8 research outputs found

    MINIMIZATION OF DEFLECTION ERROR IN FIVE AXIS MILLING OF IMPELLER BLADES

    Get PDF
    The 5-axis CNC machine tools are used for manufacturing free form surfaces of sophisticated parts such as turbine blades, airfoils, impellers, and aircraft components. The virtual machining systems can be used in order to analyze and modify the 5-axis CNC machine tools operations. Cutting forces and cutting temperatures induce deflection errors in thin-walled structures such as impeller blades through machining operations. Thin-walled impeller blades' flexibility can result in machining errors such as overcutting or undercutting. So, decreasing the deflection error during machining operations of impeller blades can achieve the desired accuracy in produced parts. Optimized machining parameters can be obtained to minimize the deflection of machined impeller blades. In terms of precision and efficiency enhancement in component production processes, a virtual machining system is developed to predict and minimize deflection errors of 5-axis milling operations of impeller blades. The deflection error in machined impeller blades is calculated by using finite element analysis. The optimization methodology based on the genetic algorithm is applied to minimize the deflection error of impeller blades in machining operations. To validate the integrated virtual machining system in the study, the impeller is milled by using a 5-axis CNC machine tool. The CMM machine is used in order to measure and analyze deflection error in the machined impeller blades. As a result, by using the developed virtual machining system in the study, accuracy and efficiency in 5-axis milling operations of impellers can be increased

    Improving Cutting Tool Selection in Milling Processes Using Early Cost-Base Valuation

    Get PDF
    Selecting cutting tools for a milling process is crucial to determine the optimal cut. Minimizing milling process-cost is one of the most common optimization objectives, and thus it determines the best cutting tool to be used. However, the chosen cutting tool might not bring the optimal result based on the tool’s cost. Therefore, a valuation method based on the process and cutting-tool costs results were developed and analyzed to improve the cutting tool selection process.  A specific rough-milling operation was entered to the quick cost-estimation and optimization application, and several cutting-tools were compared based on the process-cost by each tool. Using a weight-based analysis on both process-cost and tool-cost changes the cutting-tool options' initial rankings. This study showed that using different weight ratios altered the order of the most suitable cutting tools. Another finding revealed in this study is how deflection constraint affected the rank of cutting tool selection. Thus, knowing the proper limit of deflection is crucial to validate the cutting tool selection outcome

    Two-sided manual machining method for three-axis CNC milling machine for small and medium-sized enterprises

    Get PDF
    Small and medium-sized enterprises (SMEs) have a big role in Indonesian economic development. The government has set four strategies in an effort to boost Indonesian economic development. One of the four strategies mentions the SMEs, and the other mentions the use of 4.0 technology. Working capital has been the main issue need to be considered in the SMEs. Thus, the affordability must be considered in the use of 4.0 technology in SMEs. One of the 4.0 technologies that are possible to be used in the SMEs is a three-axis milling machine. One of the limitations of the machine is that it cannot do the back-side machining process. The paper examines the possibility of manual back-side machining on the three-axis milling machine without adding a rotary axis. Four methods were conducted by adding two-point markings on the x-axis, two-point markings on the y-axis, four-point markings on the x- and y-axis, and four-point markings on the x- and y-axis plus a series of offsetting processes. After conducting several qualitative observations and measurements on the mismatched position of the front and the back machining, and also analyzing the problems that emerged during the processes of the four different methods, it is concluded that adding four points markings on the x- and y-axis plus doing a series of offsetting processes is the best method to have two-sided manual machining with three-axis computer numerical control (CNC) milling machine

    МОДЕЛЬ РАСЧЕТА ТЕКУЩИХ РАЗМЕРОВ ОБРАБАТЫВАЕМОЙ ПОВЕРХНОСТИ ПРИ ШЛИФОВАНИИ НЕКРУГЛОЙ ЗАГОТОВКИ В ЦИКЛЕ КРУГЛОГО ВРЕЗНОГО ШЛИФОВАНИЯ С ЧПУ

    Get PDF
    At the moment, among a large number of different CAM-systems, there is no digital tool of control of designed control programs for CNC machines, which allows checking the possibility of ensuring the accuracy and roughness of the processed surface in the production of a batch of parts. As a result, CP designed with the help of CAD/CAM-systems require a procedure for their verification in real production conditions by processing a number of test parts.Despite all the accuracy of the positioning systems, modern CNC grinding machines, which allow performing processing according to the specified cycles of the cutting modes, have elastic deformations of the technological system. They have a significant impact on the fluctuations of the value of the removed allowance and on the formation of sizes errors in the production of a batch of parts. Processing of a batch of parts is performed under variable technological conditions. Approximately 90% of the processing error is due to the fluctuation of the part radius caused by the initial radial runout of the workpiece and the allowance fluctuation. This makes it necessary to establish a functional interrelation between the fluctuations of the sizes of the workpiece processed surface with the input, output and control parameters of the cycle, considering the allowance fluctuation and the initial radial runout of the workpiece throughout the entire processing process.This article describes a model for calculating the current dimensions of the processed surface when grinding a non-circular workpiece in a circular plunge grinding cycle with CNC. The model allows calculating changes in the actual radial feed on each radius of the processed surface on each revolution of the workpiece during the entire grinding cycle, considering the initial radial runout of the workpiece. This makes it possible to calculate the changes in the current sizes of the processed surface throughout the entire cycle, considering the “hereditary shape” of the workpiece. This model can be used not only to predict the accuracy of the diametrical dimensions and the deviation and location of the surface shape, but also to optimize the cycles of circular plunge grinding.На данный момент среди большого количества различных CAM-систем отсутствует цифровой инструмент контроля проектируемых управляющих программ для станков с ЧПУ, позволяющий проверить возможность обеспечения точности и шероховатости обрабатываемой поверхности при изготовлении партии деталей. В результате проектируемые при помощи данных CAD/CAM-систем управляющие программы требуют проведения процедуры проверки в реальных производственных условиях при помощи обработки ряда пробных деталей.Не смотря на всю точность систем позирования современные шлифовальные станки с ЧПУ, позволяющие вести обработку по заданным циклам режимов резания, имеют упругие деформации технологической системы. Они оказывают значительное влияние на колебания величины снимаемого припуска и на образование погрешностей размеров при изготовлении партии деталей. Обработка партии деталей производится в переменных технологически условиях; примерно 90 % погрешности обработки объясняется колебанием радиуса детали, вызванным исходным радиальным биением заготовки и колебанием припуска. Это и обуславливает необходимость установления функциональной взаимосвязи между колебанием размеров обрабатываемой поверхности заготовки с выходными, входными и управляющими параметрами цикла с учетом колебания припуска и исходного радиального биения заготовки на протяжении всего процесса обработки.В данной статье представлено описание модели расчета текущих размеров обрабатываемой поверхности при шлифовании некруглой заготовки в цикле круглого врезного шлифования с ЧПУ. Модель позволяет рассчитывать изменения фактической радиальной подачи на каждом радиусе обрабатываемой поверхности на каждом обороте заготовки в течение всего цикла шлифования с учетом исходного радиального биения заготовки. Это дает возможность рассчитать изменения текущих размеров обрабатываемой поверхности на протяжении всего цикла, учитывая «наследственную форму» заготовки. Данная модель может применяться не только для прогнозирования точности диаметральных размеров и отклонения и расположения формы поверхностной, но и для оптимизации циклов круглого врезного шлифования

    Radio Frequency Identification (RFID) based wireless manufacturing systems, a review

    Get PDF
    Radio frequency identification (RFID) is one of the most promising technological innovations in order to track and trace products as well as material flow in manufacturing systems. High Frequency (HF) and Ultra High Frequency (UHF) RFID systems can track a wide range of products in the part production process via radio waves with level of accuracy and reliability.   As a result, quality and transparency of data across the supply chain can be accurately obtained in order to decrease time and cost of part production. Also, process planning and part production scheduling can be modified using the advanced RFID systems in part manufacturing process. Moreover, to decrease the cost of produced parts, material handling systems in the advanced assembly lines can be analyzed and developed by using the RFID. Smart storage systems can increase efficiency in part production systems by providing accurate information from the stored raw materials and products for the production planning systems. To increase efficiency of energy consumption in production processes, energy management systems can be developed by using the RFID-sensor networks. Therefore, smart factories and intelligent manufacturing systems as industry 4.0 can be introduced by using the developed RFID systems in order to provide new generation of part production systems. In this paper, a review of RFID based wireless manufacturing systems is presented and future research works are also suggested. It has been observed that the research filed can be moved forward by reviewing and analyzing recent achievements in the published papers

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers
    corecore