1,701 research outputs found

    Review of Automated Design and Optimization of MEMS

    Get PDF

    Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization

    Get PDF
    This paper presents results of a systematic investigation to characterize the sealing of micromachined cavities using chemical vapor deposition (CVD) methods. We have designed and fabricated a large number and variety of surface-micromachined test structures with different etch-channel dimensions. Each cavity is then subjected to a number of sequential CVD deposition steps with incremental thickness until the cavity is successfully sealed. At etch deposition interval, the sealing status of every test structure is experimentally obtained and the percentage of structures that are sealed is recorded. Four CVD sealing materials have been incorporated in our studies: LPCVD silicon nitride, LPCVD polycrystalline silicon (polysilicon), LPCVD phosphosilicate glass (PSG), and PECVD silicon nitride. The minimum CVD deposition thickness that is required to successfully seal a microstructure is obtained for the first time. For a typical Type-1 test structure that has eight etch channels-each 10 ÎŒm long, 4 ÎŒm wide, and 0.42 ÎŒm tall-the minimum required thickness (normalized with respect to the height of etch channels) is 0.67 for LPCVD silicon nitride, 0.62 for LPCVD polysilicon, 4.5 for LPCVD PSG, and 5.2 for PECVD nitride. LPCVD silicon nitride and polysilicon are the most efficient sealing materials. Sealing results with respect to etch-channel dimensions (length and width) are evaluated (within the range of current design). When LPCVD silicon nitride is used as the sealing material, test structures with the longest (38 ÎŒm) and widest (16 ÎŒm) etch channels exhibit the highest probability of sealing. Cavities with a reduced number of etch channels seal more easily. For LPCVD PSG sealing, on the other hand, the sealing performance improves with decreasing width but is not affected by length of etch channels

    Selectively Tuning a Buckled Si/SiO\u3csub\u3e2\u3c/sub\u3e Membrane MEMS through Joule Heating Actuation and Mechanical Restriction

    Get PDF
    This research followed previous work and attempted to modify the spring in two ways. First, a Ti/Au meander resistor was deposited atop the membrane in an effort to actuate the membrane and change the spring constant. Secondly, a series of overhanging cantilevers were attached to the bulk substrate surrounding the membrane in an effort to constrain the membrane buckling deflection to the negative stiffness region. Membrane buckling was investigated through Finite Element analysis (FEA) and analytical equations. Deflections were measured using an interferometric microscope (IFM) and force/deflection measurements were captured using a unique measurement scheme. The results concluded that by introducing a thermal stress, the membrane could be actuated with a corresponding 3x increase in spring constant. Additionally, the overhanging beams restricted the membrane deflection by up to 30%, but, because of a lack in beam stiffness, failed to restrict the membrane to the negative stiffness region. This research laid the ground work for future work in this area

    Selective Resistive Sintering: A Novel Additive Manufacturing Process

    Get PDF
    Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly reduced overhead cost, and increased printing speed scalability. The objective of this thesis is to obtain a proof of concept of this new method. To achieve this objective, we first designed a microheater to operate at temperatures of 600⁰C, with a thermal response time of ~1 ms, and even heat distribution. A packaging device with electrical interconnects was also designed, fabricated, and assembled with necessary electrical components. Finally, a z-stage was designed to control the airgap between the printhead and the powder particles. The whole system was tested using two different scenarios. Simulations were also conducted to determine the feasibility of the printing method. We were able to successfully operate the fabricated microheater array at a power consumption of 1.1W providing significant power savings over lasers. Experimental proof of concept was unsuccessful due to the lack of precise control of the experimental conditions, but simulation results suggested that selectivity sintering nanoparticles with the microheater array was a viable process. Based on our current results that the microheater can be operated at ~1ms timescale to sinter powder particles, it is believed this new process can potentially be significantly quicker than selective laser sintering by increasing the number of microheater elements in the array. The low cost of a microheater array printhead will also make this new process affordable. This thesis presented a pioneering study on the feasibility of the proposed SRS process, which could potentially enable the development of a much more affordable and efficient alternative to SLS

    A MEMS non-planar ultrasonic microarray.

    Get PDF

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using Πg vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger

    Cantilever beam microactuators with electrothermal and electrostatic drive

    Get PDF
    Microfabrication provides a powerful tool for batch processing and miniaturization of mechanical systems into dimensional domain not accessible easily by conventional machining. CMOS IC process compatible design is definitely a big plus because of tremendous know-how in IC technologies, commercially available standard IC processes for a reasonable price, and future integration of microma-chined mechanical systems and integrated circuits. Magnetically, electrostatically and thermally driven microactuators have been reported previously. These actuators have applications in many fields from optics to robotics and biomedical engineering. At NJIT cleanroom, mono or multimorph microactuators have been fabricated using CMOS compatible process. In design and fabrication of these microactuators, internal stress due to thermal expansion coefficient mismatch and residual stress have been considered, and the microactuators are driven with electro-thermal power combined with electrostatical excitation. They can provide large force, and in- or out-of-plane actuation. In this work, an analytical model is proposed to describe the thermal actuation of in-plane (inchworm) actuators. Stress gradient throughout the thickness of monomorph layers is modeled as linearly temperature dependent Δσ. The nonlinear behaviour of out-of-plane actuators under electrothermal and electrostatic excitations is investigated. The analytical results are compared with the numerical results based on Finite Element Analysis. ANSYS, a general purpose FEM package, and IntelliCAD, a FEA CAD tool specifically designed for MEMS have been used extensively. The experimental results accompany each analytical and numerical work. Micromechanical world is three dimensional and 2D world of IC processes sets a limit to it. A new micromachining technology, reshaping, has been introduced to realize 3D structures and actuators. This new 3D fabrication technology makes use of the advantages of IC fabrication technologies and combines them with the third dimension of the mechanical world. Polycrystalline silicon microactuators have been reshaped by Joule heating. The first systematic investigation of reshaping has been presented. A micromirror utilizing two reshaped actuators have been designed, fabricated and characterized

    Pressure Losses Experienced By Liquid Flow Through Pdms Microchannels With Abrupt Area Changes

    Get PDF
    Given the surmounting disagreement amongst researchers in the area of liquid flow behavior at the microscale for the past thirty years, this work presents a fundamental approach to analyzing the pressure losses experienced by the laminar flow of water (Re = 7 to Re = 130) through both rectangular straight duct microchannels (of widths ranging from 50 to 130 micrometers), and microchannels with sudden expansions and contractions (with area ratios ranging from 0.4 to 1.0) all with a constant depth of 104 micrometers. The simplified Bernoulli equations for uniform, steady, incompressible, internal duct flow were used to compare flow through these microchannels to macroscale theory predictions for pressure drop. One major advantage of the channel design (and subsequent experimental set-up) was that pressure measurements could be taken locally, directly before and after the test section of interest, instead of globally which requires extensive corrections to the pressure measurements before an accurate result can be obtained. Bernoulli\u27s equation adjusted for major head loses (using Darcy friction factors) and minor head losses (using appropriate K values) was found to predict the flow behavior within the calculated theoretical uncertainty (~12%) for all 150+ microchannels tested, except for sizes that pushed the aspect ratio limits of the manufacturing process capabilities (microchannels fabricated via soft lithography using PDMS). The analysis produced conclusive evidence that liquid flow through microchannels at these relative channel sizes and Reynolds numbers follow macroscale predictions without experiencing any of the reported anomalies expressed in other microfluidics research. This work also perfected the delicate technique required to pierce through the PDMS material and into the microchannel inlets, exit and pressure ports without damaging the microchannel. Finally, two verified explanations for why prior researchers have obtained poor agreement between macroscale theory predictions and tests at the microscale were due to the presence of bubbles in the microchannel test section (producing higher than expected pressure drops), and the occurrence of localized separation between the PDMS slabs and thus, the microchannel itself (producing lower than expected pressure drops)

    Modeling and simulation of surface profile forming process of microlenses and their application in optical interconnection devices

    Get PDF
    Free space micro-optical systems require to integrate microlens array, micromirrors, optical waveguides, beam splitter, etc. on a single substrate. Out-of-plane microlens array fabricated by direct lithography provides pre-alignment during mask fabrication stage and has the advantage of mass manufacturing at low cost. However, this technology requires precise control of the surface profile of microlenses, which is a major technical challenge. The quality control of the surface profile of microlenses limits their applications. In this dissertation, the surface forming process of the out-of-plane microlenses in UV-lithography fabrication was modeled and simulated using a simplified cellular automata model. The microlens array was integrated with micromirrors on a single silicon substrate to form a free space interconnect system. The main contributions of this dissertation include: (1) The influences of different processing parameters on the final surface profiles of microlenses were thoroughly analyzed and discussed. A photoresist etching model based on a simplified cellular automata algorithm was established and tested. The forming process and mechanism of the microlens surface profile were explained based on the established model. (2) Microlens arrays with different parameters were designed, fabricated, and tested. The experiment results were compared with the simulation results. The possible causes for the deviation were discussed. (3) A microlens array based beam relay for optical interconnection application was proposed. A sequence of identical microlens array was fabricated on a single silicon substrate simultaneously and its optical performance was tested. A fast replication method for the microlens optical interconnects using PDMS and UV curable polymer was developed. A selective deposition method of micro-optical elements using PDMS ‘lift-off’ technique was realized. No shadow mask was needed during deposition process. With the continuous advances in the integration of micro-optical systems, direct lithography of micro-optical elements will be a potential technology to provide both precision alignment and low cost in manufacturing process. Microlenses and microlens array with precisely controlled surface profiles will be an important part in the micro-optical system
    • 

    corecore