385 research outputs found

    Transferring knowledge as heuristics in reinforcement learning: A case-based approach

    Get PDF
    The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain. A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms. © 2015 Elsevier B.V.Luiz Celiberto Jr. and Reinaldo Bianchi acknowledge the support of FAPESP (grants 2012/14010-5 and 2011/19280-8). Paulo E. Santos acknowledges support from FAPESP (grant 2012/04089-3) and CNPq (grant PQ2 -303331/2011-9).Peer Reviewe

    Sharing diverse information gets driver agents to learn faster : an application in en route trip building

    Get PDF
    With the increase in the use of private transportation, developing more efficient ways to distribute routes in a traffic network has become more and more important. Several attempts to address this issue have already been proposed, either by using a central authority to assign routes to the vehicles, or by means of a learning process where drivers select their best routes based on their previous experiences. The present work addresses a way to connect reinforcement learning to new technologies such as car-to-infrastructure communication in order to augment the drivers knowledge in an attempt to accelerate the learning process. Our method was compared to both a classical, iterative approach, as well as to standard reinforcement learning without communication. Results show that our method outperforms both of them. Further, we have performed robustness tests, by allowing messages to be lost, and by reducing the storage capacity of the communication devices. We were able to show that our method is not only tolerant to information loss, but also points out to improved performance when not all agents get the same information. Hence, we stress the fact that, before deploying communication in urban scenarios, it is necessary to take into consideration that the quality and diversity of information shared are key aspects

    Multi-Agent Reinforcement Learning as a Rehearsal for Decentralized Planning

    Get PDF
    Decentralized partially observable Markov decision processes (Dec-POMDPs) are a powerful tool for modeling multi-agent planning and decision-making under uncertainty. Prevalent Dec-POMDP solution techniques require centralized computation given full knowledge of the underlying model. Multi-agent reinforcement learning (MARL) based approaches have been recently proposed for distributed solution of Dec-POMDPs without full prior knowledge of the model, but these methods assume that conditions during learning and policy execution are identical. In some practical scenarios this may not be the case. We propose a novel MARL approach in which agents are allowed to rehearse with information that will not be available during policy execution. The key is for the agents to learn policies that do not explicitly rely on these rehearsal features. We also establish a weak convergence result for our algorithm, RLaR, demonstrating that RLaR converges in probability when certain conditions are met. We show experimentally that incorporating rehearsal features can enhance the learning rate compared to non-rehearsal-based learners, and demonstrate fast, (near) optimal performance on many existing benchmark Dec-POMDP problems. We also compare RLaR against an existing approximate Dec-POMDP solver which, like RLaR, does not assume a priori knowledge of the model. While RLaR׳s policy representation is not as scalable, we show that RLaR produces higher quality policies for most problems and horizons studied

    Evolutionary Multiagent Transfer Learning With Model-Based Opponent Behavior Prediction

    Get PDF
    This article embarks a study on multiagent transfer learning (TL) for addressing the specific challenges that arise in complex multiagent systems where agents have different or even competing objectives. Specifically, beyond the essential backbone of a state-of-the-art evolutionary TL framework (eTL), this article presents the novel TL framework with prediction (eTL-P) as an upgrade over existing eTL to endow agents with abilities to interact with their opponents effectively by building candidate models and accordingly predicting their behavioral strategies. To reduce the complexity of candidate models, eTL-P constructs a monotone submodular function, which facilitates to select Top-K models from all available candidate models based on their representativeness in terms of behavioral coverage as well as reward diversity. eTL-P also integrates social selection mechanisms for agents to identify their better-performing partners, thus improving their learning performance and reducing the complexity of behavior prediction by reusing useful knowledge with respect to their partners' mind universes. Experiments based on a partner-opponent minefield navigation task (PO-MNT) have shown that eTL-P exhibits the superiority in achieving higher learning capability and efficiency of multiple agents when compared to the state-of-the-art multiagent TL approaches

    A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning

    Get PDF
    To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents’ policies during training, failing to sufficiently generalize duringn execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker
    • …
    corecore