57 research outputs found

    Different antenna designs for non-contact vital signs measurement: a review

    Get PDF
    Cardiopulmonary activity measured through contactless means is a hot topic within the research community. The Doppler radar is an approach often used to acquire vital signs in real time and to further estimate their rates, in a remote way and without requiring direct contact with subjects. Many solutions have been proposed in the literature, using different transceivers and operation modes. Nonetheless, all different strategies have a common goal: enhance the system efficiency, reduce the manufacturing cost, and minimize the overall size of the system. Antennas are a key component for these systems since they can influence the radar robustness directly. Therefore, antennas must be designed with care, facing several trade-offs to meet all the system requirements. In this sense, it is necessary to define the proper guidelines that need to be followed in the antenna design. In this manuscript, an extensive review on different antenna designs for non-contact vital signals measurements is presented. It is intended to point out and quantify which parameters are crucial for the optimal radar operation, for non-contact vital signs' acquisition.info:eu-repo/semantics/publishedVersio

    Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review

    Get PDF
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    High-Isolation Antenna Technique for CubeSat-Borne, Continuous-Waveform Radar

    Get PDF
    Radar is important in target tracking, imaging, and weather prediction applications. As technology is increasingly miniaturized, there is a push for smaller radar. Research and exploration in outer space also benefit from small, low-power technologies. The NASA Jet Propulsion Laboratory’s RainCube was the first successful CubeSat-borne radar. A CubeSat is a type of small satellite that conforms to specific size and weight standards. Radar technology benefits from additional research on how to further miniaturize radar payloads. Integrating the transmit and receive antennas on the solar panels removes the need for antenna-deployment mechanisms, preserving space on the CubeSat. This thesis also demonstrates that implementing a radar that transmits and receives continuously and simultaneously (continuous-waveform) on the CubeSat improves the sensitivity, size, weight, and power consumption of the radar. Continuous-waveform radar suffers from self-interference because the transmitter and receiver are on at the same time. To overcome the self-interference, the transmitter and receiver must be isolated. Physically separating the antennas helps provide the isolation required for continuous-waveform radar, but is limited by the small size of the CubeSat. Isolation can be further increased by designing the antennas with opposite circular polarizations. The interfering signal traveling directly between the antennas has a different polarization than the receive antenna is designed for, so the interference is suppressed. The signal that hits a target reflects with the opposite circular polarization, so when it arrives at the receiver it has the proper polarization, so it is not suppressed. Combining physical-separation and different-polarization isolation enables a novel solution to implement a continuous-waveform radar on a small platform like a CubeSat

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar at Millimeter-Wave Frequencies

    Get PDF
    Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 GHz for this application. Vital sign signal is first reconstructed with Arctangent Demodulation (AD) method using phase change’s information collected by the radar due to chest wall displacement from respiration and heartbeat activities. Since the heartbeat signals can be corrupted and concealed by the third/fourth harmonics of the respiratory signals as well as random body motion (RBM) from the SUT, we have developed an automatic Heartbeat Template (HBT) extraction method based on Constellation Diagrams of the received signals. The extraction method will automatically spot and extract signals’ portions that carry good amount of heartbeat signals which are not corrupted by the RBM. The extracted HBT is then used as an adapted wavelet for Continuous Wavelet Transform (CWT) to reduce interferences from respiratory harmonics and RBM, as well as magnify the heartbeat signals. As the nature of RBM is unpredictable, the extracted HBT may not completely cancel the interferences from RBM. Therefore, to provide better HR detection’s accuracy, we have also developed a spectral-based HR selection method to gather frequency spectra of heartbeat signals from different MIMO channels. Based on this gathered spectral information, we can determine an accurate HR even if the heartbeat signals are significantly concealed by the RBM. To further improve the detection’s accuracy of RR and HR, two deep learning (DL) frameworks are also investigated. First, a Convolutional Neural Network (CNN) has been proposed to optimally select clean MIMO channels and eliminate MIMO channels with low SNR of heartbeat signals. After that, a Multi-layer Perceptron (MLP) neural network (NN) is utilized to reconstruct the heartbeat signals that will be used to assess and select the final HR with high confidence

    Microstrip antenna design with improved fabrication tolerance for remote vital signs monitoring and WLAN/WPAN applications at mm-wave and THz frequencies

    Get PDF
    A novel approach is introduced to design microstrip patch antennas (MPAs) with improved fabrication tolerance for highly demanded Millimetre-wave (mm-wave) (30-300GHz) and Terahertz (THz) (0.3-3THz) frequency applications. The presented MP A designing method overcomes the challenges which exist with the fabrication and implementation of the conventional MP A designs at mm-wave and THz frequencies. The following research contributions have been added to the state-ofthe- art work: (i) designing of improved size MPAs at 60GHz, 1 OOGHz, 635GHz and 835GHz to prove the designing concept, (ii) detail measurements and analysis of Remote Vital Signs Monitoring (RVSM) with various sizes of the proposed MPA arrays at 60GHz for high detection accuracy and sensitivity, (iii) designing and tes~ing of MP As for 60GHz wireless local and personal area networks (WLAN/WP AN) in point-to-pint, point-to-multipoint and dual-band applications, (iv) implementation and testing of particular Partially Reflective Surface, Dielectric Lens and Defected Ground Structures on the proposed MP A designs with novel configurations at 60GHz for bandwidth and gain enhancement, and (v~ a comprehensive experimental study on the performance of large array designs with the proposed MP A elements for mm-wave applications. The mentioned research work is explained in the coming chapters in details. Moreover, all mentioned work has already been published

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications
    • …
    corecore