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AFIT/GE/ENG/05-08 
Abstract 

 
     The 453d Electronic Warfare Squadron supports on-going military operations by 

providing battlefield commanders with aircraft ingress and egress routes that minimize 

the risk of shoulder or ground-fired missile attacks on our aircraft.  To determine these 

routes, the 453d simulates engagements between ground-to-air missiles and allied aircraft 

to determine the probability of a successful attack.  The simulations are computationally 

expensive, often requiring two-hours for a single 10-second missile engagement.  

Hundreds of simulations are needed to perform a complete risk assessment which 

includes evaluating the effectiveness of countermeasures such as flares, chaff, jammers, 

and missile warning systems.  Thus, the need for faster simulations is acute. 

     This research speeds up these mission critical simulations by using inexpensive 

commodity PC graphics cards to perform intensive image processing computations used 

to simulate a heat seeking missile’s tracking system.  The innovative techniques 

developed in this research reduce execution time by 33% and incorporate a user-

selectable fidelity feature to perform high-fidelity simulations when required.  

Furthermore, these image processing computations use only 5% of the available 

computational capacity of the graphics cards, providing a ready source of additional 

computational power for future simulation enhancements. 

     Analysts can now meet shorter suspenses with more accurate products, ultimately 

enhancing the safety of Air Force pilots and their weapon systems.  With ongoing 

operations in Iraq and Afghanistan, and a growing threat at home and abroad posed by 

the proliferation of man-portable missiles, the speed of these simulations play an 

important role in protecting forces and saving lives. 
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ACCELERATING MISSILE THREAT ENGAGEMENT SIMULATIONS USING 

PERSONAL COMPUTER GRAPHICS CARDS  

I.  Introduction 

     Motivation for this  research comes from two fronts.  First, a review of the literature 

reveals that commodity graphics accelerator cards, found in almost every personal 

computer on the market today, have reached a level of power and programmability that 

enables them to be used as high performance stream computers, adaptable to a variety of 

general purpose computing tasks [MoA03][Mor03][RuS01][KrW03][LaM01][LWK03].  

Further, these devices, commonly referred to as Graphics Processing Units (GPU), can 

actually outperform the modern CPU in a range of computationally intensive applications 

[TrS01][KrW03][BFH04][LWK03].  The GPU therefore represents a powerful, untapped 

resource with the potential to provide a sizeable performance boost for little to no extra 

cost1.   

     The second motivation for this research stems from a mission requirement.  The 453d 

Electronic Warfare Squadron, part of the Air Force Information Warfare Center 

(AFIWC), is exploring ways to speed up the execution of computer-based simulations, 

specifically those used to evaluate the effectiveness of the countermeasures, such as 

flares, chaff, jammers, and missile warning systems, used by USAF aircraft against 

missile threats.  AFIWC uses the Joint Modeling and Simulation System (JMASS) Threat 

Engagement Analysis Model (TEAM) software to run simulated engagements between 

missile threats and friendly aircraft, under various maneuver and environmental 

conditions, evaluating scenarios for the warfighter that would be cost prohibitive or 

logistically impossible to obtain otherwise.  The results of AFIWC threat analyses 
                                                 
1 Mainstream graphics cards range in price from about $60 or less to about $500. 
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determine the adequacy of existing countermeasures, tactics, techniques and procedures, 

and are used in the development of new ones.  With ongoing operations in Iraq and 

Afghanistan, and a growing threat abroad posed by the proliferation of man-portable 

missiles, AFIWC simulations play an important role in protecting forces and saving lives.   

     Unfortunately, JMASS simulations take a long time to execute:  up to two hours to 

simulate a 10-second engagement.  This is a problem for several reasons.  To provide the 

best possible analysis, hundreds of simulations must often be done to cover the many 

variations of position, maneuver, and environment for a given scenario.  The quality of 

analysis is therefore constrained both by the amount of time available for conducting 

simulations and the JMASS execution time.  When operating under a short suspense, 

quality can suffer.  Further, the missiles are becoming smarter, able to identify target 

features at ever increasing levels of detail.  Correspondingly, there is an increasing need 

for higher-fidelity simulations, which of course requires more time to execute due to the 

increased amount of computation required.  JMASS is generally run on high-end personal 

computers and multiprocessor workstations.  Though the speed of these machines 

continues to increase, it has not been sufficient to match the demand for faster and more 

detailed simulations.    

     To address these concerns, AFIWC initiated a collaborative effort with the Air Force 

Research Laboratory, Naval Sea Systems Command and the Air Force Institute of 

Technology to develop a hardware-based means for accelerating the image processing 

calculations thought to present the greatest computational load during JMASS 

simulations.  Since this requirement emphasizes performance in the processing of 

graphical information, it seemed worthwhile to apply today’s flexible and powerful GPUs 
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toward providing a low-cost, potentially high-payoff solution.  The remainder of this 

chapter provides an overview of the JMASS simulation process and a detailed 

characterization of the problem posed by AFIWC.   

JMASS Background and Characterization of AFIWC Requirement 

     JMASS simulations execute, as do most simulations, in discrete steps that model the 

state of the system at regular intervals of simulated time.  This interval is called the model 

time step, and can be thought of as either the simulation’s time resolution, or the rate at 

which the simulation “samples” the simulated world [Air04].  In JMASS, the model time 

step is usually set to update the simulated environment in 1/250 second (equivalently, 

0.004 second) intervals.  During each time step, the JMASS simulator generates a digital 

image to simulate the missile’s current infrared (IR) field of view, essentially mimicking 

the way the world would appear to a missile during flight.  The image is submitted to a 

mathematical model representative of a particular missile’s electro-optical sensor (a.k.a. 

seeker) and control system path, and the missile’s response (i.e., maneuver or change in 

direction) is fed back to the JMASS simulator for generating the next scene.  This 

iterative and interactive process of scene generation and missile optics response occurs 

about 2,500 times to simulate a 10-second engagement.         

     Of specific interest are the image processing calculations for modeling the optical path 

of the seeker, since this is where JMASS appears to spend most of its runtime.  A typical 

infrared seeker is positioned, not surprisingly, at the front of the missile and consists of 

an IR-transparent dome followed by a set of optics not unlike a telescope.  The optics 

focus incoming light, presumably emanating from the missile’s prospective target, 

through a rapidly spinning, partly transparent disc, called a reticle, which modulates the 

3 



 

light and passes it to an IR detector.  The reticle is specially designed to modulate the 

light in such a way that the position of the target relative to the center of the missile’s 

field of view can be determined from the modulated signal.  The missile’s control system 

uses this signal to guide the missile to the target [MaV83]. 

     JMASS simulates the seeker system described above by modeling the interaction 

between the spinning reticle and the incoming IR scene.  It accepts IR scene images as 

input, and produces a reticle-modulated signal as output.  The calculations associated 

with this step in the simulation process, described in the following paragraphs, are the 

subject of AFIWC’s hardware acceleration initiative, and likewise, the candidate for 

potential GPU acceleration.    

     Prior to beginning a JMASS simulation, a data structure is initialized to model the 

reticle.  The reticle image is represented as a static 480 x 480 element array, with each 

element (or pixel) containing a floating point number whose value is between zero and 

one, indicating the degree to which each point on the reticle permits light to pass through 

it.  The reticle image for the chosen missile is loaded into CPU memory from a data file 

prior to the start of the simulation. 

     For each model time step, JMASS determines an appropriate angular displacement for 

the reticle (recall the reticle is spinning), then creates a rotated copy by performing a 

linear coordinate transformation on the original.  The rotated reticle image may be resized 

to match the resolution of the IR scene produced by the simulator, then interpolated by 

one of four selectable algorithms to smooth any artifacts that may have been caused by 

the rotation and resizing transformations.  JMASS performs an element-by-element 

multiplication of the rotated, smoothed reticle image with the current IR scene to produce 
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a new image, one that represents the IR scene filtered (or attenuated) by the reticle.  

Finally, the values of all the pixels of this resultant image are summed to produce a single 

radiance value.  This value represents the light intensity that would be incident on the 

missile’s IR detector given the input scene and reticle orientation at a particular instant in 

simulated time.   

     Recall the field of view is updated (i.e., a new IR scene is produced by the JMASS 

simulator) 250 times per simulated second.  However, because the spinning reticle results 

in a modulated detector signal with frequency on the order of 1-2 kHz, sampling theory 

requires a minimum sampling rate of 4,000 samples per simulated second.  AFIWC has 

specified a higher, 10 kHz sampling rate to protect against aliasing.  Since the JMASS 

simulator’s 250 Hz simulation step falls well short of this, each scene must be multiplied 

by forty reticle images (each requiring a different amount of rotation, followed by 

resizing and interpolation), and forty sums produced, to provide the 10,000 samples per 

simulated second to replicate the detector signal.  Figure 1-1 below presents a simplified 

view of this process. 

JMASS Image Processing for Missile Flight Simulation 

rotating reticle 
in missile filters 
      input scene 

 

Σ= * single radiance value 
for missile IR detector 

 

sum all filtered reticle IR scene 
pixels image image image 

element-by-element multiply 

- perform 40x per simulation step (on 40 differently-rotated reticles) 

                 
- perform 10,000 times per simulated second 

Figure 1-1.  How JMASS models missile optics to produce simulated IR detector signal. 
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     For each model time step, JMASS performs the rotate, interpolate, multiply, and add 

operations described above as a series of separate O(N2) computations where N is the 

width (and height for square images), in pixels, of the images being operated on.  

Depending on the size of the images used, this could require on the order of 75 million 

double precision floating point calculations per model time step, or 19 billion calculations 

per simulated second2.  The JMASS software is written in C++, for the most part, and 

executes on a Windows or Unix-based platform.  To provide a concrete example, it takes 

about two hours for JMASS, running on a 2.8 GHz Pentium 4, using 5122-sized images, 

to simulate a 10-second engagement. 

     The optics calculations described above model the behavior of a spin scan seeker.  

Generally, missiles employ one of two types of seekers, spin scan or conical scan.  

JMASS can simulate both types.  Conical scan is similar to spin scan except that the IR 

scene is larger (generally twice the height and width of the reticle image), and prior to 

performing the reticle-scene multiply-add operation, the reticle image is shifted with 

respect to the scene by a set of specified x-y offset values, in pixels.  The offset can be 

different for each of the forty reticle images used during a model time step.  To be of 

greatest use to AFIWC, a GPU implementation should support both spin scan and conical 

scan seekers.      

     In addition to the GPU-based effort that is the subject of this research, AFIWC is 

investigating Field Programmable Gate Array (FPGA) technology to accelerate both 

software-based (like JMASS) and real-time, so-called “hardware-in-the-loop” 

                                                 
2 Assuming a 256x256 size image and bilinear interpolation.  This accounts for floating point addition, 
multiplication, and sin and cos operations, but does not include instructions for performing loops, lookups 
or array index calculations.  Interpolation requires 10 floating point operations per image pixel, rotation 
requires 16, and the multiply-add about 2. 
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simulations, which interface with real missile hardware.  Since software-based 

simulations are not performed in real-time, they stand to benefit from any amount of 

speedup that can be provided.  However, this is not the case for real-time simulations 

which must either sustain a throughput of 19 GFLOPS or fail.  Whether or not this kind 

of performance is within the capabilities of FPGAs remains to be determined, and is 

beyond the scope of this research.  However, as will be shown later in this thesis, such 

performance is almost certainly beyond the current capabilities of graphics cards.  

Therefore, any performance gains be realized through a GPU will likely only benefit 

software-based simulations. 

     As indicated throughout this section, the AFIWC hardware acceleration initiative is 

predicated on the assumption that image processing calculations are the source of the 

performance bottleneck, and should therefore be the prime target for optimization efforts.  

Indeed, an analysis of the JMASS C++ code supports this assumption, since the bulk of 

the calculations reside in the O(N2) code structure which performs the image processing 

calculations [Joi04].  However, if this is not the case, optimizing the image processing 

calculations may not be enough.  According to Amdahl’s Law [HeP96], if other 

bottlenecks exist, they could reduce the effectiveness of even the most spectacular image 

processing performance gains provided by a GPU or FPGA.  This does not diminish the 

importance of these hardware acceleration efforts.  However, it suggests adopting a 

system-wide approach in addressing the JMASS performance issue.   
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II.  Literature Review 

The General Purpose GPU 

     Almost every personal computer available today comes equipped with dedicated 

graphics acceleration hardware, either built-in to the motherboard or provided as an add-

in circuit card.  Though graphics co-processors, or Graphics Processing Units (GPU) as 

the industry refers to them, have become commodity items in personal computers, what is 

not generally recognized is these devices have become formidable computing machines 

in their own right, exceeding the modern desktop CPU in terms of raw computational 

power. 

     For example, Macedonia [Mac03] reported a 20 GFLOPS peak performance of the 

Nvidia GeForce FX 5900, a mainstream GPU in 2003, to be equivalent to a 10 GHz Intel 

Pentium.  It is interesting that GPUs achieve such performance running at much slower 

clock rates than CPUs, the result of a highly parallelized architecture.  Typical GPU clock 

rates range from 233 to 400 MHz, while current CPU clock rates are on the order of a 

few GHz.  Current models of GPU contain 220 million transistors, the bulk of which are 

dedicated to parallel processing of input streams, whereas Intel’s Xeon CPU has only 108 

million transistors, 60 percent of which are devoted to cache memory [Mac03].  Equally 

impressive, the growth of GPU performance has exceeded Moore’s Law [MoA03], 

increasing at a rate of 2.8 times per year since 1993, and is expected to continue at this 

rate for another five years, perhaps achieving tera-FLOP performance by 2005 [Mac03].   

     While the main, market-driven purpose of the GPU continues to be providing 

increased resolution, dynamic range, frame rates and programmability to keep pace with 

the demand for ever more realistic games and multimedia applications, these same 
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advances have resulted in an important, perhaps revolutionary side benefit:  the 

architecture of the modern programmable GPU has become so flexible it is possible to 

exploit its inherent computational power for many general-purpose computing tasks 

faster than they can be done on a CPU [TrS01][KrW03][BFH04][LWK03].  These 

developments have not been lost on a number of researchers who have, especially over 

the past four years, successfully used a GPU to accelerate a myriad of general-purpose 

computing tasks.  Just a few of the diverse examples include linear algebra 

[Mor03][KrW03][LaM01], finite element analysis [RuS01], lattice Boltzmann 

computation [LWK03] and Fast Fourier Transform calculations [MoA03].   

GPU Architecture 

     The ability to use the GPU for general purpose computing results from its evolution 

over the past decade from a fixed-function pipeline architecture, to a fully programmable 

Single Instruction Multiple Data (SIMD) parallel, or streaming, processor 

[MoA03][BFH04].  This section describes the GPU architecture. 

     A stream is simply a collection of data operated on in parallel [BFH04].   The GPU is 

optimized for rendering images, a task that involves performing fast, parallel operations 

on large streams of data.  As such, most GPUs include their own high-bandwidth memory 

subsystems for storing and manipulating graphical data.  For example, the current top-of-

the-line mainstream GPU from nVidia, the GeForce 6800, has 256 MB of memory 

accessible via a 256-bit bus with an advertised bandwidth of 35.2 GB per second [Nvi04].  

In late 2004, 3DLabs is expected to make available its high-end Wildcat Realizm 800 

GPU with 640 MB memory, 512-bit bus, and an advertised memory bandwidth of 64 
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GB/second [Pci04a].  By way of comparison, the Intel 875 chipset that supports the 

Pentium IV only provides 6.4 GB/second CPU-to-main memory bandwidth [Int04a]. 

     In general, the GPU processes two kinds of data:  vertices and textures [Mor03].  

Vertices represent points in space and are used to build graphical primitives, such as 

polygons, which can be assembled to form complex 3-dimensional objects.  Vertices 

possess attributes such as color, position vector and texture coordinates, which are stored 

in registers and can be operated on by various functions [THO02].  Textures, on the other 

hand, are 1, 2, or 3-dimensional images applied to polygons, much like wallpaper or 

shrink-wrap, to impart the look of a realistic surface.  Textures are stored in GPU 

memory as arrays of pixels, and each texture pixel is represented by a four-component 

vector, holding the intensity values for red, green, blue and alpha (RGBA) color 

channels.   

     To render an image, a user application must provide the GPU a set of vertices and/or 

textures.  Some or all of the data may already be in GPU memory, left over from previous 

operations; otherwise, data must be uploaded to the GPU.  The GPU can retrieve large 

blocks of data from CPU main memory via DMA.  To prevent fast GPUs from becoming 

data-starved, modern PC busses include a dedicated interface for the GPU, the Advanced 

Graphics Port (AGP), which provides a 2 GB per second path between the GPU and main 

memory.  This figure will increase to 4 GB per second when computers based on the 

next-generation PCI Express bus standard become available within the next year 

[Int04b][Pci04b].  Unfortunately, DMA hardware is not provided for transferring data 

quickly in the opposite direction.  Such a capability is important since any significant use 
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of the GPU for general-purpose computing requires transferring GPU-computed results 

into CPU main memory for further processing [THO02].  

     Once the appropriate data has been loaded into the GPU, it proceeds through the GPU 

pipeline in the following general sequence.  First, the GPU generates geometry using the 

vertex information provided by the user application.   The GPU transforms the geometry 

into a chosen coordinate frame, clips it to fit within a specified viewport, or drawing 

rectangle, if need be, and applies lighting and color calculations [THO02].   Next, the 

GPU applies textures to the geometry, and passes everything to the rasterizer which 

converts the vector-based geometry data into a pixel-based representation for rendering 

[THO02].  These pixels, as they exist prior to rendering, are referred to as fragments.  

Finally, the pixels are rendered into a section of GPU memory, called the frame buffer 

[LaM01], for display on the screen. 

     The functions of the GPU are accessible via an Application Programmer Interface 

(API) such as OpenGL, created by Silicon Graphics, or Microsoft’s DirectX.  These 

provide standardized interfaces, data types and functions to access the features of many 

GPUs.  The extent the API feature set is supported or extended depends on the GPU 

manufacturer.  

          What remains to be explained is how the GPU architecture can be applied to 

solving general-purpose computing problems.  The following from [TrS01] addresses this 

and nicely captures the motivation behind using the GPU for general-purpose 

computation: 

     Modern  raster graphics implementations typically have a number of buffers with a depth of 32 bits per 
pixel or more.  In the most general setting, each pixel can be considered to be a data element upon which 
the graphics hardware operates.  This allows a single graphics language instruction to operate on multiple 
data as in a SIMD machine.   
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     Since the bits associated with each pixel can be allocated to one of four components, a raster image can 
be interpreted as a scalar or vector valued function defined on a discrete rectangular domain in the xy plane.  
The luminance value of a pixel can represent the value of the function while the position of the pixel in the 
image represents the position in the xy plane.  Alternatively, an RGB or RGBA image can represent a three 
or four dimensional vector field defined over a subset of the plane.  The beauty of this kind of interpretation 
is that operations on an image are highly parallelized and calculations on entire functions or vector fields 
can be performed very quickly in graphics hardware. 
 
 
     Further, typical scientific computing applications perform at about 1% of peak (CPU) 

processor performance.  Recall a CPU cache hierarchy excels when it performs repeated 

operations on a block of data, but suffers when the block of data exceeds the cache size.  

The GPU, however, generally has much more memory capacity than a CPU cache, and is 

capable of performing operations in parallel [RuS01].     

Using the GPU Fixed-function Pipeline 

      An early attempt to use the GPU for general-purpose numerical computation used the 

fixed-function pipeline of the GPU to perform matrix multiplication.  2D textures stored 

the matrices, with matrix element values stored as individual pixels within the textures.  

For reasons to be discussed later, the technique of using textures versus vertices to 

represent data in the GPU is widespread in the literature.  The matrix multiplication 

algorithm referred to above exploits the spatial parallelism of GPU computation, 

performing a series of element-by-element multiplications of texture pairs, with element-

by-element additions performed in between to accumulate results [LaM01].   

     To implement the algorithm, a pair of order-n square matrix multiplicands A and B are 

preprocessed using the CPU to create two new sets of textures, A’ and B’, each 

containing n, n x n textures, such that the i th texture in A’ contains the i th column from 

A copied across its columns, and the i th texture of B’ contains the i th row from B copied 

across its rows.  Figure 2-1 shows an example using 2 x 2 matrices.  As if dealing 

13 



 

corresponding cards from two decks, the i th textures from A’ and B’ are transferred to 

the GPU in pairs and multiplied element-by-element in what is called a multi-texturing 

operation.  Multi-texturing takes two textures as operands and combines them in one of 

several user-selectable ways to produce an output texture.  In this example, each pair of 

textures is multiplied using the “modulate” multi-texturing mode, applied to a single 

quadrilateral fragment in the rasterization stage of the GPU pipeline, then rendered to the 

frame buffer.  To accumulate results, the output of each texture multiply is rendered to 

the frame buffer using the “sum” texture blending mode.  In this mode, rendering causes 

the contents of the rasterizer to be added, pixel-by-pixel, with the existing contents of the 

frame buffer, thereby allowing the accumulation of results in the frame buffer [LaM01].  

     Using this technique two order-1024 square matrices were multiplied in 0.546 seconds 

on the nVidia GeForce3 [LaM01].  This time includes converting matrices to texture 

maps, transfering the textures to GPU memory, performing the calculations, copying the 

frame buffer back to CPU main memory, and converting back to matrix format.  GPU 

performance is compared to a CPU-based benchmark, Automatically Tuned Linear 

Algebra Software (ATLAS) running on a Pentium IV.  However, direct comparison is not 

possible because then-current GPUs were only capable of 8-bit fixed point arithmetic, 

and ATLAS performed its calculations in 32-bit floating point.  To acknowledge this 

difference, GPU performance is stated in terms of byte operations per second (BOPS), 

and compared with ATLAS’s FLOPS.   

     For the order-1024 matrix multiply, the GPU achieved 4.4 GBOPS and ATLAS 

yielded 4.0 GFLOPS.  Though no execution time metric is provided for ATLAS 
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Figure 2-1.  A technique for multiplying matrices using GPU fixed-function pipeline and textures [LaM01]. 
 
 

 [LaM01], ATLAS running on a Pentium IV can multiply two order-1000 matrices in 

about 0.5 seconds [Mor03], which, precision issues aside, is comparable to the 0.546 

GPU time achieved in [LaM01].   

     For large operations, such as multiplying twenty order-1024 matrices, the time spent 

transferring data to and from the GPU is negligible compared to the time spent 

performing multiplication and accumulation calculations.  Further, calculation time is 

dominated by memory accesses within the GPU because the GPU architecture requires 

frame buffer memory accesses for both accumulation operations and for copying results 

from the frame buffer back into a texture [LaM01].  
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     Though the results of [LaM01] are not entirely compelling from a performance or 

practical standpoint (recall the GPU’s 8-bit limitation), it represents a starting point for 

discussion because its techniques, observations and recommendations are recurring 

themes in subsequent research.   

     First, to be useful in most scientific or engineering computing applications, the GPU 

should be capable of handling at least 32-bit floating point numbers [LaM01].  This 

limitation has in fact been overcome by recent generations of GPU, which now support 

32-bit processing throughout the entire pipeline [MoA03][KrW03][Nvi04].     

     Second, accumulating results between rendering passes requires multiple memory 

accesses within the GPU, whereas a CPU can store intermediate results in fast registers.  

So, future GPU architectures should include persistent registers for this purpose 

[LaM01].  Unfortunately, current GPU hardware still does not provide this capability 

[BFH04].  Further, though the memory bandwidth of current GPUs is almost five times 

faster than those of three years ago, the integration of 32-bit floating point support offsets 

this bandwidth improvement because more memory accesses per pixel must be made.  

This is confirmed in [Mor03], where a GPU with 32-bit functionality multiplied two 

order-1000 floating point matrices in just over 0.5 seconds, almost exactly the same time 

required by the older-generation GPU operating on 8-bit data.   

      In addition to the above, there are other ways to increase GPU performance [LaM01]:  

up to four numbers may be packed into a single pixel by setting the red, green, blue and 

alpha channels to different values; lowering the refresh rate of the monitor could yield a 

10% performance improvement; running full screen versus in a window increases 

performance; and using ABGR_EXT versus RGBA texture formatting in OpenGL can 
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improve performance by 40%, since it eliminates time-consuming re-reformatting within 

the GPU.  

     The technique of texture blending in the fixed-function GPU pipeline has been used to 

do finite element [RuS01], and Lattice Boltzmann [LWK03] computations on GPU 

hardware.   

The GPU Programmable Pipeline 

     The three years following the work of [LaM01] brought significant improvements to 

GPU architecture.  8-bit fixed point has been replaced with IEEE 32-bit floating point 

representation for each of the four color components in each pixel [KrW03].  GPU 

internal memory bandwidth increased by a factor of four, and clock speed increased by a 

factor of two.  But the most significant advance with respect to GPU general purpose 

computing is the move toward a programmable architecture.  GPUs now contain 

programmable vertex and fragment processors.  Each processor respectively executes a 

user-specified assembly-level vertex or pixel shader program consisting of 4-way SIMD 

instructions that perform standard math operations, such as 3- and 4-component dot 

product, addition and multiplication on large, parallel streams of data.  Instructions for 

texture fetching and other special-purpose instructions are also available.  Each vertex or 

pixel fragment to be processed is placed in a set of read-only input registers.  The shader 

program is executed next and the results written to a set of output registers.  The shader 

program performs an implicit loop, executing over all the elements of a stream 

[THO02][BFH04].   
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Pixel Shaders versus Vertex Shaders 

     Pixel shaders have been used for matrix-vector, vector-vector and matrix-matrix 

multiplication, and for 2D Fast Fourier Transforms [Mor03] [KrW03] [MoA03].  

Matrices are represented as a set of diagonal vectors inside a 2-dimensional texture to 

facilitate efficient processing of banded diagonal matrices [KrW03].  A more 

straightforward approach breaks column vectors into smaller, four-element sub-columns, 

and stores each sub-column as a texture pixel, placing the four individual elements into 

the R, G, B and A components of the pixel [Mor03].  Despite differing methods for 

packing data into textures, all exploit the 4-tuple parallelism of texture pixels to achieve 

four 32-bit calculations per pixel for each SIMD shader instruction.  Below, is 

justification for using texture fragments versus vertices as the GPU data format of choice 

[Mor03]: 

     Textured geometry is preferable because of the more compact representation when compared with 
highly tessellated geometry with vertex colors.  Also, unlike geometry, textures can also be output by the 
GPU in the form of render target surfaces.  If we store a matrix as a texture, and then perform a matrix 
operation such as matrix addition by rendering two textures with additive blending into a third render target 
surface, the storage format of the resulting matrix can be identical to the input format.  This is a desirable 
property because this way we can immediately reuse the resulting texture as an input to another operation 
without having to perform format conversion. 
 
     A notable exception to the above approach develops a framework for general-purpose 

GPU computing based on vertex shader programs, as opposed to pixel (texture- or 

fragment-based) shaders [THO02].  The reasoning behind this choice is primarily 

motivated by the state of GPU technology, which at the time offered higher, 16-bit 

precision for vertex operations versus only 10 bits for texture operations, and a more 

robust, 21-opcode instruction set for vertex shaders.  The framework itself is discussed 

later; however, there are several weaknesses in using vertex shaders, some of which have 

since been addressed by later GPU designs [THO02].   
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     First, the results of vertex programs cannot be stored directly into a GPU memory 

buffer without first passing through the GPU pipeline and being converted to pixels.  

Then-current GPUs represented pixels with only 8-bit precision.  Though internal vertex 

computations are carried out with 16-bit precision, a significant precision loss is realized 

when the result is retrieved as 8-bit pixels.   

     Second, program size is limited to 128 instructions, and branching and logical 

Boolean operations are not supported.  Such restrictions required awkward hand-coded 

programming.  For example, loops had to be “unrolled”, and the number of loops is 

limited by the maximum instruction count.  This limitation applies to both vertex and 

pixel shaders [THO02].   

     Lastly, there is no way to share data between multiple vertex program invocations.  

Though vertex programs provide at least 96 registers for holding intermediate results 

within a program, all registers are zeroed upon program termination [THO02].   

     As has been discussed previously, precision is no longer an big issue, since 32-bit 

floating point is supported by some models of GPU.  Also, published specifications for 

the nVidia GeForce 6800 advertise hardware support for pixel and vertex shader 

programs of “unlimited” length, plus support for branching within pixel shader programs, 

with the caveat that the operating system and API may impose limits on program length, 

even though the hardware does not [Nvi04].  Further, Microsoft’s High-Level Shading 

Language (HLSL) now supports branching and looping in pixel and vertex shader 

programs [Msd04].  Despite these advances, GPU hardware still does not provide 

persistent registers for vertex programs or a means to store the results of vertex 

operations without rendering to pixels.  Theremfore, most recent GPU-based 
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implementations use pixel shaders which operate on data stored as textures, and maintain 

state between rendering passes by saving results to off-screen texture memory buffers 

(a.k.a. render target textures) [MoA03][Mor03][KrW03][BFH04].  Older versions of 

pixel shader were subject to clamping, whereby color intensities were restricted to values 

between zero and one.  Much effort has been devoted find a way to convert between real 

values, represented as floats, to numbers that fit within the required [0,1] range, such as 

in GPU-based finite element analysis [RuS01] and refractive caustics [TrS01].  It is less 

complicated now since subsequent versions of HLSL, with Pixel Shader version 2.0 or 

later, support the full floating point range [Mor03].  The abundance of applications based 

on pixel shaders seems to indicate the pixel shader instruction set has caught up with the 

vertex shader in terms of flexibility, leaving little incentive to use vertices for 

computation.  However, vertices are still used in most of these applications for setting up 

the shape and size of the area to be rendered. 

Frameworks, Models and Compilers for General Purpose GPU Computing 

     In the examples described thus far, getting a GPU to perform general purpose 

computing required extensive knowledge of graphics hardware and graphics 

programming, down to the assembly language level in many cases, on the part of the 

programmer.  Such programming is tedious and error-prone, and best managed by a 

compiler [THO02].  In fact, several languages now exist that allow shader programs to be 

written in a high-level, C-like programming language [BFH04], including Microsoft’s 

High-level Shading Language (HLSL), nVidia’s Cg, and the OpenGL Shading Language 

[BFH04].  While a step in the right direction, these languages are still graphics-oriented, 

and require a programmer to express algorithms and data structures in terms of graphics 
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primitives, such as textures and triangles [BFH04].  Therefore they fall short of providing 

an environment for generalized stream computing on the GPU. 

     There has, however, been some research devoted to this.  One example, alluded to 

previously, presents a framework with abstractions for expressing vectors, and functions 

for operating on vectors, on a GPU.  This framework defined a DFunction class which 

allows unary, binary and ternary functions, with vector operands and scalar or vector 

outputs, to be defined.  The DVector class works behind the scenes to allocate an 

OpenGL p-buffer in GPU memory to accumulate results, thus shielding the programmer 

from the intricacies of graphics programming [THO02]. 

     Similarly, [KrW03] devised a stream model for operating on vectors and matrices and  

it defined clVec and clMat container classes for expressing vectors and matrices 

respectively.  Upon initialization, vectors, originally stored as C++ arrays, are converted 

to textures in the GPU and bound to texture handles.  The class instance keeps track of 

the texture handles and sizes associated with its respective matrix or vector, and makes 

that information available through public functions.  Arithmetic is performed via the 

clVecOp function, with an enumerator op to select addition, multiplication, or subtraction 

operations.  The setting of op selects a corresponding pixel shader program to perform 

the operation on the two input textures.    

     An important operation in graphics processing is reduction [KrW03].  Reduction is an 

operation that condenses or evaluates all data in a stream to produce a smaller subset or a 

single value.  Examples include summing all elements of a matrix to produce a single 

scalar, or finding the element with the minimum or maximum value.  GPU hardware does 

not yet provide efficient means for accomplishing reduction operations [KrW03] 
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[BFH04].  Reduction, therefore, requires multiple rendering passes to accomplish.  To 

sum all of the elements in a matrix, for example, a pixel shader program could render a 

quadrilateral with dimensions half those of the original matrix, placing into the elements 

of the new matrix the sum of four adjacent pixels from the original.  The pixel shader 

executes recursively, operating on previous results, producing a quarter-sized texture 

each iteration.  The final result is a single pixel containing the desired sum.  Figure 2-2 

illustrates this concept.  This reduction algorithm operates in O(log(n)) time, where n is 

the dimension of the original matrix [KrW03].  Of course, the number of reduction passes 

required can be reduced if the number of neighboring pixels summed on each pass is 

increased [BFH04]. 

 

                

Σ
Σ

Σ

Figure 2-2.  Reduction operation achieved with GPU in successive rendering passes, summing groups of 
four adjacent pixels in a texture and rendering to a quarter-sized render target texture in each pass.  
 

     Researchers at Stanford University went a step further than the examples above by 

creating a language and compiler for stream computing on graphics hardware, called 

Brook.  Brook manages memory via streams, data objects containing collections of 

records.  Parallel functions, called kernels, invoke parallel operations on streams in the 

GPU.  Reduction functions similar to those described above are also provided.  The 

Brook system consists of two parts, brcc a source-to-source compiler, and the Brook 

Runtime (BRT), a library of runtime support routines for kernel execution.  The compiler 
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maps Brook kernels into Cg shaders, which are subsequently compiled into GPU 

assembly by commonly available vendor-provided compilers.  brcc also produces C++ 

code which uses BRT to invoke the kernels.  Originally developed as a language for 

streaming processors such as Stanford’s Merrimac streaming supercomputer and the 

Imagine processor, Brook has been adapted for use on the GPU, supports both OpenGL 

and DirectX, and is freely available [BFH04]. 

GPU Performance 

           The GPU does not generally operate in the same address space as the host CPU, 

therefore, an analysis of GPU performance must not only consider computation time, but 

also the time spent transferring data into and out of the GPU.  This concept is captured in 

the metric computational intensity, the ratio of the total cost of executing an algorithm on 

a device versus the cost of transferring the data into and out of the device [BFH04].  For 

an application to effectively use the GPU, it must possess the following two key 

properties [BFH04]: 

First, in order to outperform the CPU, the amount of work performed must overcome the transfer costs 
which is a function of the computational intensity of the algorithm and the speedup of the hardware.  
Second, the amount of work done per kernel call should be large enough to hide the setup cost required to 
issue the kernel. 
 
          In [LaM01], two order-1024 matrices were multiplied in 0.54 seconds, including 

data transfer time, but there was a one-time 0.2 second set-up cost.  Such an application 

would obviously not be a suitable candidate for GPU acceleration unless many more 

matrices are to be multiplied. 

     Setting up kernels or shader programs on a GPU requires a fixed amount of CPU time.  

If multiple kernel calls are executed back-to-back, the setup time can overlap with the 

kernel execution.  If the streams are large, the GPU will be the limiting factor, but if 
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streams are small, it may not be possible to issue kernel calls fast enough to keep the 

GPU busy [BFH04]. 

     The performance of Brook-compiled GPU applications has been compared against 

optimized and well-known CPU benchmarks, as well as hand-coded or GPU vendor-

provided versions of the applications optimized for a particular GPU.  In addition, both 

DirectX and OpenGL configurations have been tested on the most capable GPUs 

available in early 2004, the ATI X800XT and nVidia GeForce 6800, providing a fairly 

complete and current evaluation of general-purpose GPU computing capability.  The test 

applications are linear algebra, FFT, and ray tracing [BFH04].     

     For linear algebra, two low-level subroutines from the ATLAS Basic Linear Algebra 

Subprograms (BLAS) library are emulated, SAXPY and SGEMV.  SAXPY performs a 

vector scale and sum operation, y = αx + y, and SGEMV performs a matrix-vector 

product followed by a scaled vector add, y = αAx + βy where x and y are vectors, A is a 

matrix and α and β are scalars.  Vector length is 1024 and matrices 10242 single-

precision floating point.  For the CPU benchmarks, the commercial Intel Math Kernel 

Library is used for SAXPY, BLAS for SGEMV, and FFTW-3 for the FFT [BFH04].       

     In most of the trials the hand-coded, optimized GPU reference applications ran 

slightly faster than the Brook-compiled versions.  Generally, the ATI card outperformed 

the nVidia card by a wide margin, almost by a factor of four in the worst case.  This is 

possibly due to higher floating point texture bandwidth on the ATI card, about 4.5 

Gfloats/second, versus nVidia’s 1.2 Gfloats/sec.  Peak compute performance of ATI and 

nVidia was 40 billion and 33 billion multiplies per second respectively.  Generally, 

DirectX outperformed OpenGL since DirectX can render directly to a texture, whereas 

24 



 

with OpenGL, an additional copy operation is required to transfer the contents of the p-

buffer into a texture [BFH04]. 

     The ATI card running the reference GPU application under DirectX executed SAXPY 

about eight times faster than the CPU version, achieving about 4.9 GFLOPS.  Brook 

running under the same circumstances achieved a 7x improvement over the CPU version.  

In contrast, the nVidia card’s best performance for this application was only 1.5 

GFLOPS, about 2.4-times improvement over the CPU version.  For the reason noted 

earlier, OpenGL versions generally achieved only half the performance of the DirectX 

versions.  For SGEMV, the ATI card under DirectX provided about a 1.7x increase in 

performance over the CPU, and the nVidia card actually ran slower than the CPU.  For 

the FFT application, the ATI card performance matched that of the CPU, and the nVidia 

card achieved about 0.7 the performance of the CPU [BFH04]. 

     In the case of the ATI card under DirectX, the GPU either exceeded or matched the 

CPU-based applications.  Even more encouraging is that the CPU benchmarks were 

optimized to make very efficient use of the CPU cache structure [Mor03][BFH04], which 

means that the GPU would most likely provide even greater performance gains versus 

non-optimized C++ applications.  For instance, without its cache optimization, the 

effective performance of the CPU-based FFT application FFTW would be cut by over 80 

percent, making the GPU version a full six times faster by comparison [BFH04].  It 

would certainly be beneficial if cache optimizations could be applied in the programming 

of GPUs.  Unfortunately, the order pixels are processed within the GPU is an 

undocumented implementation detail, which makes it difficult to exploit data locality in 

the same manner as is routinely done in CPU programming [Mor03]. 
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            For the SGEMV application, the GPU beat the CPU, but not by as wide a margin 

as in other applications.  This is most likely because SGEMV involves a vector-matrix 

multiplication, requiring a multi-pass reduction step.  If GPU hardware is equipped with 

the persistent registers necessary to facilitate single-pass reductions, performance could 

be significantly enhanced.  For instance, computing the sum of 220 32-bit floats took 

approximately 0.79 milliseconds on an ATI/DirectX platform, compared to 14.6 

milliseconds on an optimized CPU implementation.  While this is good, it is estimated 

that such an operation would only take 0.18 milliseconds were the GPU hardware to 

provide support for such reductions [BFH04].       

Conclusion 

     Some have envisioned supercomputing may one day be conducted on clusters of 

inexpensive PCs equipped with multiple high-performance graphics cards versus multiple 

CPUs [THO02][Mor03].  The power of the modern GPU is indeed impressive, and it is 

becoming increasingly easier to harness that power for general-purpose computing.  With 

respect to the JMASS requirement, some of the examples in the literature are directly 

applicable.  For example, time-domain convolution has been accomplished more 

efficiently by the common technique of first performing an FFT on two images, 

multiplying them element-by-element in the frequency domain, then performing an 

inverse FFT on the result [MoA03].  JMASS similarly requires an element-by-element 

multiplication of two matrices, an operation that can be trivially accomplished with a 

pixel shader program [MoA03].  After multiplying the rotated reticle image with the IR 

scene, JMASS requires that all elements be summed to produce a single luminance value.  

Such reduction operations were considered in [KrW03] and [BFH04], and it has been 
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shown that they can be accomplished faster on a GPU.  Of the operations required by 

JMASS, only the rotation operation seems to have no direct parallel in the literature.  The 

GPU does provide built-in means for mapping textures, via indexed lookups, to 

transformed (including rotated) polygons [THO02], making it likely that the GPU can be 

used for accelerating the JMASS rotation operation.  However, to do so the GPU must 

implicitly perform an interpolation on the original data.  How best to implement these 

operations on a GPU, and whether the GPU can deliver acceptable levels of accuracy will 

certainly be subjects of this research. 
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III.  GPU Implementation and JMASS Integration 

Integration With JMASS 

    For the GPU to be of any help to JMASS, JMASS must change the way it processes 

reticle images.  Recall from Chapter I baseline JMASS generates properly oriented reticle 

images to multiply with the IR scene by rotating and interpolating a static reticle image 

template.  These image rotation and interpolation operations are performed forty times 

per model time step, for a total of 100,000 times each during the simulation of a 10-

second engagement.  A more efficient approach, proposed herein, is to store a set of pre-

rotated and interpolated reticle images of the required size in memory (either in the GPU 

or in CPU main memory), and to look them up when needed versus generating them 

repeatedly through costly transformation operations throughout the execution of the 

simulation.  Integrating GPU processing into JMASS essentially requires this sort of 

approach to capitalize on the GPU’s fast texture memory and to limit costly data transfers 

between CPU and GPU.  Even if the GPU is not used, such a lookup-based approach is 

much more efficient because it effectively eliminates hundreds of thousands of O(N2) 

image rotation and interpolation operations. 

     AFIWC accepted this proposal and produced a modified version of JMASS which 

implements a lookup-based approach for reticle images.  A set of 100 incrementally 

rotated images, spanning a complete rotation of a reticle, is sufficient to replace the 

continuously variable rotations of the baseline approach.  Prior to simulation start, 

modified JMASS generates this set of 100 pre-processed reticle images, then, depending 

on whether or not the GPU is being used, either uploads them to the GPU, or stores them 

in CPU main memory for later use in the simulation.   
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     The only image processing operation remaining to be performed by the GPU, 

therefore, is the reticle-scene multiply-add operation.  This consists of performing an 

element-by-element multiplication of two arrays (the scene and reticle images), and a 

summation of the result to produce a single output value.  This operation is performed on 

forty reticle-scene image pairs during each simulation time step after each IR scene 

update.  Upon each scene update, the new scene image is uploaded to the GPU.  For spin 

scan simulations, the scene is multiplied by forty consecutive reticle images (out of the 

100), each with a slightly greater rotation than the next, and the forty results are returned 

to JMASS.  For conical scan, the reticle images are called for in a random-access fashion, 

such that the forty that are used may not be consecutive, or may even repeat.  The conical 

scan approach additionally requires the reticle and scene images be shifted with respect to 

each other by specified amounts prior to the multiply-add operation, and the shift can be 

different for each of the forty reticle images used in the time step.   

GPU Implementation 

     Before attempting to implement the JMASS multiply-add operation on a GPU, several 

design choices had to be made, starting with the graphics cards.  First and foremost, the 

graphics cards need to support the IEEE-754 floating point format.  At the time of this 

writing only two graphics cards meet this requirement, the ATI X800XT and the nVidia 

6800 Ultra.  Though it is possible that other exotic and far more expensive graphics cards 

exist with similar or better features, these cards were chosen because they represent the 

top of the line available to consumers, and because their GPU clock speed and feature 

sets are directly comparable.  A second important requirement is the graphics cards have 

sufficient on-board memory to support the storage of the 100 reticle images, plus the 
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input scene and several textures for storing intermediate results between rendering passes.  

The 256MB capacity of these cards was adequate in most cases.  A final necessity with 

respect to the graphics cards is they must support Pixel and Vertex Shader version 2.0 or 

better because the reduction operations require dependent texture addressing3, which is 

not fully supported in previous versions.  For the graphics API, DirectX was chosen over 

OpenGL because it provides quicker mechanisms for retrieving data from the GPU 

[BFH04].  Shader programs were written in Microsoft’s High-Level Shader Language 

(HLSL) versus assembly language for the sake of simplicity.  The code for controlling 

the GPU and interfacing it with JMASS was written in C++ to facilitate easier integration 

with JMASS, which is also written in C++.  This code is included in Appendix B.  

Theory of Operation 

     The GPU interface is instantiated as an object, with methods for uploading reticle 

images and for processing scene images.  For spin scan, JMASS calls the GPU.process 

method, sending as parameters references to both the scene array and an array for storing 

the forty returned results, plus the starting reticle image index for the consecutive 

sequence of reticles to multiply with the scene.  For the conical scan implementation, 

JMASS identifies the indices of the forty reticle images to use, and provides forty sets of 

x-y offsets for shifting them with respect to the scene.   

     Due to the high degree of programmability and rich feature set offered by the graphics 

cards and DirectX API, there are many ways to implement the multiply-add operation on 

a GPU.  For this research, two approaches were explored for organizing the computations 

within the GPU.   

                                                 
3 Dependent texture addressing allows texture coordinates which address one texture pixel to be used to 
derive the coordinates for another. 
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     Sequential Approach 

     The first is called the “Sequential” approach.  Figure 3-1 shows a step-by-step 

progression of this algorithm.  “Step 0” consists of uploading the 100 pre-processed 

reticle images into GPU memory and storing each reticle image as a separate texture.  

When 5122 images are used, this requires about 100MB (1MB = 220 bytes) of GPU RAM 

for storing the reticle images.  This step occurs before the start of the actual JMASS 

simulation.  Once the simulation is started, JMASS calls the GPU.process method during 

each simulation time step after a new IR scene is generated.  As shown in Figure 3-1, 

GPU processing takes place in three steps.  During the first step, the new IR scene is 

uploaded into GPU memory.  In the second, multiply and add step, the scene is multiplied 

(element-by-element) with forty consecutive reticle textures, producing a sequence of 

forty new result images.  Further, blocks of four adjacent pixels are summed, producing 

result images that are a quarter the size of the original scene and reticle images.  The forty 

result images are rendered one at a time into a single, large texture in GPU memory, 

arranged so as to fill five rows of eight images.  At this point, the reticle and scene 

images have been multiplied, but their elements have only been partially summed.  These 

intermediate results are stored in a single large texture.  Step three, called the reduce step, 

completes the summation operation by successively rendering from one intermediate 

result texture into another sixteenth-size texture, summing blocks of 16 adjacent pixels.  

After two or three such reduction operations, depending on the initial size of the reticle 

and scene images, the final result texture contains forty pixels, with each pixel containing 

the result of a corresponding reticle-scene multiply-add operation.  The forty numbers are  
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Figure 3-1.  “Sequential” approach for processing JMASS multiply-add operation in the GPU. 

retrieved from the GPU and returned to JMASS, and the GPU waits for the next scene to 

be uploaded (i.e., returns to “Step 1” in Figure 3-1).  This “Sequential” approach requires 

up to 43 rendering passes:  40 reticle-scene multiply and add operations, followed by up 

to three reduction (summation) operations. 

     Palette Approach 

     A second method, called the “Palette” approach, achieves the same results, but gets 

there by taking a different path.  Figure 3-2 provides a step-by-step pictorial 
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representation of this algorithm.  For clarity, the general approach is first described, 

followed by specific details. 

     To begin with, this algorithm stores the reticle images in the GPU differently than the 

previously described approach.  Instead of storing the 100 reticle images as separate 

textures, they are arranged by rows and columns, like tile, into one large “palette” texture.  

After the scene image is uploaded to the GPU, it is multiplied with the larger palette 

texture, taking advantage of a GPU addressing mode which effectively replicates the 

scene image across the palette texture so many copies of the scene image line up to be 

multiplied with the many reticle images contained in the palette texture.  This is shown in 

Figure 3-2, in the diagram for Step 2.  In this manner, the scene can be multiplied by 

many reticle images in a single rendering pass.  After multiplying, blocks of four adjacent 

pixels are summed such that the resulting texture is a quarter the size of the original 

reticle palette texture.  Thus, this first rendering pass produces a quarter-sized texture 

holding the results of many reticle-scene multiplications, but the pixels have only been 

partially summed.  As in the “Sequential” approach, the summation operation is 

completed by performing up to three 16:1 reduction operations, resulting in a final result 

texture containing forty pixels, from which the values are retrieved and returned to 

JMASS (see Figure 3-2, Step 3).  This approach requires a maximum of four rendering 

passes to complete. 

     Now that the basic approach has been presented, some of the important details left out 

of the above discussion can be addressed.  First, GPUs impose limitations on the 

maximum allowable size for textures.  Shader programs further impose that textures be  

square and they have a power-of-two dimension to use dependent texture addressing.   
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Since this addressing mode is vital to efficient accomplishment of this algorithm, the 

textures are subject to all of the above constraints.  The effect of these constraints is it is 

impossible to fit the complete set of 100 reticle images into a single palette texture for all 

but the smallest supported image size (1282).  To solve this dilemma, four different 

palettes are loaded into GPU memory, each containing a 64-image subset of the 100 

reticle images.  The 100 reticle images are distributed among the four palettes such that, 

given any starting reticle index, there is always at least one palette which contains the 

next 39 required reticles in a contiguous block.  All that is required is some simple range 

checking in the GPU interface to ensure the correct palette is chosen for the multiply-add 

operation based on the starting index provided by JMASS.  Storing the four palette 

textures requires 64MB of GPU memory if the 2562 image size is being used.  For the 

5122 image size, however, the 256MB GPU memory capacity is not large enough to store 

four reticle palettes.  To solve this problem, a more complicated three-palette method was 

devised, which consists of multiplying the scene with up to two different palettes, 

essentially performing this algorithm twice, and combining the results at the end.  The 

three palette images require 192MB of GPU memory.    

     Though the fixes described above meant the “Palette” approach overcame texture size 

constraints, the approach itself proved to be very inefficient; it always performed 64 (or 

more) reticle-scene multiply-add operations, when only 40 are actually needed.  

However, DirectX provides a way to narrow the size of the drawing rectangle so 

rendering can be restricted to a desired rectangular subset of a render target texture.  The 

palette approach was therefore modified to automatically set the drawing rectangle so as 

to exclude as much of the unneeded portions of the textures as possible from being 
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processed.  Doing so reduced execution time for this algorithm by almost 20% compared 

to its original incarnation.  Some inefficiency still remains, however, because this method 

can still allow up to eight extraneous images to be processed.  Figure 3-3 shows this 

remaining inefficiency.   

 

     Preliminary tests show that the “Palette” approach works well on the smaller image 

sizes (1282 and 2562), but the “Sequential” approach may be the better of the two for the 

5122 image size.  Interesting to note, despite the fact that the “Sequential” approach 

requires up to 43 rendering passes, and the “Palette” approach requires only four, the two 

algorithms are comparable in performance.  Further, though the “Palette” approach works 

at all three image sizes on the PCI-express platform, it does not support the 5122 image 

size on the AGP platform.  For some reason, perhaps due to DirectX or graphics card 

AGP drivers, the AGP machine will not allow more than one reticle texture (which is a 

full 64MB in this case) to be loaded into GPU memory.  Instead, the remaining palette 

textures are forced into AGP aperture memory (off the graphics card), causing GPU 

processing to take minutes instead of seconds to accomplish.  The “Sequential” approach 
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is most likely immune to this limitation because it does not require so many large 

textures.   

     In both the “Palette” and “Sequential” approaches, the reticle and scene images are 

stored in the GPU such that four image pixel values are packed into each texture pixel, 

using the texture pixel’s four (R, G, B and A) color channels as a vector, thereby fully 

exploiting the four-way parallelism of the GPU.  However, through experimentation it 

was found that maintaining such packing in the reduction stage slows the GPU down, and 

it is better to transition to a single-channel texture format (having a single 32-bit floating 

point R channel versus the full 4 x 32-bit RGBA) for the reduction passes.  Doing so 

results in as much as 1.21x speedup for these implementations.        

     Conical Scan 

     To support conical scan, a separate GPU algorithm was created, based on the 

“Sequential” algorithm described above.  The “Palette” approach could not be used 

because it cannot process reticle images out of order, and the reticle images, being part of 

a single, static texture that is accessed in one rendering pass, cannot be shifted by 

differing amounts with respect to the scene.  Because conical scan requires shifting 

images by arbitrary amounts prior to multiplying them, the reticle and scene images 

cannot be packed four-to-one into texture pixels as they are for the spin scan approaches.  

Instead, a one-to-one correspondence has to be maintained between image and texture 

pixels, so spatial integrity is retained after shifting.  Although this reduces efficiency 

somewhat, resulting in slightly higher GPU execution times, the performance is still 

competitive with other approaches (see Chapter V).  To implement this algorithm, the 
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shader programs were modified to add horizontal and vertical offset values to the texture 

coordinates for the reticle images as shown in Fig 3-4.   

 

A special feature was also added to the code to permit scene sizes of arbitrary dimension, 

versus the power-of-two and square shape constraints of the spin scan versions.  Reticle 

images, however, remain bound by those constraints, but this is not a detriment since 

reticles are circular and hence symmetrical in shape.  One final observation with respect 

to shifting the images: some shift amounts can result in 5-10% longer execution times for 

the GPU.  This is likely due to cache misses or address translation within the GPU.  For 

the conical scan experiments, whose results are discussed in Chapter V, the shift amounts 

are randomized to provide reasonably accurate estimates of performance that can be 

expected.  
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IV.  Methodology 

Problem Definition 

    Goals, hypotheses and approach.  The primary goal of this research is to determine 

whether, and to what extent, a GPU can speed up JMASS simulations.  The image 

processing calculations currently carried out in the JMASS software have been presented 

as the main system performance bottleneck.  The general approach, therefore, is to 

replace the JMASS image processing software routines with GPU hardware processing, 

and compare the performance of the GPU-assisted JMASS with that of the baseline 

JMASS system.  It is expected that the GPU will provide some degree of acceleration 

since its inherent parallelism, enhanced memory bandwidth and stream processing 

characteristics make it better suited to these tasks than traditional pipelined CPU 

processing.   

     The second goal of this research is to determine the performance gains achievable 

using a GPU.  To do so requires testing GPU and alternative processing methods apart 

from JMASS in a controlled environment.  The resulting experiments represent a control 

group to be used as a basis for comparison and for interpreting the results of the 

experiments which involve JMASS.  To accomplish this goal, GPU performance is 

compared with that of two CPU-based (i.e., software-based) alternatives for 

accomplishing the reticle-scene multiply-add operation:  a basic C++ software 

implementation, and another which makes use of a widely available cache-optimized 

linear algebra library.  The first implements the reticle-scene multiply-add operation 

using basic C++ loop structures, much like baseline JMASS does; the second uses the 

cache-optimized Intel Math Kernel Library (MKL) sdot command to perform the 
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operation.  Throughout the rest of this document, the three implementations are referred 

to as GPU, C++ and MKL.   

     Using the experimental methodology defined herein, it is determined whether 

currently available GPUs will reduce JMASS execution time, and whether they provide 

any advantage over CPU-based implementations.  It is anticipated the GPU will do both.  

In addition, the results will quantify JMASS speedup due to the GPU and the maximum 

overall speedup achievable by optimizing the image processing operations.  Ultimately, 

the results will guide future hardware and software designs.  

System Boundaries 

     For the primary goal of determining whether GPU hardware processing can improve 

JMASS performance, the system under test includes:  the JMASS software; a high-

performance mainstream PC host with minimal I/O (only keyboard, monitor, mouse, and 

disk drive); MS Windows XP operating system and the latest version of the DirectX API; 

a top-of-the-line mainstream graphics card; and a custom-designed C++ module to 

control GPU operations and provide an interface for exchanging data between JMASS 

and the GPU.  The component under test in this case is the combination of the graphics 

card and the custom interface software. 

     For the second goal of comparing GPU performance to that of CPU-based software 

alternatives, three system configurations are used.  Each configuration consists of a stand-

alone PC as defined above, a simple application to generate reticle images and scene 

images (workloads), plus one of the following processing methods, described earlier, as 

the component under test:  GPU, C++, or MKL.  
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     An additional initial phase of experiments is conducted prior to those indicated above 

to select the best-performing GPU for use in subsequent experiments.  See the 

Experimental Design Section, Table 4-1 and Figure 4-1 for precise details on system 

configurations and what is tested in each experimental phase. 

System Services 

     The JMASS system simulates the flight of an IR-seeking missile from launch to 

contact with the target.  It simulates both the external environment and the missile’s 

responses to that environment with the behavior of the simulated missile recorded for 

later analysis.  The overall system service provided by JMASS, therefore, is to generate 

behavioral data for various simulated missiles and environments.   

     This research focuses on optimizing the subset of JMASS that performs the image 

processing calculations which simulate the optical path of the missile’s IR seeker.  The 

image processing service receives an IR scene from the JMASS environment simulator, 

multiplies it element-by-element with rotated versions of a template reticle image, 

reduces each of the resulting images to a single pixel by summing all its pixels, and 

returns the computed values back to the JMASS simulator.  JMASS supports various 

image resolutions.  The following image sizes, in pixels, are representative of those 

routinely used in JMASS simulations:  1282, 2562, 5122 and 10242 (for conical scan).   

     Possible outcomes are either a correct or incorrect computation of results, or complete 

failure to produce results.  Incorrect results would result if the GPU algorithm were in 

some way flawed.  Possible causes include improper texture lookup or interpolation of 

texture values.  Floating point truncation is another possible source of error.  In baseline 

JMASS, calculations are carried out in double-precision floating point format.  The 
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graphics cards, however, are limited to single-precision IEEE-754 standard 32-bit 

floating point format.  Additionally, although the ATI card supports IEEE-754 format, it 

uses only 24 bits to represent each float (16 bits mantissa, 7 exponent), making the ATI 

implementation more susceptible to truncation error.  It can therefore be expected the 

different implementations will produce different, if not incorrect, results.  Due to the 

graphics cards’ decreased precision, it is also possible numeric overflow may result.  

Complete failure to produce results would be indicative of a system or subsystem failure. 

Workload 

     For those experiments involving the JMASS system, the workload consists of running 

an unclassified AFIWC-provided test scenario at each of three scene/reticle image sizes:  

1282, 2562 and 5122 pixels.  The specific scenario used is the unclassified Generic Man-

Portable Air Defense System (MANPADS) Threat Model, set for a 10-second 

engagement.  This scenario is representative of the types of workload used in JMASS 

simulations.   

     For the remaining experiments which do not involve JMASS, the workload consists of 

test images representing the IR scene, submitted repeatedly to the system for processing.  

Since the GPU executes a deterministic mathematical operation on known input data, the 

accuracy of the output is easily verified, and the test data for these experiments need not 

originate from JMASS.  The workload is varied by changing the size and content of the 

test images, which are the only aspects of the workload that can be changed.   

     With respect to the content of the workload, three scene update schemes are used:  

non-changing, fully changing, and moving point source.  The non-changing scheme sends 

the same image to the processor every time.  It is expected that this scheme will provide 
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the most accurate, “best case” measurement of execution time, since it introduces no 

delay between calls to the processing method (i.e., the GPU, C++ or MKL method under 

test).  The moving point source scheme causes a single, unit-valued pixel to trace out a 

square path within the scene over time, emulating a JMASS point source simulation.  

This is considered a “middle of the road” scheme in that it only changes two pixels of the 

scene upon each update.  Since the point source “moves” in a non-sequential way through 

array memory, it may induce cache-specific behavior.  The fully-changing scheme is 

intended to more closely resemble JMASS since it changes every pixel in the scene 

image between calls to the optics processing routine.  The fully-changing scheme is 

accomplished by adding the value of 1.0 to each pixel upon a scene update.  Since 

updating the scene in this manner requires some processing time, it is expected that 

observed execution times will at least increase by some uniform amount.  A change that 

is disproportionate may indicate an unexpected interaction of factors.   

     The workload uses image sizes of 1282, 2562 and 5122 pixels.  Conical scan 

experiments, however, use scene image dimensions twice those of the reticle image.  For 

those experiments, the reticle image sizes (in pixels) are 1282, 2562 and 5122, and the 

corresponding scene image sizes are 2562, 5122 and 10242.   

     Image size is the most important factor of the workload, since it directly affects 

execution time.  Image content is important from the standpoint of verifying calculations 

have been performed correctly, and that values do not exceed the range of 32-bit floating 

point numbers.  The scene update scheme, which periodically alters the contents of the 

workload, might also impact performance.   
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Performance Metrics 

     Execution time is the natural choice for a performance metric since this research is 

motivated by a requirement to reduce JMASS execution time.  An additional metric is to 

measure the differences, if any, between the results computed by baseline JMASS and 

those produced by the GPU and software-based image processing implementations 

developed for this research.  Such deviations are expected to be relatively small, resulting 

from floating point truncation.  They are nevertheless reported because it is unknown 

how such differences, however small, will affect simulation outcomes.       

Parameters 

     Parameters are those aspects of the system or the workload which could affect system 

performance if changed.  The following is a comprehensive list of parameters, and their 

associated levels where applicable.  Note that only a subset of these are actually varied 

during the experiments (see Factors below).   

• System parameters:   

o PC platform.   

 Processor type and speed, cache size 

 Memory and I/O configuration 

 I/O Bus architecture  

 Operating system 

 DirectX version 

o GPU (graphics card) 

o Software 

 JMASS version 

 JMASS configuration 

 GPU algorithm implementation 

 Pixel shader version 

 Image processing implementation  

• Workload parameters 

o Image size in pixels 

o Scene update scheme 
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Factors 

     Factors are those parameters which are expected to have the greatest impact on system 

performance and so will be varied singly or in combination with other factors during the 

experiments.  The chosen factors, and their associated levels, are listed below. 

• System factors:   

o PC platform.   

 Bus architecture:  AGP or PCI-express  

o GPU (graphics card):  ATI Radeon X800XT or NVidia GeForce 6800 

o Software 

 JMASS configuration:  Baseline, Modifed JMASS (Software), Modified JMASS 

(GPU-assisted) 

 Image processing implementation:  GPU, non-optimized software (C++), or 

cache-optimized linear algebra library (MKL)   

 GPU algorithm implementation:  Palette versus Sequential 

• Workload factors 

o Image size:  1282, 2562 and 5122 pixels IR scene and reticle images 

o Scene update scheme:  non-changing, fully-changing, moving point source 

 

     The factor expected to cause the greatest performance variation is the image size 

(workload) factor.  This is because increasing image dimensions exponentially increases 

the required number of multiplication and summation operations.  Further, based on 

review of the literature, there may be large performance differences between cache-

optimized and non-optimized software implementations.  The PCI-express bus 

architecture doubles the bandwidth for data transfers between host and GPU memories, 

and so may also be an important factor.   

    GPU algorithm implementation (Palette or Sequential) represents two different ways to 

organize the rendering operations performed by the GPU.  Preliminary tests show the best 

(i.e., fastest) method to use depends on the GPU and image size being used.  Details of 

the GPU algorithm implementation options are discussed in Chapter III. 
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     Parameters related to the PC platform (with the exception of bus architecture) are not 

varied because it is expected that AFIWC will simply run JMASS on the highest-

performance mainstream PC available, equipped with minimal I/O and a large RAM 

complement.  While such parameters can certainly affect overall system performance, 

any changes attributable to them would be the same regardless of whether GPU 

acceleration was being used, so they are held constant during these experiments.  Further, 

because neither the JMASS nor GPU processes require frequent disk access, the disk 

subsystem is not seen as an important parameter with respect to JMASS or GPU 

performance.   

Evaluation Technique 

     The evaluation technique is primarily direct measurement since all resources are 

readily available for experimentation, and execution time is easily measured.  Further, 

since graphics cards are proprietary devices, they defy simulation using standard software 

tools or analytical methods.  While strictly speaking simulation is not used, the first three 

phases of experiments, described in detail in the following section, can be considered an 

emulation which predicts to some degree how the GPU would perform if it were 

integrated into JMASS.  The results of such stand-alone subsystem testing can be 

validated by comparing them with the results of the fourth phase of experiments, which 

integrate the GPU with JMASS.  This is discussed further in the Analysis of Results 

section.  

Experimental Design 

     Experiments are organized into four phases, each with its own specific purpose and 

experimental design.  The first phase is intended to compare the stand-alone (separate 
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from JMASS) spin scan image processing performance of the two graphics cards under 

various workloads, using two different GPU algorithm implementations, and to select the 

configuration which yields the best performance for use in subsequent experiments.  In 

this first phase of experiments, JMASS is not used.   Instead, the two graphics cards, the 

ATI X800XT and the nVidia 6800 Ultra, are treated as stand-alone subsystems which 

emulate the JMASS image processing function.  Since the nVidia card was not available 

in a PCI-express version, only the AGP versions of the cards are compared.  Each 

replication of an experiment consists of submitting a test image (IR scene) to the graphics 

card for processing 1,000 times and measuring the total execution time.  Execution times 

were measured using calls to the Windows C++ timeGetTime() command, which returns 

the value of the system clock with one-millisecond resolution.  Running 1,000 iterations 

of the GPU algorithm ensures execution time results well above 1 millisecond for all 

experiments.  Running the GPU algorithm 1,000 times is roughly equivalent to the 

amount of optics processing performed by JMASS to simulate 4 seconds of a missile’s 

flight.  The factors (levels) varied in this set of experiments are:  graphics card (NVidia, 

ATI); image size (1282, 2562, 5122); GPU algorithm implementation (Palette, 

Sequential); and scene update scheme (non-changing, fully-changing).  However, 

because the “Palette” GPU implementation does not run correctly on the AGP platform at 

the 5122 resolution, the subset of experiments involving the 5122 image size are analyzed 

separately to prevent skewing the results. 

     Two experimental designs are used in this phase of experiments.  The first, involving 

the 1282 and 2562 image sizes, is a 2kr full-factorial experimental design using the k = 4 

factors listed above and r = 30 replications.  In this phase, and in Phases Two and Three  
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Figure 4-1.  System configurations for each phase of experiments.  Figure continues on next page. 
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Figure 4-1 (continued).  System configurations for each phase of experiments. 
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Table 4-1.  Experimental designs for all phases of experiments. 
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as well, each experiment was repeated 30 times, back to back.  The second experimental 

design separately tests the 5122 image size case.  Though also full-factorial, there are only 

two factors that can be varied:  GPU and scene update scheme. 

     The full-factorial design tests all possible combinations of the factors, and identifies 

the configuration that yields the best performance.  Replication provides more samples 

than single trials and allows the estimation of experimental error.  Knowing experimental 

error is advantageous because it isolates the error attributable to unknown sources from 

the error produced by the factors under test.  Therefore, confidence intervals can be 

calculated for the effects and provide a qualitative indicator of the validity of the 

experimental design.  There are 2k(r -1) = 464 degrees of freedom in the mean squared 

error calculations for the first design, and 116 for the second design.  Since there are 

greater than 30 degrees of freedom, confidence intervals for the effects are determined 

using quantiles of the unit normal distribution.  There are 20 total experiments in this 

phase.  Table 4-1(a and b) provides templates for this experimental design, Figure 4-1(a) 

shows the system configurations used in the experiments.    

     In the second phase of experiments, the best-performing GPU from the first phase is 

retained to be tested against both C++ and MKL software implementations of the JMASS 

spin scan reticle-scene multiply-add operation.  The intent of this phase is to compare 

GPU hardware-accelerated image processing performance with that achievable using 

software.  In these experiments, JMASS is not used.   Instead, the three implementations 

are treated as stand-alone subsystems which emulate the JMASS image processing 

function.  A test workload is submitted for processing 1,000 times, and the total 

execution time measured.  The experimental design is four-factor, full factorial with 
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replication.  The factors (levels) used in these experiments are:  processing method (GPU, 

C++, MKL); bus/platform (AGP, PCI-express); scene update scheme (non-changing, 

fully-changing, moving point source); and image size (1282, 2562, 5122).  Each 

experiment is conducted 30 times, providing 1566 degrees of freedom in the mean 

squared error calculations.  Since there are more than 30 degrees of freedom, confidence 

intervals for the effects are determined using quantiles from the unit normal distribution.  

There are 54 total experiments in this phase. Table 4-1(c) provides a template for this 

experimental design, Figure 4-1(b) shows the system configurations used in the 

experiments.     

     A third phase of experiments compares the performance of the GPU against CPU-

based approaches for performing the conical scan variation of the JMASS image 

processing calculations on both AGP and PCI-express platforms at three reticle image 

sizes: 1282, 2562, and 5122.  For these experiments the non-changing scene update 

scheme is used, and the experiments are broken into three subsets according to reticle 

image size, and analyzed as three separate designs (for rationale, see Chapter V).  Each 

design is two-factor, full-factorial, with the following factors (levels):  processing method 

(GPU, C++, MKL) and bus/platform (PCI-express, AGP).   

     As in the previous phases, each experiment consists of running the algorithm 1,000 

times and measuring the total execution time, and 30 replications were accomplished for 

each experiment.  Conical scan, however, requires more input parameters:  a list of 40 

reticle indices and shift offsets.  These were chosen at random prior to each experiment 

using the C++ rand command.  A different seed was used for each experiment, drawn 

from a uniform distribution between zero and 4,294,967,295.  The seeds were generated 
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using the Matlab rand command.  Conical scan also requires the scene image be larger 

than the reticle image.  For these experiments, the scene image dimensions were chosen 

to be twice those of the reticle image, resulting in the scene having four times the number 

of pixels as the reticle.  As in the previous phases, confidence intervals for the effects are 

based on the unit normal distribution.  There are 18 total experiments in this phase.  Table 

4-1(d) provides a template for this experimental design, Figure 4-1(c) shows the system 

configurations used in the experiments.    

     In the fourth and final phase of experiments, the two graphics cards are integrated with 

JMASS, and the performance of GPU-assisted JMASS is compared to that of baseline 

JMASS.  The intent of this set of experiments is to determine whether, and to what extent 

GPU hardware acceleration can speed up JMASS simulations.  Experimental design in 

this case is a two factor, full factorial experiment without replication (i.e., each 

experiment was conducted once).   

     The first factor is the JMASS software version, consisting of the following four levels:  

baseline JMASS, Modified JMASS (Software), Modified JMASS using the nVidia card 

for acceleration, and Modified JMASS using the ATI card.  The last two levels are also 

referred to as “GPU-assisted JMASS” throughout this document.  Modified JMASS 

(Software) is an improved version of baseline JMASS, implementing a lookup based 

approach for the reticle images that eliminates the rotation, resizing and interpolation 

operations (refer to the beginning of this chapter, and in Chapter V, for more details).  

Modified JMASS (Software) processes the reticle-scene multiply-add operations in 

software, analogous to the “C++” implementation in the Phase Two experiments.   The 

GPU-assisted version of Modifed JMASS is the same as Modified JMASS (Software), 
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except the reticle-scene multiply-add operation is performed in GPU hardware.   The 

second factor is image size, with the same three levels used in other experiments:  1282, 

2562, 5122.   

     Configuring JMASS, integrating the GPU code and interpreting the JMASS results 

required the assistance of JMASS subject matter experts.  Only one replication was 

performed for each experiment because the experiments take so long to run (almost two 

hours for the 5122 case), and because running them required travel to an out-of-state 

contractor facility, so the time for conducting the experiments was limited.  Though this 

single-replication experimental design precludes conducting an analysis of variance, it 

should be sufficient for the purposes of estimating likely speedup resulting from GPU 

acceleration.  There are 12 total experiments in this phase.  Table 4-1(e) provides a 

template for this experimental design, Figure 4-1(d) shows the system configurations 

used in the experiments.    

Analysis of Results 

     The full-factorial designs described above permit a comprehensive analysis of results.  

Because the effects of processors and workloads interact in a multiplicative fashion 

[Jai91], a multiplicative model, using a log-transform of the execution time results is used 

for the analyses.  The analysis model assumes that errors in the experimental results are 

normally distributed, and there is no trend in variance with respect to mean responses.  

Normal quantile-quantile plots of the errors, and plots of the errors with respect to the 

mean responses are therefore used to validate use of the multiplicative model where 

applicable.  The mean effects of all factors and their associated levels are computed, and 

a 90% confidence interval given for each.  The same applies for all possible combinations 
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(i.e., interactions) of factors/levels.  The mean effects for each level of a factor are used to 

determine the average relative speedup (or slowdown) that results when one level is 

chosen over another.  Effects that are statistically significant have confidence intervals 

that do not include zero.  An effect whose confidence interval contains the mean of 

another effect indicates statistically identical performance.  In such cases, increasing the 

number of replications or decreasing the confidence level (narrowing the confidence 

interval) may permit the effects to be distinguished.   

     In addition to determining the confidence intervals for all effects, each factor, and 

interaction of factors, is examined to determine its contribution to the total variation of 

results (a.k.a. “allocation of variation”).  Those factors which contribute the most to the 

total variation generally have the greatest practical impact on performance.  The 

statistical significance of each factor can be further verified by performing an analysis of 

variance, or “F-test”, using a 90% confidence level.  For a factor to be considered 

significant, its contribution to the variance of results must exceed that of the estimated 

experimental error for the respective degrees of freedom. 

     For the first phase of experiments, which compares the performance of the two 

graphics cards under various workloads using the two GPU algorithm implementations, 

the analysis techniques described above are used to determine which factors/levels have 

the greatest impact on performance.  In addition, the two graphics cards are contrasted to 

determine which provides the best average performance. 

     For the second and third phase of experiments, which compare GPU performance to 

software-based alternatives for accomplishing the JMASS spin scan and conical scan 
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procedures, a similar analysis is performed to determine significant factors, and to 

contrast the performance of the three implementations. 

     For the fourth phase, which tests GPU-assisted JMASS (using both ATI and nVidia 

cards) against baseline JMASS and Modified JMASS (Software), the performance of the 

four implementations is contrasted to determine whether, and to what extent, GPU 

acceleration improves JMASS performance.  Additionally, using insight from the 

previous phases of experiments and Amdahl’s performance equation, it is possible to 

determine the maximum JMASS speedup achievable with GPU acceleration.  

Summary 

     The experiments described herein are designed to definitively address the research 

goal, which is to determine whether, and to what extent GPU hardware acceleration can 

be used to improve JMASS execution time.  In addition, the results of this research 

provide valuable insight as to how GPU algorithm implementations, scene update 

schemes and bus technologies affect GPU performance in the accomplishment of certain 

general-purpose computing tasks.  Finally, the comparison of GPU-accelerated image 

processing performance with that of non-optimized code and code using a cache-

optimized linear algebra library will likely provide AFIWC new alternatives for 

optimizing the existing JMASS software, even if the GPU fails to be a good option.  
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V.  Results and Analysis 

Introduction 

     Experiments are conducted in four phases.  In all but the fourth phase, where tests 

were actually run using JMASS, experiments consist of calling the optics processing 

algorithm 1,000 times and recording the total execution time.  Recall that a single 

iteration performs forty reticle-scene multiply-add operations (equivalent to performing a 

dot product on forty pairs of vectors, with each vector containing the same number of 

elements as there are pixels in the scene or reticle image), and returns the forty results in 

an array back to the calling application.  It follows that for 1,000 iterations, each 

experiment results in 40,000 reticle-scene multiply-add operations.  For reference, this is 

the amount of optics processing that occurs in JMASS during a simulated 4-second 

engagement.  In those experiments involving a GPU, the execution time includes both the 

GPU processing time, plus the time spent transferring data into and out of the GPU.  Each 

experiment was repeated 30 times.  Results, analysis of variance and allocation of 

variation for each phase are included in Appendix A.  Analysis was performed using a 

log-transform of the execution time results (cf., Chapter IV).  An analysis of each phase 

follows.   

Phase One Experiments:  ATI Versus nVidia 

     This phase compares the performance of the nVidia and ATI graphics cards executing 

the JMASS spin scan optics calculations.  Since a PCI-version of the nVidia card was not 

available, only the AGP versions of the cards are compared.  The test platform for these 

experiments was a 3.0 GHz P4 (HT) with 875P chipset and 1GB RAM, running 

Windows XP Professional (SP2) and DirectX 9.0c.  The factors varied were:  GPU 
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(nVidia, ATI), image size (1282, 2562, 5122), GPU algorithm implementation (“Palette” 

and “Sequential”), and scene update scheme (non-changing, completely-changing).  

However, because the “Palette” GPU implementation does not run correctly on the AGP 

platform at the 5122 resolution, the subset of experiments involving the 5122 image size 

are analyzed separately to prevent skewing the results.  For this subset, there are only two 

factors:   GPU and scene update scheme. 

      For the subset of experiments involving 1282 and 2562 image sizes, analysis of 

variation (Table A-1a) indicates that all of the effects and interactions, except for the 

interaction between algorithm and scene update scheme, are statistically significant.  This 

is due to the small amount of variance in the experimental results—the graphics cards 

seem to be very consistent in their execution times—resulting in 90% confidence 

intervals that are orders of magnitude smaller than the mean effects in most cases.  

Analysis of variance for the 5122 image size experiments (Table A-1b) yields similar 

results.  Except for a few outliers, normal quantile-quantile plots of the errors (Part 1 of 

Figures A-1a and b) are reasonably linear, satisfying the analysis model constraint that 

errors be normally distributed.  Plots of errors versus mean response indicate no trend in 

variance with respect to response, satisfying the remaining model constraint (Part 2 of 

Figures A-1a and b).  F-test results for 2kr designs indicated statistically significant 

results with respect to experimental error [Jai91]  Although the statistical F-test is not 

discussed further in this research, it was in fact passed in all cases of interest:  the ratio of 

the mean-square value of any given effect to the mean-squared error is generally greater 

than 1,000 (mean-squared error is on the order of 10-6 in all experiments), which is much 
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greater than any F-distribution percentile for the ratio, given the relatively large degrees 

of freedom of the error compared to the effects.         

     Though most of the effects and interactions are statistically significant, only a few 

turned out to be of practical importance.  For the 1282 and 2562 experiments, allocation of 

variation (Table A-1a) indicates that over 61% of the variation is attributable to the 

choice of GPU, 35% to image size, and nearly 2% to an interaction between GPU 

algorithm and image size.  Each of the remaining effects and interactions, including GPU 

algorithm and scene update scheme, account for less than 1% to the total variation, and 

are unimportant for practical purposes.  For the 5122 subset of experiments, almost 100% 

of the variation is due to choice of GPU.  The effects of the scene update scheme factor 

and its interaction with the GPU account for much less than 1% of the total variation, and 

so are unimportant.  Since varying the scene update scheme made little difference in 

these experiments, the examples and discussion that follow only address the non-

changing scene update scheme case.  The non-changing scene update scheme carries out 

no processing between calls to the GPU, resulting in execution times that more purely 

reflect the actual GPU processing time.  

Effect of GPU   

     Performance in these experiments for all the image sizes was most dramatically 

affected by the choice of GPU.  On average, the ATI card performs 4.8 times faster than 

the nVidia card when processing 1282 and 2562 image sizes.  This can be derived from 

the analysis results for these experiments shown in Table A-1a, where the mean effect of 

the GPU is shown to be -0.3424.  Since a multiplicative model using a log-transformation 

of the data is used, this figure means the ATI card performs the experiment in 10 -0.3424  = 

61 



 

0.45 the time of the average GPU, given an average image size, scene update scheme and 

GPU algorithm implementation.  Similarly, the nVidia GPU requires 10 0.3424 = 2.2 times 

the execution time of the average GPU under average conditions to accomplish the same 

calculations.  Since the execution time of the mean GPU is 1 / 0.45 = 2.2 times that of the 

ATI card, and the nVidia execution time is 2.2 times that of the mean GPU, the nVidia 

execution time is therefore 2.22 = 4.8 times that of the ATI card, on average.   

     A similar approach can be used to compare the two graphics cards for the 5122 image 

size case.  Per Table A-2a, the mean effect with respect to choice of GPU indicates the 

ATI card provides a full 5.0 times speedup over the nVidia card for the JMASS optics 

calculations at the 5122 resolution. 

     One may intuitively validate the above GPU comparisons by simply using the (non-

transformed) mean execution times to do a case-by-case comparison of the GPUs.  Table 

5-1 shows the mean execution times for the Phase One experiments, and Figure 5-1 

shows the same information graphically.  Dividing the nVidia execution time by the ATI 

execution time for a given image size and algorithm implementation yields speedup (ATI 

over nVidia) in the range of 3.84 – 6.98.  Speedup figures for all applicable combinations 

of image size and GPU algorithm appear in Table 5-2.   

     In these experiments, the ATI card was consistently and significantly faster than the 

nVidia card.  Such a performance disparity between these particular cards was noted by 

[BFH04] and is most likely attributable to the fact that the nVidia card carries out floating 

point operations at full IEEE-754 floating point precision, while ATI card does not.  

Though the ATI card supports the IEEE-754 format, it only implements 24 of the 

required 32 bits per float (16 bits matissa, 7 for exponent).  ATI therefore likely trades  
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Table 5-1.  GPU execution time, in seconds, for performing 1,000 iterations of the JMASS spin scan optics 
processing calculations, or equivalently, performing a dot product on 40,000 pairs of vectors whose 
dimension is indicated in the Image Size column.  Times shown are for all applicable combinations of 
GPU, image size, and GPU algorithm combinations, using non-changing scene update scheme.  
Accompanying figure shows the same information graphically.  The ATI card is faster (up to 7x) than the 
nVidia card in all cases.  For the ATI card, the “Palette” approach provides slightly improved times over 
the “Sequential” approach at 1282 and 2562 image sizes.  For the nVidia card, the “Palette” approach was 
best for the 1282 size, and the “Sequential” approach was best for the 2562 image size.  For the 5122 image 
size, only the “Sequential” approach is used because the “Palette” approach does not work correctly on the 
AGP platform.    

GPU Execution Time (seconds) Spin Scan Procedure 
       ATI    NVIDIA 
             GPU algorithm           GPU Algorithm
          Image Size  Palette  Sequential    Palette  Sequential  

1282 0.640 0.870 2.456 4.216 
2562 2.059 2.199 14.377 10.124 
5122 NA 7.226 NA 37.427 

 

 
 

Figure 5-1.  Graphical depiction of the data in Table 5-1, comparing nVidia and ATI GPU execution times 
for the three image sizes, using Palette and Sequential GPU algorithm implementations.  The Palette 
approach provides slightly better performance over the Sequential approach for the ATI card at the 1282 
and 2562  image sizes. 
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Table 5-2.  Comparison of ATI and nVidia graphics cards showing relative speedup provided by ATI over 
nVidia for executing the JMASS spin scan image processing calculations.  ATI is faster than nVidia in all 
cases. 

ATI Speedup over nVidia 

         GPU algorithm 
          Image Size       Palette      Sequential 

1282 3.84 4.85 
2562 6.98 4.60 
5122 NA 5.18 

 
speed for precision, and this is reflected in the accuracy of computed results.  While 

testing the JMASS algorithm on the ATI GPU, a result (of an element-by-element 

multiplication of two images, then summation) on the order of 1012 can fall short of the 

correct answer by as much as 0.016% due to floating point truncation.  The nVidia card is 

more accurate, yielding error about one-twentieth that of ATI.  The impact of this error 

on JMASS simulations is discussed later in this chapter.   

Effect of image size   

     For the subset of experiments involving the 1282 and 2562 image sizes, the 2562 case 

took, on average, 3.3 times more time to execute than the 1282 case.  Note that although 

the workload increases by a factor of four when moving from the 1282 to the 2562 image 

size, the execution time increases by a lesser factor, indicating the GPU performs better 

when the larger image size is used, on average.     

Effect of GPU algorithm implementation   

     For the subset of experiments involving the 1282 and 2562 image sizes, the GPU 

algorithm interacts with the image size factor to contribute about 2% of the total 

variation.  Though not very significant in terms of overall performance, the mean effects 

for this interaction (Table A-1a) indicate that, on average, the “Palette” approach 

performs better with 1282 images, and the “Sequential” approach performs better with 

2562 images.  For the ATI card specifically, the “Palette” approach performs slightly 
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better than the “Sequential” approach for both the 1282 and 2562 image sizes.  For the 

nVidia card, results are mixed, with the  “Palette” approach being best for the 1282 image 

size, providing a 1.7x speedup over the “Sequential” approach, and the “Sequential” 

approach being better for the 2562 image size, providing a 1.4x speedup over the 

“Palette” approach.  The bottom line is the best choice for the algorithm depends on 

which graphics card and image size one intends to use.  The fact the two graphics cards 

respond differently to the two approaches is most likely attributable to their differing 

internal architectures—the details of which are proprietary.   

     The single configuration that maximizes performance of the average case is the 

“Palette” approach for the 1282 images, and the “Sequential” approach for all others.  The 

“Palette” approach provides a 1.15x speedup over the “Sequential” approach for both 

1282 and 2562 image sizes, while using the “Palette” approach in conjunction with the 

1282 image size (or using the “Sequential” approach in conjunction with the 2562 image 

size) provides an additional 1.32x speedup over other combinations.   

Useful work performed   

     When comparing the two GPUs, the concept of “useful work” supplements this 

analysis.  Useful work is a measure of a processor’s effective rate for performing the 

floating point calculations required by the user, independent of implementation.  

Consider that each reticle-scene multiply-add operation requires size2 floating point 

multiplications, plus size2-1 additions, with size being the image width in pixels (128, 256 

or 512).  Thus, the amount of useful work performed in each experiment is: 

 useful work    =   1,000 iterations x 40 reticle-scene operations/iteration x ( 2 size2-1 ) FP operations 
  (FLOPS)             execution time    
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This metric is specific to this application, and provides insight into the efficiency and 

suitability of the processing method under consideration.   

     Table 5-3 compares the useful work performed by the two GPUs for the Phase One 

experiments.  The entries in the table correspond to the execution times listed in Table 5-

1.  In viewing the useful work figures, keep in mind the ATI card does not process at full  

Table 5-3.  Useful work, in GFLOPS, performed by the ATI and nVidia graphics cards at various image 
size and GPU algorithm combinations, using non-changing scene update scheme.  Figures represent the 
number of useful floating point calculations performed per second in accomplishing 1,000 iterations of the 
JMASS spin scan optics processing calculations, or equivalently, performing a dot product of 40,000 pairs 
of vectors whose dimension is indicated in the Image Size column.  

Useful Work Performed by GPU (GFLOPS) 
       ATI    NVIDIA 
             GPU algorithm           GPU Algorithm
             Image Size Palette  Sequential    Palette  Sequential 

1282 2.0 1.5 0.53 0.31 
2562 2.5 2.4 0.36 0.52 
5122 NA 2.9 NA 0.56 

 
  

floating point precision, so comparing useful GFLOPS between the two cards is only 

valid if one accepts ATI’s floating point limitations.  

     The ATI card’s best times for performing the experiments were 0.640, 2.059 and 

7.226 seconds for the 1282, 2562 and 5122 image sizes, respectively, achieving rates of 

useful work between 2.0 and 2.9 GFLOPS.  In contrast, the nVidia card’s best times for 

these experiments were 2.456, 10.124 and 37.427 seconds for the 1282, 2562 and 5122 

image sizes, with corresponding useful work rates between 0.52 and 0.56 GFLOPS.  Note 

that in all but one case, for any given GPU and algorithm combination, the rate of useful 

work increases with image size, which is consistent with the interpretation of 

experimental results presented earlier in this chapter.  Such behavior is to be expected 

because larger image sizes result in a higher proportion of the total execution time being 

spent in actual GPU processing, versus transferring data into and out of the graphics card.  
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Applying terminology from the literature, processing larger image sizes increases 

computational intensity, enabling the GPU to be used more efficiently.  

Phase Two Experiments:  GPU Versus CPU-based Implementations 

     The second phase of experiments compares GPU performance with that of two 

alternative, CPU-based, processing methods for accomplishing the JMASS spin scan 

optics calculations:  a C++ software implementation, and C++ code using the cache-

optimized Intel Math Kernel Library (MKL).  The factors are:  processing method (GPU, 

C++, MKL), bus/platform (AGP, PCI-express), scene update scheme (non-changing, 

fully-changing, moving point source), and image size (1282, 2562, 5122).  Though the 

scene update scheme had little effect in the first phase of experiments, which involved 

only the GPUs, the factor is retained for this phase because of its potential to affect the 

CPU-based implementations.  For these experiments, the ATI card is used as the 

representative GPU since it proved to be consistently faster than the nVidia card.  For the 

GPU algorithm, the “Palette” approach was used for the 1282 and 2562 image sizes 

because it yields slightly better performance than the “Sequential” approach does on the 

ATI card.  The “Sequential” approach was used for the 5122 image sizes because it is the 

only approach that works on both AGP and PCI-express platforms at the 5122 resolution.  

Tests are conducted on AGP and PCI-express platforms, using the AGP and PCI-express 

versions of the ATI X800XT graphics card.  The 3.0 GHz P4 machine from the first 

phase of experiments serves as the platform for the AGP experiments, and a 3.6 GHz P4 

(HT) with 925X chipset and 4GB RAM, running Windows XP Professional (SP2) and 

DirectX 9.0c is used for the PCI-express experiments.  Though the two machines do not 
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exactly facilitate an “apples-to-apples” comparison, it is shown that the differences 

between these two platforms had little effect on the execution times of these experiments.   

     Consistent with the previous phase of experiments, experimental error was very small, 

yielding 90% confidence intervals orders of magnitude smaller than the mean effects in 

most cases (see Table A-2a).  The effects of the factors and their interactions are 

statistically significant, but only a few are of practical importance.  Processing method 

(GPU, C++ or MKL) accounts for about 9% of the total variation; image size accounts 

for 89%; and the interaction between image size and processing method accounts for 

1.2%.  All other factors and interactions contribute less than 1% of the total variation, so 

may be considered unimportant for practical purposes.  Except for a few outliers, normal 

quantile-quantile plots of the errors (Figure A-2a, Part 1) are reasonably linear, satisfying 

the analysis model constraint that errors be normally distributed.  Plots of errors versus 

mean response indicate no trend in errors with respect to response, satisfying the 

remaining model constraint (Part 2 of Figure A-2a).    

Effect of scene update scheme   

     As in the first phase of experiments, scene update scheme is not a significant factor.  

Perhaps this is to be expected since the Pentium 4 level two cache (512K on the AGP 

platform, 1MB on the PCI-express machine) can easily hold one or more 1282 or 2562 

images, and perhaps one 5122 image (PCI-machine only), allowing the fully-changing 

scene update scheme to occur very quickly.  From examining the execution times (Table 

A-2a), a fully-changing scene update scheme does little more than add about 3-4% more 

time to each experiment, and does not appear to affect any method, including the cache-

optimized MKL implementation, any more than the others.  The moving point source 
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update scheme, which changes two scene pixels per update, produced almost identical 

results to the non-changing update method.  Because scene update scheme has little effect 

on performance, the analyses and examples that follow only address the non-changing 

case. 

Effect of processing method   

     In all cases, the GPU implementation ran faster than the MKL and C++ 

implementations, providing 1.7x and 2.5x speedup over the two, respectively, on average.  

These figures come from interpreting the mean effects computed in Table A-2a in the 

same fashion as was done in the previous phase.  For the smallest image size tested 

(1282), GPU speedup is less than this average, providing only 1.2x speedup over MKL, 

and about 2x speedup over C++.  This is the closest the CPU-based approaches come to 

matching the speed of the GPU.  As image size is increased the gap widens and the GPU 

provides an increasing performance advantage over the CPU-based approaches.  This is 

shown in Table 5-4, which lists the relative speedup provided by the GPU on the two 

platforms at the three image sizes.  Note the GPU generally has less of an advantage on  

Table 5-4.  Speedup provided by GPU over CPU-based methods. 
 
                   AGP platform                  PCI-express Platform   
      Image Size         C++         MKL      C++          MKL     

1282 2.0 1.4 2.1 1.2 
2562 2.5 1.8 2.4 1.3 
5122 3.5 2.8 3.0 2.7 

 
the PCI-express machine because the CPU-based approaches run their fastest on this 

machine, almost certainly due to its faster CPU.  The speedup figures are computed by 

dividing the execution time of the CPU-based method by that of the GPU method for a 

given image size and platform.  The complete list of execution times for this phase of  
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Table 5-5.  Execution times, in seconds, compared for the GPU and CPU-based processing methods, at the 
three image sizes, and on both AGP and PCI-express machines.  Times are for completing 1,000 iterations 
of the JMASS spin scan image processing calculations.  Figure 5-2 shows the same information 
graphically. 

Comparison of GPU and CPU-based Approaches 
Execution Times (seconds) Spin Scan Procedure 

 
             AGP platform       PCI-express Platform   
    Image Size   GPU  C++         MKL     GPU    C++          MKL     

1282 0.640 1.267 0.876 0.576 1.199 0.664 
2562 2.059 5.234 3.776 1.980 4.787 2.645 
5122 7.226 25.032 20.448 7.283 21.885 19.409 

 

 
(a) 

 
 

(b) 
Figure 5-2.  Comparison of GPU and CPU-based processing methods in executing the JMASS spin scan 
procedure on the (a) AGP platform, and (b) PCI platform. 
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experiments is listed in Table A-2a.  For convenience, the execution times also appear in 

Table 5-5, and are shown graphically in Figure 5-2. 

Effect of platform  

     In this phase of experiments, the effect of graphics bus (AGP versus PCI-express) is 

confounded with the difference in CPU speeds and cache sizes of the two machines used.  

However, the analysis shown in Table A-2a indicates that the bus/platform factor 

accounts for barely 0.3% of the total variation, making the choice of platform almost 

irrelevant in these experiments.  The mean effect for the platform/bus factor indicates that 

the PCI-express platform, with its faster graphics bus, CPU, and larger cache, provided a 

1.14x speedup over the AGP platform, on average.  Though the PCI-express bus provides 

a data path between the CPU main memory and GPU that is two times faster than AGP, 

only relatively small improvements in GPU execution time are observed on the PCI-

express machine:  1.11x, 1.03x, 0.99x at the 1282, 2562  and 5122 image sizes 

respectively.  For the 5122 image size, the AGP card yielded better performance than the 

PCI-express version, but only by a fraction of a percent.  Note that the difference in GPU 

performance between AGP and PCI-express platforms diminishes as image size is 

increased.  This is further evidence that larger image sizes allow the GPU to operate at 

higher levels of computational intensity, thereby reducing platform-specific impacts on 

the GPU processing time.  At the 5122 image size, the AGP and PCI-express graphics 

cards perform almost identically, despite the difference in CPU speed between the two 

platforms.  This demonstrates that the GPU acts as an equalizer, allowing machines with 

slower CPU’s to perform as fast (or faster) than machines with faster CPU’s.   
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Interaction between processing method and image size   

     This effect accounts for little (about 1.2%) of the total variation, but illustrates the fact 

that the GPU is best used for the larger image sizes, compared to the CPU-based 

alternatives.  From Table A-2a the effects of various combinations of method and image 

size result in slight penalties for using the GPU at the smaller image sizes, compared to 

the other methods, and slight gains for using the GPU at the 5122 image size.     

Effect of image size 

     The image size factor accounts for the greatest amount of variation (89%) in this 

phase of experiments.  Unfortunately, this information is not particularly useful, since it 

is known that successive increases in image size represent fourfold increases in workload, 

and execution times vary widely with changing image size in these experiments.  Since 

image size seems to overshadow the other factors in this set of experiments, some subsets 

of the experiments are analyzed to discover any trends that might otherwise have 

remained hidden.  

     The first subset to be analyzed considers only those experiments involving the non-

changing scene update scheme.  The analysis appears at Table A-2b, and is almost 

identical to that of the larger set of experiments, further confirming that the various scene 

update schemes have little effect on execution time. 

     If the above subset is further broken down, and a separate analysis performed for each 

image size case (Table A-2c),  a trend with respect to the bus/platform factor appears.  At 

the 1282 image size, bus/platform accounts for about 6% of the total variation.  As image 

size increases, this figure drops:  to 4% at 2562, and to less than 1% at the 5122 image 

size.  This would seem to indicate that as image size increases, the bus/platform factor 
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becomes less significant, on average.  This may make sense for the GPU case, but does 

not make sense for the C++ and MKL cases, whose performance is completely dictated 

by platform.  A better interpretation of this trend arises if one considers that, for the 5122 

image size, the mean is most influenced by the MKL and C++ methods, whose execution 

times are both on the order of 20 seconds, compared to the GPU, whose execution time is 

on the order of seven seconds.  In this case, the GPU execution time represents the 

greatest deviation from the mean, and so should be expected to dominate the analysis.  

Since GPU performance depends least on the bus/platform, it makes sense that the 

bus/platform factor would have less impact as image size increases and the GPU becomes 

more dominant. 

     For these subsets of experiments, particularly those involving the 1282 and 2562 image 

sizes, the interaction between bus/platform and processing method accounts for a greater 

share (2-3%) of the total variation than previously observed.  This effect provides the 

greatest performance reward when MKL is combined with the faster platform, about a 

1.1x speedup (best case) over the “average” combination of platform and processing 

method.   This is simply because MKL methods run faster on the faster CPU, while the 

GPU performs almost the same, regardless of platform.    

Phase Three Experiments:  Conical Scan 

     This phase of experiments compares the performance of the GPU against CPU-based 

approaches for performing the conical scan variation of the JMASS image processing 

calculations on both AGP and PCI-express platforms.  As in the previous phases, each 

experiment consists of running the algorithm 1,000 times and measuring the total 

execution time.  Each iteration results in 40 reticle-scene multiply-add operations, for a 
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total of 40,000 per experiment.  Conical scan, however, requires more input parameters:  

a list of 40 reticle indices and shift offsets.  These were chosen at random prior to each 

experiment using the C++ rand command.  A different seed was used for each 

experiment, drawn from a uniform distribution between zero and 4,294,967,295.  The 

seeds were generated using the Matlab rand command.  Conical scan also requires that 

the scene image be larger than the reticle image.  For these experiments, the scene image 

dimensions were twice those of the reticle image, so the scene contained four times the 

number of pixels as the reticle image.  Taking a cue from the results of the previous 

phases, only the non-changing scene update scheme was used, and separate sets of 

experiments were conducted for each image size.   

     For this phase of experiments, there are two factors:  processing method (GPU, MKL, 

C++) and bus/platform (AGP, PCI-express).  Per the analysis shown in Table A-3, these 

two factors, and their interaction, are statistically significant for all image sizes.  Except 

for a few outliers, normal quantile-quantile plots of the errors (Figure A-3, Part 1) are 

reasonably linear, satisfying the analysis model constraint that errors be normally 

distributed.  Plots of errors versus mean response indicate no trend in error with respect to 

response, satisfying the remaining model constraint (Figure A-3, Part 2). 

     Allocation of variation and GPU speedup figures for the three sets of experiments in 

this phase are summarized in Table 5-6.  Note that for the experiments involving the 1282 

and 2562 reticle image sizes, the bus/platform factor accounts for a much larger 

percentage of the total variation than observed in previous phases of experiments.  This is 

explained by the fact that, although the GPU remains faster on average than the CPU-

based approaches, it does so by a smaller margin than was observed in the spin scan 
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experiments (in fact, MKL on the PCI-express bus is faster than the GPU at the 1282 

image size).  Since the GPU times are closer to those of the CPU-based methods, the 

effect of the platform is more apparent in these experiments. 

     Recall from Chapter III the GPU takes longer to execute the conical scan procedure 

for several reasons.  First, shifting the images requires that a less efficient method be used 

for storing textures in GPU memory.  Second, conical scan requires random access to the 

reticle images, forcing the use of the “Sequential” algorithm implementation, which, on 

the ATI card, is slower for the 1282 and 2562 image sizes.  Third, extra time is needed in 

the vertex shader to add offsets to texture coordinates.  Lastly, since the scene dimensions 

are twice those of the reticle image in these experiments, four times more scene data has 

to be uploaded to the GPU per iteration than with spin scan.  With all that extra data 

being uploaded to the GPU, one might expect to observe improved GPU performance 

with the PCI-express bus.  However, this is not the case.  From Table 5-6, under 

“Speedup of PCI GPU vs. AGP GPU”, it can be seen that the PCI-bus provides little 

more speedup for the GPU than it did in previous phases of experiments.       

Table 5-6.  Summary of GPU performance versus that of the CPU-based methods for the conical scan 
procedure.  Allocation of variation for the effects of method and platform/bus are shown to indicate the 
relative importance of each factor as image size is increased. 

 
           Average     
    GPU Speedup     Speedup of           Speedup of           Allocation of Variation (%) 
            Over            PCI Platform     of PCI GPU                         Interaction of 
Reticle Size    C++    MKL      over AGP    vs. AGP GPU         Method     Platform   Platform & Method  

1282 1.3x 0.9x 1.3x 1.13x 34 53 13 
2562 2.3x 1.9x 1.3x 1.05x 86 11 3 
5122 2.5x 2.2x 1.1x 1.02x 99 1 0 

 
     The disadvantages described above seem to apply most to the two smaller image sizes.  

However, consistent with previous experiments, the relative speedup provided by the 

GPU increases as image size is increased, such that at the 5122 image size, the GPU  
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Table 5-7.  Execution times, in seconds, compared for the GPU and CPU-based Processing Methods, at the 
three image sizes, and on both AGP and PCI-express machines.  Times are for completing 1,000 iterations 
of the JMASS conical scan image processing calculations.  For these experiments, the scene contains four 
times the number pixels as the reticle image.  Accompanying figures show the same information 
graphically. 

Execution Times (seconds) Conical Scan Procedure 
 

             AGP platform       PCI-express Platform   
    Reticle Size   GPU  C++         MKL     GPU    C++          MKL     

1282 1.138 1.505 1.414 1.012 1.221 0.942 
2562 3.037 7.971 6.688 2.889 5.796 4.650 
5122 10.639 27.759 24.235 10.430 24.920 22.256 

 

 
(a) 

 
(b) 

 
Figure 5-3.   Conical scan execution times compared for the GPU and CPU-based Processing Methods, at 
the three image sizes, and on both (a) AGP, and (b) PCI-express platforms.  Plots show same information 
contained in Table 5-7 above.     
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provides a sizeable 2.2x speedup over MKL, and 2.5x speedup over basic C++ for the 

conical scan procedure.   

     Generally, all the methods were slower with conical scan than they were with spin 

scan.  Compare the execution times for these experiments, shown in Table 5-7, with those 

of the Phase Two experiments.  For the C++ approach, extra calculations are needed per 

pixel to index into the subset of the scene array overlapped by the reticle.  MKL does not 

appear to provide an efficient means for performing the required operations on subsets of 

matrices, so instead of performing a single MKL sdot operation on the two images, the 

MKL routine computes starting indices for each row accessed in the scene array, 

performs a dot product on each row of the reticle and scene subset, and accumulates the 

results.  This approach was still faster than basic C++, but by a smaller margin than 

observed in previous experiments.   

     For the 1282 and 2562 image sizes, the interaction between method and bus/platform 

accounts for about 13% and 3% of the total variation respectively, diminishing to below 

1% for the 5122 case.  As in the Phase Two experiments, the effects of the various 

combinations of method and platform are explained by the fact that the GPU provides a 

higher margin of performance gain over the CPU-based methods when combined with 

the slower platform, and the opposite generally holds true when the CPU-based methods 

are combined with the faster processor.  The impact of this interaction diminishes with 

increasing image size because total variation becomes dominated by the GPU, and GPU 

performance is little-affected by platform.    
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Phase Four Experiments:  GPU Performance With JMASS 

     This phase of experiments compares the performance of baseline JMASS to that of 

GPU-assisted JMASS in running an actual JMASS simulation, specifically the JMASS 

generic Man-Portable Air Defense System (MANPADS) threat model, set for a 10 

second engagement, at the three image sizes.  Only the spin scan case was tested because 

integrating the GPU code for conical scan required extensive modifications to JMASS. 

     Two versions of JMASS were used, baseline JMASS and modified JMASS.  Baseline 

JMASS is the version currently used by AFIWC, and the target of this, and other, 

hardware acceleration efforts.  During each simulation time step, it performs costly image 

processing computations in software to simulate the missile’s optical path:  reticle image 

rotation and interpolation, and a reticle-scene multiply-add operation.  Modified JMASS 

improves upon baseline JMASS by switching to a lookup-based approach for the reticle 

images, effectively eliminating thousands of repetitive rotation and interpolation 

operations, leaving only the reticle-scene multiply-add operation to be done on a repeated 

basis during the simulation.  As a result of this research, it was mutually agreed upon 

with AFIWC that they should transition JMASS to this lookup-based approach, not only 

to support integration of GPU processing, but because it could improve JMASS 

performance even if GPU acceleration were not used.  Hence, modified JMASS can run 

in either “GPU-assisted” or “Software” modes.  The GPU-assisted version performs the 

reticle-scene multiply-add operation in GPU hardware, using the same GPU code 

implementation that was used in the Phase Two experiments.  The Software version 

accomplishes the calculations in software, analogous to the “C++” processing method 

used in the Phase Two experiments.  GPU-assisted JMASS was tested with both ATI and 
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nVidia graphics cards.  The platform was a 2.8 GHz Pentium 4 (HT) with 512MB RAM, 

running Windows XP Professional (SP1) and DirectX 9.0b.  Only one replication of each 

experiment was conducted. 

     The results for these experiments appear in Table 5-8.  From the table it can be seen 

that Modified JMASS, both the Software and GPU-assisted versions, outperform baseline 

JMASS in every case.  From the analysis at Table A-4, the Software version provides 

about 1.4x speedup over baseline JMASS, and the GPU-assisted version provides about 

1.5x speedup over baseline JMASS, on average.   

Table 5-8.  Execution times, in seconds, compared for original JMASS, modified JMASS and GPU-
assisted JMASS, at the three image sizes.  Each experiment consisted of running the JMASS generic 
MANPADS threat model, set for a 10 second engagement.   

 
                               Modified JMASS 

                              Baseline       Multiply-add              GPU-assisted
                 Image Size      JMASS     In Software        ATI                 nVidia 

1282 579 407 360 359 
2562 2141 1574 1393 1411 
5122 8200 6289 5530 5525 

 
     Modified JMASS (Software) can be viewed as the first of two incremental 

improvements over baseline JMASS:  it implements the more efficient lookup-based 

approach described above, providing 1.4x speedup over baseline JMASS, on average.  

The GPU-assisted version provides a second incremental improvement, enhancing the 

Software version by performing the reticle-scene multiply-add operation in GPU 

hardware.  The GPU speeds up the Software version by about 1.1x, providing an absolute 

speedup over baseline JMASS of 1.5x, on average.  Viewing the successive 

improvements in this manner reveals that the biggest performance gain for JMASS comes 

from transitioning to the lookup-based approach, and using the GPU to further optimize 

the reticle-scene calculations provides only a small additional benefit.  This information 

is summarized in Table 5-9. 
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     As indicated above, the GPU does not provide much of a performance boost to 

JMASS.  The reason for this lies in the fact that Modified JMASS (Software version), by 

going to a lookup-based approach, does away with most of the time-consuming optics 

processing, namely the reticle rotation and interpolation operations.  In so doing, the 

optics calculations become a much smaller contributor to the total JMASS execution 

time.  This is shown in Table 5-9, which gives the estimated4 proportion of JMASS 

Table 5-9.  Percentages of JMASS execution time spent performing optics versus other processing for the 
three versions of JMASS, and the speedup provided by these successive improvements.  Optics processing 
includes reticle rotation and interpolation, and the reticle-scene multiply-add operations.  Modified JMASS 
improves Original JMASS by essentially eliminating the rotation and interpolation operations via 
preprocessing and look-up, but continues to perform the recticle-scene multiply-add operation in software.  
GPU-assisted JMASS improves Modified JMASS by performing the multiply-add operation in GPU 
hardware.  It can be seen that Modified JMASS, in switching to a look-up based approach, makes 
significant improvement to the optics processing.  GPU-assisted JMASS provides further optimization to 
the optics processing, virtually eliminating it as a factor in the total JMASS execution time.  These figures 
show that modifying JMASS to pre-process and look-up reticle images results in the largest improvement.  
Using the GPU to speed up the remaining reticle-scene multiply-add operation adds a further small 
improvement.  
 
       Modified JMASS    
                           Baseline JMASS                         Software                  GPU-Assisted
                     Other                Optics               Other               Optics              Other              Optics 

65% 35% 89% 11% >99% ≤1% 
Incremental Speedup                    →                  1.4x                  →                   1.1x  
over previous version 

Absolute Speedup 
over Baseline JMASS                   →                   1.4x                  →                   1.5x 

 

execution time attributable to optics processing versus other activities for the three tested 

JMASS versions.  In baseline JMASS, optics processing accounts for about 35% of the 

total execution time, whereas in Modified JMASS (Software), it only accounts for 11%.  
                                                 
4 Estimates derived using known GPU execution times and the JMASS execution times from Table 5-8.  
Example:  for the 1282 image size, the ATI GPU takes no more than 2 seconds to process the 2,425 spin 
scan iterations required during the simulation of a 10 second engagement.  Subtracting 2 seconds from the 
360 second GPU-assisted (ATI) JMASS execution time yields 358 seconds for all “other” processing.  
Dividing this number by the execution times of the JMASS versions at the 1282 image size gives the 
fraction of the total time spent in this activity for each.  Percentages shown in Table 5-9 are averages.  
Actual percentages for each image size case vary by +/- 3 percentage points.  These estimates agree with 
results provided by profiler software, which indicate that the optics processing carried out in Modified 
JMASS (Software) accounts for about 10% of the execution time for that JMASS version. 
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Using Amdahl’s famous equation, Modified JMASS (Software) provides about 3.8x 

speedup for the optics processing, compared to baseline JMASS.  At this point, the best 

speedup attainable by further optimizing the optics processing is 1.12x, the speedup that 

would be gained by eliminating the optics calculations altogether.  The GPU therefore 

performs admirably in these experiments, because it almost accomplishes this, with GPU-

assisted JMASS reducing the optics processing time to 1% or less of the total JMASS 

execution time.  Equivalently, the GPU provides speedup on the order of 10-40x 

(depending on the GPU and image size used) for the optics processing compared to 

Modified JMASS (Software).  The end result of all the improvements is the elimination 

of about 35% of the baseline JMASS execution time, which is a significant improvement.  

Unfortunately, the majority of this improvement is due to the efficiency of the lookup-

based approach, and not the GPU.  The reticle-scene multiply-add operation does not 

account for enough of the total JMASS execution time for the GPU to make a big 

difference overall.  

     Somewhat puzzling in these results is the 10-40x speedup indicated for the GPU-

assisted versus non-GPU versions of Modified JMASS.  Recall that the only difference 

between the two versions is the method used for processing the reticle-scene multiply-add 

operation:  GPU hardware, or software.  The GPU speedup observed in these experiments 

is not in line with the results of the Phase Two experiments, in which the GPU yielded a 

maximum of about 7x speedup over the software-based implementation.  Using profiler 

software, it was verified that the reticle-scene multiply-add operation in Modified JMASS 

(Software) accounted for about 10% of the total execution time, meaning that for some 

reason, it runs considerably slower than the functionally equivalent routine used in the 
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Phase Two experiments.  One possible explanation for this difference is that JMASS 

represents the scene as a C++ object, containing an assortment of attributes and methods, 

versus using a simple array.  AFIWC is investigating the cause of the apparent 

inefficiency.  If the inefficiency can be overcome, and the Modified JMASS multiply-add 

routine can be made to run as fast as the one used in the Phase Two experiments, it is 

expected that the already small advantage provided by the GPU-assisted version will 

become even less significant, especially at the smaller two image sizes.         

     An inconsistency seems to exist in the results due to the small difference between the 

ATI and nVidia cases (see Table 5-8).  Using known GPU times for executing the 

approximately 2,500 iterations required for simulating a 10-second engagement, the ATI 

and nVidia cards should be expected to differ in their execution times by approximately 

5, 30, and 70 seconds at the 1282, 2562 and 5122 image sizes respectively.  However, the 

actual differences observed in JMASS execution time when using the different graphics 

cards were only 1, 17 and 5 seconds for the respective image sizes.   

     The simplest explanation for this disparity between expected and observed differences 

in execution time is that JMASS execution times can vary from run to run enough to 

mask the differences in GPU performance.  In this case, a variation of 1-2% would be 

enough.  However, the existence of such variance cannot be confirmed because only one 

replication of each experiment was performed.   

     Another possibility that was investigated is whether the graphics cards behave 

differently when there is significant time delay between calls to the GPU.  In the first 

three phases of experiments, the GPU was tested by calling its processing algorithm 

1,000 times, back to back, with almost no delay between calls.  However, with JMASS, 
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there can be more than two seconds between calls to the GPU.  To see if this was a factor, 

some experiments were run with similar delays inserted between calls to the GPU.  After 

running the experiment using different image sizes and delay times ranging from 0.1 to 

about two seconds, no differences were observed in GPU execution time.  However, large 

fluctuations, sometimes over 10%, were observed in the delay times themselves, even 

when the GPU was completely removed from the experiment.  Further investigation 

revealed that the variance in execution time of the delay loop generally increased when 

the size of the dummy array was increased, and most dramatically when it was increased 

so as to exceed the capacity of the CPU’s level two cache.  Though by no means 

conclusive, such variation in the execution of a simple loop makes it conceivable that 

similar variation could exist in the execution of a large and complex program like 

JMASS. 

     One other possible explanation exists for the above-noted inconsistency, having to do 

with the difference in the floating point precision of the two cards.  Analysis of the 

JMASS output reveals that the simulated IR detector signals produced by the two 

graphics cards during JMASS simulation differ from each other, and from that produced 

by baseline JMASS.  This comes as no surprise, since baseline JMASS uses double- 

precision while the GPU is limited to single-precision, or a subset thereof in the ATI 

case.  Per an AFIWC subject matter expert, it is possible that such differences could 

cause the simulated missile to take longer to acquire or reacquire lock on the target, or to 

lose lock more often, resulting in longer simulations.  Another example of the graphics 

cards producing different results lies in the “miss distance” displayed by JMASS at the 

end of the simulation, indicating the missile’s final proximity to the target.  Given the 
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same simulation parameters, baseline JMASS produces miss distances of just over half a 

meter, nVidia just over a meter, and ATI about 3 meters.  Because nVidia produces miss 

distances that are closer to those generated by baseline JMASS, it is considered more 

accurate.  It is a possible concern that ATI’s considerably larger miss distance could lead 

to falsely predicting a miss when a more accurate simulation would predict a hit.  At this 

point, however, it is only known that these differences exist.  The impact, if any, such 

differences might have on the outcome and validity of JMASS simulations remains to be 

established.    

Summary 

     These experiments accomplished the research goals identified in Chapter IV.  The first 

phase of experiments was designed to compare the candidate graphics cards, and a clear 

winner emerged.  The ATI processor outperformed the nVidia GPU in all cases, 

providing an average 5x speedup over its rival.  This advantage is somewhat unfair, 

however, because the ATI GPU cuts corners with respect to floating point precision, 

resulting in faster processing, but less accurate results.  Though it is too early to tell, these 

inaccuracies may make this card unsuitable for the JMASS application.  The ATI and 

nVidia GPUs sustained useful work rates of up to 2.9 and 0.56 GFLOPS respectively in 

these experiments, displaying formidable processing power—especially considering that 

these figures include the time spent transferring data into and out of the graphics cards. 

     The second phase of experiments pitted GPU hardware acceleration against software-

based alternatives for implementing the JMASS spin scan reticle-scene multiply-add 

operation.  Using the faster ATI graphics card as the representative GPU, GPU hardware 

consistently outperformed C++ and Intel Math Kernel Library software implementations, 
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providing 1.4x to 3.5x speedup, with the GPU achieving its greatest advantage when 

processing the largest 5122 image size.   

     The third phase of experiments compared GPU performance against the same 

software-based alternatives for executing the conical scan variation of the JMASS 

multiply-add operation.  In all but one case, the GPU outperformed C++ and Intel Math 

Kernel Library implementations, providing 0.9x to 2.5x speedup.   

     The results of these experiments demonstrate that the GPU can indeed provide 

significant speedup over software-based alternatives for performing both the spin scan 

and conical scan variations of the JMASS reticle-scene multiply-add operation.  

However, as was forewarned in Chapter I, even the most spectacular GPU speedup could 

be expected to have little effect on JMASS system performance if the multiply-add 

operation were not to account for a significant amount of the total JMASS execution 

time.  The fourth phase of experiments, which integrated GPU processing into JMASS, 

revealed exactly that.  The full suite of optics calculations performed by baseline JMASS 

(rotate, interpolate and multiply-add) only accounted for about 35% of the total baseline 

JMASS execution time, which is much less than originally expected.  Further, in order to 

integrate GPU processing into JMASS, JMASS was modified to use a lookup-based 

approach which eliminated the bulk of the optics computations.  In this modified version 

of JMASS, only the reticle-scene multiply-add operation remained to be optimized, 

accounting for only 11% of the execution time.  As described earlier in this chapter, the 

GPU provided excellent acceleration, reducing the time spent in the multiply-add 

operation so as to account for less than 1% of the total JMASS execution time, yielding 

close to the theoretical maximum achievable acceleration of 1.1x.  The bottom line, with 
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respect to JMASS, is that the GPU provided the best possible speedup given its frequency 

of use.  The results of the first three phases of experiments indicate that the GPU could 

have a much greater impact, providing up to 3.5x speedup, in applications where the 

multiply-add operation accounts for the bulk of the execution time.                   

     On a very positive note, though the original intent of transitioning JMASS to the 

lookup-based approach was to enable the integration of GPU processing, it resulted in a 

1.4x speedup over baseline JMASS.  With the inclusion of GPU processing, the overall 

speedup is increased to 1.5x.  This equates to eliminating 40 minutes of a two-hour 

simulation.   
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VI.  Discussion 

Summary of Findings 

     This research demonstrates GPU hardware can support JMASS spin scan and conical 

scan simulations, performing the reticle-scene multiply-add operation up to 3.5x faster 

than software-based solutions including those that have been cache-optimized.  The GPU 

advantage is greatest when processing larger image sizes, due to increased computational 

intensity, achieving useful work rates as high as 2.9 GFLOPS for this application.  Two 

top-of-the-line consumer graphics cards, the ATI X800XT and nVidia 6800 Ultra, were 

tested, and the ATI card was five times faster on average than its nVidia counterpart in 

executing the JMASS multiply-add operation.  However, the ATI card is also less 

accurate due to its reduced floating point precision, which may or may not impact the 

validity of JMASS simulation results.    

     This research resulted in a 1.5x speedup for JMASS by fostering its transition to a 

lookup-based approach for processing the reticle images which eliminates hundreds of 

thousands of unnecessary image transformation operations.  This speedup is equivalent to 

eliminating 40 minutes of every 2-hour simulation, and therefore delivers a significant, 

immediate benefit to AFIWC. 

     Nevertheless, despite the speed increases afforded by the graphics cards for 

performing the JMASS image processing computations, GPU acceleration impact on 

overall JMASS performance does not reflect the speedup achieved by the GPU.  This is 

not due to any problem with the GPU--the GPU executed the multiply-add operation up 

to 40 times faster than the JMASS program--but rather the multiply-add operation 

accounts for just a small portion of the total JMASS execution time, so optimizing it has 
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a correspondingly small effect.  The results of the first three phases of experiments 

indicate that the GPU could have a much greater impact, providing up to 3.5x speedup, in 

applications where the multiply-add operation accounts for the bulk of the total execution 

time.                   

Final Observations and Recommendations 

     Since JMASS only uses the GPU about 1% of the time for the multiply-add operation, 

the GPU can perform other JMASS processing as well.  One such use is for IR scene 

generation.  Graphics cards excel at rendering complex and dynamic 3D scenes, and so 

will be faster than the procedural methods currently used by JMASS to generate the scene 

images.  Combining scene generation and multiply-add operations in the GPU is very 

efficient because the scene would reside natively in GPU memory, and would not have to 

be uploaded via costly data transfers to the GPU after every scene update. 

     Efforts to accelerate JMASS more using hardware should be focused on the portions 

of JMASS which have not been optimized (e.g., IR scene generation).  Further effort and 

expense devoted to optimizing the JMASS optics calculations, including reticle image 

rotation and interpolation, and reticle-scene multiply-add (a.k.a. “convolution”), is not 

recommended since these now only account for 1% of the JMASS execution time when 

using the GPU (11% otherwise) and further optimization will yield no noticeable 

performance gain for JMASS simulations. 

     The GPU implementations developed in this research can be further optimized.  The 

“Palette” approach used for spin scan can be made more efficient (cf., Chapter III) by not 

processing unneeded images at the top and bottom rows of the palette.  In hindsight this 

inefficiency could be eliminated altogether by modifying the algorithm to take advantage 
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of the fact that sequencing through consecutive groups of 40 reticle images, mod 100, 

returns to the initial group every five iterations.  Thus, all needed reticle image orderings 

can be stored in five smaller palette textures, each containing 40 reticle images instead of 

64.  Since each palette is used in its entirety, there is no need to resize the drawing 

rectangle, and no processing of unwanted images.  The smaller palette textures could also 

support the 5122 image size within GPU memory constraints, whereas the current 

algorithm uses a more complicated and inefficient procedure to deal with the memory 

limitation for this image size.  The proposed approach would therefore support all three 

image sizes with a more efficient, common algorithm.   

     Though designed specifically to support the JMASS image processing requirement, 

the GPU implementations developed for this research could, with some modifications, 

support any application that requires an abundance of image processing operations 

involving shifting and multiplying images, and reducing the results.  However, the GPU 

hardware imposes some restrictions on expandability.  In designing the GPU-based 

algorithms, the chief limitations were GPU memory capacity, maximum supported 

texture size, and the texture dimension and shape constraints imposed by shader 

programs.   

     Given the 256MB memory capacity of the GPUs, 5122 is the largest reticle image size 

that can be supported if all 100 reticle images are to be stored in GPU memory.  The next 

larger (power-of-two) image size, 10242, cannot be supported because 100 images of that 

size would require 400MB of GPU memory, and few, if any, graphics cards are so 

equipped. 
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     All the implementations rely on large-sized textures for storing collections of images, 

such as those used for the reticle palettes and for storing intermediate results between 

rendering passes.  This seems to be a GPU-efficient approach.  However, once again 5122 

is the largest image size supported if a texture containing 64 images is desired.  nVidia 

allows very large 40962 texture sizes, but actually creating a floating point texture of that 

size would use up the entire 256MB of available memory!  Therefore, if future GPUs are 

improved to support larger textures, GPU memory size must also be increased for it to 

benefit this application. 

     Per Chapter III, pixel shader programs impose power-of-two dimension and square 

shape limitations under certain circumstances.  These restrictions can force using larger 

textures than necessary, resulting in wasted GPU processing.  Another limitation with 

respect to pixel shaders is the limited depth of dependent texture addressing supported.  

Dependent texture addressing allows texture coordinates which address one pixel to be 

used to derive the coordinates for another.  Limiting this practice decreases the number of 

adjacent pixels that can be summed or multiplied during a rendering pass, and restricts 

the creativity of the programmer.  Removing these restrictions could allow programmers 

to create more efficient algorithms.   

     This research has demonstrated that graphics cards can provide an impressive 

performance boost for a general computing application, provided the application lends 

itself to SIMD processing and can maintain high enough rates of computational intensity.  

It has further been shown that GPU acceleration can enable slower computers to meet or 

exceed the performance of faster and otherwise better-equipped machines.  If GPU 

technology continues to improve as it has (and given the current state of the PC gaming 
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industry there is no reason to expect otherwise), the limitations described above are not 

likely to exist for long, and the GPU could indeed become the processor of choice for 

many applications.  In the meantime, the latest graphics cards, which support floating 

point operations and can be flexibly programmed via rich APIs and shader programming 

languages, are better prepared than ever to meet the demands of scientific, engineering 

and modeling and simulation applications. 

91 



 

 

 

 

 

 

 

 

This page intentionally left blank. 

92 



 

Appendix A.  Analysis Tables and Figures 
 

 
List of Tables 

 

  Table Page 
 
  A-1a.  Analysis, Phase 1 (1282 & 2562) experiments, ATI vs. nVidia..................................................94 
 
  A-1b.  Analysis, Phase 1 (5122) experiments, ATI vs. nVidia .............................................................97 
 
  A-2a.  Analysis, Phase 2 experiments, GPU vs. C++ & MKL, spin scan ............................................99 
 
  A-2b.  Analysis, Phase 2 experiments, non-changing scene update scheme only ..............................103 
 
  A-2c.  Analysis, Phase 2 experiments, separated by image size.........................................................105 
 
  A-3.  Analysis, Phase 3 experiments, GPU vs. C++ & MKL, conical scan .......................................107 
 
  A-4.  Analysis, Phase 4 experiments, baseline vs. GPU-assisted JMASS..........................................111 
 
   
 

List of Figures 
 

  Figure Page 
 
  A-1a.  Quantile-quantile & errors vs. responses plots, Phase 1 (1282 & 2562) experiments.................96 
 
  A-1b.  Quantile-quantile & errors vs. responses plots, Phase 1 (5122) experiments ............................98 
 
  A-2.  Quantile-quantile & errors vs. responses plots, Phase 2 experiments .......................................102 
 
  A-3.  Quantile-quantile & errors vs. responses plots, Phase 3 experiments .......................................110 
 
  

93 



 

 

94 



 

 

95 



 

 

96 



 

 

97 



 

 

98 



 

 

99 



 

 

100 



 

 

101 



 

 

102 



 

 

103 



 

 

104 



 

 

105 



 

 

106 



 

 

107 



 

 

108 



 

 

109 



 

 

110 



 

111 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank.

112 



 

Appendix B.  GPU Implementation Code 
 

Contents 
                 

File           Page 
 
winAppGPU.cpp ..................................................................................................................................114 
 
GPU_combined.h  (spin scan implementation) ....................................................................................118 
 
  vs_bigtex.txt .......................................................................................................................................131 
 
  ps_bigtex.txt .......................................................................................................................................132 
 
  vs_onebyone.txt..................................................................................................................................133 
 
  ps_onebyone.txt..................................................................................................................................134 
 
  vs_16tapredux_2.txt ...........................................................................................................................135 
 
  ps_16tapredux_2.txt ...........................................................................................................................136  
  
win_CONSCAN.cpp ............................................................................................................................137 
 
GPU_CONSCAN.h  (conical scan implementation) ............................................................................141 
 
  vs_CONSCAN.txt ..............................................................................................................................152 
 
  ps_CONSCAN.txt ..............................................................................................................................153 
 
GPU_UTILITY.h (utility routines used by both implementations)......................................................154 
 
 

  

113 



 

// winAppGPU.cpp  
// 
// by:  Maj Sean Jeffers 
// descr:  windows test application for GPU-based algorithms 
// 27 dec 04 -- modified to output both normal and log-transformed execution time data 
// 
//   
#include "stdafx.h" 
#include "winAppGPU.h" 
#define MAX_LOADSTRING 100 
 
#include <iostream> 
#include <fstream> 
#include <iomanip> 
 
#include <cmath> 
#include "GPU_COMBINED.h" //combined.h or CLASS_ONEBYONE.h CLASS_ONEBYONE_R32F.h 
 
// Global Variables: 
HINSTANCE hInst;     // current instance 
TCHAR szTitle[MAX_LOADSTRING];   // The title bar text 
TCHAR szWindowClass[MAX_LOADSTRING];   // the main window class name 
 
const int EXPER  = 100; 
const int SCENE_SIZE = 128; 
const int WL  = 1; 
const char*  BUS_str  = "PCI-e";   
const char* APRCH_str  = "ATI"; 
const int REPS  = 2; 
const int SIZE_SQ = SCENE_SIZE*SCENE_SIZE; 
 
// WL 3 pt source vars 
const int xmin = SCENE_SIZE/4; 
const int ymin = SCENE_SIZE/4; 
const int xmax = SCENE_SIZE-xmin; 
const int ymax = SCENE_SIZE-ymin; 
//initial conditions 
int oldx = xmin; 
int oldy = ymin; 
int delx = -1; 
int xinc = -1; 
int dely = 0; 
int yinc = -1; 
 
// Forward declarations of functions included in this code module: 
void UpdateScene(int , float*); 
ATOM MyRegisterClass(HINSTANCE hInstance); 
BOOL InitInstance(HINSTANCE, int); 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM); 
 
int APIENTRY _tWinMain(HINSTANCE hInstance, 
                     HINSTANCE hPrevInstance, 
                     LPTSTR    lpCmdLine, 
                     int       nCmdShow) 
{ 
  float reticle[SIZE_SQ]; 
 float scene[SIZE_SQ]; 
     double answer[40]; 
 double times[REPS]; 
 double timeslog[REPS]; 
 double startTime; 
 double endTime; 
  
 double sum  = 0.0; 
 double mean  = 0.0; 
 double var  = 0.0; 
 double stdev  = 0.0; 
 double hi  = 0.0; 
 double low  = 0.0; 
 double sos  = 0.0; 
  
 double sumlog  = 0.0; 
 double meanlog  = 0.0; 
 double varlog  = 0.0; 
 double stdevlog  = 0.0; 
 double soslog  = 0.0; 
 double hilog  = 0.0; 
 double lowlog  = 0.0; 
 
 char WL_str[30]; 
 if (WL ==1){ 
  strcpy(WL_str,"1 - non-changing"); 
 } 
 else if (WL == 2){ 
  strcpy(WL_str,"2 - fully-changing"); 
 } 
 else {  
  strcpy(WL_str,"3 - moving pt source"); 
 } 
  
 //instantiate GPU object 
 Gpu gpu(hInstance,nCmdShow, SCENE_SIZE); 
 //upload  reticles 
 for (int i = 0; i<100; i++){ 
  for (int j = 0; j<SIZE_SQ; j++){ 
   reticle[j] = (float)i; 
  } 
  gpu.uploadReticle(i,reticle); 
 } 
  
 char algorithm[40]; 
 int alg =gpu.GetAlg(); 
 if (alg ==1){ 
  strcpy(algorithm,"BIGTEX"); 
 } 
 else if (alg == 2){ 
  strcpy(algorithm,"ONEBYONE"); 
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 } 
 else if (alg == 3){ 
  strcpy(algorithm,"CONSCAN ONEBYONE R32F"); 
 } 
 else {  
  strcpy(algorithm,"NA"); 
 } 
 // do experiment REPS times 
 for (int rep = 0; rep< REPS; rep++){ 
  //fill initial scene 
  if  ( WL != 3){ 
   for (int j = 0; j<SIZE_SQ; j++){ 
    scene[j]= (float)j; 
   } 
  } 
  else { 
   for (int j = 0; j<SIZE_SQ; j++){ 
    scene[j]= 0.0f; 
   } 
  } 
   
  startTime = (double)timeGetTime(); 
  // run algorithm 1000 x 
  for (int i = 0; i<1000; i++){ 
            gpu.Process(i%100,scene,answer); 
   UpdateScene(WL,scene); 
  } 
  endTime = (double) timeGetTime(); 
  double timeDelta = (endTime-startTime)*0.001f; 
  double timeDeltaLog = log10(timeDelta); 
  times[rep]= timeDelta; 
  timeslog[rep] = timeDeltaLog; 
  sum += timeDelta; 
  sumlog += timeDeltaLog; 
 } 
 //calc stats 
 mean = sum/(double)REPS; 
 meanlog = sumlog/(double)REPS; 
 hi = 0.0; 
 hilog = -1000.0; 
 low = 1000.0; 
 lowlog = 1000.0; 
 
 for (int i =0; i<REPS; i++){ 
  if (times[i]>hi) 
   hi = times[i]; 
  if (times[i]<low) 
   low = times[i]; 
  var += pow( (times[i]-mean),2.0)/(double)(REPS-1); 
  sos += pow( times[i],2); 
  if (timeslog[i]>hilog) 
   hilog = timeslog[i]; 
  if (timeslog[i]<lowlog) 
   lowlog = timeslog[i]; 
  varlog += pow( (timeslog[i]-meanlog),2.0)/(double)(REPS-1); 
  soslog += pow( timeslog[i],2); 
 } 
 stdev = sqrt( var); 
 stdevlog = sqrt (varlog);  
 //write results to file 
 char* name ="results/results_"; 
 char* ext  =".dat"; 
 char num[4]; 
 _itoa(EXPER,num,10); 
 char filename[40]; 
 strcpy(filename,name); 
 strcat(filename,num); 
 strcat(filename,ext); 
 std::ofstream outFile(filename,std::ios::app);//out 
 if (!outFile){ 
  ::MessageBox(0, "can't open results file","GPU" , 0); 
  exit(1); 
 } 
 outFile <<"experiment#: "<<EXPER<<'\n' 
   <<"workload:    "<<WL_str<<'\n' 
   <<"bus:         "<<BUS_str<<'\n' 
   <<"approach:    "<<APRCH_str<<'\n'   
   <<"algorithm:   "<<algorithm<<'\n' 
   <<"size:        "<<SCENE_SIZE<<'\n' 
   <<"mean:        "<<mean<<'\n' 
   <<"variance:    "<<var<<'\n' 
   <<"stdev:       "<<stdev<<'\n' 
   <<"sum of sqrs: "<<sos<<'\n' 
   <<"low:         "<<low<<'\n' 
   <<"hi:          "<<hi<<'\n' 
   <<"mean log:        "<<meanlog<<'\n' 
   <<"variance log:    "<<varlog<<'\n' 
   <<"stdev log :      "<<stdevlog<<'\n' 
   <<"sum of sqrs log: "<<soslog<<'\n' 
   <<"low log:         "<<lowlog<<'\n' 
   <<"hi log:          "<<hilog<<'\n' 
   <<"reps:        "<<REPS<<'\n' 
   <<"data:        "<<'\n'; 
 for (i =0;i<REPS; i++){ 
  outFile<<times[i]; 
  if (!((i+1)%5) || (i==REPS-1)) 
   outFile<<'\t'<<" ..."<<'\n'; 
  else outFile<<'\t'; 
 } 
 outFile<<'\n'<<"data log:        "<<'\n'; 
 for (i =0;i<REPS; i++){ 
  outFile<<std::setprecision(6)<<std::setw(3)<<timeslog[i]; 
  if (!((i+1)%5) || (i==REPS-1)) 
   outFile<<'\t'<<" ..."<<'\n'; 
  else outFile<<'\t'; 
 } 
 outFile<<'\n'<<"answers:"<<'\n'; 
 for (i =0;i<40; i++){ 
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  outFile<<std::setprecision(9)<<std::setw(18)<< 
   std::setiosflags(std::ios::scientific)<<answer[i]; 
  if (!(( i+1)%4)) 
   outFile<<'\n'; 
 } 
 outFile<<'\n'; 
   
 // TODO: Place code here. 
 //----------------------------------------------------------------- 
 MSG msg; 
 HACCEL hAccelTable; 
 
 // Initialize global strings 
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); 
 LoadString(hInstance, IDC_WINAPPGPU, szWindowClass, MAX_LOADSTRING); 
 MyRegisterClass(hInstance); 
 
 // Perform application initialization: 
 if (!InitInstance (hInstance, nCmdShow))  
 { 
  return FALSE; 
 } 
 
 hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)IDC_WINAPPGPU); 
 
 // Main message loop: 
 while (GetMessage(&msg, NULL, 0, 0))  
 { 
  if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))  
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 } 
 
 return (int) msg.wParam; 
} 
//----------------------------------------------------------- 
//  FUNCTION:  UpdateScene() 
//---------------------------------------------------------- 
void UpdateScene(int p_WL, float* p_scene){ 
 if (p_WL == 1){ 
  return; 
 } 
 if (p_WL == 2){ 
  for (int j = 0; j < SIZE_SQ; j++){ 
   p_scene[j] += 1.0f; 
  } 
  return; 
 } 
 else { 
  int x = delx + oldx; 
  int y = dely + oldy; 
  if ( (x<xmin) || (x>xmax) ){ 
   x = oldx; 
   xinc = - xinc; 
   delx = delx+xinc; 
   dely = dely+yinc; 
   y += dely; 
  } 
  if ( (y<ymin) || (y>ymax) ) { 
   y = oldy; 
   yinc = -yinc; 
   delx += xinc; 
   dely += yinc; 
   x += delx; 
  } 
   
  int index = y*SCENE_SIZE + x; 
  int indexold = oldy*SCENE_SIZE + oldx; 
  p_scene[indexold] = 0.0f; 
  p_scene[index] = 1.0f; 
  oldx = x; 
  oldy =y; 
  return; 
 } 
} 
 
// 
//  FUNCTION: MyRegisterClass() 
// 
//  PURPOSE: Registers the window class. 
// 
//  COMMENTS: 
// 
//    This function and its usage are only necessary if you want this code 
//    to be compatible with Win32 systems prior to the 'RegisterClassEx' 
//    function that was added to Windows 95. It is important to call this function 
//    so that the application will get 'well formed' small icons associated 
//    with it. 
// 
ATOM MyRegisterClass(HINSTANCE hInstance) 
{ 
 WNDCLASSEX wcex; 
 
 wcex.cbSize = sizeof(WNDCLASSEX);  
 
 wcex.style = CS_HREDRAW | CS_VREDRAW; 
 wcex.lpfnWndProc = (WNDPROC)WndProc; 
 wcex.cbClsExtra = 0; 
 wcex.cbWndExtra = 0; 
 wcex.hInstance = hInstance; 
 wcex.hIcon = LoadIcon(hInstance, (LPCTSTR)IDI_WINAPPGPU); 
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW); 
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
 wcex.lpszMenuName = (LPCTSTR)IDC_WINAPPGPU; 
 wcex.lpszClassName = szWindowClass; 
 wcex.hIconSm = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL); 
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 return RegisterClassEx(&wcex); 
} 
 
// 
//   FUNCTION: InitInstance(HANDLE, int) 
// 
//   PURPOSE: Saves instance handle and creates main window 
// 
//   COMMENTS: 
// 
//        In this function, we save the instance handle in a global variable and 
//        create and display the main program window. 
// 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 
{ 
   HWND hWnd; 
 
   hInst = hInstance; // Store instance handle in our global variable 
 
   hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW, 
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); 
 
   if (!hWnd) 
   { 
      return FALSE; 
   } 
 
   ShowWindow(hWnd, nCmdShow); 
   UpdateWindow(hWnd); 
 
   return TRUE; 
} 
 
// 
//  FUNCTION: WndProc(HWND, unsigned, WORD, LONG) 
// 
//  PURPOSE:  Processes messages for the main window. 
// 
//  WM_COMMAND - process the application menu 
//  WM_PAINT - Paint the main window 
//  WM_DESTROY - post a quit message and return 
// 
// 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
 int wmId, wmEvent; 
 PAINTSTRUCT ps; 
 HDC hdc; 
 
 switch (message)  
 { 
 case WM_COMMAND: 
  wmId    = LOWORD(wParam);  
  wmEvent = HIWORD(wParam);  
  // Parse the menu selections: 
  switch (wmId) 
  { 
  case IDM_ABOUT: 
   DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, (DLGPROC)About); 
   break; 
  case IDM_EXIT: 
   DestroyWindow(hWnd); 
   break; 
  default: 
   return DefWindowProc(hWnd, message, wParam, lParam); 
  } 
  break; 
 case WM_PAINT: 
  hdc = BeginPaint(hWnd, &ps); 
  // TODO: Add any drawing code here... 
  EndPaint(hWnd, &ps); 
  break; 
 case WM_DESTROY: 
  PostQuitMessage(0); 
  break; 
 default: 
  return DefWindowProc(hWnd, message, wParam, lParam); 
 } 
 return 0; 
} 
 
// Message handler for about box. 
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
 switch (message) 
 { 
 case WM_INITDIALOG: 
  return TRUE; 
 
 case WM_COMMAND: 
  if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)  
  { 
   EndDialog(hDlg, LOWORD(wParam)); 
   return TRUE; 
  } 
  break; 
 } 
 return FALSE; 
} 
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// file: GPU_combined.h 
// 
// by:   Maj Sean Jeffers 
// requires external files: 
// GPU_UTILITY.h  -- contains namespace d3d utility functions InitD3D() 
//        GPU_WndProc CALLBACK and Gpu_WndClass definition 
//  source/vs_bigtex.txt   -- vertex shader used by MAddReduce() for BIGTEX 
//  source/ps_bigtex.txt   -- pixel shader used by  MAddReduce() for BIGTEX 
//  source/ps_onebyone.txt   -- PS used for MAddReduce() for ONEBYONE 
//  source/vs_onebyone.txt   -- PS used for MAddReduce() for ONEBYONE 
//  source/vs_16tapredux_2.txt    -- vertex shader used by Redux() 
//  source/ps_16tapredux_2.txt    -- pixel shader used by  Redux() 
// 
// 27 dec   -- combined BIGTEX for 128/256 and ONEBYONE for 512 size; modified both 
//             BIGTEX and ONEBYONE pixel shaders to take 128-bit tex's in, but output 
//             to R32F for speed;  ps_experimental and ps_maddreduce_new were modified 
//             
#ifndef GPU_CLASS_H_BY_MAJ_JEFFERS 
#define GPU_CLASS_H_BY_MAJ_JEFFERS 
 
#include <d3dx9.h> 
#include "GPU_UTILITY.h" 
 
#include <stdlib.h> 
#include <cstring> 
#include <cmath> 
 
//------------------ CONSTANTS---------------- 
#define GPU_WINDOW_WIDTH 1024 
#define GPU_WINDOW_HEIGHT 768 
#define D3D_FORMAT D3DFMT_A32B32G32R32F 
#define STRIDE  16 
//-------------------------------------------- 
 
class Gpu { 
 
private:  
 HINSTANCE  hInst; 
 int  nCmdShow; 
 IDirect3DDevice9*  Device;   
 const int  SceneSize; 
 int  ScenePixels; 
 float  fPixSizeX;   
 float  fPixSizeY;  
 //D3DXVECTOR4  DataArray[2048*2048]; 
 int  OutTexSize; 
 long  OutPixels; 
 //int  ViewportSize; 
 int  ReduceIterations; 
 int  TexIndex; 
 bool  DualRT; 
 int  start1; 
 int  end1; 
 int  end2; 
 
 //VS1 
 IDirect3DVertexShader9*   VS1_maddreduce; 
 ID3DXConstantTable*   VS1_VSCT;     
 D3DXHANDLE   VS1_PixelSizeHandle;  
 //PS1 
 IDirect3DPixelShader9*  PS1_maddreduce; 
 ID3DXConstantTable*   PS1_PSCT; 
 D3DXHANDLE   PS1_PixelSizeHandle; 
 
 //VS2 
 IDirect3DVertexShader9*   VS2_16tapreduce; 
 ID3DXConstantTable*       VS2_VSCT; 
 D3DXHANDLE   VS2_offsetHandle; 
  
 //PS2 
 IDirect3DPixelShader9*    PS2_16tapreduce; 
 ID3DXConstantTable*       PS2_PSCT; 
 D3DXHANDLE   PS2_offsetHandle; 
 D3DXHANDLE   PS2_mulHandle; 
 
 // PARAMETERS PASSED TO PS & VS 
 D3DXVECTOR2   offset[3][16]; 
  
 // VERTEX BUFFER & DECL 
 LPDIRECT3DVERTEXDECLARATION9 m_pDecl;   
 IDirect3DVertexBuffer9* QuadVB; 
  
 // TEXTURES & SURFACES 
 IDirect3DTexture9*  Scene_Tex; 
 IDirect3DSurface9*  Scene_Surface; 
 
 IDirect3DTexture9*  Reticle_Tex[100]; 
 IDirect3DSurface9*  Reticle_Surface[100]; 
 
 IDirect3DTexture9*  RT_Tex; 
 IDirect3DSurface9*  RT_Surface; 
  
 IDirect3DTexture9*  Pal_Tex[4]; 
 IDirect3DSurface9*  Pal_Surf[4]; 
 
 IDirect3DTexture9*  RT_Reduce_Tex[3];  
 IDirect3DSurface9*  RT_Reduce_Surface[3]; 
// IDirect3DTexture9*  RT_Reduce_Tex2[3];  
// IDirect3DSurface9*  RT_Reduce_Surface2[3]; 
 
 IDirect3DTexture9*  Ones_Tex; 
 IDirect3DSurface9*  Ones_Surface; 
 
 // transformation matrices 
 D3DXMATRIX  mWorld; 
 D3DXMATRIX  mView; 
 D3DXMATRIX  mProj; 
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 // --------------------- STRUCTS  ---------------------- 
  
 struct CUSTOMVERTEX 
 { 
  FLOAT       x; 
  FLOAT       y; 
 }; 
 
public: 
 //constructor 
 Gpu(HINSTANCE p_hInst, int p_nCmdShow, int p_SceneSize) 
  :hInst (p_hInst), nCmdShow(p_nCmdShow), SceneSize (p_SceneSize/2) 
 { 
  Device =0; 
   
  ScenePixels  = SceneSize*SceneSize; 
   
  fPixSizeX  = -1.0f / (float)SceneSize; 
  fPixSizeY  =  1.0f / (float) SceneSize; 
     
  //VS1 
  VS1_maddreduce = 0; 
  VS1_VSCT  = 0; 
  VS1_PixelSizeHandle = 0; 
  //PS1 
  PS1_maddreduce = 0; 
  PS1_PSCT  = 0; 
  //VS2 
  VS2_16tapreduce = 0; 
  VS2_VSCT  = 0; 
  VS2_offsetHandle    = 0; 
   
  //PS2 
  PS2_16tapreduce = 0; 
  PS2_PSCT  = 0; 
  PS2_offsetHandle    = 0; 
  // vertex buffer ptr 
  QuadVB  = 0; 
   
  if(!d3d::InitD3D(hInst, nCmdShow,  
   GPU_WINDOW_WIDTH, GPU_WINDOW_HEIGHT, true, D3DDEVTYPE_HAL, &Device)) 
  { 
   ::MessageBox(0, "InitD3D() - FAILED", 0, 0); 
  } 
   
  if(!Setup()){ 
   ::MessageBox(0, "Setup() - FAILED", 0, 0); 
  } 
   
  DualRT = false; 
  // modular actions depending on algorithm 
  InitShaders(); 
  InitReticlesAndScene(); 
  InitRenderTargets_hybrid();  
 
 }//Gpu() CONSTRUCTOR  
 
private:  
 //---------------------------------------------------------- 
 //  InitShaders()   
 //  creates & compiles shaders 
 //---------------------------------------------------------- 
 bool InitShaders(){ 
  HRESULT hr = 0; 
   
  // *** PS1 
   
  ID3DXBuffer* PSBuffer = 0; 
  ID3DXBuffer* errorBuffer  = 0; 
   
  char pathPS1[50]= ""; 
  char pathVS1[50]= ""; 
  char* psbigtex = "source/ps_bigtex.txt"; 
  char* vsbigtex = "source/vs_bigtex.txt"; 
  char* psonebyone = "source/ps_onebyone.txt"; 
  char* vsonebyone = "source/vs_onebyone.txt"; 
   
  if (SceneSize == 256){ 
             strcpy(pathPS1,psonebyone); 
   strcpy(pathVS1,vsonebyone); 
  } 
  else { 
   strcpy(pathPS1,psbigtex); 
   strcpy(pathVS1,vsbigtex); 
  } 
   
   
  hr = D3DXCompileShaderFromFile( 
   pathPS1,  
   0, 
   0, 
   "PSMain", // entry point function name 
   "ps_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &PSBuffer, 
   &errorBuffer, 
   &PS1_PSCT); 
 
  // output any error messages 
  if( errorBuffer ) 
  { 
   ::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "PS1--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
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   return false; 
  } 
   
  // create pixel shader 
  hr = Device->CreatePixelShader( 
   (DWORD*)PSBuffer->GetBufferPointer(), 
   &PS1_maddreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreatePixelShader PS1 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(PSBuffer); 
 
  // *** PS2 
   
  ID3DXBuffer* PS2Buffer  = 0; 
  ID3DXBuffer* errorBuffer2 = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   "source/ps_16tapredux_2.txt",  
   0, 
   0, 
   "PSMain", // entry point function name 
   "ps_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPVALIDATION OPTIMIZATION 
   &PS2Buffer, 
   &errorBuffer2, 
   &PS2_PSCT); 
 
  // output any error messages 
  if( errorBuffer2 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer2->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer2); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "PS2--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create pixel shader 
  hr = Device->CreatePixelShader( 
   (DWORD*)PS2Buffer->GetBufferPointer(), 
   &PS2_16tapreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreatePixelShader PS2 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(PS2Buffer); 
 
  // *** VS1  
   
  ID3DXBuffer* VSBuffer      = 0; 
  ID3DXBuffer* errorBuffer3 = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   pathVS1, 
   0, 
   0, 
   "Main", // entry point function name 
   "vs_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &VSBuffer, 
   &errorBuffer3, 
   &VS1_VSCT); 
 
  // output any error messages 
  if( errorBuffer3 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer3->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer3); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "VS1--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create vertex shader 
  hr = Device->CreateVertexShader( 
   (DWORD*)VSBuffer->GetBufferPointer(), 
   &VS1_maddreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreateVertexShader VS1 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(VSBuffer); 
   
  // *** VS2 
  ID3DXBuffer* VS2Buffer      = 0; 
  ID3DXBuffer* errorBuffer4 = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   "source/vs_16tapredux_2.txt",  
   0, 
   0, 
   "Main", // entry point function name 
   "vs_2_0", 
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   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &VS2Buffer, 
   &errorBuffer4, 
   &VS2_VSCT); 
 
  // output any error messages 
  if( errorBuffer4 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer4->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer4); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "VS2--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create vertex shader 
  hr = Device->CreateVertexShader( 
   (DWORD*)VS2Buffer->GetBufferPointer(), 
   &VS2_16tapreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreateVertexShader VS2 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(VS2Buffer); 
   
  //get VS1 pixelsize constant handle 
  VS1_PixelSizeHandle = VS1_VSCT->GetConstantByName(0, "PixelSize"); 
   
  if (SceneSize != 256){ 
   PS1_PixelSizeHandle = PS1_PSCT->GetConstantByName(0, "PixelSize"); 
  }  
  // get PS2 and VS2 const handles  
  VS2_offsetHandle = VS2_VSCT->GetConstantByName(0, "offset"); 
  PS2_offsetHandle = PS2_PSCT->GetConstantByName(0, "offset"); 
   
  return true; 
   
 }// InitShaders() 
  
 //--------------------------------------------------------- 
 //        InitReticlesAndScene() 
 // loads reticle images into GPU, creates reticle and scene surfaces 
 //  and textures in GPU memory 
 //-------------------------------------------------------- 
 bool InitReticlesAndScene(){ 
  //-------------------------------------------- 
  // create scene texture and surface 
  //-------------------------------------------- 
  HRESULT hr = 0;   
  hr = D3DXCreateTexture( 
   Device, 
   SceneSize, SceneSize, 
   1, // no mipmap chain 
   D3DUSAGE_DYNAMIC, //was 0--keep DYNAMIC! 
   D3D_FORMAT, 
   D3DPOOL_DEFAULT, 
   &Scene_Tex); 
  if(FAILED(hr))   
   return false; 
   
  //get interface to top level surface of Scene_Tex 
  hr = Scene_Tex->GetSurfaceLevel(0,&Scene_Surface); 
  if(FAILED(hr)) 
   return false; 
   
  // create 100 reticle textures or 4 8x8 pallettes, depending 
  //   on whether image size is 512 or 256/128 
  if (SceneSize == 256){ 
   //create 100 individual reticle textures 
   for (int i = 0; i<100; i++){ 
 
    hr = D3DXCreateTexture( 
     Device, 
     SceneSize, SceneSize, 
     1, // no mipmap chain 
     0,//D3DUSAGE_DYNAMIC, //usage 
     D3D_FORMAT, 
     D3DPOOL_DEFAULT, 
     &Reticle_Tex[i]); 
    if(FAILED(hr))   
     return false; 
   
    //get interface to top level surface of each tex  
    hr = Reticle_Tex[i]->GetSurfaceLevel(0,&Reticle_Surface[i]); 
    if(FAILED(hr)) 
     return false; 
   } 
  } 
  else { 
   //create 4 reticle pallette textures 
   for (int i = 0; i<4; i++){ 
 
    hr = D3DXCreateTexture( 
     Device, 
     SceneSize*8, SceneSize*8, 
     1, // no mipmap chain 
     0,//D3DUSAGE_DYNAMIC, //usage; DYNAMIC loads faster 
     D3D_FORMAT, 
     D3DPOOL_DEFAULT, 
     &Reticle_Tex[i]); 
    if(FAILED(hr))   
     return false; 
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    //get interface to top level surface of each tex  
    hr = Reticle_Tex[i]->GetSurfaceLevel(0,&Reticle_Surface[i]); 
    if(FAILED(hr)) 
     return false; 
 
    //create 4 dynamic textures in SYSTEMMEM to build pallettes 
      
    hr = D3DXCreateTexture( 
     Device, 
     SceneSize*8, SceneSize*8, 
     1, // no mipmap chain 
     D3DUSAGE_DYNAMIC, //can't be DYNAMIC and RT 
     D3D_FORMAT, 
     D3DPOOL_SYSTEMMEM, 
     &Pal_Tex[i]); 
    if(FAILED(hr))   
     return false; 
    
    //get interface to top level surface   
    hr = Pal_Tex[i]->GetSurfaceLevel(0, &Pal_Surf[i]); 
    if(FAILED(hr)) 
     return false; 
    
   } 
  } 
   
  return true; 
 }  // InitReticlesAndScene() 
  
 //------------------------------------------------------ 
 //                InitRenderTargets_hybrid() 
 //------------------------------------------------------ 
 bool InitRenderTargets_hybrid() { 
   
  HRESULT hr = 0; 
   
  //Set Init_RTSize -- the size of RT resulting from first mul-reduce op 
  //Set ReduceIterations -- controls how many times the 16:1 reduce will be 
  //                        run after the 1st mul-reduce has been done 
  int Init_RTSize; 
   
  if (SceneSize == 64){ 
   Init_RTSize = 256; 
   ReduceIterations = 2; 
  } 
  else if (SceneSize == 128){ 
   Init_RTSize = 512; 
   ReduceIterations = 3; 
  } 
   
  else { 
   Init_RTSize = 1024;  
   ReduceIterations = 3; 
   start1 = 0; 
   end1 = 40; 
  } 
  //Set OutTexSize--the size of the final RT we will get our 
  //   result(s) from; affects GetRTData() 
  OutTexSize = 8*SceneSize/(2*((int)pow(4,ReduceIterations)));  
  OutPixels = OutTexSize*OutTexSize; 
 
  //SET TexIndex-- the array index of the RT_Reduce_Surface[] that will contain 
  //  the final result; affects GetRTData() 
  TexIndex = ReduceIterations-1; 
   
  // create initial RT (half the reticle pallette size because of 4:1 reduction) 
  hr = Device->CreateTexture(Init_RTSize,Init_RTSize,1, 
     D3DUSAGE_RENDERTARGET, D3DFMT_R32F, 
                       D3DPOOL_DEFAULT,&RT_Tex,0);//D3D_FORMAT 
  if(FAILED(hr)) 
    return false; 
 
  //get interface to top level surface   
  hr = RT_Tex->GetSurfaceLevel(0, &RT_Surface); 
  if(FAILED(hr)) 
   return false;     
     
  // create render targets for reduction op (2 or 3) 
  int Size = Init_RTSize/4; 
  for (int i=0; i<ReduceIterations; i++){ 
   hr = D3DXCreateTexture( 
    Device, 
    Size, Size, 
    1, // no mipmap chain 
    D3DUSAGE_RENDERTARGET, //can't be DYNAMIC and RT 
    D3DFMT_R32F,//D3D_FORMAT 
    D3DPOOL_DEFAULT, 
    &RT_Reduce_Tex[i]); 
   if(FAILED(hr))   
    return false; 
   
   //get interface to top level surface   
   hr = RT_Reduce_Tex[i]->GetSurfaceLevel(0, &RT_Reduce_Surface[i]); 
   if(FAILED(hr)) 
    return false; 
    
   Size /= 4; 
  } 
   
  //create SYSTEMMEM tex to send result(s) to 
  hr = D3DXCreateTexture( 
    Device, 
    OutTexSize, OutTexSize, 
    1, // no mipmap chain 
    D3DUSAGE_DYNAMIC, // try dynamic and zero 
    D3DFMT_R32F, //D3D_FORMAT, 
    D3DPOOL_SYSTEMMEM, 
    &Ones_Tex); 
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  if(FAILED(hr))   
   return false; 
  //get interface to top level surface of Ones_Tex[]   
  hr = Ones_Tex->GetSurfaceLevel(0, &Ones_Surface); 
  if(FAILED(hr)) 
   return false; 
 
  // *** OFFSET ARRAYS FOR 16:1 REDUCE -- sent to vs and ps to calculate texcoords for adjacent 
  //  pixels in the 4x4 block 
     
  // PixelSize of input texture to first reduce op 
  float PixelSize2 = 1/(float)Init_RTSize; 
    
  // calculate displacements 
  for (int k = 0; k<ReduceIterations; k++){ 
   for (int i = 0; i<4; i++){ 
    for(int j = 0; j<4; j++){ 
     offset[k][i*4 +j] = D3DXVECTOR2(PixelSize2*(float)j, PixelSize2*(float)i); 
    } 
   } 
   PixelSize2 *= 4.0f; 
  } 
     
  return true;  
 }// InitRenderTargets_hybrid() 
 
 //----------------------------------------------------------- 
 //      Setup() 
 // Initializes geometry, renderstate, calls  
 //   InitRenderTargets, InitShaders, InitReticlesAndScene 
 //----------------------------------------------------------- 
 bool Setup() { 
 
  HRESULT hr = 0; 
 
  //---------------- DISABLE unneeded processing ------------------ 
  // turn off Stencil and Culling 
  hr = Device->SetDepthStencilSurface( 
   0); 
  if(FAILED(hr))   
   return false; 
  hr = Device->SetRenderState(D3DRS_CULLMODE,D3DCULL_NONE); 
  if(FAILED(hr))   
   return false; 
  // disable lighting 
   
  Device->SetRenderState(D3DRS_LIGHTING, false); 
 
  //------------------ create geometry ----------------------------  
   
  D3DVERTEXELEMENT9 decl[]=  
  { 
  {0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, 
  D3DDECL_END() 
  }; 
  // declare the vertex structure 
  hr = Device->CreateVertexDeclaration(decl, &m_pDecl); 
  if(FAILED(hr))   
   return false; 
  // create VB with only x,y position 
  hr = Device->CreateVertexBuffer( 56 * sizeof(CUSTOMVERTEX), //was 4 
      D3DUSAGE_WRITEONLY, 
      0,  
      D3DPOOL_DEFAULT, 
      &QuadVB, 
      NULL); 
  if(FAILED(hr))   
   return false; 
    
  float left = -1.00f; 
  float right =  1.00f; 
  float top  =  1.00f; 
  float bottom = -1.00f; 
  float top_row2 =  0.75f; 
  float top_row3 =  0.50f; 
  float top_row4 =  0.25f; 
  float top_row5   =  0.00f; 
  float top_row7   = -0.50f; 
  float top_row8   = -0.75f; 
  float bot_row1   =  0.75f; 
  float bot_row2   =  0.50f; 
  float bot_row4   =  0.00f; 
  float bot_row5 = -0.25f; 
  float bot_row6 = -0.50f; 
  float bot_row7   = -0.75f; 
   
  CUSTOMVERTEX* v; 
  QuadVB->Lock(0, 56 * sizeof(CUSTOMVERTEX), (VOID**)&v, 0);//was 4 
  //quad 0 full square 
  // left bottom 
  v[0].x = left; 
  v[0].y = bottom;//bottom 
 
  // left top 
  v[1].x = left; 
  v[1].y = top; 
 
  // right bottom  
  v[2].x = right; 
  v[2].y = bottom;//bottom 
 
  // right top 
  v[3].x = right; 
  v[3].y = top; 
   
  //quad 1 r1-5 
  // left bottom 
  v[4].x = left; 
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  v[4].y = bot_row5;//5 
 
  // left top 
  v[5].x = left; 
  v[5].y = top; 
 
  // right bottom  
  v[6].x = right; 
  v[6].y = bot_row5;//5 
 
  // right top 
  v[7].x = right; 
  v[7].y = top; 
 
  //quad 2 r2-6 
  // left bottom 
  v[8].x = left; 
  v[8].y = bot_row6; 
 
  // left top 
  v[9].x = left; 
  v[9].y = top_row2; 
 
  // right bottom  
  v[10].x = right; 
  v[10].y = bot_row6; 
 
  // right top 
  v[11].x = right; 
  v[11].y = top_row2; 
   
  //quad 3 r3-7 
  // left bottom 
  v[12].x = left; 
  v[12].y = bot_row7; 
 
  // left top 
  v[13].x = left; 
  v[13].y = top_row3; 
 
  // right bottom  
  v[14].x = right; 
  v[14].y = bot_row7; 
 
  // right top 
  v[15].x = right; 
  v[15].y = top_row3; 
   
  //quad 4 r4-8 
  // left bottom 
  v[16].x = left; 
  v[16].y = bottom; 
 
  // left top 
  v[17].x = left; 
  v[17].y = top_row4; 
 
  // right bottom  
  v[18].x = right; 
  v[18].y = bottom; 
 
  // right top 
  v[19].x = right; 
  v[19].y = top_row4; 
 
  //quad 5 r1-6 
  // left bottom 
  v[20].x = left; 
  v[20].y = bot_row6; 
 
  // left top 
  v[21].x = left; 
  v[21].y = top; 
 
  // right bottom  
  v[22].x = right; 
  v[22].y = bot_row6; 
 
  // right top 
  v[23].x = right; 
  v[23].y = top; 
   
  //quad 6 r2-7 
  // left bottom 
  v[24].x = left; 
  v[24].y = bot_row7; 
 
  // left top 
  v[25].x = left; 
  v[25].y = top_row2; 
 
  // right bottom  
  v[26].x = right; 
  v[26].y = bot_row7; 
 
  // right top 
  v[27].x = right; 
  v[27].y = top_row2; 
   
  //quad 7 r3-8 
  // left bottom 
  v[28].x = left; 
  v[28].y = bottom; 
 
  // left top 
  v[29].x = left; 
  v[29].y = top_row3; 
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  // right bottom  
  v[30].x = right; 
  v[30].y = bottom; 
 
  // right top 
  v[31].x = right; 
  v[31].y = top_row3; 
  
  //quad 8 T1 
  // left bottom 
  v[32].x = left; 
  v[32].y = bot_row1; 
 
  // left top 
  v[33].x = left; 
  v[33].y = top; 
 
  // right bottom  
  v[34].x = right; 
  v[34].y = bot_row1; 
 
  // right top 
  v[35].x = right; 
  v[35].y = top; 
   
  //quad 9 B2 
  // left bottom 
  v[36].x = left; 
  v[36].y = bottom; 
 
  // left top 
  v[37].x = left; 
  v[37].y = top_row7; 
 
  // right bottom  
  v[38].x = right; 
  v[38].y = bottom; 
 
  // right top 
  v[39].x = right; 
  v[39].y = top_row7; 
 
  //quad 10 T4 
  // left bottom 
  v[40].x = left; 
  v[40].y = bot_row4; 
 
  // left top 
  v[41].x = left; 
  v[41].y = top; 
 
  // right bottom  
  v[42].x = right; 
  v[42].y = bot_row4; 
 
  // right top 
  v[43].x = right; 
  v[43].y = top; 
 
  //quad 11 B1 
  // left bottom 
  v[44].x = left; 
  v[44].y = bottom; 
 
  // left top 
  v[45].x = left; 
  v[45].y = top_row8; 
 
  // right bottom  
  v[46].x = right; 
  v[46].y = bottom; 
 
  // right top 
  v[47].x = right; 
  v[47].y = top_row8; 
 
  //quad 12 B4 
  // left bottom 
  v[48].x = left; 
  v[48].y = bottom; 
 
  // left top 
  v[49].x = left; 
  v[49].y = top_row5; 
 
  // right bottom  
  v[50].x = right; 
  v[50].y = bottom; 
 
  // right top 
  v[51].x = right; 
  v[51].y = top_row5; 
 
  //quad 13 T2 
  // left bottom 
  v[52].x = left; 
  v[52].y = bot_row2; 
 
  // left top 
  v[53].x = left; 
  v[53].y = top; 
 
  // right bottom  
  v[54].x = right; 
  v[54].y = bot_row2; 
 
  // right top 
  v[55].x = right; 
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  v[55].y = top; 
 
  QuadVB->Unlock(); 
   
  // set vertex declaration  (will not change again) 
  Device->SetVertexDeclaration(m_pDecl); 
   
  if (SceneSize == 256){ 
              // set geometry (will not change again) 
   Device->SetStreamSource(0, QuadVB, 0, sizeof(CUSTOMVERTEX)); 
  } 
  return true; 
 }//Setup() 
  
  
private: 
 //------------------------------------------------------------ 
 // ---------------------- LOAD INPUT SCENE ------------------- 
 //------------------------------------------------------------ 
 bool LoadInputScene(float p_inputArray[]) { 
  RECT SurfRect; 
  SurfRect.left = 0; 
  SurfRect.top = 0; 
  SurfRect.right = SceneSize; 
  SurfRect.bottom  = SceneSize; 
   
  HRESULT hr = 0; 
  hr= D3DXLoadSurfaceFromMemory( 
   Scene_Surface, 
   0, 
   0, 
   p_inputArray, 
   D3D_FORMAT, 
   (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
   0, 
   &SurfRect, 
   D3DX_FILTER_NONE, 
   0); 
  if(FAILED(hr)) 
   return false; 
  return true; 
 }//LoadInputScene()  
 
 //---------------------------------------------------------------- 
 // Redux() 
 //        16:1 REDUCE OPERATION  
 //  Uses files:  vs_16tapredux_2.txt and ps_16tapredux_2.txt 
 //---------------------------------------------------------------- 
 bool Redux() { 
  HRESULT hr = 0; 
 
  // ---- set PS and VS shaders 
  Device->SetVertexShader(VS2_16tapreduce); 
  Device->SetPixelShader (PS2_16tapreduce); 
   
  // initial source tex is result of maddreduce op 
  Device->SetTexture( 0, RT_Tex); 
   
  for (int i = 0; i < ReduceIterations; i++) { 
    
   hr = Device->SetRenderTarget( 0, RT_Reduce_Surface[i]); 
   if(FAILED(hr)) 
    return false; 
    
   if (i>0)  
    Device->SetTexture( 0, RT_Reduce_Tex[i-1]);  
 
   // set VS offset constant array 
   hr = VS2_VSCT->SetFloatArray( Device,  
       VS2_offsetHandle,  
       (float*)&offset[i][0], 
       16 );// 2*8 floats  
   if(FAILED(hr)) 
    return false; 
   
   // set PS offset constant array 
   hr = PS2_PSCT->SetFloatArray( Device,  
       PS2_offsetHandle,  
       (float*) &offset[i][8], 
       16 );//2*8 floats 
   if(FAILED(hr)) 
    return false; 
    
   // render-- do 16:1 reduction on source image 
    
   //Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0); 
   Device->BeginScene(); 
    Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2); 
   Device->EndScene(); 
  } 
  return true; 
 } // Redux() 
  
 //----------------------------------------------------------- 
 // bool MAddReduce()  
 // for ONEBYONE (Palette) approach 
 // uses files:  vs_onebyone.txt and ps_onebyone.txt 
 //----------------------------------------------------------- 
 bool MAddReduce(int p_retIndexStart){  
  HRESULT hr = 0; 
   
  // ---- set PS and VS shaders 
  Device->SetVertexShader(VS1_maddreduce); 
  Device->SetPixelShader(PS1_maddreduce); 
   
  // set VS PixelSize const 
  // PixelSizeX & Y initialized as Global constants 
  hr = VS1_VSCT->SetVector(Device, VS1_PixelSizeHandle,  
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     &D3DXVECTOR4(fPixSizeX, fPixSizeY, 1.0f, 1.0f)); 
  if(FAILED(hr)) 
   return false; 
 
  // ---- set RT   
  hr = Device->SetRenderTarget( 0, RT_Surface); 
  if(FAILED(hr)) 
   return false; 
   
  Device->SetStreamSource(0, QuadVB, 0, sizeof(CUSTOMVERTEX)); 
   
  D3DVIEWPORT9 vp; 
   
  vp.Width  = SceneSize/2; 
  vp.Height = SceneSize/2; 
  vp.MinZ   = 0.0f; 
  vp.MaxZ   = 1.0f; 
   
  Device->SetTexture( 0, Scene_Tex);//stage 0 = input scene 
   
  for (int v = 0; v<5; v++){ 
   for (int h = 0; h<8; h++){ 
    vp.X = h*SceneSize/2; 
    vp.Y = v*SceneSize/2; 
    Device->SetViewport(&vp); 
    // set sampler 1 with reticle image for maddredux with scene 
    Device->SetTexture( 1, Reticle_Tex[(p_retIndexStart + (v*8+h))%100] ); 
     
    // render-- madd scene with a single reticle image 
    Device->BeginScene(); 
     Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2); 
    Device->EndScene(); 
   } 
  } 
  // set streamsource to 8x5 rectangle r1-r5, Quad 1 
  Device->SetStreamSource(0, QuadVB, 4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX)); 
  return true; 
 } //MAddReduce() 
 
 //--------------------------------------------------------------- 
 //     MAddReduce_hybrid() 
 // For 128 and 256 input scene sizes. 
 // multiplies input scene with a 8x8 reticle pallette using WRAPing when 
 // sampling the scene and does 4:1 reduction.  Scene width is 1/8 the width of the pallette. 
 // Adjusts size of rendering rectangle to cut out unneeded calculations.   
 // This rendering rectangle remains set for the reduction op, too. 
 // 
 // Uses files:  vs_bigtex.txt and ps_bigtex.txt 
 //--------------------------------------------------------------- 
 bool MAddReduce_hybrid(int p_retIndex){  
   
  HRESULT hr = 0; 
  int row = 0; 
  int col = 0; 
  int diff = p_retIndex;//=0 
   
  //determines which of the 4 pallettes to use, 
  // ensuring 40 contiguous retiles present in the pallette 
  //set pallette as texture stage 0 
  if (p_retIndex <= 24){ 
   Device->SetTexture( 0, Reticle_Tex[0]); 
   row = p_retIndex/8;  
   col = p_retIndex%8; 
  } 
  else if (p_retIndex<=49){ 
   Device->SetTexture( 0, Reticle_Tex[1]); 
   diff = p_retIndex-25; 
   row =  diff/8; 
   col = diff%8; 
  } 
  else if (p_retIndex<=74){ 
   Device->SetTexture( 0, Reticle_Tex[2]); 
   diff = p_retIndex-50; 
   row = diff/8; 
   col = diff%8; 
  } 
  else { 
   Device->SetTexture( 0, Reticle_Tex[3]); 
   diff = p_retIndex-75; 
   row = diff/8; 
   col = diff%8; 
  } 
   
  //new code 
  start1 = diff; 
  end1 = diff+40; 
  // 
 
  if ( col == 0) 
   Device->SetStreamSource(0, QuadVB, (row+1)*4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX)); 
  else  
   Device->SetStreamSource(0, QuadVB, (row+1+4)*4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX)); 
   
  //set VS and PS  
  Device->SetVertexShader(VS1_maddreduce); 
  Device->SetPixelShader (PS1_maddreduce); 
   
  hr = VS1_VSCT->SetVector(Device, VS1_PixelSizeHandle,  
     &D3DXVECTOR4(1.0f/(float)(SceneSize*8), 
            1.0f/(float)SceneSize, 0.0f, 1.0f)); 
     
  // ---set tex stage 1 to be input scene 
  Device->SetTexture(1,Scene_Tex); 
   
  hr = Device->SetRenderTarget( 0, RT_Surface); 
  if(FAILED(hr)) 
   return false; 
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  // render: multiply input scene with reticle image and do 4:1 reduction 
  
  //Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0); 
  Device->BeginScene(); 
   Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);//was 0 
  Device->EndScene(); 
  
  return true; 
 }//MAddReduce_hybrid() 
 
  
 
 //------------------------------------------------------------------ 
 //     GetRTData_hybrid() 
 //       retrieve FINAL data from lockable render-to surface 
 //------------------------------------------------------------------ 
 void GetRTData_hybrid(double p_b[]) { 
  HRESULT hr = 0; 
   
  int q; 
  int col; 
  int row; 
   
  D3DLOCKED_RECT lockedRect; 
 
  Device->GetRenderTargetData(RT_Reduce_Surface[TexIndex], Ones_Surface); 
  Ones_Surface->LockRect(&lockedRect,  
   0 , //lock entire tex 
   D3DLOCK_READONLY ); //flags  
   
  //D3DXVECTOR4* imageData = (D3DXVECTOR4*) lockedRect.pBits;   
  float* imageData = (float*) lockedRect.pBits; 
 
  //perform final 4:1 reduction if necessary and add up 4 components of each pixel 
  if (OutTexSize>8){ 
   for (int i = start1; i<end1; i++){ 
     
    row = i/8; 
    col = i%8; 
    q = row*32 + col*2; 
    p_b[i-start1]= imageData[q]+  
      imageData[q+1]  +  
      imageData[q+16] +  
      imageData[q+17];   
     
   } 
  } 
  else { 
   for (int i = start1; i<end1; i++){ 
    p_b[i-start1]=imageData[i]; //.x + imageData[i].y +imageData[i].z + imageData[i].w;  
   } 
  } 
  Ones_Surface->UnlockRect(); 
 
   
  return; 
 }// GetRTData_hybrid() 
 
 //------------------------------------------------------ 
 //   Release() and Delete() 
 // cleanup functions 
 //------------------------------------------------------ 
 template<class T> void Release(T t) { 
  if( t ) { 
   t->Release(); 
   t = 0; 
  } 
 } 
   
 template<class T> void Delete(T t){ 
  if( t ){ 
   delete t; 
   t = 0; 
  } 
 } 
 
 //----------------------------------------------------------  
 //    Cleanup() 
 // releases textures/surfaces/interfaces/devices/memory 
 //  allocated during program 
 //---------------------------------------------------------- 
 void Cleanup() 
 { 
  //vertex buffer and declaration 
  Release<IDirect3DVertexBuffer9*>(QuadVB); 
  Release<LPDIRECT3DVERTEXDECLARATION9> (m_pDecl);   
   
  //textures and surfaces 
  Release<IDirect3DSurface9*>(Scene_Surface); 
  Release<IDirect3DTexture9*>(Scene_Tex); 
   
  int n = 4; 
  if (SceneSize==256) n=100; 
  for (int t = 0; t<n;t++){ 
   Release<IDirect3DSurface9*>(Reticle_Surface[t]); 
   Release<IDirect3DTexture9*>(Reticle_Tex[t]); 
  } 
 
  //initial RT     
  Release<IDirect3DTexture9*>(RT_Tex); 
  Release<IDirect3DSurface9*>(RT_Surface); 
   
 
  for (int t = 0; t<ReduceIterations; t++) {   
              Release<IDirect3DSurface9*>(RT_Reduce_Surface[t]); 
   Release<IDirect3DTexture9*>(RT_Reduce_Tex[t]); 
  } 
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  Release<IDirect3DTexture9*>(Ones_Tex);  
  Release<IDirect3DSurface9*>(Ones_Surface);  
   
  //PS & VS  
  Release<IDirect3DPixelShader9*>(PS1_maddreduce); 
  Release<ID3DXConstantTable*>(PS1_PSCT); 
  Release<IDirect3DVertexShader9*>(VS1_maddreduce); 
  Release<ID3DXConstantTable*>(VS1_VSCT); 
  Release<IDirect3DPixelShader9*>(PS2_16tapreduce); 
  Release<ID3DXConstantTable*>(PS2_PSCT); 
  Release<IDirect3DVertexShader9*>(VS2_16tapreduce); 
  Release<ID3DXConstantTable*>(VS2_VSCT); 
 
  Device->Release(); 
   
 }// Cleanup() 
 
public: 
 //---------------------------------------------------------- 
 //       Process() 
 // user interface to GPU algorithm 
 // input:  reference to scene image array variable 
 // input:  starting index in reticle pallette 
 // output: void (but 40 dot-product results are loaded to user array) 
 void Process(int p_retIndex, float p_SceneArray[], double p_b[]) { 
  LoadInputScene(p_SceneArray); 
  if (SceneSize == 256){ 
   //do one at a time algorithm 
   MAddReduce(p_retIndex); 
  } 
  else{ 
   //do big tex 
   MAddReduce_hybrid(p_retIndex); 
  } 
  Redux(); 
  GetRTData_hybrid(p_b); 
  return; 
 }// Process() 
  
 //---------------------------------------------------------------- 
 //                uploadReticle 
 //---------------------------------------------------------------- 
 bool uploadReticle(int p_index, float p_array[]){ 
  HRESULT hr = 0; 
  RECT rect; 
  RECT srcRect; 
  srcRect.top = 0; 
  srcRect.bottom = SceneSize; 
  srcRect.left = 0; 
  srcRect.right = SceneSize; 
 
  if (SceneSize == 256){ 
   rect.left = 0; 
   rect.right = SceneSize; 
   rect.top = 0; 
   rect.bottom = SceneSize; 
    
   hr= D3DXLoadSurfaceFromMemory( 
    Reticle_Surface[p_index], 
    0, 
    0, 
    p_array, 
    D3D_FORMAT, 
    (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
    0, 
    &srcRect, 
    D3DX_FILTER_NONE, 
    0); 
   if(FAILED(hr)) 
    return false; 
  } 
  else { 
    
 
   if ( (p_index<=63) && (p_index >=0)){ 
    rect.top    = SceneSize*(p_index/8); 
    rect.left   = SceneSize*(p_index%8); 
    rect.bottom = rect.top+SceneSize; 
    rect.right  = rect.left+SceneSize; 
     
    hr= D3DXLoadSurfaceFromMemory( 
     Pal_Surf[0],//Reticle_Surface[0], 
     0, 
     &rect, //dest rect 
     p_array, 
     D3D_FORMAT, 
     (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
     0, 
     &srcRect, 
     D3DX_FILTER_NONE, 
     0); 
    if(FAILED(hr)) 
     return false; 
   } 
   if ((p_index>=25) && (p_index<=88)){ 
    rect.top    = SceneSize*( (p_index-25)/8); 
    rect.left   = SceneSize*( (p_index-25)%8); 
    rect.bottom = rect.top+SceneSize; 
    rect.right  = rect.left+SceneSize; 
     
    hr= D3DXLoadSurfaceFromMemory( 
     Pal_Surf[1],//Reticle_Surface[1], 
     0, 
     &rect, //dest rect 
     p_array, 
     D3D_FORMAT, 
     (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
     0, 
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     &srcRect, 
     D3DX_FILTER_NONE, 
     0); 
    if(FAILED(hr)) 
     return false; 
   } 
   if ( (((p_index+50)%100)>=0) && ( ((p_index+50)%100)<=63)) { 
    rect.top    = SceneSize*( ((p_index+50)%100)/8); 
    rect.left   = SceneSize*( ((p_index+50)%100)%8); 
    rect.bottom = rect.top+SceneSize; 
    rect.right  = rect.left+SceneSize; 
     
    hr= D3DXLoadSurfaceFromMemory( 
     Pal_Surf[2],//Reticle_Surface[2], 
     0, 
     &rect, 
     p_array, 
     D3D_FORMAT, 
     (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
     0, 
     &srcRect, 
     D3DX_FILTER_NONE, 
     0); 
    if(FAILED(hr)) 
     return false; 
   } 
   if ( (((p_index+25)%100)>=0) && ( ((p_index+25)%100)<=63)) { 
    rect.top    = SceneSize*( ((p_index+25)%100)/8); 
    rect.left   = SceneSize*( ((p_index+25)%100)%8); 
    rect.bottom = rect.top+SceneSize; 
    rect.right  = rect.left+SceneSize; 
     
    hr= D3DXLoadSurfaceFromMemory( 
     Pal_Surf[3],//Reticle_Surface[3], 
     0, 
     &rect, 
     p_array, 
     D3D_FORMAT, 
     (16*SceneSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
     0, 
     &srcRect, 
     D3DX_FILTER_NONE, 
     0); 
    if(FAILED(hr)) 
     return false; 
   } 
   if (p_index == 99){ 
    for (int i = 0; i<4;i++){ 
     Device->UpdateTexture(Pal_Tex[i],Reticle_Tex[i]); 
     Release<IDirect3DSurface9*>(Pal_Surf[i]);  
     Release<IDirect3DTexture9*>(Pal_Tex[i]);  
    } 
   } 
 
  } 
  return true; 
 } // uploadReticle() 
 
 int GetAlg(){ 
  if (SceneSize == 256) 
   return 2;//one by one 
  else  
   return 1; //big tex 
 } 
 //---------------------------------------------------------- 
 //                ~ Gpu()  DESTRUCTOR 
 ~Gpu() { 
  Cleanup(); 
 }// ~ Gpu()  DESTRUCTOR 
 
}; 
#endif  // GPU_CLASS_H_BY_MAJ_JEFFERS 
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// 
// file: vs_bigtex.txt   
// BY MAJ SEAN JEFFERS 
// 11 nov 04 -- multiplies 1x1 scene by 8x8 reticle pallette, then does 
//              4:1 redux; results in RT that is quarter sized of pallette; 
//  sampling of scene done w/wrapping  
//           -- PixelSize.x = 1/ret pallette width 
//           -- PixelSize.y = 1/scene width 
//           -- PixelSize.z = 0.0f (must!) 
//           -- VS generates 8 texcoords for PS 
// ------------------------------------------------------------- 
 
uniform float4  PixelSize; 
 
// structures 
 
struct VS_INPUT 
{ 
 float4 Pos : POSITION; 
}; 
 
struct VS_OUTPUT 
{ 
 float4 Pos : POSITION; 
 float2 Tex : TEXCOORD0; 
 float2 Tex1: TEXCOORD1; 
 float2 Tex2: TEXCOORD2; 
 float2 Tex3: TEXCOORD3; 
 float2 Tex4: TEXCOORD4; 
 float2 Tex5: TEXCOORD5; 
 float2 Tex6: TEXCOORD6; 
   float2 Tex7: TEXCOORD7; 
}; 
 
 
// ------------------------------------------------------------- 
// vertex shader function (input channels) 
// ------------------------------------------------------------- 
VS_OUTPUT Main(VS_INPUT input) 
{ 
  VS_OUTPUT output = (VS_OUTPUT)0;         
 
     output.Pos.xy = input.Pos.xy;// + PixelSize.xy; 
     output.Pos.z = 0.5f; 
  output.Pos.w = 1.0f; 
 
 output.Tex =  float2(0.5f, -0.5f) * input.Pos.xy + 0.5f.xx ;  
 output.Tex1 = output.Tex + PixelSize.xz; 
        output.Tex2 = output.Tex + PixelSize.zx; 
        output.Tex3 = output.Tex + PixelSize.xx; 
 
 output.Tex4 = 8.0f*output.Tex; 
 output.Tex5 = output.Tex4 + PixelSize.yz; 
        output.Tex6 = output.Tex4 + PixelSize.zy; 
      output.Tex7 = output.Tex4 + PixelSize.yy; 
    return output; 
} 
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// file: ps_bigtex.txt 
// depends on file:  vs_bigtex.txt 
// BY MAJ SEAN JEFFERS 
// 11 nov 04 -- multiplies 1x1 scene by 8x8 reticle pallette, then does 
//              4:1 redux; results in RT that is quarter size of pallette; 
//  sampling of small texture done w/wrapping  
// 27 dec 04 -- modified to have AGRB32 in and R32F out with dot product 
//       
// ------------------------------------------------------------- 
// globals 
// ------------------------------------------------------------- 
 
sampler Rendersampler;  // 8x8 reticle pallette (big texture) 
sampler Rendersampler1; // scene 1x1 small texture  
 
// -------------------------------------------- 
// structures 
// -------------------------------------------- 
 
struct PS_INPUT 
{ 
 float2 Tex : TEXCOORD0; 
 float2 Tex1: TEXCOORD1; 
 float2 Tex2: TEXCOORD2; 
 float2 Tex3: TEXCOORD3; 
 float2 Tex4: TEXCOORD4; 
 float2 Tex5: TEXCOORD5; 
 float2 Tex6: TEXCOORD6; 
   float2 Tex7: TEXCOORD7; 
}; 
 
struct PS_OUTPUT 
{ 
 float4 clr : COLOR; //was COLOR0   
}; 
  
// ------------------------------------------------------------- 
// Pixel Shader (input channels):output channel 
// ------------------------------------------------------------- 
 
PS_OUTPUT PSMain(PS_INPUT input) 
{ 
 PS_OUTPUT output = (PS_OUTPUT) 0; 
 
 float4 a = tex2D(Rendersampler, input.Tex); 
     float4 b = tex2D(Rendersampler, input.Tex1); 
 float4 c = tex2D(Rendersampler, input.Tex2); 
     float4 d = tex2D(Rendersampler, input.Tex3); 
 
 float4 e = tex2D(Rendersampler1, input.Tex4); 
     float4 f = tex2D(Rendersampler1, input.Tex5); 
 float4 g = tex2D(Rendersampler1, input.Tex6); 
 float4 h = tex2D(Rendersampler1, input.Tex7); 
  
 output.clr = dot(a,e) +  dot(b,f) + dot(c,g) + dot(d,h); 
  //a*e + b*f + c*g + d*h; 
  
 return output; 
} 
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// file: vs_onebyone.txt  (was vs_experimental.txt)  
// BY MAJ SEAN JEFFERS 
// used by:  GPU_combined.h and GPU_CLASS_ONEBYONE_R32F.h 
// 
// 17 oct 04-- use PixelSize.y for Tex2-4 components instead of -.x 
// 27 dec 04 -- renamed to vs_onebyone.txt 
// ------------------------------------------------------------- 
// variables that are provided by the application 
// ------------------------------------------------------------- 
 
uniform float4  PixelSize; 
 
// structures 
 
struct VS_INPUT 
{ 
 float4 Pos : POSITION; 
}; 
 
struct VS_OUTPUT 
{ 
 float4 Pos : POSITION; 
 float2 Tex : TEXCOORD0; 
 float2 Tex2: TEXCOORD1; 
 float2 Tex3: TEXCOORD2; 
 float2 Tex4: TEXCOORD3; 
  
  
}; 
 
 
// ------------------------------------------------------------- 
// vertex shader function (input channels) 
// ------------------------------------------------------------- 
VS_OUTPUT Main(VS_INPUT input) 
{ 
  VS_OUTPUT output = (VS_OUTPUT)0;         
 
     output.Pos.xy = input.Pos.xy + PixelSize.xy;  
     output.Pos.z = 0.5f; 
  output.Pos.w = 1.0f; 
  
 float2 Tex = float2(0.5f, -0.5f) * input.Pos.xy + 0.5f.xx  ; 
  
   
 output.Tex  = Tex; 
 output.Tex2 = Tex + float2(PixelSize.y, 0.0f);//use .y instead of -.x 
 output.Tex3 = Tex + float2(0.0f, PixelSize.y); 
 output.Tex4 = Tex + float2(PixelSize.y,PixelSize.y); 
  
 
    return output; 
} 
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// file: ps_onebyone.txt  (was ps_maddreduce_new.txt) 
// PS for mult, add, reduce, 4:1; 1 scene tex madd with 6 reticles, 
//   then result of last madd added in  
//  BY MAJ SEAN JEFFERS 
// 1 oct 04 -- 1st ver. had 2 samplers, v2 had 8 
// 2 oct 04 -- modified for t1 * sum(t2-t7) + t8, where t8 result of 
//             last pass; eliminates need for a 3rd PS/VS 
// 5 oct 04 -- changed to add only single pixel from t8 (previous result) texture 
//             because it is already a smaller, reduced texture 
// 14 oct 04 -- removed output struct 
// 17 oct 04 -- changed data type to float4 instead of vector 
//  
// new file name: ps_maddredce_new.txt 
// 27 oct 04 -- this new version has only 2 samplers and no addback of  
//               previous results 
// 27 dec    -- changed to "dot" to accommodate R32F 
// ------------------------------------------------------------- 
// globals 
// ------------------------------------------------------------- 
 
 
sampler Rendersampler; 
sampler Rendersampler2; 
 
 
// -------------------------------------------- 
// structures 
// -------------------------------------------- 
 
struct PS_INPUT 
{ 
 float2 Tex : TEXCOORD0; 
 float2 Tex2 : TEXCOORD1; 
 float2 Tex3 : TEXCOORD2; 
 float2 Tex4 : TEXCOORD3; 
  
}; 
 
// struct PS_OUTPUT 
// { 
//  float4 clr : COLOR; //was COLOR0   
// }; 
  
// ------------------------------------------------------------- 
// Pixel Shader (input channels):output channel 
// ------------------------------------------------------------- 
 
float4 PSMain(PS_INPUT input) :COLOR 
{ 
  
 float4 t1a = tex2D(Rendersampler, input.Tex);//float4 
     float4 t1b = tex2D(Rendersampler, input.Tex2); 
 float4 t1c = tex2D(Rendersampler, input.Tex3); 
 float4 t1d = tex2D(Rendersampler, input.Tex4); 
  
 float4 t2a = tex2D(Rendersampler2, input.Tex); 
     float4 t2b = tex2D(Rendersampler2, input.Tex2); 
 float4 t2c = tex2D(Rendersampler2, input.Tex3); 
 float4 t2d = tex2D(Rendersampler2, input.Tex4); 
 
          
 // madd src (t1) & one reticles (t2)  
   
 float4 p1 = dot(t1a, t2a); //t1a*t2a; was float4  
                      
 float4 p2 = dot(t1b, t2b); //t1b*t2b; 
 
 float4 p3 = dot(t1c, t2c); //t1c*t2c; 
 
 float4 p4 = dot(t1d, t2d); //t1d*t2d ; 
  
 //new 
 return p1 + p2 + p3 + p4; 
   
} 
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//  
// VS_16tapredux_2.txt  
// BY MAJ SEAN JEFFERS  
// 1 oct 04 -- modified to output 4 texcoords for block-of-4 reduction op 
//             note x-displacement is negated 
// 3 oct 04 -- trying original approach to see if reduce error 
// 17 oct 04 -- changed offset array size to [8] from [16] 
//           -- removed redundant PixelSize 
// ------------------------------------------------------------- 
// variables that are provided by the application 
// ------------------------------------------------------------- 
 
//float4 PixelSize; 
 
float2 offset[8]; //was 16 
 
 
// structures 
 
struct VS_INPUT 
{ 
 float4 Pos : POSITION; 
}; 
 
struct VS_OUTPUT 
{ 
 float4 Pos : POSITION; 
  
 float2 Tex0 : TEXCOORD0; 
 float2 Tex1 : TEXCOORD1; 
 float2 Tex2 : TEXCOORD2; 
 float2 Tex3 : TEXCOORD3; 
 float2 Tex4 : TEXCOORD4; 
 float2 Tex5 : TEXCOORD5; 
 float2 Tex6 : TEXCOORD6; 
 float2 Tex7 : TEXCOORD7; 
}; 
 
 
// ------------------------------------------------------------- 
// vertex shader function (input channels) 
// ------------------------------------------------------------- 
 
VS_OUTPUT Main(VS_INPUT input) 
{ 
  VS_OUTPUT output = (VS_OUTPUT)0;         
 
     output.Pos.xy = input.Pos.xy ;//+  float2(-offset[1].x, offset[1].x);  //PixelSize.xy;  
     output.Pos.z = 0.5f; 
  output.Pos.w = 1.0f; 
  
 float2 Tex = float2(0.5f, -0.5f) * input.Pos.xy + 0.5f.xx  ; 
 //Tex *=  float2(1.0f,0.5f); //added float to test subset 12 nov 
  
 output.Tex0 = Tex ; 
 output.Tex1 = Tex + offset[1]; 
 output.Tex2 = Tex + offset[2]; 
 output.Tex3 = Tex + offset[3]; 
 output.Tex4 = Tex + offset[4]; 
 output.Tex5 = Tex + offset[5]; 
 output.Tex6 = Tex + offset[6]; 
 output.Tex7 = Tex + offset[7]; 
 
 
 return output; 
} 
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// PS 16:1 reduce 
//     
// file: ps_16tapredux_2.txt 
// BY MAJ SEAN JEFFERS 
// 3 0ct 04 - trying original approach to see if reduce error 
// 17 oct 04 -change offset array size to [8] from [16] 
// ------------------------------------------------------------- 
// globals 
// ------------------------------------------------------------- 
 
 
uniform float2 offset[8]; 
 
 
sampler Rendersampler; 
 
// -------------------------------------------- 
// structures 
// -------------------------------------------- 
 
struct PS_INPUT 
{ 
 float2 Tex0 : TEXCOORD0; 
 float2 Tex1 : TEXCOORD1; 
 float2 Tex2 : TEXCOORD2; 
 float2 Tex3 : TEXCOORD3; 
 float2 Tex4 : TEXCOORD4; 
 float2 Tex5 : TEXCOORD5; 
 float2 Tex6 : TEXCOORD6; 
 float2 Tex7 : TEXCOORD7; 
 
}; 
 
  
// ------------------------------------------------------------- 
// Pixel Shader (input channels):output channel 
// ------------------------------------------------------------- 
 
float4 PSMain(PS_INPUT input) : COLOR0 
{ 
 //PS_OUTPUT output = (PS_OUTPUT) 0; 
  
 
 float4 ColorSum = 0.0f;  
 
 // sample first 8 taps (first 2 rows of 4x4 block) 
  
 float4 c0 = tex2D(Rendersampler, input.Tex0); 
     float4 c1 = tex2D(Rendersampler, input.Tex1); 
 float4 c2 = tex2D(Rendersampler, input.Tex2); 
 float4 c3 = tex2D(Rendersampler, input.Tex3); 
  
 float4 c4 = tex2D(Rendersampler, input.Tex4); 
     float4 c5 = tex2D(Rendersampler, input.Tex5); 
 float4 c6 = tex2D(Rendersampler, input.Tex6); 
 float4 c7 = tex2D(Rendersampler, input.Tex7); 
  
 // add color values of first 8 taps 
 
 ColorSum += c0; 
 ColorSum += c1; 
 ColorSum += c2; 
 ColorSum += c3; 
 ColorSum += c4; 
 ColorSum += c5; 
 ColorSum += c6; 
 ColorSum += c7; 
 
   
 // calculate texcoords for remaining 8 taps 
  
 float2 Tap8  = input.Tex0 + offset[0]; //was 8-15 
 float2 Tap9  = input.Tex0 + offset[1]; 
 float2 Tap10 = input.Tex0 + offset[2]; 
 float2 Tap11 = input.Tex0 + offset[3]; 
  
 float2 Tap12 = input.Tex0 + offset[4]; 
 float2 Tap13 = input.Tex0 + offset[5]; 
 float2 Tap14 = input.Tex0 + offset[6]; 
 float2 Tap15 = input.Tex0 + offset[7]; 
  
 // sample remaining 8 taps 
   
 c0 = tex2D(Rendersampler, Tap8); 
     c1 = tex2D(Rendersampler, Tap9); 
 c2 = tex2D(Rendersampler, Tap10); 
 c3 = tex2D(Rendersampler, Tap11); 
  
 c4 = tex2D(Rendersampler, Tap12); 
     c5 = tex2D(Rendersampler, Tap13); 
 c6 = tex2D(Rendersampler, Tap14); 
 c7 = tex2D(Rendersampler, Tap15); 
  
 
 // add last 8 taps to sum 
   
 ColorSum += c0; 
 ColorSum += c1; 
 ColorSum += c2; 
 ColorSum += c3; 
 ColorSum += c4; 
 ColorSum += c5; 
 ColorSum += c6; 
 ColorSum += c7; 
  
 return ColorSum; 
} 
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// win_CONSCAN.cpp : Defines the entry point for the application. 
// BY MAJ SEAN JEFFERS  --tests conscan gpu code 
 
#include "stdafx.h" 
#include "win_CONSCAN.h" 
#define MAX_LOADSTRING 100 
 
#include <iostream> 
#include <fstream> 
#include <iomanip> 
 
#include <cmath> 
 
#include "GPU_CONSCAN.h" //combined.h or CLASS_ONEBYONE.h CLASS_ONEBYONE_R32F.h 
 
// Global Variables: 
HINSTANCE hInst;     // current instance 
TCHAR szTitle[MAX_LOADSTRING];   // The title bar text 
TCHAR szWindowClass[MAX_LOADSTRING];   // the main window class name 
 
const int EXPER  = 100; 
const int SCENE_SIZE = 0; 
const int    SCENE_SIZE_X  = 512; 
const int    SCENE_SIZE_Y  = 512; 
const int    RETICLE_SIZE  = 128; 
const int WL  = 1; 
const char*  BUS_str  = "PCI-e";   
const char* APRCH_str  = "ATI"; 
const int REPS  = 2; 
const int SIZE_SQ = SCENE_SIZE_X*SCENE_SIZE_Y; 
const int RET_SIZE_SQ  = RETICLE_SIZE*RETICLE_SIZE; 
 
// WL 3 pt source vars 
const int xmin = SCENE_SIZE_X/4; 
const int ymin = SCENE_SIZE_Y/4; 
const int xmax = SCENE_SIZE-xmin; 
const int ymax = SCENE_SIZE-ymin; 
//initial conditions 
int oldx = xmin; 
int oldy = ymin; 
int delx = -1; 
int xinc = -1; 
int dely = 0; 
int yinc = -1; 
 
// Forward declarations of functions included in this code module: 
void UpdateScene(int , float*); 
ATOM MyRegisterClass(HINSTANCE hInstance); 
BOOL InitInstance(HINSTANCE, int); 
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 
LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM); 
 
int APIENTRY _tWinMain(HINSTANCE hInstance, 
                     HINSTANCE hPrevInstance, 
                     LPTSTR    lpCmdLine, 
                     int       nCmdShow) 
{ 
  float reticle[RET_SIZE_SQ]; 
 float scene[SIZE_SQ]; 
     double answer[40]; 
 int retIndex[40]; 
 int xdisp[40]; 
 int ydisp[40]; 
   
 double times[REPS]; 
 double timeslog[REPS]; 
 double startTime; 
 double endTime; 
  
 double sum  = 0.0; 
 double mean = 0.0; 
 double var  = 0.0; 
 double stdev  = 0.0; 
 double hi  = 0.0; 
 double low  = 0.0; 
 double sos  = 0.0; 
  
 double sumlog  = 0.0; 
 double meanlog  = 0.0; 
 double varlog  = 0.0; 
 double stdevlog  = 0.0; 
 double soslog  = 0.0; 
 double hilog  = 0.0; 
 double lowlog  = 0.0; 
 
 char WL_str[30]; 
 if (WL ==1){ 
  strcpy(WL_str,"1 - non-changing"); 
 } 
 else if (WL == 2){ 
  strcpy(WL_str,"2 - fully-changing"); 
 } 
 else {  
  strcpy(WL_str,"3 - moving pt source"); 
 } 
  
 //instantiate GPUConscan object 
 GpuConscan gpu(hInstance,nCmdShow, SCENE_SIZE_X, SCENE_SIZE_Y, 
  RETICLE_SIZE); 
  
 //upload  reticles 
 for (int i = 0; i<100; i++){ 
  for (int j = 0; j<RET_SIZE_SQ; j++){ 
   reticle[j] = (float)i; 
  } 
  gpu.uploadReticle(i,reticle); 
 } 
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 //initialize retIndex and x/y disp arrays 
 for (int i = 0; i<40 ; i++){ 
  retIndex[i] = 39-i; 
  xdisp[i] = 1; 
  ydisp[i] = 1; 
 } 
 
 char algorithm[40]; 
 int alg =gpu.GetAlg(); 
 if (alg ==1){ 
  strcpy(algorithm,"BIGTEX"); 
 } 
 else if (alg == 2){ 
  strcpy(algorithm,"ONEBYONE"); 
 } 
 else if (alg == 3){ 
  strcpy(algorithm,"CONSCAN ONEBYONE R32F"); 
 } 
 else {  
  strcpy(algorithm,"NA"); 
 } 
 // do experiment REPS times 
 for (int rep = 0; rep< REPS; rep++){ 
  //fill initial scene 
  if  ( WL != 3){ 
   for (int j = 0; j<SIZE_SQ; j++){ 
    scene[j]= (float)((j%SCENE_SIZE_X)/(SCENE_SIZE_X/2)+1); 
    if (j>=SIZE_SQ/2) scene[j]+=2; 
   } 
  } 
  else { 
   for (int j = 0; j<SIZE_SQ; j++){ 
    scene[j]= 0.0f; 
   } 
  } 
   
  startTime = (double)timeGetTime(); 
  // run algorithm 1000 x 
  for (int i = 0; i<1000; i++){ 
            gpu.Process(retIndex,scene,answer,xdisp, ydisp); 
   UpdateScene(WL,scene); 
  } 
  endTime = (double) timeGetTime(); 
  double timeDelta = (endTime-startTime)*0.001f; 
  double timeDeltaLog = log10(timeDelta); 
  times[rep]= timeDelta; 
  timeslog[rep] = timeDeltaLog; 
  sum += timeDelta; 
  sumlog += timeDeltaLog; 
 } 
 //calc stats 
 mean = sum/(double)REPS; 
 meanlog = sumlog/(double)REPS; 
 hi = 0.0; 
 hilog = -1000.0; 
 low = 1000.0; 
 lowlog = 1000.0; 
 
 for (int i =0; i<REPS; i++){ 
  if (times[i]>hi) 
   hi = times[i]; 
  if (times[i]<low) 
   low = times[i]; 
  var += pow( (times[i]-mean),2.0)/(double)(REPS-1); 
  sos += pow( times[i],2); 
  if (timeslog[i]>hilog) 
   hilog = timeslog[i]; 
  if (timeslog[i]<lowlog) 
   lowlog = timeslog[i]; 
  varlog += pow( (timeslog[i]-meanlog),2.0)/(double)(REPS-1); 
  soslog += pow( timeslog[i],2); 
 } 
 stdev = sqrt( var); 
 stdevlog = sqrt (varlog);  
 //write results to file 
 char* name ="results/results_"; 
 char* ext  =".dat"; 
 char num[4]; 
 _itoa(EXPER,num,10); 
 char filename[40]; 
 strcpy(filename,name); 
 strcat(filename,num); 
 strcat(filename,ext); 
 std::ofstream outFile(filename,std::ios::app);//out 
 if (!outFile){ 
  ::MessageBox(0, "can't open results file","GPU" , 0); 
  exit(1); 
 } 
 outFile <<"experiment#: "<<EXPER<<'\n' 
   <<"workload:    "<<WL_str<<'\n' 
   <<"bus:         "<<BUS_str<<'\n' 
   <<"approach:    "<<APRCH_str<<'\n'   
   <<"algorithm:   "<<algorithm<<'\n' 
   <<"size:        "<<SCENE_SIZE<<'\n' 
   <<"mean:        "<<mean<<'\n' 
   <<"variance:    "<<var<<'\n' 
   <<"stdev:       "<<stdev<<'\n' 
   <<"sum of sqrs: "<<sos<<'\n' 
   <<"low:         "<<low<<'\n' 
   <<"hi:          "<<hi<<'\n' 
   <<"mean log:        "<<meanlog<<'\n' 
   <<"variance log:    "<<varlog<<'\n' 
   <<"stdev log :      "<<stdevlog<<'\n' 
   <<"sum of sqrs log: "<<soslog<<'\n' 
   <<"low log:         "<<lowlog<<'\n' 
   <<"hi log:          "<<hilog<<'\n' 
   <<"reps:        "<<REPS<<'\n' 
   <<"data:        "<<'\n'; 
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 for (i =0;i<REPS; i++){ 
  outFile<<times[i]; 
  if (!((i+1)%5) || (i==REPS-1)) 
   outFile<<'\t'<<" ..."<<'\n'; 
  else outFile<<'\t'; 
 } 
 outFile<<'\n'<<"data log:        "<<'\n'; 
 for (i =0;i<REPS; i++){ 
  outFile<<std::setprecision(6)<<std::setw(3)<<timeslog[i]; 
  if (!((i+1)%5) || (i==REPS-1)) 
   outFile<<'\t'<<" ..."<<'\n'; 
  else outFile<<'\t'; 
 } 
 outFile<<'\n'<<"answers:"<<'\n'; 
 for (i =0;i<40; i++){ 
  outFile<<std::setprecision(9)<<std::setw(18)<< 
   std::setiosflags(std::ios::scientific)<<answer[i]; 
  if (!(( i+1)%4)) 
   outFile<<'\n'; 
 } 
 outFile<<'\n'; 
  
   
 MSG msg; 
 HACCEL hAccelTable; 
 
 // Initialize global strings 
 LoadString(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING); 
 LoadString(hInstance, IDC_WIN_CONSCAN, szWindowClass, MAX_LOADSTRING); 
 MyRegisterClass(hInstance); 
 
 // Perform application initialization: 
 if (!InitInstance (hInstance, nCmdShow))  
 { 
  return FALSE; 
 } 
 
 hAccelTable = LoadAccelerators(hInstance, (LPCTSTR)IDC_WIN_CONSCAN); 
 
 // Main message loop: 
 while (GetMessage(&msg, NULL, 0, 0))  
 { 
  if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))  
  { 
   TranslateMessage(&msg); 
   DispatchMessage(&msg); 
  } 
 } 
 
 return (int) msg.wParam; 
} 
 
//----------------------------------------------------------- 
//  FUNCTION:  UpdateScene() 
//---------------------------------------------------------- 
void UpdateScene(int p_WL, float* p_scene){ 
 if (p_WL == 1){ 
  return; 
 } 
 if (p_WL == 2){ 
  for (int j = 0; j < SIZE_SQ; j++){ 
   p_scene[j] += 1.0f; 
  } 
  return; 
 } 
 else { 
  int x = delx + oldx; 
  int y = dely + oldy; 
  if ( (x<xmin) || (x>xmax) ){ 
   x = oldx; 
   xinc = - xinc; 
   delx = delx+xinc; 
   dely = dely+yinc; 
   y += dely; 
  } 
  if ( (y<ymin) || (y>ymax) ) { 
   y = oldy; 
   yinc = -yinc; 
   delx += xinc; 
   dely += yinc; 
   x += delx; 
  } 
   
  int index = y*SCENE_SIZE_X + x; 
  int indexold = oldy*SCENE_SIZE_X + oldx; 
  p_scene[indexold] = 0.0f; 
  p_scene[index] = 1.0f; 
  oldx = x; 
  oldy =y; 
  return; 
 } 
} 
 
// 
//  FUNCTION: MyRegisterClass() 
// 
//  PURPOSE: Registers the window class. 
// 
//  COMMENTS: 
//    This function and its usage are only necessary if you want this code 
//    to be compatible with Win32 systems prior to the 'RegisterClassEx' 
//    function that was added to Windows 95. It is important to call this function 
//    so that the application will get 'well formed' small icons associated 
//    with it. 
// 
ATOM MyRegisterClass(HINSTANCE hInstance) 
{ 
 WNDCLASSEX wcex; 
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 wcex.cbSize  = sizeof(WNDCLASSEX);  
 wcex.style = CS_HREDRAW | CS_VREDRAW; 
 wcex.lpfnWndProc = (WNDPROC)WndProc; 
 wcex.cbClsExtra = 0; 
 wcex.cbWndExtra = 0; 
 wcex.hInstance = hInstance; 
 wcex.hIcon = LoadIcon(hInstance, (LPCTSTR)IDI_WIN_CONSCAN); 
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW); 
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
 wcex.lpszMenuName = (LPCTSTR)IDC_WIN_CONSCAN; 
 wcex.lpszClassName = szWindowClass; 
 wcex.hIconSm = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL); 
 
 return RegisterClassEx(&wcex); 
} 
 
// 
//   FUNCTION: InitInstance(HANDLE, int) 
// 
//   PURPOSE: Saves instance handle and creates main window 
// 
//   COMMENTS: 
// 
//        In this function, we save the instance handle in a global variable and 
//        create and display the main program window. 
// 
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow) 
{ 
   HWND hWnd; 
 
   hInst = hInstance; // Store instance handle in our global variable 
 
   hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW, 
      CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); 
 
   if (!hWnd) 
   { 
      return FALSE; 
   } 
 
   ShowWindow(hWnd, nCmdShow); 
   UpdateWindow(hWnd); 
 
   return TRUE; 
} 
 
//  FUNCTION: WndProc(HWND, unsigned, WORD, LONG) 
// 
//  PURPOSE:  Processes messages for the main window. 
// 
//  WM_COMMAND - process the application menu 
//  WM_PAINT - Paint the main window 
//  WM_DESTROY - post a quit message and return 
// 
// 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
 int wmId, wmEvent; 
 PAINTSTRUCT ps; 
 HDC hdc; 
 switch (message)  
 { 
 case WM_COMMAND: 
  wmId    = LOWORD(wParam);  
  wmEvent = HIWORD(wParam);  
  // Parse the menu selections: 
  switch (wmId) 
  { 
  case IDM_ABOUT: 
   DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, (DLGPROC)About); 
   break; 
  case IDM_EXIT: 
   DestroyWindow(hWnd); 
   break; 
  default: 
   return DefWindowProc(hWnd, message, wParam, lParam); 
  } 
  break; 
 case WM_PAINT: 
  hdc = BeginPaint(hWnd, &ps); 
  // TODO: Add any drawing code here... 
  EndPaint(hWnd, &ps); 
  break; 
 case WM_DESTROY: 
  PostQuitMessage(0); 
  break; 
 default: 
  return DefWindowProc(hWnd, message, wParam, lParam); 
 } 
 return 0; 
} 
// Message handler for about box. 
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
 switch (message) 
 { 
 case WM_INITDIALOG: 
  return TRUE; 
 case WM_COMMAND: 
  if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)  
  { 
   EndDialog(hDlg, LOWORD(wParam)); 
   return TRUE; 
  } 
  break; 
 } 
 return FALSE; 
} 
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// file: GPU_CONSCAN.h 
// 
// by:   Maj Sean Jeffers 
// requires external files: 
// GPU_UTILITY.h  -- contains namespace d3d utility functions InitD3D() 
//        GPU_WndProc CALLBACK and Gpu_WndClass definition 
//  source/ps_CONSCAN.txt  -- PS used by MAddReduce() 
//  source/vs_CONSCAN.txt  -- VS used by  MAddReduce() 
//  source/vs_16tapredux_2.txt -- vertex shader used by Redux() 
//  source/ps_16tapredux_2.txt -- pixel shader used by  Redux() 
//   
//  27 dec 04 -- modified old ONEBYONE to use non-packed R32F textures throughout 
//            -- this is expected to be basis for CONSCAN 
//  2 jan 05  -- renamed R32F to  GPU_CONSCAN.h; changed to use CONSCAN vs and ps 
//            -- border color not supported; clamping is 
#ifndef GPU_CLASS_H_BY_MAJ_JEFFERS 
#define GPU_CLASS_H_BY_MAJ_JEFFERS 
 
#include <d3dx9.h> 
#include "GPU_UTILITY.h" 
 
#include <stdlib.h> 
#include <cstring> 
#include <cmath> 
 
//------------------ CONSTANTS---------------- 
#define GPU_WINDOW_WIDTH 1024 
#define GPU_WINDOW_HEIGHT 768 
#define D3D_FORMAT D3DFMT_R32F //A32B32G32R32F  
#define STRIDE  4           //  16 
//-------------------------------------------- 
 
class GpuConscan { 
 
private:  
 HINSTANCE   hInst; 
 int   nCmdShow; 
 IDirect3DDevice9*  Device;   
 //const int  SceneSize; 
 const int   SceneSizeX; 
 const int   SceneSizeY; 
 const int   ReticleSize; 
 //int   ScenePixels; 
 //float   fPixSizeX;   
 //float   fPixSizeY;  
 //D3DXVECTOR4  DataArray[2048*2048]; 
 int   OutTexSize; 
 long   OutPixels; 
 //int   ViewportSize; 
 int   ReduceIterations; 
 int   TexIndex; 
 bool   DualRT; 
 
 //VS1 
 IDirect3DVertexShader9* VS1_maddreduce; 
 ID3DXConstantTable*  VS1_VSCT;     
 D3DXHANDLE  VS1_PixelSizeHandle;  
 D3DXHANDLE  VS1_DisplacementHandle; 
 D3DXHANDLE  VS1_AspectHandle; 
 
 //PS1 
 IDirect3DPixelShader9* PS1_maddreduce; 
 ID3DXConstantTable*  PS1_PSCT; 
 //VS2 
 IDirect3DVertexShader9*  VS2_16tapreduce; 
 ID3DXConstantTable*      VS2_VSCT; 
 D3DXHANDLE  VS2_offsetHandle; 
  
 //PS2 
 IDirect3DPixelShader9*   PS2_16tapreduce; 
 ID3DXConstantTable*     PS2_PSCT; 
 D3DXHANDLE  PS2_offsetHandle; 
 D3DXHANDLE  PS2_mulHandle; 
 
 // PARAMETERS PASSED TO PS & VS 
 D3DXVECTOR2  offset[4][16]; 
  
 // VERTEX BUFFER & DECL 
 LPDIRECT3DVERTEXDECLARATION9 m_pDecl;   
 IDirect3DVertexBuffer9* QuadVB; 
  
 // TEXTURES & SURFACES 
 IDirect3DTexture9*  Scene_Tex; 
 IDirect3DSurface9*  Scene_Surface; 
 
 IDirect3DTexture9*  Reticle_Tex[100]; 
 IDirect3DSurface9*  Reticle_Surface[100]; 
 
 IDirect3DTexture9*  RT_Tex;  
 IDirect3DSurface9*  RT_Surface; 
  
 
 IDirect3DTexture9*  RT_Reduce_Tex[4];  
 IDirect3DSurface9*  RT_Reduce_Surface[4]; 
// IDirect3DTexture9*  RT_Reduce_Tex2[3];  
// IDirect3DSurface9*  RT_Reduce_Surface2[3]; 
 
 IDirect3DTexture9*  Ones_Tex; 
 IDirect3DSurface9*  Ones_Surface; 
 
 // transformation matrices 
 D3DXMATRIX  mWorld; 
 D3DXMATRIX  mView; 
 D3DXMATRIX  mProj; 
  
 // --------------------- STRUCTS  ---------------------- 
  
 struct CUSTOMVERTEX 

141 



 

 { 
  FLOAT       x; 
  FLOAT       y; 
 }; 
 
public: 
 //constructor 
 GpuConscan(HINSTANCE p_hInst, int p_nCmdShow, int p_SceneSizeX,  
   int p_SceneSizeY, int p_ReticleSize) 
  :hInst (p_hInst), nCmdShow(p_nCmdShow), SceneSizeX(p_SceneSizeX), 
  SceneSizeY(p_SceneSizeY), ReticleSize(p_ReticleSize)// /2 
 { 
  Device =0; 
   
  //fPixSizeX = -1.0f / (float)SceneSize; 
  //fPixSizeY = 1.0f / (float) SceneSize; 
     
  //VS1 
  VS1_maddreduce = 0; 
  VS1_VSCT  = 0; 
  VS1_PixelSizeHandle = 0; 
  //PS1 
  PS1_maddreduce = 0; 
  PS1_PSCT  = 0; 
  //VS2 
  VS2_16tapreduce = 0; 
  VS2_VSCT  = 0; 
  VS2_offsetHandle    = 0; 
   
  //PS2 
  PS2_16tapreduce = 0; 
  PS2_PSCT  = 0; 
  PS2_offsetHandle    = 0; 
  // vertex buffer ptr 
  QuadVB  = 0; 
   
  if(!d3d::InitD3D(hInst, nCmdShow,  
   GPU_WINDOW_WIDTH, GPU_WINDOW_HEIGHT, true, D3DDEVTYPE_HAL, &Device)) 
  { 
   ::MessageBox(0, "InitD3D() - FAILED", 0, 0); 
  } 
   
  if(!Setup()){ 
   ::MessageBox(0, "Setup() - FAILED", 0, 0); 
  } 
   
  DualRT = false; 
   
  // modular actions depending on algorithm 
  InitShaders(); 
  InitReticlesAndScene_OneByOne(); 
  InitRenderTargets_hybrid();  
 
 }//Gpu() CONSTRUCTOR  
 
private:  
 //---------------------------------------------------------- 
 //  InitShaders()   
 //  creates & compiles shaders 
 //---------------------------------------------------------- 
 bool InitShaders(){ 
  HRESULT hr = 0; 
  // *** PS1 
   
  ID3DXBuffer* PSBuffer  = 0; 
  ID3DXBuffer* errorBuffer = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   "source/ps_CONSCAN.txt",   
   0, 
   0, 
   "PSMain", // entry point function name 
   "ps_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &PSBuffer, 
   &errorBuffer, 
   &PS1_PSCT); 
 
  // output any error messages 
  if( errorBuffer ) 
  { 
   ::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "PS1--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create pixel shader 
  hr = Device->CreatePixelShader( 
   (DWORD*)PSBuffer->GetBufferPointer(), 
   &PS1_maddreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreatePixelShader PS1 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(PSBuffer); 
 
  // *** PS2 
   
  ID3DXBuffer* PS2Buffer = 0; 
  ID3DXBuffer* errorBuffer2  = 0; 
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  hr = D3DXCompileShaderFromFile( 
   "source/ps_16tapredux_2.txt",  
   0, 
   0, 
   "PSMain", // entry point function name 
   "ps_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPVALIDATION OPTIMIZATION 
   &PS2Buffer, 
   &errorBuffer2, 
   &PS2_PSCT); 
 
  // output any error messages 
  if( errorBuffer2 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer2->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer2); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "PS2--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create pixel shader 
  hr = Device->CreatePixelShader( 
   (DWORD*)PS2Buffer->GetBufferPointer(), 
   &PS2_16tapreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreatePixelShader PS2 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(PS2Buffer); 
 
  // *** VS1  
   
  ID3DXBuffer* VSBuffer      = 0; 
  ID3DXBuffer* errorBuffer3 = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   "source/vs_CONSCAN.txt",  
   0, 
   0, 
   "Main", // entry point function name 
   "vs_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &VSBuffer, 
   &errorBuffer3, 
   &VS1_VSCT); 
 
  // output any error messages 
  if( errorBuffer3 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer3->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer3); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "VS1--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create vertex shader 
  hr = Device->CreateVertexShader( 
   (DWORD*)VSBuffer->GetBufferPointer(), 
   &VS1_maddreduce); 
 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreateVertexShader VS1 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(VSBuffer); 
   
  // *** VS2 
  ID3DXBuffer* VS2Buffer      = 0; 
  ID3DXBuffer* errorBuffer4 = 0; 
 
  hr = D3DXCompileShaderFromFile( 
   "source/vs_16tapredux_2.txt",  
   0, 
   0, 
   "Main", // entry point function name 
   "vs_2_0", 
   D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION 
   &VS2Buffer, 
   &errorBuffer4, 
   &VS2_VSCT); 
 
  // output any error messages 
  if( errorBuffer4 ) 
  { 
   ::MessageBox(0, (char*)errorBuffer4->GetBufferPointer(), 0, 0); 
   Release<ID3DXBuffer*>(errorBuffer4); 
  } 
  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "VS2--D3DXCompileShaderFromFile() - FAILED", 0, 0); 
   return false; 
  } 
   
  // create vertex shader 
  hr = Device->CreateVertexShader( 
   (DWORD*)VS2Buffer->GetBufferPointer(), 
   &VS2_16tapreduce); 
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  if(FAILED(hr)) 
  { 
   ::MessageBox(0, "CreateVertexShader VS2 - FAILED", 0, 0); 
   return false; 
  } 
 
  Release<ID3DXBuffer*>(VS2Buffer); 
   
  //---------------- get VS1 pixelsize constant handle 
  VS1_PixelSizeHandle = VS1_VSCT->GetConstantByName(0, "PixelSize"); 
  VS1_DisplacementHandle = VS1_VSCT->GetConstantByName(0,"Displacement"); 
  VS1_AspectHandle = VS1_VSCT->GetConstantByName(0,"Aspect"); 
 
  // get PS2 and VS2 const handles  
  VS2_offsetHandle = VS2_VSCT->GetConstantByName(0, "offset"); 
  PS2_offsetHandle = PS2_PSCT->GetConstantByName(0, "offset"); 
   
  //vertex decl and set stream source were here, moved to Setup 
  return true; 
   
 }// InitShaders() 
  
  
 //--------------------------------------------------------- 
 //        InitReticlesAndScene_OneByOne() 
 // loads reticle images into GPU, creates reticle and scene surfaces 
 //  and textures in GPU memory 
 //-------------------------------------------------------- 
 // FOR TESTING PURPOSES ONLY 
 // load the 100 reticle textures, [0..99] with sample data: 
 //  places whole value equal to texture index into 
 //   each pixel of the texture; 
 
 bool InitReticlesAndScene_OneByOne(){  
  //-------------------------------------------- 
  // create scene texture and surface 
  //-------------------------------------------- 
  HRESULT hr = 0;   
  hr = D3DXCreateTexture( 
   Device, 
   SceneSizeX, SceneSizeY,  //was SceneSize for both 
   1, // no mipmap chain 
   D3DUSAGE_DYNAMIC, //was 0--keep DYNAMIC! 
   D3DFMT_R32F, 
   D3DPOOL_DEFAULT, 
   &Scene_Tex); 
  if(FAILED(hr))   
   return false; 
   
  //get interface to top level surface of Scene_Tex 
  hr = Scene_Tex->GetSurfaceLevel(0,&Scene_Surface); 
  if(FAILED(hr)) 
   return false; 
   
  //generate 100 reticle textures (half the scene width for CONSCAN) 
  for (int t = 0; t<100; t++){ 
   hr = D3DXCreateTexture( 
    Device, 
    ReticleSize, ReticleSize, //was SceneSize/2  
    1, // no mipmap chain 
    0,//usage 
    D3DFMT_R32F, 
    D3DPOOL_DEFAULT, 
    &Reticle_Tex[t]); 
   if(FAILED(hr))   
    return false; 
    
   //get interface to top level surface of each tex  
   hr = Reticle_Tex[t]->GetSurfaceLevel(0,&Reticle_Surface[t]); 
   if(FAILED(hr)) 
    return false; 
  } 
  return true; 
 } 
 
 //------------------------------------------------------ 
 //                InitRenderTargets_hybrid() 
 //------------------------------------------------------ 
     bool InitRenderTargets_hybrid() { 
   
  HRESULT hr = 0; 
  int Init_RTSize; 
  // set initial RT size  
  // scene can be  1024, 512 or 256 
  // reticle can be 512, 256 or 128 
  if (ReticleSize == 128){   //was SceneSize == 256 
   Init_RTSize = 512;   //scenesize/4 * 8 
   ReduceIterations = 3; 
  } 
  else if (ReticleSize == 256){   
   Init_RTSize = 1024;       
   ReduceIterations = 3; 
  } 
   
  else { 
   Init_RTSize = 2048;     
   ReduceIterations = 4;   
  } 
  //SET OutTexSize 
  //  the size of the final RT we will get our 
  //   result from 
  //  affects GetRTData()  
  OutTexSize = 8*ReticleSize/(2*((int)pow(4,ReduceIterations)));//was 4*SceneSize 
  //changed for CONSCAN 
 
  OutPixels = OutTexSize*OutTexSize; 
  //SET TexIndex 
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  // the array index of the RT_Reduce_Surface[] that will contain 
  //  the final result; affects GetRTData() 
  TexIndex = ReduceIterations-1; 
   
  // create initial RT (half the reticle pallette size) 
  hr = Device->CreateTexture(Init_RTSize,Init_RTSize,1,D3DUSAGE_RENDERTARGET, 
     D3DFMT_R32F ,D3DPOOL_DEFAULT,&RT_Tex,0); //D3D_FORMAT 
  if(FAILED(hr)) 
    return false; 
  //get interface to top level surface   
  hr = RT_Tex->GetSurfaceLevel(0, &RT_Surface); 
  if(FAILED(hr)) 
   return false;     
  
  // create render targets for reduction op (2 or 3) 
  int Size = Init_RTSize/4; 
  for (int i=0; i<ReduceIterations; i++){ 
   hr = D3DXCreateTexture( 
    Device, 
    Size, Size, 
    1, // no mipmap chain 
    D3DUSAGE_RENDERTARGET, //could be DYNAMIC, but not DYNAMIC and RT 
    D3DFMT_R32F,// D3D_FORMAT, 
    D3DPOOL_DEFAULT, 
    &RT_Reduce_Tex[i]); 
   if(FAILED(hr))   
    return false; 
   
   //get interface to top level surface    
   hr = RT_Reduce_Tex[i]->GetSurfaceLevel(0, &RT_Reduce_Surface[i]); 
   if(FAILED(hr)) 
    return false; 
    
   Size /= 4; 
  } 
   
  //create SYSTEMMEM tex to send result to 
  hr = D3DXCreateTexture( 
    Device, 
    OutTexSize, OutTexSize, 
    1, // no mipmap chain 
    D3DUSAGE_DYNAMIC, // usage could be DYNAMIC, but not DYNAMIC and RT 
    D3DFMT_R32F,// D3D_FORMAT, 
    D3DPOOL_SYSTEMMEM, 
    &Ones_Tex); 
  if(FAILED(hr))   
   return false; 
  //get interface to top level surface of Ones_Tex[]   
  hr = Ones_Tex->GetSurfaceLevel(0, &Ones_Surface); 
  if(FAILED(hr)) 
   return false; 
 
  //-------------------------------------------------------------------- 
  // *** OFFSET ARRAYS FOR 16:1 REDUCE 
  //-------------------------------------------------------------------- 
  // PixelSize of input texture to first reduce op 
  float PixelSize2 = 1/(float)Init_RTSize; 
     
  // calculate displacements 
  for (int k = 0; k<ReduceIterations; k++){ 
   for (int i = 0; i<4; i++){ 
    for(int j = 0; j<4; j++){ 
     offset[k][i*4 +j] = D3DXVECTOR2(PixelSize2*(float)j, PixelSize2*(float)i); 
    } 
   } 
   PixelSize2 *= 4.0f; 
  } 
 
  return true;  
 }// InitRenderTargets_hybrid() 
  
 //----------------------------------------------------------- 
 //  Setup() 
 // Initializes geometry, renderstate, calls  
 //   InitRenderTargets, InitShaders, InitReticlesAndScene 
 //----------------------------------------------------------- 
 bool Setup() { 
 
  HRESULT hr = 0; 
 
  //---------------- DISABLE unneeded processing ------------------ 
  // turn off Stencil and Culling 
  hr = Device->SetDepthStencilSurface( 
   0); 
  if(FAILED(hr))   
   return false; 
  hr = Device->SetRenderState(D3DRS_CULLMODE,D3DCULL_NONE); 
  if(FAILED(hr))   
   return false; 
  // disable lighting 
   
  Device->SetRenderState(D3DRS_LIGHTING, false); 
 
  //------------------ create geometry ----------------------------  
   
  D3DVERTEXELEMENT9 decl[]=  
  { 
  {0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, 
  D3DDECL_END() 
  }; 
  // declare the vertex structure 
  hr = Device->CreateVertexDeclaration(decl, &m_pDecl); 
  if(FAILED(hr))   
   return false; 
  // create VB with only x,y position 
  hr = Device->CreateVertexBuffer( 56 * sizeof(CUSTOMVERTEX), //was 4 
     D3DUSAGE_WRITEONLY, 
     0,  
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     D3DPOOL_DEFAULT, 
     &QuadVB, 
     NULL ); 
  if(FAILED(hr))   
   return false; 
    
  float left = -1.00f; 
  float right =  1.00f; 
  float top  =  1.00f; 
  float bottom = -1.00f; 
  float top_row2 =  0.75f; 
  float top_row3 =  0.50f; 
  float top_row4 =  0.25f; 
  float top_row5   =  0.00f; 
  float top_row7   = -0.50f; 
  float top_row8   = -0.75f; 
  float bot_row1   =  0.75f; 
  float bot_row2   =  0.50f; 
  float bot_row4   =  0.00f; 
  float bot_row5 = -0.25f; 
  float bot_row6 = -0.50f; 
  float bot_row7   = -0.75f; 
   
  CUSTOMVERTEX* v; 
  QuadVB->Lock(0, 56 * sizeof(CUSTOMVERTEX), (VOID**)&v, 0);//was 4 
   
  //quad 0 full square 
  // left bottom 
  v[0].x = left; 
  v[0].y = bottom;//bottom 
 
  // left top 
  v[1].x = left; 
  v[1].y = top; 
 
  // right bottom  
  v[2].x = right; 
  v[2].y = bottom;//bottom 
 
  // right top 
  v[3].x = right; 
  v[3].y = top; 
   
  //quad 1 r1-5 
  // left bottom 
  v[4].x = left; 
  v[4].y = bot_row5;//5 
 
  // left top 
  v[5].x = left; 
  v[5].y = top; 
 
  // right bottom  
  v[6].x = right; 
  v[6].y = bot_row5;//5 
 
  // right top 
  v[7].x = right; 
  v[7].y = top; 
 
  //quad 2 r2-6 
  // left bottom 
  v[8].x = left; 
  v[8].y = bot_row6; 
 
  // left top 
  v[9].x = left; 
  v[9].y = top_row2; 
 
  // right bottom  
  v[10].x = right; 
  v[10].y = bot_row6; 
 
  // right top 
  v[11].x = right; 
  v[11].y = top_row2; 
   
  //quad 3 r3-7 
  // left bottom 
  v[12].x = left; 
  v[12].y = bot_row7; 
 
  // left top 
  v[13].x = left; 
  v[13].y = top_row3; 
 
  // right bottom  
  v[14].x = right; 
  v[14].y = bot_row7; 
 
  // right top 
  v[15].x = right; 
  v[15].y = top_row3; 
   
  //quad 4 r4-8 
  // left bottom 
  v[16].x = left; 
  v[16].y = bottom; 
 
  // left top 
  v[17].x = left; 
  v[17].y = top_row4; 
 
  // right bottom  
  v[18].x = right; 
  v[18].y = bottom; 
 
  // right top 
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  v[19].x = right; 
  v[19].y = top_row4; 
 
  //quad 5 r1-6 
  // left bottom 
  v[20].x = left; 
  v[20].y = bot_row6; 
 
  // left top 
  v[21].x = left; 
  v[21].y = top; 
 
  // right bottom  
  v[22].x = right; 
  v[22].y = bot_row6; 
 
  // right top 
  v[23].x = right; 
  v[23].y = top; 
   
  //quad 6 r2-7 
  // left bottom 
  v[24].x = left; 
  v[24].y = bot_row7; 
 
  // left top 
  v[25].x = left; 
  v[25].y = top_row2; 
 
  // right bottom  
  v[26].x = right; 
  v[26].y = bot_row7; 
 
  // right top 
  v[27].x = right; 
  v[27].y = top_row2; 
   
  //quad 7 r3-8 
  // left bottom 
  v[28].x = left; 
  v[28].y = bottom; 
 
  // left top 
  v[29].x = left; 
  v[29].y = top_row3; 
 
  // right bottom  
  v[30].x = right; 
  v[30].y = bottom; 
 
  // right top 
  v[31].x = right; 
  v[31].y = top_row3; 
  
  //quad 8 T1 
  // left bottom 
  v[32].x = left; 
  v[32].y = bot_row1; 
 
  // left top 
  v[33].x = left; 
  v[33].y = top; 
 
  // right bottom  
  v[34].x = right; 
  v[34].y = bot_row1; 
 
  // right top 
  v[35].x = right; 
  v[35].y = top; 
   
  //quad 9 B2 
  // left bottom 
  v[36].x = left; 
  v[36].y = bottom; 
 
  // left top 
  v[37].x = left; 
  v[37].y = top_row7; 
 
  // right bottom  
  v[38].x = right; 
  v[38].y = bottom; 
 
  // right top 
  v[39].x = right; 
  v[39].y = top_row7; 
 
  //quad 10 T4 
  // left bottom 
  v[40].x = left; 
  v[40].y = bot_row4; 
 
  // left top 
  v[41].x = left; 
  v[41].y = top; 
 
  // right bottom  
  v[42].x = right; 
  v[42].y = bot_row4; 
 
  // right top 
  v[43].x = right; 
  v[43].y = top; 
 
  //quad 11 B1 
  // left bottom 
  v[44].x = left; 
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  v[44].y = bottom; 
 
  // left top 
  v[45].x = left; 
  v[45].y = top_row8; 
 
  // right bottom  
  v[46].x = right; 
  v[46].y = bottom; 
 
  // right top 
  v[47].x = right; 
  v[47].y = top_row8; 
 
  //quad 12 B4 
  // left bottom 
  v[48].x = left; 
  v[48].y = bottom; 
 
  // left top 
  v[49].x = left; 
  v[49].y = top_row5; 
 
  // right bottom  
  v[50].x = right; 
  v[50].y = bottom; 
 
  // right top 
  v[51].x = right; 
  v[51].y = top_row5; 
 
  //quad 13 T2 
  // left bottom 
  v[52].x = left; 
  v[52].y = bot_row2; 
 
  // left top 
  v[53].x = left; 
  v[53].y = top; 
 
  // right bottom  
  v[54].x = right; 
  v[54].y = bot_row2; 
 
  // right top 
  v[55].x = right; 
  v[55].y = top; 
 
  QuadVB->Unlock(); 
   
  // set vertex declaration   
  Device->SetVertexDeclaration(m_pDecl); 
  // set geometry  
  Device->SetStreamSource(0, QuadVB, 0, sizeof(CUSTOMVERTEX)); 
   
  //Device->SetSamplerState(1,D3DSAMP_ADDRESSU,D3DTADDRESS_CLAMP); 
  //Device->SetSamplerState(1,D3DSAMP_ADDRESSV,D3DTADDRESS_CLAMP); 
  return true; 
 }//Setup() 
  
  
private: 
 //------------------------------------------------------------ 
 // ---------------------- LOAD INPUT SCENE ------------------- 
 //------------------------------------------------------------ 
 bool LoadInputScene(float p_inputArray[]) { 
  RECT SurfRect; 
  SurfRect.left = 0; 
  SurfRect.top = 0; 
  SurfRect.right = SceneSizeX; 
  SurfRect.bottom  = SceneSizeY; 
   
  HRESULT hr = 0; 
  hr= D3DXLoadSurfaceFromMemory( 
   Scene_Surface, 
   0, 
   0, 
   p_inputArray, 
   D3DFMT_R32F, 
   (4*SceneSizeX),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
   0, 
   &SurfRect, 
   D3DX_FILTER_NONE, 
   0); 
  if(FAILED(hr)) 
   return false; 
  return true; 
 }//LoadInputScene()  
  
 //----------------------------------------------------------- 
 //    bool MAddReduce()  
 //  
 bool MAddReduce(int* p_retIndex, int* p_xdisp, int* p_ydisp){  
  HRESULT hr = 0; 
   
  // ---- set PS and VS shaders 
  Device->SetVertexShader(VS1_maddreduce); 
  Device->SetPixelShader(PS1_maddreduce); 
   
  // set VS PixelSize const 
  // .x = 1/reticle img width, .y = 1/scenewidthX, .z = 1/scenewidthY, .w = 0.0f 
  hr = VS1_VSCT->SetVector(Device, VS1_PixelSizeHandle,  
     &D3DXVECTOR4(1.0f/(float)ReticleSize, 1.0f/(float)SceneSizeX,  
     1.0f/(float)SceneSizeY, 0.0f)); 
  if(FAILED(hr)) 
   return false; 
  //was 2/SceneSize and 1/SceneSize 
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  // set Aspect in VS; allows for arbitrary scene dimensions 
  D3DXVECTOR2 aspect; 
  aspect.x = (float)ReticleSize/(float)SceneSizeX; //0.5f; 
  aspect.y = (float)ReticleSize/(float)SceneSizeY; //0.5f; 
 
  hr =  VS1_VSCT->SetFloatArray(Device, 
     VS1_AspectHandle, 
     (float*)aspect,2); 
  if(FAILED(hr)) 
   return false; 
   
  // ---- set RT   
  hr = Device->SetRenderTarget( 
      0, 
      RT_Surface); 
  if(FAILED(hr)) 
   return false; 
   
  //Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0); 
   
  Device->SetStreamSource(0, QuadVB, 0, sizeof(CUSTOMVERTEX)); 
   
  D3DVIEWPORT9 vp; 
   
  vp.Width  = ReticleSize/2; 
  vp.Height = ReticleSize/2; 
  vp.MinZ   = 0.0f; 
  vp.MaxZ   = 1.0f; 
   
  Device->SetTexture( 1, Scene_Tex);//stage 1 = input scene 
   
  D3DXVECTOR2 displacement; 
  float f_dispx; 
  float f_dispy; 
  float halfRetX; 
  float halfRetY; 
  int   index = 0; 
 
  for (int v = 0; v<5; v++){ 
   for (int h = 0; h<8; h++){ 
    vp.X = h*ReticleSize/2;  
    vp.Y = v*ReticleSize/2; 
    Device->SetViewport(&vp); 
    // set sampler 0 with reticle image for maddredux with scene 
    index = v*8+h; 
    Device->SetTexture( 0, Reticle_Tex[ p_retIndex[index]] ); 
     
    //new displacement vector added for conscan x/y offset in VS 
    f_dispx = (float)p_xdisp[index]/(float)SceneSizeX; 
    f_dispy = (float)p_ydisp[index]/(float)SceneSizeY; 
    halfRetX = (float)(ReticleSize/2)/(float)SceneSizeX; 
    halfRetY = (float)(ReticleSize/2)/(float)SceneSizeY; 
    displacement.x = 0.5f + f_dispx - halfRetX +1.0f/(2.0f*(float)SceneSizeX);; 
    displacement.y = 0.5f - f_dispy - halfRetY + 1.0f/(2.0f*(float)SceneSizeY); 
 
    hr =  VS1_VSCT->SetFloatArray(Device, 
       VS1_DisplacementHandle, 
       (float*)displacement, 
       2); 
    if(FAILED(hr)) 
     return false; 
     
    // render-- madd scene with a single reticle image 
    Device->BeginScene(); 
     Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2); 
    Device->EndScene(); 
   } 
  } 
  // set streamsource to 8x5 rectangle r1-r5, Quad 1 
  Device->SetStreamSource(0, QuadVB, 4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX)); 
  return true; 
 } //MAddReduce() 
 
 //---------------------------------------------------------------- 
 // Redux() 
 //        16:1 REDUCE OPERATION  
 // 
 //---------------------------------------------------------------- 
 bool Redux() { 
  HRESULT hr = 0; 
 
  // ---- set PS and VS shaders 
  Device->SetVertexShader(VS2_16tapreduce); 
  Device->SetPixelShader (PS2_16tapreduce); 
   
  // initial source tex is result of maddreduce op 
  Device->SetTexture( 0, RT_Tex); 
   
  for (int i = 0; i < ReduceIterations; i++) { 
    
   hr = Device->SetRenderTarget( 0, RT_Reduce_Surface[i]); 
   if(FAILED(hr)) 
    return false; 
    
   if (i>0)  
    Device->SetTexture( 0, RT_Reduce_Tex[i-1]);  
 
   // set VS offset constant array 
   hr = VS2_VSCT->SetFloatArray( Device,  
       VS2_offsetHandle,  
       (float*)&offset[i][0], 
       16 );// 2*8 floats  
   if(FAILED(hr)) 
    return false; 
   
   // set PS offset constant array 
   hr = PS2_PSCT->SetFloatArray( Device,  
       PS2_offsetHandle,  
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       (float*) &offset[i][8], 
       16 );//2*8 floats 
   if(FAILED(hr)) 
    return false; 
    
   // render-- do 16:1 reduction 
    
   //Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0); 
   Device->BeginScene(); 
    Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2); 
   Device->EndScene(); 
  } 
  return true; 
 } // Redux() 
  
 //------------------------------------------------------------------ 
 // GetRTData_hybrid() 
 //       retrieve FINAL data from lockable render-to surface 
 //------------------------------------------------------------------ 
 void GetRTData_hybrid(double p_b[]) { 
  HRESULT hr = 0; 
   
  int q; 
  int col; 
  int row; 
 
  D3DLOCKED_RECT lockedRect; 
 
  Device->GetRenderTargetData(RT_Reduce_Surface[TexIndex], Ones_Surface); 
  Ones_Surface->LockRect(&lockedRect,  
   0 , //lock entire tex 
   D3DLOCK_READONLY ); //flags  
    
  float* imageData = (float*) lockedRect.pBits;  
   
  //perform final 4:1 reduction if necessary and add 4 components of each pixel 
  if (OutTexSize>8){ 
   for (int i = 0; i<40; i++){ 
    
                   row = i/8; 
    col = i%8; 
    q = row*32 + col*2; 
    p_b[i]= imageData[q] + imageData[q+1] + imageData[q+16] + imageData[q+17];   
   }  
  } 
  else { 
   for (int i = 0; i<40; i++){ 
    p_b[i]=imageData[i];  
   } 
  } 
  Ones_Surface->UnlockRect(); 
 
  return; 
 }// GetRTData_hybrid() 
 
 //------------------------------------------------------ 
 // Release() and Delete() 
 //  cleanup functions 
 //------------------------------------------------------ 
 template<class T> void Release(T t) { 
  if( t ) { 
   t->Release(); 
   t = 0; 
  } 
 } 
   
 template<class T> void Delete(T t){ 
  if( t ){ 
   delete t; 
   t = 0; 
  } 
 } 
 
 //----------------------------------------------------------  
 // Cleanup() 
 //  releases textures/surfaces/interfaces/devices/memory 
 //   allocated during program 
 //---------------------------------------------------------- 
 void Cleanup() 
 { 
  //vertex buffer and declaration 
  Release<IDirect3DVertexBuffer9*>(QuadVB); 
  Release<LPDIRECT3DVERTEXDECLARATION9> (m_pDecl);   
   
  //textures and surfaces 
  Release<IDirect3DSurface9*>(Scene_Surface); 
  Release<IDirect3DTexture9*>(Scene_Tex); 
   
  int n = 100; 
  for (int t = 0; t<n;t++){ 
   Release<IDirect3DSurface9*>(Reticle_Surface[t]); 
   Release<IDirect3DTexture9*>(Reticle_Tex[t]); 
  } 
 
       
  Release<IDirect3DTexture9*>(RT_Tex); 
  Release<IDirect3DSurface9*>(RT_Surface); 
   
 
  for (int t = 0; t<ReduceIterations; t++) {   
              Release<IDirect3DSurface9*>(RT_Reduce_Surface[t]); 
   Release<IDirect3DTexture9*>(RT_Reduce_Tex[t]); 
  } 
   
  Release<IDirect3DTexture9*>(Ones_Tex);  
  Release<IDirect3DSurface9*>(Ones_Surface);  
   
  //PS & VS  
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  Release<IDirect3DPixelShader9*>(PS1_maddreduce); 
  Release<ID3DXConstantTable*>(PS1_PSCT); 
  Release<IDirect3DVertexShader9*>(VS1_maddreduce); 
  Release<ID3DXConstantTable*>(VS1_VSCT); 
  Release<IDirect3DPixelShader9*>(PS2_16tapreduce); 
  Release<ID3DXConstantTable*>(PS2_PSCT); 
  Release<IDirect3DVertexShader9*>(VS2_16tapreduce); 
  Release<ID3DXConstantTable*>(VS2_VSCT); 
 
  Device->Release(); 
   
 }// Cleanup() 
 
public: 
 //---------------------------------------------------------------- 
 //                uploadReticle 
 //---------------------------------------------------------------- 
 bool uploadReticle(int p_index, float p_array[]){ 
  HRESULT hr = 0; 
   
  RECT srcRect; 
  srcRect.top = 0; 
  srcRect.bottom = ReticleSize; // /2 for CONSCAN 
  srcRect.left = 0; 
  srcRect.right = ReticleSize; //change from SceneSize/2 to ReticleSize 
   
  hr= D3DXLoadSurfaceFromMemory( 
   Reticle_Surface[p_index], 
   0, 
   0, 
   p_array, 
   D3DFMT_R32F, 
   (4*ReticleSize),  //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format  
   0,                // SceneSize/2 for CONSCAN 
   &srcRect, 
   D3DX_FILTER_NONE, 
   0); 
  if(FAILED(hr)) 
   return false; 
   
  return true; 
 } 
 
 //---------------------------------------------------------- 
 //       Process() 
 // user interface to GPU algorithm 
 // input:  reference to scene image array variable-- scene[SceneSizeX *SceneSizeY] 
 // input:  references to arrays in calling program: 
 //           reticleIndex[40],, xdisp[40], ydisp[40], resultArray[40]  
 // output: double result array[40]--output to JMASS 
 void Process(int p_retIndex[], float p_SceneArray[], double p_resultArray[], 
   int p_xdisp[], int p_ydisp[]) { 
  LoadInputScene(p_SceneArray); 
  MAddReduce(p_retIndex, p_xdisp, p_ydisp); 
  Redux(); 
  GetRTData_hybrid(p_resultArray); 
  return; 
 }// Process() 
  
 int GetAlg(){ 
  return 3;//one by one, R32F, CONSCAN 
 }  
 //---------------------------------------------------------- 
 //                ~ Gpu()  DESTRUCTOR 
 ~GpuConscan() { 
  Cleanup(); 
 }// ~ Gpu()  DESTRUCTOR 
 
}; 
#endif  // GPU_CLASS_H_BY_MAJ_JEFFERS 
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// 
// file: vs_CONSCAN.txt  (adapted from vs_experimental)  
// BY MAJ SEAN JEFFERS 
// 11 nov 04  -- multiplies 1x1 scene by 8x8 reticle pallette, then does 
//                  4:1 redux; results in RT that is quarter sized of pallette; 
//      sampling of scene done w/wrapping  
//           -- PixelSize.x = 1/ret pallette width 
//           -- PixelSize.y = 1/scene width 
//           -- PixelSize.z = 0.0f (must!) 
//           -- VS generates 8 texcoords for PS 
//  2 jan 05 -- scene is 4x RT width; ret is 2x RT width 
//           -- implements CONSCAN 
//           -- PixelSize.w = x-displacement texcoord wrt scene 
//                 = x/scene_width , where x is pixel displacement {0..scene_width-1} 
//      -- PixelSize.x = 1/ret width 
//            -- PixelSize.y = 1/scene width 
//  5 jan 05  -- modified to have separate displacement and aspect consts 
// ------------------------------------------------------------- 
 
uniform float4  PixelSize; 
uniform float2  Displacement; 
uniform float2  Aspect; 
 
// structures 
 
struct VS_INPUT 
{ 
 float4 Pos : POSITION; 
}; 
 
struct VS_OUTPUT 
{ 
 float4 Pos : POSITION; 
 float2 Tex : TEXCOORD0; 
 float2 Tex1: TEXCOORD1; 
 float2 Tex2: TEXCOORD2; 
 float2 Tex3: TEXCOORD3; 
 float2 Tex4: TEXCOORD4; 
 float2 Tex5: TEXCOORD5; 
 float2 Tex6: TEXCOORD6; 
   float2 Tex7: TEXCOORD7; 
}; 
 
 
// ------------------------------------------------------------- 
// vertex shader function (input channels) 
// ------------------------------------------------------------- 
VS_OUTPUT Main(VS_INPUT input) 
{ 
  VS_OUTPUT output = (VS_OUTPUT)0;         
 
     output.Pos.xy = input.Pos.xy;// + PixelSize.xy; 
     output.Pos.z = 0.5f; 
  output.Pos.w = 1.0f; 
  
 //reticle tex coords (ret width = 2x RT width) 
 output.Tex = float2(0.5f, -0.5f) * input.Pos.xy + 0.5f.xx ;  
 output.Tex1 = output.Tex + PixelSize.xw; 
        output.Tex2 = output.Tex + PixelSize.wx; 
        output.Tex3 = output.Tex + PixelSize.xx; 
         
 //scene tex coords (scene width = 4x RT width) 
 output.Tex4 = Aspect*output.Tex + Displacement;//was 0.5f *adds in x-disp 
 output.Tex5 = output.Tex4 + PixelSize.yw; 
        output.Tex6 = output.Tex4 + PixelSize.wz;  // y now SceneSizeX 
      output.Tex7 = output.Tex4 + PixelSize.yz;  //changed z to w, z now SceneSizeY 
     return output; 
} 
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// file: ps_CONSCAN.txt 
// 
// depends on:  file vs_onebyone.txt, GPU_CLASS_ONEBYONE_R32F.h 
// By:  Maj Sean Jeffers 
// descr:  modified version of ps_maddreduce_new for CONSCAN 
//         PS for mult, add, reduce, 4:1; one-by-one approach using R32F textures only 
//  
// 27 dec 04 -- use with GPU_CLASS_ONEBYONE_R32F.h for CONSCAN 
//                  does maddreduce op with input tex's R32F, output tex R32F 
//            -- "dot" approach seems to work a little faster than other 
//                  commented out approach; but both work 
//       -- eliminated "noise" caused by dot product by assigning tex samples  
//                    to individual float vector components vs. full float4 
//  2 jan 05  -- modified to do conscan approach; accept 8 texcoords, all R32F tex's 
// ------------------------------------------------------------- 
// globals 
// ------------------------------------------------------------- 
 
 
sampler Rendersampler; //reticle img (2x RT width) 
sampler Rendersampler2;//scene img (4x RT width) 
 
 
// -------------------------------------------- 
// structures 
// -------------------------------------------- 
 
struct PS_INPUT 
{ 
 float2 Tex0 : TEXCOORD0; 
 float2 Tex1 : TEXCOORD1; 
 float2 Tex2 : TEXCOORD2; 
 float2 Tex3 : TEXCOORD3; 
 float2 Tex4 : TEXCOORD4; 
 float2 Tex5 : TEXCOORD5; 
 float2 Tex6 : TEXCOORD6; 
   float2 Tex7 : TEXCOORD7; 
  
}; 
 
// struct PS_OUTPUT 
// { 
//  float4 clr : COLOR; //was COLOR0   
// }; 
  
// ------------------------------------------------------------- 
// Pixel Shader (input channels):output channel 
// ------------------------------------------------------------- 
 
float4 PSMain(PS_INPUT input) :COLOR 
{ 
 float4 t1; 
 t1.r = tex2D(Rendersampler, input.Tex0); 
     t1.g = tex2D(Rendersampler, input.Tex1); 
 t1.b = tex2D(Rendersampler, input.Tex2); 
 t1.a = tex2D(Rendersampler, input.Tex3); 
  
 float4 t2; 
 t2.r = tex2D(Rendersampler2, input.Tex4); 
     t2.g = tex2D(Rendersampler2, input.Tex5); 
 t2.b = tex2D(Rendersampler2, input.Tex6); 
 t2.a = tex2D(Rendersampler2, input.Tex7); 
 
          
 // madd ret (t1) & scene (t2)  
   
   
 return dot(t1, t2);  
   
} 
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#ifndef GPU_UTILITY_BY_MAJ_JEFFERS 
#define GPU_UTILITY_BY_MAJ_JEFFERS 
 
namespace d3d { 
  
 
 LRESULT CALLBACK Gpu_WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
 { 
  return DefWindowProc(hWnd, message, wParam, lParam); 
 } 
  
 ATOM Gpu_WndClass(HINSTANCE hInstance ) { 
   
  WNDCLASSEX wcex; 
  wcex.cbSize  = sizeof(WNDCLASSEX);  
  wcex.style = CS_HREDRAW | CS_VREDRAW; 
  wcex.lpfnWndProc = (WNDPROC)d3d::Gpu_WndProc;//(WNDPROC) 
  wcex.cbClsExtra = 0; 
  wcex.cbWndExtra = 0; 
  wcex.hInstance = hInstance; 
  wcex.hIcon = LoadIcon(hInstance, (LPCTSTR)IDI_WIN_CONSCAN); 
  wcex.hCursor = LoadCursor(NULL, IDC_ARROW); 
  wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); 
  wcex.lpszMenuName = 0;//no menu 
  wcex.lpszClassName = "Gpu_WndClass"; 
  wcex.hIconSm = LoadIcon(wcex.hInstance, (LPCTSTR)IDI_SMALL); 
 
  return RegisterClassEx(&wcex); 
 } 
  
 bool InitD3D( HINSTANCE hInstance, int nCmdShow, 
   int width, int height, 
   bool windowed, 
   D3DDEVTYPE deviceType, 
   IDirect3DDevice9** device) 
 { 
  //  create GPU window 
  d3d::Gpu_WndClass(hInstance); 
  HWND hWnd2 = CreateWindow("Gpu_WndClass", "GPU", WS_OVERLAPPEDWINDOW, 
   CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL); 
  if (!hWnd2){ 
   return FALSE; 
  } 
  //ShowWindow(hWnd2, nCmdShow); 
  //UpdateWindow(hWnd2); 
   
  // 
  // Init D3D:  
  // 
 
  HRESULT hr = 0; 
 
  // Step 1: Create the IDirect3D9 object. 
 
  IDirect3D9* d3d9  = 0; 
  d3d9   = Direct3DCreate9(D3D_SDK_VERSION); 
 
  if( !d3d9 ) 
  { 
   ::MessageBox(0, "Direct3DCreate9() - FAILED", 0, 0); 
   return false; 
  } 
 
  // Step 2: Check for hardware vp. 
 
  D3DCAPS9 caps; 
  d3d9->GetDeviceCaps(D3DADAPTER_DEFAULT, deviceType, &caps); 
 
  int vp = 0; 
  if( caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ) 
   vp = D3DCREATE_HARDWARE_VERTEXPROCESSING;  //SOFTWARE if debug 
  else 
   vp = D3DCREATE_SOFTWARE_VERTEXPROCESSING; 
 
  // Step 3: Fill out the D3DPRESENT_PARAMETERS structure. 
   
  D3DPRESENT_PARAMETERS d3dpp; 
  d3dpp.BackBufferWidth            = width; 
  d3dpp.BackBufferHeight           = height; 
  d3dpp.BackBufferFormat           = D3DFMT_X8R8G8B8; 
  d3dpp.BackBufferCount            = 1; 
  d3dpp.MultiSampleType            = D3DMULTISAMPLE_NONE; 
  d3dpp.MultiSampleQuality         = 0; 
  d3dpp.SwapEffect                 = D3DSWAPEFFECT_DISCARD;  
  d3dpp.hDeviceWindow              = hWnd2; 
  d3dpp.Windowed                   = windowed; 
  d3dpp.EnableAutoDepthStencil     = false;  
  d3dpp.AutoDepthStencilFormat     = D3DFMT_D24S8; 
  d3dpp.Flags                      = 0; 
  d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT; 
  d3dpp.PresentationInterval       = D3DPRESENT_INTERVAL_IMMEDIATE; 
 
  // Step 4: Create the device. 
 
  hr = d3d9->CreateDevice( 
   D3DADAPTER_DEFAULT, // primary adapter 
   deviceType,         // device type 
   hWnd2,               // window associated with device 
   vp, // | D3DCREATE_FPU_PRESERVE, // vertex processing 
   &d3dpp,             // present parameters 
   device);            // return created device 
 
  if( FAILED(hr) ) 
  { 
   // try again using a 16-bit depth buffer 
   d3dpp.AutoDepthStencilFormat = D3DFMT_D16; 
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   hr = d3d9->CreateDevice( 
    D3DADAPTER_DEFAULT, 
    deviceType, 
    hWnd2, 
    vp, 
    &d3dpp, 
    device); 
 
   if( FAILED(hr) ) 
   { 
    d3d9->Release(); // done with d3d9 object 
    ::MessageBox(0, "CreateDevice() - FAILED", 0, 0); 
    return false; 
   } 
  } 
 
  d3d9->Release(); // done with d3d9 object 
    
  return true; 
 } 
 
} //namespace d3d 
 
#endif //GPU_UTILITY_BY_MAJ_JEFFERS 
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simulations play an important role in protecting forces and saving lives. 
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