609 research outputs found

    Type-driven automated program transformations and cost modelling for optimising streaming programs on FPGAs

    Get PDF
    In this paper we present a novel approach to program optimisation based on compiler-based type-driven program transformations and a fast and accurate cost/performance model for the target architecture. We target streaming programs for the problem domain of scientific computing, such as numerical weather prediction. We present our theoretical framework for type-driven program transformation, our target high-level language and intermediate representation languages and the cost model and demonstrate the effectiveness of our approach by comparison with a commercial toolchain

    ML4Chem: A Machine Learning Package for Chemistry and Materials Science

    Full text link
    ML4Chem is an open-source machine learning library for chemistry and materials science. It provides an extendable platform to develop and deploy machine learning models and pipelines and is targeted to the non-expert and expert users. ML4Chem follows user-experience design and offers the needed tools to go from data preparation to inference. Here we introduce its atomistic module for the implementation, deployment, and reproducibility of atom-centered models. This module is composed of six core building blocks: data, featurization, models, model optimization, inference, and visualization. We present their functionality and easiness of use with demonstrations utilizing neural networks and kernel ridge regression algorithms.Comment: 32 pages, 11 Figure

    Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    Get PDF
    Rezaul Chowdhury is with UT Austin; Muhibur Rasheed is with UT Austin; Maysam Moussalem is with UT Austin; Donald Keidel is with The Scripps Research Institute; Arthur Olson is with The Scripps Research Institute; Michel Sanner is with The Scripps Research Institute; Chandrajit Bajaj is with The Scripps Research Institute.Motivation -- Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results -- The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability -- The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http://www.cs.utexas.edu/~bajaj/cvc/soft​ware/f2dock.shtml. Client: http://www.cs.utexas.edu/~bajaj/cvc/soft​ware/f2dockclient.shtml.The research of C.B., R.C., M.M., and M.R. of University of Texas, was supported in part by National Science Foundation (NSF) grant CNS-0540033, and grants from the National Institutes of Health (NIH) R01-GM074258, R01-GM073087, R01-EB004873. The research of M.M. was additionally supported by an NSF Graduate Research Fellowship. The research of M.S. and A.O. of TSRI was supported in part by a subcontract on NIH grant R01-GM073087. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Computer Science

    Extreme scale parallel NBody algorithm with event driven constraint based execution model

    Get PDF
    Traditional scientific applications such as Computational Fluid Dynamics, Partial Differential Equations based numerical methods (like Finite Difference Methods, Finite Element Methods) achieve sufficient efficiency on state of the art high performance computing systems and have been widely studied / implemented using conventional programming models. For emerging application domains such as Graph applications scalability and efficiency is significantly constrained by the conventional systems and their supporting programming models. Furthermore technology trends like multicore, manycore, heterogeneous system architectures are introducing new challenges and possibilities. Emerging technologies are requiring a rethinking of approaches to more effectively expose the underlying parallelism to the applications and the end-users. This thesis explores the space of effective parallel execution of ephemeral graphs that are dynamically generated. The standard particle based simulation, solved using the Barnes-Hut algorithm is chosen to exemplify the dynamic workloads. In this thesis the workloads are expressed using sequential execution semantics, a conventional parallel programming model - shared memory semantics and semantics of an innovative execution model designed for efficient scalable performance towards Exascale computing called ParalleX. The main outcomes of this research are parallel processing of dynamic ephemeral workloads, enabling dynamic load balancing during runtime, and using advanced semantics for exposing parallelism in scaling constrained applications

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system
    • …
    corecore