1,949 research outputs found

    On the characterization of totally nonpositive matrices

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s40324-016-0073-1[EN] A nonpositive real matrix A=(aij)1i,jnA= (a_{ij})_{1 \leq i, j \leq n} is said to be totally nonpositive (negative) if all its minors are nonpositive (negative) and it is abbreviated as t.n.p. (t.n.). In this work a bidiagonal factorization of a nonsingular t.n.p. matrix AA is computed and it is stored in an matrix represented by BD(t.n.p.)(A)\mathcal{BD}_{(t.n.p.)}(A) when a11<0a_{11}< 0 (or BD(zero)(A)\mathcal{BD}_{(zero)}(A) when a11=0a_{11}= 0). As a converse result, an efficient algorithm to know if an matrix BD(t.n.p.)(A)\mathcal{BD}_{(t.n.p.)}(A) (BD(zero)(A)\mathcal{BD}_{(zero)}(A)) is the bidiagonal factorization of a t.n.p. matrix with a11<0a_{11}<0 (a11=0a_{11}= 0) is given. Similar results are obtained for t.n. matrices using the matrix BD(t.n.)(A)\mathcal{BD}_{(t.n.)}(A), and these characterizations are extended to rectangular t.n.p. (t.n.) matrices. Finally, the bidiagonal factorization of the inverse of a nonsingular t.n.p. (t.n.) matrix AA is directly obtained from BD(t.n.p.)(A)\mathcal{BD}_{(t.n.p.)}(A) (BD(t.n.)(A)\mathcal{BD}_{(t.n.)}(A)).This research was supported by the Spanish DGI grant MTM2013-43678-P and by the Chilean program FONDECYT 1100029Cantó Colomina, R.; Pelaez, MJ.; Urbano Salvador, AM. (2016). On the characterization of totally nonpositive matrices. SeMA Journal. 73(4):347-368. doi:10.1007/s40324-016-0073-1S347368734Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)Alonso, P., Peña, J.M., Serrano, M.L.: Almost strictly totally negative matrices: an algorithmic characterization. J. Comput. Appl. Math. 275, 238–246 (2015)Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997)Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: LDULDU L D U -factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30(2), 777–782 (2008)Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009)Cantó, R., Ricarte, B., Urbano, A.M.: Characterizations of rectangular totally and strictly totally positive matrices. Linear Algebra Appl. 432, 2623–2633 (2010)Cantó, R., Ricarte, B., Urbano, A.M.: Quasi- LDULDU L D U factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013)Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi- LDULDU L D U form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014)Fallat, S.M., Van Den Driessche, P.: On matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000)Fallat, S.M.: Bidiagonal factorizations of totally nonnegative matrices. Am. Math. Mon. 108(8), 697–712 (2001)Fallat, S.M., Johnson, C.R.: Totally Nonnegative Matrices. Princeton University Press, New Jersey (2011)Gasca, M., Micchelli, C.A.: Total positivity and applications. Math. Appl. 359, Kluwer Academic Publishers, Dordrecht (1996)Gasca, M., Peña, J.M.: Total positivity, QRQR Q R factorization and Neville elimination. SIAM J. Matrix Anal. Appl. 4, 1132–1140 (1993)Gasca, M., Peña, J.M.: A test for strict sign-regularity. Linear Algebra Appl. 197(198), 133–142 (1994)Gasca, M., Peña, J.M.: A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33–53 (1994)Gassó, M., Torregrosa, J.R.: A totally positive factorization of rectangular matrices by the Neville elimination. SIAM J. Matrix Anal. Appl. 25, 86–994 (2004)Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010)Huang, R., Chu, D.: Relative perturbation analysis for eigenvalues and singular values of totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 36(2), 476–495 (2015)Karlin, S.: Total Nonpositivity. Stanford University Press, Stanford (1968)Koev, P.: Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27(1), 1–23 (2005)Koev, P.: Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29(3), 731–751 (2007)Parthasarathy, T.: NN N -matrices. Linear Algebra Appl. 139, 89–102 (1990)Peña, J.M.: Test for recognition of total positivity. SeMA J. 62(1), 61–73 (2013)Pinkus, A.: Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181. Cambridge University Press (2009)Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Toward accurate polynomial evaluation in rounded arithmetic

    Get PDF
    Given a multivariate real (or complex) polynomial pp and a domain D\cal D, we would like to decide whether an algorithm exists to evaluate p(x)p(x) accurately for all xDx \in {\cal D} using rounded real (or complex) arithmetic. Here ``accurately'' means with relative error less than 1, i.e., with some correct leading digits. The answer depends on the model of rounded arithmetic: We assume that for any arithmetic operator op(a,b)op(a,b), for example a+ba+b or aba \cdot b, its computed value is op(a,b)(1+δ)op(a,b) \cdot (1 + \delta), where δ| \delta | is bounded by some constant ϵ\epsilon where 0<ϵ10 < \epsilon \ll 1, but δ\delta is otherwise arbitrary. This model is the traditional one used to analyze the accuracy of floating point algorithms.Our ultimate goal is to establish a decision procedure that, for any pp and D\cal D, either exhibits an accurate algorithm or proves that none exists. In contrast to the case where numbers are stored and manipulated as finite bit strings (e.g., as floating point numbers or rational numbers) we show that some polynomials pp are impossible to evaluate accurately. The existence of an accurate algorithm will depend not just on pp and D\cal D, but on which arithmetic operators and which constants are are available and whether branching is permitted. Toward this goal, we present necessary conditions on pp for it to be accurately evaluable on open real or complex domains D{\cal D}. We also give sufficient conditions, and describe progress toward a complete decision procedure. We do present a complete decision procedure for homogeneous polynomials pp with integer coefficients, {\cal D} = \C^n, and using only the arithmetic operations ++, - and \cdot.Comment: 54 pages, 6 figures; refereed version; to appear in Foundations of Computational Mathematics: Santander 2005, Cambridge University Press, March 200

    Numerical methods and accurate computations with structured matrices

    Get PDF
    Esta tesis doctoral es un compendio de 11 artículos científicos. El tema principal de la tesis es el Álgebra Lineal Numérica, con énfasis en dos clases de matrices estructuradas: las matrices totalmente positivas y las M-matrices. Para algunas subclases de estas matrices, es posible desarrollar algoritmos para resolver numéricamente varios de los problemas más comunes en álgebra lineal con alta precisión relativa independientemente del número de condición de la matriz. La clave para lograr cálculos precisos está en el uso de una parametrización diferente que represente la estructura especial de la matriz y en el desarrollo de algoritmos adaptados que trabajen con dicha parametrización.Las matrices totalmente positivas no singulares admiten una factorización única como producto de matrices bidiagonales no negativas llamada factorización bidiagonal. Si conocemos esta representación con alta precisión relativa, se puede utilizar para resolver ciertos sistemas de ecuaciones y para calcular la inversa, los valores propios y los valores singulares con alta precisión relativa. Nuestra contribución en este campo ha sido la obtención de la factorización bidiagonal con alta precisión relativa de matrices de colocación de polinomios de Laguerre generalizados, de matrices de colocación de polinomios de Bessel, de clases de matrices que generalizan la matriz de Pascal y de matrices de q-enteros. También hemos estudiado la extensión de varias propiedades óptimas de las matrices de colocación de B-bases normalizadas (que en particular son matrices totalmente positivas). En particular, hemos demostrado propiedades de optimalidad de las matrices de colocación del producto tensorial de B-bases normalizadas.Si conocemos las sumas de filas y las entradas extradiagonales de una M-matriz no singular diagonal dominante con alta precisión relativa, entonces podemos calcular su inversa, determinante y valores singulares también con alta precisión relativa. Hemos buscado nuevos métodos para lograr cálculos precisos con nuevas clases de M-matrices o matrices relacionadas. Hemos propuesto una parametrización para las Z-matrices de Nekrasov con entradas diagonales positivas que puede utilizarse para calcular su inversa y determinante con alta precisión relativa. También hemos estudiado la clase denominada B-matrices, que está muy relacionada con las M-matrices. Hemos obtenido un método para calcular los determinantes de esta clase con alta precisión relativa y otro para calcular los determinantes de las matrices de B-Nekrasov también con alta precisión relativa. Basándonos en la utilización de dos matrices de escalado que hemos introducido, hemos desarrollado nuevas cotas para la norma infinito de la inversa de una matriz de Nekrasov y para el error del problema de complementariedad lineal cuando su matriz asociada es de Nekrasov. También hemos obtenido nuevas cotas para la norma infinito de las inversas de Bpi-matrices, una clase que extiende a las B-matrices, y las hemos utilizado para obtener nuevas cotas del error para el problema de complementariedad lineal cuya matriz asociada es una Bpi-matriz. Algunas clases de matrices han sido generalizadas al caso de mayor dimensión para desarrollar una teoría para tensores extendiendo la conocida para el caso matricial. Por ejemplo, la definición de la clase de las B-matrices ha sido extendida a la clase de B-tensores, dando lugar a un criterio sencillo para identificar una nueva clase de tensores definidos positivos. Hemos propuesto una extensión de la clase de las Bpi-matrices a Bpi-tensores, definiendo así una nueva clase de tensores definidos positivos que puede ser identificada en base a un criterio sencillo basado solo en cálculos que involucran a las entradas del tensor. Finalmente, hemos caracterizado los casos en los que las matrices de Toeplitz tridiagonales son P-matrices y hemos estudiado cuándo pueden ser representadas en términos de una factorización bidiagonal que sirve como parametrización para lograr cálculos con alta precisión relativa.<br /

    High relative accuracy through Newton bases

    Get PDF
    Bidiagonal factorizations for the change of basis matrices between monomial and Newton polynomial bases are obtained. The total positivity of these matrices is characterized in terms of the sign of the nodes of the Newton bases. It is shown that computations to high relative accuracy for algebraic problems related to these matrices can be achieved whenever the nodes have the same sign. Stirling matrices can be considered particular cases of these matrices, and then computations to high relative accuracy for collocation and Wronskian matrices of Touchard polynomial bases can be obtained. The performed numerical experimentation confirms the accurate solutions obtained when solving algebraic problems using the proposed factorizations, for instance, for the calculation of their eigenvalues, singular values, and inverses, as well as the solution of some linear systems of equations associated with these matrices

    Bidiagonal decompositions of Vandermonde-type matrices of arbitrary rank

    Get PDF
    We present a method to derive new explicit expressions for bidiagonal decompositions of Vandermonde and related matrices such as the (q-, h-) Bernstein-Vandermonde ones, among others. These results generalize the existing expressions for nonsingular matrices to matrices of arbitrary rank. For totally nonnegative matrices of the above classes, the new decompositions can be computed efficiently and to high relative accuracy componentwise in floating point arithmetic. In turn, matrix computations (e.g., eigenvalue computation) can also be performed efficiently and to high relative accuracy

    Improved bounds for the number of forests and acyclic orientations in the square lattice

    Get PDF
    In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice LnL_n. The authors gave the following bounds for the asymptotics of f(n)f(n), the number of forests of LnL_n, and α(n)\alpha(n), the number of acyclic orientations of LnL_n: 3.209912limnf(n)1/n23.841613.209912 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.84161 and 22/7limnα(n)3.7092522/7 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.70925. In this paper we improve these bounds as follows: 3.64497limnf(n)1/n23.741013.64497 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.74101 and 3.41358limnα(n)3.554493.41358 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.55449. We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices
    corecore