d) Write a SAIF back-annotation file from simulation  

e) Read the SAIF back-annotation file to annotate the design from “dc_shell”  

As the design is analyzed and elaborated, HDL compiler creates a technology-independent 

design called GTECH design. Using GTECH design, HDL compiler creates the SAIF forward-

annotation file when invoking the “rtl2saif” command.  

The following is the methodology followed using RTL simulation and SAIF files. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-0-9Methodology using RTL simulation and SAIF file 
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5.5.2.2 SAIF forward-annotation file  

The following script has been used to create forward annotation file for “adder” design.  

  

“ power_preserve_rtl_hier_names = true  

analyze -f verilog {c432.v}  

elaborate c432  

link  
rtl2saif -output c432_forward.saif -design c432 “  

The following is the explanation of each of the command lines in the script. To start with the 

“dc_shell” command is used to invoke the Design Compiler.  

a) power_preserve_rtl_hier_names = true  

 

This variable is set true to preserve the hierarchy information of the RTL objects in the RTL 

design.  

b) analyze -f verilog {c432.v}  

 

elaborate c432 
The analyze and elaborate commands read the RTL design into active memory and converts it to 

a technology-independent format called the GTECH design.  

c) link  

          The link command resolves instantiated references of the sub designs.  

d) rtl2saif -output c432_fw.saif -design c432 

 

The rtl2saif command creates the forward-annotation file using the GTECH format created during 

the analysis and elaboration of the RTL design. Here “c432_fw.saif” is the forward-annotation file 

for adder. 

5.5.2.3 Creating Backward SAIF file  

Now for Power Estimator to report power, Backward SAIF file is required which is obtained 

using Forward SAIF file. Modelsim simulator is used to create the backward SAIF file. First, the 

Verilog of C432 along with the test bench are compiled and then the ModelSim simulator is 

invoked. Forward switching activity file generated by “rtl2saif” command as part of the Design 

Compiler is also fed to the simulator. The “read_rtl_saif” command reads the SAIF forward-

annotation file and registers design objects for monitoring. The next subsection describes about 

the toggle command methodology in detail. The “toggle_report” command creates a SAIF back-

annotation file from simulation. The back-annotation file contains information about  

the switching activity of the synthesis-invariant elements in the design. The “read_saif” dc_shell 

command back-annotates the information from the SAIF file onto the current design. Figure 5.3 

shows the steps involved in creating the backward SAIF file. 
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5.6 Power Estimation using Power Compiler with RTL switching activity  

      Power estimation at gate level using gate level power estimation tools is the next accurate method in 

calibrating power. These tools operate on the gate level net-list of the design together with the gate level 

power library. The power library consists of power models for each of the gates like inverters, NAND 

gates, and flip-flops 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Figure 5-3RTL backward switching activity using ModelSim 

 

              These models consists information about the parameters that contribute to power 

dissipation in each of the standard cells. In this thesis, Power Compiler is used as the gate level 

power estimation tool. Power Compiler not only estimates the power but also helps in optimizing 

the design for lower power. The gate level power consumption checks the power being 
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consumed by logic transitions on wires and by capacitances and short circuits internal to gates 

during an input transition. In the case of smaller design, the designer can do some gate level 

changes to reduce power after estimating. If it is a larger design then it would be difficult for the 

designer to check all the gate-level changes. At this point, Power optimization tools come in 

handy. Power Compiler is also an optimization tool  

5.6.1 Methodology  

In this method of power estimation, Power Compiler is used with the same RTL back-annotation 

switching activity used for power estimation using Power Estimator but instead of RTL code, it 

uses gate-level net-list of the design. 

Also for getting better power result, parasitic information of the system is also provided. In this 

case DSPF is obtained from Place and route tool, Soc encounter using HyperExtract Extraction 

tool. The gate-level net-list is obtained from Design Compiler. The following script has been 

used to report power.  

 

“ read -f verilog -net-list c432_syn.v  

current_design c432  

create_clock -name clk -period 100 -waveform {0 50}  

read_parasitics -format DSPF c432_syn.dspf -elmore  

read_saif c432_fw.saif -instance c432 
report_power > power_report_RTL “ 

            As shown in the script first the gate-level net-list of the adder design obtained from 

Design Compiler is read inside the “dc_shell” environment. Depending on the clock frequency 

used, it has been assigned using the “create_clock” command. The parasitic is read in the form 

of DSPF file using “read_parasitics” command. Then the backward SAIF file is loaded using 

“read_saif” command. Then finally “report_power” command is used to report the power. 

Depending on the design, extra commands may be required in this script especially for designs 

having a clock tree. Designs having clock tree will report high fanouts when run in this 

environment. Additional commands will enable to remove the high fanouts. 

5.7 Power Estimation using Power Compiler with Gate-level Switching activity  

Another method of calculating power of a design which is more accurate than the previous 

Power Compiler method is to use gate-level net-list with gate-level switching activity. This 
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method is better than the previous method because it uses the gate level net-list to get the 

switching activity of the design, but the time taken to do this procedure is more than previous 

two methods. 

5.7.1 Creating Gate-level Switching Activity  

The following Figure 3.6 shows the flow required to get the Back annotation gate level switching 

activity which will be later used to calculate power. The main difference between RTL back 

annotation switching activity and gate-level switching activity is that here gate level net-list is 

given as the input to the ModelSim simulator along with the testbench and the do file which 

contains all the toggle region definition and the actual running of the simulation and the 

reporting of the toggle activity. The resultant back-annotation SAIF file is read back to Power 

Compiler and power is reported. The do file that is used to capture switching activity follows the 

same procedure as RTL switching activity like defining the reading the forward SAIF file, 

defining the region for counting toggle information, starting and stopping the monitoring 

switching activity and finally using “toggle_report” command to report the activity in a SAIF 

file format. 

read -f verilog -net-list c432_syn.v  

current_design c432  

create_clock -name clk -period 100 -waveform {0 50}  

read_parasitics -format DSPF c432_syn.dspf -elmore  

read_saif -input c432_bw.saif -instance testbench/design  
report_power > power.rpt “ 

 

        First the gate level net-list is read into dc_shell environment. Once the net-list is read the 

top level of the design is made as the current design to work on it. Then the clock is created 

depending on the frequency is run while calculating the power. Then a certain load is given to 

the output port which in this case is SUM. Then the parasitic values are read into as DSPF form. 

Then the backward annotation file is read which has the switching activity of the design. The 

switching activity file gives information to the tool at which points there is switching in the 

design. 
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                           Figure 5-4Gate-level backward switching activity using ModelSim 

This is useful to report power of the design. “report_power” command is used to report the 

power of the design. This method gives power values much more accurate the other previous 

methods. Next method discussed is by using another Gate-level Power Estimator using almost 

the same input files except that it takes in the switching activity as VCD format. This tool 

supposed to give almost equal power compared to Power Compiler using Gate level switching 

activity. 
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                                                                                                 Chapter 6 

Results & Discussions 
 

This chapter gives details on the various results that have been obtained using the 

benchmark circuit C432 that was discussed earlier. 

       The figure1.2 shows the methodology of calculating different power values at the different 

levels of abstraction. Detailed methodology of how different power values are calculated using 

these tools has been discussed in chapter 2.  

The following section discusses the different power values that are obtained using different 

power tools as shown in the figure1.2.  

1. Power Estimator – P1 (RTL) :  

      Power Estimator is used to calculate power at the RTL level. The inputs for Power Estimator 

are Verilog[1], RTL switching activity[2]. The input [4] is got from ModelSim giving [1] + [2] 

as inputs.  

 

2.Power Compiler – P2 (RTL) :  

      The second power value is calculated using Power Compiler at the RTL level. The inputs to 

calculate power are Gate-level Net-list [3], RTL switching activity [4]. [3] is obtained from 

Design Compiler giving [1] as the input. [4] is obtained from ModelSim giving [1] + [2] as 

inputs.  

3. Power Compiler – P3 (Gate-level) :  

      The third power value is calculated using Power Compiler at the Gate-level. The inputs to 

calculate power are Gate-level Net-list [3], Gate-level switching activity [5], Parasitic information 

[6]. [3] is obtained from Design Compiler giving [1] as the input. [5] is obtained from Modelsim 

using [2] + [3] as inputs. [3] is given as input to Silicon Ensemble to do the Place and Routing and 

after that [6] is obtained from Soc encounter. 
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                          Figure 6-1Gate level net-list of benchmark circuit c432 
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6.1 Power Report 

       6.1.1 RTL power report 

 

**************************************** 

Report : power 

        -analysis_effort low 

Design : c432 

Version: B-2008.09 

Date   : Mon Mar 28 10:03:22 2011 

**************************************** 

 

 

Library(s) Used: 

 

    tcbn65gplustc (File: /home/NIS/tcbn65gplustc.db) 

 

   

 

Operating Conditions: NCCOM   Library: tcbn65gplustc 

Wire Load Model Mode: segmented 

 

Design        Wire Load Model            Library 

------------------------------------------------ 

c432                   ZeroWireload      tcbn65gplustc 

 

 

 

Global Operating Voltage = 1     

Power-specific unit information : 

    Voltage Units = 1V 

    Capacitance Units = 1.000000pf 

    Time Units = 1ns 

    Dynamic Power Units = 1mW    (derived from V,C,T units) 

    Leakage Power Units = 1nW 

---------------------------------------------------------------------- 

Hierarchy           Switch     Int      Leak        Total   

                    power      power    power       power        % 

---------------------------------------------------------------------- 

c432              277.8240nW 420.4745nW 345.7192nW 698.2985nW    100   
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   6.1.2 Power Report using Power Compiler with RTL Switching Activity 
 

Information: Updating design information... (UID-85) 

Information: Propagating switching activity (low effort zero delay 

simulation). (PWR-6) 

 

 

**************************************** 

Report : power 

        -analysis_effort low 

Design : c432 

Version: B-2008.09 

Date   : Mon Mar 28 10:03:22 2011 

**************************************** 

 

 

Library(s) Used: 

    tcbn65gplustc (File: /home/NIS/tcbn65gplustc.db) 

 

 

Operating Conditions: NCCOM   Library: tcbn65gplustc 

Wire Load Model Mode: segmented 

 

Design        Wire Load Model            Library 

------------------------------------------------ 

c432                   ZeroWireload      tcbn65gplustc 

 

 

Global Operating Voltage = 1     

 

Power-specific unit information : 

    Voltage Units = 1V 

    Capacitance Units = 1.000000pf 

    Time Units = 1ns 

    Dynamic Power Units = 1mW    (derived from V,C,T units) 

    Leakage Power Units = 1nW 

  

  

Cell Internal Power  = 310.8485 nW   (57%) 

  Net Switching Power  = 235.3477 nW   (43%) 

                         --------- 

Total Dynamic Power    = 546.1962 nW  (100%) 

Cell Leakage Power     = 560.6182 nW 
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  6.1.3 Gate Level Power Report 

Information: Updating design information... (UID-85) 

Information: Propagating switching activity (low effort zero delay 

simulation). (PWR-6) 

 

 

**************************************** 

Report : power 

        -analysis_effort low 

Design : c432 

Version: B-2008.09 

Date   : Mon Mar 28 10:03:22 2011 

**************************************** 

 

 

Library(s) Used: 

    tcbn65gplustc (File: /home/NIS/tcbn65gplustc.db) 

 

Operating Conditions: NCCOM   Library: tcbn65gplustc 

Wire Load Model Mode: segmented 

 

 

Design        Wire Load Model            Library 

------------------------------------------------ 

c432                   ZeroWireload      tcbn65gplustc 

 

 

 

Global Operating Voltage = 1     

 

Power-specific unit information : 

    Voltage Units = 1V 

    Capacitance Units = 1.000000pf 

    Time Units = 1ns 

    Dynamic Power Units = 1mW    (derived from V,C,T units) 

    Leakage Power Units = 1nW 

  

  

Cell Internal Power  = 216.8613 nW   (48%) 

  Net Switching Power  = 233.3269 nW   (52%) 

                         --------- 

Total Dynamic Power    = 450.1882 nW  (100%) 

 

Cell Leakage Power     = 560.6182 nW 
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The following figure 6.2  shows some input and output result for benchmark circuit C432, which 

was simulated in modelsim and virsim. 

                                     

                                      I/P Data                                                                        O/P data 

 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 0 0 0 0 0 0 0     

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1                 0 1 0 1 0 1 0 

 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1                 1 1 0 0 0 0 0 

 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1                 1 1 1 1 0 1 0 

 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1                 1 1 0 1 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 0 0 0 0 0 0 0                                                                                                                                       

 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1                 1 1 1 1 0 1 0 

 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0                 1 1 0 0 0 1 1 

 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1                 1 1 0 0 0 0 0 

 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1                 1 0 0 1 1 0 1 

 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1                 1 1 0 1 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 0 0 0 0 0 0 0 

 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 1 0 0 1 1 1 1 

 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0                 1 1 0 0 0 1 1 

 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0                 1 1 1 1 0 1 1 

                                               Figure 6-0-10I/P & O/P for circuit C432 
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6.2 Input data for Neural  power model 
 

                 

Transition data between two input patterns  Power Dissipation(nw) 

0.083, 0.917, 0, 0, 0.5714, 0.4286, 0, 0          0.0218746 

0,0.083 ,0.194, 0.722, 0.4286, 0.1428, 0.2857, 0.1428        0.0195852 

0.166, 0.083, 0.27, 0.472 ,0.2857 ,0.4286, 0 ,0.2857          0.0198687 

0.25,0.194,0.138 ,0.416,0.1428,0.1428 ,0.1428, 0.5714    0.0181678 

0.3889 ,0 ,0.6111 ,0, 0.2857, 0 ,0.7143 ,0                    0.0253467 

0.3055 ,0.6944, 0, 0, 0.286 ,0.714 ,0, 0                      0.0285293 

 0.111,0.194,0.278 ,0.417 ,0.143, 0.143 ,0.286, 0.428        0.0191845 

0.194 ,0.194, 0.056, 0.556, 0.428, 0, 0.286, 0.286            0.0107953 

0.111,0.139, 0.222, 0.528 ,0.286, 0.428, 0.143 ,0.143        0.0206794 

0.194,0.139, 0.194, 0.472 ,0.143,0.286 ,0.143, 0.428        0.0207974 

0.3889 ,0 ,0.6111 ,0 ,0.2857 ,0 ,0.7143 ,0                    0.0261919 

0.528 ,0.472, 0, 0, 0.286, 0.714, 0, 0    0.0118949 

0.194, 0.333 ,0.167 ,0.306 ,0.143,0.143, 0.286 ,0.428        0.0195477 

0.278 ,0.111, 0.111, 0.5 ,0.143 ,0.286 ,0, 0.571         0.0094198 

0.139 ,0.25, 0.194 ,0.417 ,0, 0.1428 ,0.4286, 0.4286          0.0276176 

 

 

                          Table 6-1Data pattern for power modeling approach 

 

The above table 6-1 shows the input patterns which we have used for the training of our neural 

network power model. 100 numbers of patterns have been taken for the training purpose. A c++ 

code has been written to find  the data pattern for power modeling approach. 
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6.3 Power comparison  

Patterns Steepest-Descent Levenberg-Marquardt Power Compiler 

Pattern-1 0.0231747 0.0222549 0.020974 

Pattern-2 0.02962 0.02662 0.0195852 

Pattern-3 0.0224852 0.024875 0.0208771 

Pattern-4 0.0224259 0.0195867 0.0198687 

Pattern-5 0.020683 0.020034 0.0181678 

 

                                                   Table 6-2 Power comparison 

 

The above table 6-2 shows the power comparison having the unit of nano Watt, between 

different neural network backpropagation training algorithms and power compiler. These 

algorithms are tested for 5 different patterns. It is observed that Levenberg-Marquardt training 

algorithm gives better performance compared to steepest-descent training algorithm. The 

comparison result shows that small amount of error is occurred, when it is compared with power 

compiler. This error occurs due to small number of patterns for training. So to get less error we 

should take more number of samples [35].  
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                                                                                                               Chapter 7 

 Summary, Conclusions and Future Work  

7.1 Summary  

     Power Estimation for different circuits from RTL level to Gate level using different power 

estimation tools has been performed. The methodology involving the usage of these tools at 

different levels of abstraction has been shown with examples. Scripts have been developed for 

each of these levels to automate the flow for each of the digital circuit involved.. However, these 

results are still very impressive on the reduction of the power model complexity and the 

feasibility for a wide range of input signal distribution. The lower complexity can also reduce the 

characterization time and estimation time sufficiently. We will try to improve this model in the 

future such that the maximum error can be further reduced. 

7.2 Conclusions 

     It can be concluded from these power estimations at different levels of abstraction how 

inaccurate values at RTL are compared to Transistor level. The power results obtained using 

Power Estimator (P1), Power Compiler using RTL Switching Activity (P2), Power Compiler 

using Gate-Level Switching Activity (P3) used power technology file from TSMC18.  

    In this thesis, we propose a novel power modeling approach for complex digital circuits, 

which uses neural networks to learn the power characteristics during simulation. Our neural 

power model has very low complexity such that this power model can be used for complex 

circuits. Because of the structures of neural networks, the neural power models can still have 

high accuracy with simple architectures because they can automatically consider the non-linear 

power distributions. Unlike the power characterization process in traditional approaches, our 

characterization process is very simple and straightforward. More importantly, using the neural 

power model for power estimation does not require any detailed circuit information of the 

circuits, which is very suitable for IP protection. In this work, we only test our neural power 

model on ISCAS’85 benchmark circuits, which are all combinational circuits. The experimental 

results have shown that the estimations are accurate for wide input range. We may also try to 

extend our neural power model to the power estimation of sequential circuits such that this 

approach can be used for any kinds of complex circuits. 
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    How many samples are needed for a good training while building the neural power model for 

each circuit? This is also an open problem for neural networks. According to the related study 

[35], it suggested to determine the number of samples according to Equation 7.1 , in which P is 

the number of samples, |W| is the number of weights to be trained and a is the expected 

accuracy. In this work, our target is set as a ≥ 95%. Therefore, we have to generate the training 

set with size P >> 20W . 

                                      P>>                               7.1 

7.3 Future Work 

   In this dissertation, there are still some improvements could be done in the future. In the power 

modeling for accurate result, we need to estimate the power at transistor level using 

Synopsys(Nanosim).For more accurate result we will consider number of samples to be 

increased according to the equation  7.1.Then we will compare this power modeling approach to 

other benchmark circuits. 
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