338 research outputs found

    Accelerating Missile Threat Engagement Simulations Using Personal Computer Graphics Cards

    Get PDF
    The 453rd Electronic Warfare Squadron supports on-going military operations by providing battlefield commanders with aircraft ingress and egress routes that minimize the risk of shoulder or ground-fired missile attacks on our aircraft. To determine these routes, the 453rd simulates engagements between ground-to-air missiles and allied aircraft to determine the probability of a successful attack. The simulations are computationally expensive, often requiring two-hours for a single 10-second missile engagement. Hundreds of simulations are needed to perform a complete risk assessment which includes evaluating the effectiveness of countermeasures such as flares, chaff, jammers, and missile warning systems. Thus, the need for faster simulations is acute. This research speeds up these mission critical simulations by using inexpensive commodity PC graphics cards to perform intensive image processing computations used to simulate a heat seeking missile\u27s tracking system. The innovative techniques developed in this research reduce execution time by 33% and incorporate a user-selectable fidelity feature to perform high-fidelity simulations when required. Furthermore, these image processing computations use only 5% of the available computational capacity of the graphics cards, providing a ready source of additional computational power for future simulation enhancements. Analysts can now meet shorter suspenses with more accurate products, ultimately enhancing the safety of Air Force pilots and their weapon systems. With ongoing operations in Iraq and Afghanistan, and a growing threat at home and abroad posed by the proliferation of man-portable missiles, the speed of these simulations play an important role in protecting forces and saving lives

    Training high performance skills using above real-time training

    Get PDF
    The Above Real-Time Training (ARTT) concept is a unique approach to training high performance skills. ARTT refers to a training paradigm that places the operator in a simulated environment that functions at faster than normal time. Such a training paradigm represents a departure from the intuitive, but not often supported, feeling that the best practice is determined by the training environment with the highest fidelity. This approach is hypothesized to provide greater 'transfer value' per simulation trial, by incorporating training techniques and instructional features into the simulator. These techniques allow individuals to acquire these critical skills faster and with greater retention. ARTT also allows an individual trained in 'fast time' to operate at what appears to be a more confident state, when the same task is performed in a real-time environment. Two related experiments are discussed. The findings appear to be consistent with previous findings that show positive effects of task variation during training. Moreover, ARTT has merit in improving or maintaining transfer with sharp reductions in training time. There are indications that the effectiveness of ARTT varies as a function of task content and possibly task difficulty. Other implications for ARTT are discussed along with future research directions

    Teaching high-performance skills using above-real-time training

    Get PDF
    The above real-time training (ARTT) concept is an approach to teaching high-performance skills. ARTT refers to a training paradigm that places the operator in a simulated environment that functions at faster than normal time. It represents a departure from the intuitive, but not often supported, feeling that the best practice is determined by the training environment with the highest fidelity. This approach is hypothesized to provide greater 'transfer value' per simulation trial, by incorporating training techniques and instructional features into the simulator. Two related experiments are discussed. In the first, 25 naive male subjects performed three tank gunnery tasks on a simulator under varying levels of time acceleration (i.e., 1.0x, 1.6x, 2.0x, sequential, and mixed). They were then transferred to a standard (1.0x) condition for testing. Every accelerated condition or combination of conditions produced better training and transfer than the standard condition. Most effective was the presentation of trials at 1.0x, 1.6x, and 2.0x in a random order during training. Overall, the best ARTT group scored about 50 percent higher and trained in 25 percent less time compared to the real-time control group. In the second experiment, 24 mission-capable F-16 pilots performed three tasks on a part-task F-16A flight simulator under varying levels of time compression (i.e., 1.0x, 1.5x, 2.0x, and random). All subjects were then tested in a real-time environment. The emergency procedure (EP) task results showed increased accuracy for the ARTT groups. In testing (transfer), the ARTT groups not only performed the EP more accurately, but dealt with a simultaneous enemy significantly better than a real-time control group. Although the findings on an air combat maneuvering task and stern conversion task were mixed, most measures indicated that the ARTT groups performed better and faster than a real-time control group. Other implications for ARTT are discussed along with future research directions

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Aeronautical Engineering. A continuing bibliography, supplement 115

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp

    Full Spring 2001 Issue

    Get PDF

    On Wargaming

    Get PDF
    Wargames are as old as civilization—and perhaps older. In his informative and entertaining Public Broadcasting series Connections, James Burke argued that the first invention, the one that enabled all later inventions, was the plow. It allowed agriculture, and as agriculture permitted denser populations, the frequency of inventions increased, due either to “connecting” with new applications or combining with other inventions to create one that was greater than the sum of its parts.https://digital-commons.usnwc.edu/usnwc-newport-papers/1043/thumbnail.jp

    The Export Administration Act of 1979 and computer exports to China

    Get PDF
    The importance of computers to the US military and national defense is significant and multifaceted. The statute that regulates computer exports, the Export Administration Act of 1979 (EAA79), has been interpreted both strictly and loosely by policymakers, executive agencies, and export control regimes. The result has been a persistent struggle in balancing the competing interests of national security and commerce. An urgent need exists to rewrite EAA79, yet Congress has not been able to come to a consensus due to overlapping and conflicting committee interests within and across the chambers. While Congress continues to debate rewriting EAA79, the President has been able to adjust the impact of US export control laws on foreign countries, utilizing export controls as means of advancing US foreign policy abroad. In the case of the People's Republic of China, the White House has loosened export controls for high-performance computers to that country in order to encourage free trade and private enterprise.http://archive.org/details/theexportadminis109453449Captain, United States Marine CorpsApproved for public release; distribution is unlimited
    • …
    corecore