Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2005

Accelerating Missile Threat Engagement Simulations Using
Personal Computer Graphics Cards

Sean E. Jeffers

Follow this and additional works at: https://scholar.afit.edu/etd

b Part of the Computer Engineering Commons, and the Graphics and Human Computer Interfaces

Commons

Recommended Citation

Jeffers, Sean E., "Accelerating Missile Threat Engagement Simulations Using Personal Computer Graphics
Cards" (2005). Theses and Dissertations. 3866.

https://scholar.afit.edu/etd/3866

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholar.afit.edu%2Fetd%2F3866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F3866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholar.afit.edu%2Fetd%2F3866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3866?utm_source=scholar.afit.edu%2Fetd%2F3866&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

ACCELERATING MISSILE THREAT

ENGAGEMENT SIMULATIONS USING

PERSONAL COMPUTER GRAPHICS CARDS

THESIS

Sean E. Jeffers, Major, USAF
AFIT/GE/ENG/05-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ACCELERATING MISSILE THREAT

ENGAGEMENT SIMULATIONS USING

PERSONAL COMPUTER GRAPHICS CARDS

THESIS

Sean E. Jeffers, Major, USAF
AFIT/GE/ENG/05-08

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/05-08

ACCELERATING MISSILE THREAT ENGAGEMENT SIMULATIONS USING

PERSONAL COMPUTER GRAPHICS CARDS

Sean E. Jeffers, BS

Major, USAF
Approved:
/signed/
Rusty O. Baldwin, Ph.D. (Chairman) date
/signed/
Stephen C. Cain, Ph.D. (Member) date
/signed/

Barry E. Mullins, Ph.D. (Member) date

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GE/ENG/05-08

ACCELERATING MISSILE THREAT ENGAGEMENT SIMULATIONS USING

PERSONAL COMPUTER GRAPHICS CARDS

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Sean E. Jeffers, BS

Major, USAF

March 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Table of Contents

Page

B o) (o) 1<) 1L OSSR \
LISt Of FIGUIES .ttt ettt st b st e s et e b e tesbeebe e bt eaeebeeneeneeneensennenaens vii
LISt OF TADIES ...ttt ettt ettt et b e s bt e bt st e n e e e et e tesbeebebeeaeebeeneeneeneenean viii
AADSITACE ettt a e h et bbbt a ekt e et b bbbt bt e a e et e bt beebe bt et e st enee ix
I INEEOAUCLION .oiuviiiiiiiieiii ettt ettt ettt et et e st e sttesteesbeesbeesbessaesseessaessesssesssesseensesssesssesssensaensenns 1
JMASS Background and Characterization of AFTWC Requirement.............cccceevveeeiereereeneenieennenne. 3

II. LIterature REVIEW ...c.eovieiiiiiiiiiieiieeiieitete et e sttt e st esteeteesaesetessa e taesseessaessassaesseesseessesssesssesssenseensenns 9
The General PUIPOSE GPUcc.ooiiiiiiieiieiieeee ettt et st e sttt e e enseeseensesnneenes 9
GPU ATCRITECIUIEottt ettt ettt ettt e et e et eesbessaesseeseenseensesnnesseenseanseenseans 10
Using the GPU Fixed-Function Pipelinecoecuerieriieiiieieiie e 13
The GPU Programmable PIPElineccccvevieriieiieriieiieieeieeieeee ettt ens 17
Pixel Shaders Versus VerteX Shaders.........ccoccveviieiieiinienieieeie et 18
Frameworks, Models and Compilers for General Purpose GPU Computing..........ccccceeverveeurnnnns 20
GPU PerfOIMANCE.cveeuiieiieeiieeiieieee ettt ettt et e et et enteessessaeeseesseeseenseensesnnesseanseenseans 23

LO70] 1107 LD T3 [) USRS 26

III. GPU Implementation and JMASS INterationc.ccceeeeerieriierieecienienienieeieeie e seeeseeense e e 29
Integration With JIMASS ... oottt ettt et e e esbeesaesneesseeseenseensenseenseenseans 29
GPU IMPLEMENTATIONeuvieiieiiieiieeiiestiesieeteetestestestteee e st esteesaesseesseesseensesnsesssesseesseanseeseesseenseenseens 30
Theory Of OPEIAtIONcccvieiieiieieeiieeeie ettt e e te st e st e st esteenseenseensesseenseensesnsessnenseas 31
Sequential APPIrOACH.........ccieiieie ittt sttt et nae e nnees 32

Palette APPIOACK.cuiiieeiieeiieiiete ettt ettt ettt e sttt esse e b e e ae s ae e e st eneenteens 33

COMICAL SCANeetieiieiiete ettt ettt e st e st ebeenseensessaesseenseeseenseenseennennns 38

L ALY (510 T Ta o) (o3 -y 2 SRR 41
Problem DEfinitioncecvieiieiieieriesiee ettt ettt ettt et et esteesaessaesseeseenseensesnnesseesseenseenseans 41
N1 10T 0101 1 0 U 42
SYSEEII SEIVICES ...e.uvevretieiieteeeieetterttete et eateestesseeseessesnsesasesseesseenseensesnsesseesseanseanseensaenseenseensesnsennns 43
WOTKIOAA ...ttt ettt et e et e e et e e saesse et e enseenseensesnnesneesseanseenseans 44
Performance IMELIICSc.oecuieiirieeiiesiiese et ete s te st ettt e et e et et e enteessessaesseeseenseensesnsesnnenseanseenseans 46
PATAIMETETSuvieiiieiiiieite ettt et ettt e b e et s bt e e bt e s b e e e bt e sabeeeabee e baeenbee s 46
FACTOTS 1.t ettt ettt e b e et s b e ettt e bt e et e s be e e bt e s baeenbee s 47
Evaluation TECANIQUE........ccueeieeiieiieiieie ettt ettt ettt et e et e sse e te e e ensesnaesneesneesseenseenseens 48
EXPerimental DESIZIcc.eevuieiieieeiiesiieie ettt ettt et e st et et et essaesseesseeseensesnnesnnesseanseenseans 48
ANALYSIS OF RESUILS ..ottt et st e st et e et eenseenseenaesnnenneas 56
SUIMIMATY .ttt ettt e et e et e s bt e s bt e e bt e eabte s baeebee s baeebeesnbaeensaeenbbeenaneenns 58

V. ReSUItS aNd ANALYSIS. .. ceueiieiiiiiieteee ettt ettt ettt et ettt beeneente e et 59
INEEOAUCTION ...ttt ettt sttt b e et e e bt e st en s e e e beebesteebeeseeneeneenseneens 59
Phase One Experiments: ATI versus NVIdiaccccvevieriiiiiieiiiieiiesieeie e esre e eaee e esreens 59

EfTECt OF GPU ...ttt sttt ettt saee e et ens 61
Effect O IMAZE SIZ€ ...eueerieeiiiiieie ettt ettt 64
Effect of GPU algorithm implementation.............ocererereeieieieieie ettt 64
Useful WOrk performed..........ocoviiiiiiiiieiieieeeeeeecie ettt ettt re e e e e teebeesseennas 65
Phase Two Experiments: GPU versus CPU-based Implementationsccccceeeveeereenreereenennnnns 67
Effect of scene update SChEME.........cccuiiiiiieiiiiiieciicceee e e e aae e s 68
Effect of processing Methodc.oiuiiiiiiiiieeeeee et e 69
EffeCt Of PLatfOrmoocviiiiiiiiciieteee ettt ettt bbb s taeeraeeaeesaeeereenbeens 71
Interaction between processing method and iMage S1Z€ccoeveeieieienereneieeeeeeee e 72
Effect O IMAZE SIZ€ ...eueeiteeiiiiieie ettt ettt 72
Phase Three Experiments: Conical SCANcccccvieiiiiiriieiiieiicteseeste et ae e eveene e 73
Phase Four Experiments: GPU Performance With IMASSccooviiiiiiiiiieeceeeeeeeeeeeeee s 78
SUITIMATY ..ttt ettt b e b e bt et et s at e shtesb e et e et e en bt es e sbeeebee bt e beenbeemaeemeeeaee 84
VL DHSCUSSION 1ottt ettt ettt ettt e bt b e e s bt e bt e bt eat e sae e s bt e bt e bt enbeeateestenbeenbeebeeneeemeeeaes 87
SUMMATY Of FINAINGSeoviiiieiiieiicieceeeeeee ettt ettt et e et e eabeetaesbe e beenseenseensesens 87
Final Observations and Recommendations..............cecceierierienininininie e 88

Appendix A. Analysis Tables and FIGUIESccccveiiiriiieieiieieieee e 93

Appendix B. GPU Implementation Codecccveruiiriieriieieniesieseee ettt esae e neeens 113

L2 10) 1 e a1 oY1 | 2RSSR 157

vi

List of Figures

Figure Page
1-1. JMASS image processing for missile flight SIMulationccccceevieriiiciicieiieneeceee e 5
2-1. Multiplying matrices using GPU fixed-function pipelingcccccoeverineneneneniceienenienenenne. 15
2-2. GPU redUCtiOn OPEIAtIONSc..eecvieutieiieetiestieteeteeteeeeseeesteesteeeeenteeneesseesteenseenseensesneesseesseenseeneeenes 22
3-1. “Sequential” approach for processing multiply-add operation in GPU............cccooeiiiriinnnenne. 33
3-2. “Palette” approach for processing multiply-add operation in GPU...........ccocooiiiiiiiiiiiiiiee 35
3-3. Inefficiency of “Palette” approachccccvieciieiieierierieeiece ettt seees 37
34, COMICAL SCAM ...ttt sttt ettt et h bttt ettt st besbeeb e e st ea b et e st e b e sbeeut et enbenaens 39
4-1. System configurations for each phase of eXperimentsc..coceevevveeienienenenineneeeeeeeeee 50
5-1. GPU execution times, ATI vs. n1Vidia, SPIN SCANc.eeruiriirieiiiiieieeie e 63
5-2. Execution times, GPU vs. software processing methods, Spin SCaN...........ccceeeeeeienieienieneneneens 70
5-3. Execution times, GPU vs. software processing methods, conical scan...........ccecceeveverenenenennene 76
A-la. Quantile-quantile & errors vs. responses plots, Phase 1 (128> & 2567) experiments................. 96
A-1b. Quantile-quantile & errors vs. responses plots, Phase 1 (512%) experimentscco......... 98
A-2. Quantile-quantile & errors vs. responses plots, Phase 2 experimentsccoecvervveriencvennnennen. 102
A-3. Quantile-quantile & errors vs. responses plots, Phase 3 experimentsccoeceevevereeeeneennen. 110

vil

List of Tables

Table Page
4-1. EXperimental DESINSc.ccvveriieriieiieiesiiesieeteetestesee e esteessesseeeseesseesseessesssessaesseeseessesssesssenses 52
5-1. GPU execution time, ATI vs. nVidia, SPIn SCAN........cceervrreierierieriierieeie e see e e eae e seeeeeas 63
5-2. Speedup comparison, ATT vS. NVIAIA ...cccueeiiiiiiieieieeeee e 64
5-3. Useful work performed by GPUS.........cooiiiiiiiieieeeeee et 66
5-4. Speedup comparison, GPU vs. software-based approaches, spin scancccceeeveevereerieeenennen. 69
5-5. Execution times, GPU vs. software approaches, Spin SCanccoeevevieriierieeieseeneeneeveenenenes 70
5-6. Speedup comparisons, GPU vs. software-based approaches, conical scan...........cccceeverurenenen. 75
5-7. Execution times, GPU vs. software-based approaches, conical SCanccoecevvvervenieeciennennen. 76
5-8. Execution times, baseline vs. GPU-assiSted JIMASSooooiiiiieeeeeeeeeeee e 79
5-9. Portion of time spent in optics & incremental speedup per IMASS version.........c.cccceeveveennnnen. 80
A-la. Analysis, Phase 1 (128% & 2567) experiments, ATI vs. NVidia...........ocoooovoveeerreoreeresrsresnnnn 94
A-1b. Analysis, Phase 1 (512%) experiments, ATI vS. NVIdiac..cooovveovvrveereoeeesesseeeseeeeennnen 97
A-2a. Analysis, Phase 2 experiments, GPU vs. C++ & MKL, Spin SCancccceceverererceeeeeneennenn 99
A-2b. Analysis, Phase 2 experiments, non-changing scene update scheme onlycccceeevvennennen. 103
A-2c. Analysis, Phase 2 experiments, separated by image SiZ€.........ccceereeruierireriinienieieeieeieseeeenn 105
A-3. Analysis, Phase 3 experiments, GPU vs. C++ & MKL, conical SCanccecervervrrerrerrrennene. 107
A-4. Analysis, Phase 4 experiments, baseline vs. GPU-assisted JMASS..........ccoovviinievieiienieienns 111

viil

AFIT/GE/ENG/05-08
Abstract

The 453d Electronic Warfare Squadron supports on-going military operations by
providing battlefield commanders with aircraft ingress and egress routes that minimize
the risk of shoulder or ground-fired missile attacks on our aircraft. To determine these
routes, the 453d simulates engagements between ground-to-air missiles and allied aircraft
to determine the probability of a successful attack. The simulations are computationally
expensive, often requiring two-hours for a single 10-second missile engagement.
Hundreds of simulations are needed to perform a complete risk assessment which
includes evaluating the effectiveness of countermeasures such as flares, chaff, jammers,
and missile warning systems. Thus, the need for faster simulations is acute.

This research speeds up these mission critical simulations by using inexpensive
commodity PC graphics cards to perform intensive image processing computations used
to simulate a heat seeking missile’s tracking system. The innovative techniques
developed in this research reduce execution time by 33% and incorporate a user-
selectable fidelity feature to perform high-fidelity simulations when required.
Furthermore, these image processing computations use only 5% of the available
computational capacity of the graphics cards, providing a ready source of additional
computational power for future simulation enhancements.

Analysts can now meet shorter suspenses with more accurate products, ultimately
enhancing the safety of Air Force pilots and their weapon systems. With ongoing
operations in Iraq and Afghanistan, and a growing threat at home and abroad posed by
the proliferation of man-portable missiles, the speed of these simulations play an

important role in protecting forces and saving lives.

X

This page intentionally left blank.

ACCELERATING MISSILE THREAT ENGAGEMENT SIMULATIONS USING
PERSONAL COMPUTER GRAPHICS CARDS
I. Introduction

Motivation for this research comes from two fronts. First, a review of the literature
reveals that commodity graphics accelerator cards, found in almost every personal
computer on the market today, have reached a level of power and programmability that
enables them to be used as high performance stream computers, adaptable to a variety of
general purpose computing tasks [MoA03][Mor03][RuS01][KrW03][LaMO01][LWKO03].
Further, these devices, commonly referred to as Graphics Processing Units (GPU), can
actually outperform the modern CPU in a range of computationally intensive applications
[TrSO1][KrWO03][BFHO04][LWKO03]. The GPU therefore represents a powerful, untapped
resource with the potential to provide a sizeable performance boost for little to no extra
cost'.

The second motivation for this research stems from a mission requirement. The 453d
Electronic Warfare Squadron, part of the Air Force Information Warfare Center
(AFIWC), is exploring ways to speed up the execution of computer-based simulations,
specifically those used to evaluate the effectiveness of the countermeasures, such as
flares, chaff, jammers, and missile warning systems, used by USAF aircraft against
missile threats. AFIWC uses the Joint Modeling and Simulation System (JMASS) Threat
Engagement Analysis Model (TEAM) software to run simulated engagements between
missile threats and friendly aircraft, under various maneuver and environmental
conditions, evaluating scenarios for the warfighter that would be cost prohibitive or

logistically impossible to obtain otherwise. The results of AFIWC threat analyses

' Mainstream graphics cards range in price from about $60 or less to about $500.

determine the adequacy of existing countermeasures, tactics, techniques and procedures,
and are used in the development of new ones. With ongoing operations in Iraq and
Afghanistan, and a growing threat abroad posed by the proliferation of man-portable
missiles, AFIWC simulations play an important role in protecting forces and saving lives.

Unfortunately, JMASS simulations take a long time to execute: up to two hours to
simulate a 10-second engagement. This is a problem for several reasons. To provide the
best possible analysis, hundreds of simulations must often be done to cover the many
variations of position, maneuver, and environment for a given scenario. The quality of
analysis is therefore constrained both by the amount of time available for conducting
simulations and the JMASS execution time. When operating under a short suspense,
quality can suffer. Further, the missiles are becoming smarter, able to identify target
features at ever increasing levels of detail. Correspondingly, there is an increasing need
for higher-fidelity simulations, which of course requires more time to execute due to the
increased amount of computation required. JMASS is generally run on high-end personal
computers and multiprocessor workstations. Though the speed of these machines
continues to increase, it has not been sufficient to match the demand for faster and more
detailed simulations.

To address these concerns, AFIWC initiated a collaborative effort with the Air Force
Research Laboratory, Naval Sea Systems Command and the Air Force Institute of
Technology to develop a hardware-based means for accelerating the image processing
calculations thought to present the greatest computational load during JMASS
simulations. Since this requirement emphasizes performance in the processing of

graphical information, it seemed worthwhile to apply today’s flexible and powerful GPUs

toward providing a low-cost, potentially high-payoff solution. The remainder of this
chapter provides an overview of the JMASS simulation process and a detailed
characterization of the problem posed by AFIWC.

JMASS Background and Characterization of AFIWC Requirement

JMASS simulations execute, as do most simulations, in discrete steps that model the
state of the system at regular intervals of simulated time. This interval is called the model
time step, and can be thought of as either the simulation’s time resolution, or the rate at
which the simulation “samples” the simulated world [Air04]. In JMASS, the model time
step is usually set to update the simulated environment in 1/250 second (equivalently,
0.004 second) intervals. During each time step, the JIMASS simulator generates a digital
image to simulate the missile’s current infrared (IR) field of view, essentially mimicking
the way the world would appear to a missile during flight. The image is submitted to a
mathematical model representative of a particular missile’s electro-optical sensor (a.k.a.
seeker) and control system path, and the missile’s response (i.e., maneuver or change in
direction) is fed back to the JMASS simulator for generating the next scene. This
iterative and interactive process of scene generation and missile optics response occurs
about 2,500 times to simulate a 10-second engagement.

Of specific interest are the image processing calculations for modeling the optical path
of the seeker, since this is where JMASS appears to spend most of its runtime. A typical
infrared seeker is positioned, not surprisingly, at the front of the missile and consists of
an IR-transparent dome followed by a set of optics not unlike a telescope. The optics
focus incoming light, presumably emanating from the missile’s prospective target,

through a rapidly spinning, partly transparent disc, called a reticle, which modulates the

light and passes it to an IR detector. The reticle is specially designed to modulate the
light in such a way that the position of the target relative to the center of the missile’s
field of view can be determined from the modulated signal. The missile’s control system
uses this signal to guide the missile to the target [MaV83].

JMASS simulates the seeker system described above by modeling the interaction
between the spinning reticle and the incoming IR scene. It accepts IR scene images as
input, and produces a reticle-modulated signal as output. The calculations associated
with this step in the simulation process, described in the following paragraphs, are the
subject of AFIWC’s hardware acceleration initiative, and likewise, the candidate for
potential GPU acceleration.

Prior to beginning a JMASS simulation, a data structure is initialized to model the
reticle. The reticle image is represented as a static 480 x 480 element array, with each
element (or pixel) containing a floating point number whose value is between zero and
one, indicating the degree to which each point on the reticle permits light to pass through
it. The reticle image for the chosen missile is loaded into CPU memory from a data file
prior to the start of the simulation.

For each model time step, JIMASS determines an appropriate angular displacement for
the reticle (recall the reticle is spinning), then creates a rotated copy by performing a
linear coordinate transformation on the original. The rotated reticle image may be resized
to match the resolution of the IR scene produced by the simulator, then interpolated by
one of four selectable algorithms to smooth any artifacts that may have been caused by
the rotation and resizing transformations. JMASS performs an element-by-element

multiplication of the rotated, smoothed reticle image with the current IR scene to produce

a new image, one that represents the IR scene filtered (or attenuated) by the reticle.
Finally, the values of all the pixels of this resultant image are summed to produce a single
radiance value. This value represents the light intensity that would be incident on the
missile’s IR detector given the input scene and reticle orientation at a particular instant in
simulated time.

Recall the field of view is updated (i.e., a new IR scene is produced by the JIMASS
simulator) 250 times per simulated second. However, because the spinning reticle results
in a modulated detector signal with frequency on the order of 1-2 kHz, sampling theory
requires a minimum sampling rate of 4,000 samples per simulated second. AFIWC has
specified a higher, 10 kHz sampling rate to protect against aliasing. Since the JMASS
simulator’s 250 Hz simulation step falls well short of this, each scene must be multiplied
by forty reticle images (each requiring a different amount of rotation, followed by
resizing and interpolation), and forty sums produced, to provide the 10,000 samples per
simulated second to replicate the detector signal. Figure 1-1 below presents a simplified
view of this process.

JMASS Image Processing for Missile Flight Simulation

rotating reticle
in missile filters
input scene

2 :> single radiance value
for missile IR detector

IR scene reticle filtered sum all
image image image pixels

element-by-element multiply

- perform 40x per simulation step (on 40 differently-rotated reticles)
- perform 10,000 times per simulated second

Figure 1-1. How JMASS models missile optics to produce simulated IR detector signal.

For each model time step, JIMASS performs the rotate, interpolate, multiply, and add
operations described above as a series of separate O(N?) computations where N is the
width (and height for square images), in pixels, of the images being operated on.
Depending on the size of the images used, this could require on the order of 75 million
double precision floating point calculations per model time step, or 19 billion calculations
per simulated second’. The JMASS software is written in C++, for the most part, and
executes on a Windows or Unix-based platform. To provide a concrete example, it takes
about two hours for IMASS, running on a 2.8 GHz Pentium 4, using 512°-sized images,
to simulate a 10-second engagement.

The optics calculations described above model the behavior of a spin scan seeker.
Generally, missiles employ one of two types of seekers, spin scan or conical scan.
JMASS can simulate both types. Conical scan is similar to spin scan except that the IR
scene is larger (generally twice the height and width of the reticle image), and prior to
performing the reticle-scene multiply-add operation, the reticle image is shifted with
respect to the scene by a set of specified x-y offset values, in pixels. The offset can be
different for each of the forty reticle images used during a model time step. To be of
greatest use to AFIWC, a GPU implementation should support both spin scan and conical
scan seekers.

In addition to the GPU-based effort that is the subject of this research, AFIWC is
investigating Field Programmable Gate Array (FPGA) technology to accelerate both

software-based (like JIMASS) and real-time, so-called “hardware-in-the-loop”

? Assuming a 256x256 size image and bilinear interpolation. This accounts for floating point addition,
multiplication, and sin and cos operations, but does not include instructions for performing loops, lookups
or array index calculations. Interpolation requires 10 floating point operations per image pixel, rotation
requires 16, and the multiply-add about 2.

simulations, which interface with real missile hardware. Since software-based
simulations are not performed in real-time, they stand to benefit from any amount of
speedup that can be provided. However, this is not the case for real-time simulations
which must either sustain a throughput of 19 GFLOPS or fail. Whether or not this kind
of performance is within the capabilities of FPGAs remains to be determined, and is
beyond the scope of this research. However, as will be shown later in this thesis, such
performance is almost certainly beyond the current capabilities of graphics cards.
Therefore, any performance gains be realized through a GPU will likely only benefit
software-based simulations.

As indicated throughout this section, the AFIWC hardware acceleration initiative is
predicated on the assumption that image processing calculations are the source of the
performance bottleneck, and should therefore be the prime target for optimization efforts.
Indeed, an analysis of the JIMASS C++ code supports this assumption, since the bulk of
the calculations reside in the O(N?) code structure which performs the image processing
calculations [Joi04]. However, if this is not the case, optimizing the image processing
calculations may not be enough. According to Amdahl’s Law [HeP96], if other
bottlenecks exist, they could reduce the effectiveness of even the most spectacular image
processing performance gains provided by a GPU or FPGA. This does not diminish the
importance of these hardware acceleration efforts. However, it suggests adopting a

system-wide approach in addressing the JMASS performance issue.

This page intentionally left blank.

Il. Literature Review
The General Purpose GPU

Almost every personal computer available today comes equipped with dedicated
graphics acceleration hardware, either built-in to the motherboard or provided as an add-
in circuit card. Though graphics co-processors, or Graphics Processing Units (GPU) as
the industry refers to them, have become commodity items in personal computers, what is
not generally recognized is these devices have become formidable computing machines
in their own right, exceeding the modern desktop CPU in terms of raw computational
power.

For example, Macedonia [Mac03] reported a 20 GFLOPS peak performance of the
Nvidia GeForce FX 5900, a mainstream GPU in 2003, to be equivalent to a 10 GHz Intel
Pentium. It is interesting that GPUs achieve such performance running at much slower
clock rates than CPUs, the result of a highly parallelized architecture. Typical GPU clock
rates range from 233 to 400 MHz, while current CPU clock rates are on the order of a
few GHz. Current models of GPU contain 220 million transistors, the bulk of which are
dedicated to parallel processing of input streams, whereas Intel’s Xeon CPU has only 108
million transistors, 60 percent of which are devoted to cache memory [Mac03]. Equally
impressive, the growth of GPU performance has exceeded Moore’s Law [MoA03],
increasing at a rate of 2.8 times per year since 1993, and is expected to continue at this
rate for another five years, perhaps achieving tera-FLOP performance by 2005 [Mac03].

While the main, market-driven purpose of the GPU continues to be providing
increased resolution, dynamic range, frame rates and programmability to keep pace with

the demand for ever more realistic games and multimedia applications, these same

advances have resulted in an important, perhaps revolutionary side benefit: the
architecture of the modern programmable GPU has become so flexible it is possible to
exploit its inherent computational power for many general-purpose computing tasks
faster than they can be done on a CPU [TrSO01][KrWO03][BFH04][LWKO03]. These
developments have not been lost on a number of researchers who have, especially over
the past four years, successfully used a GPU to accelerate a myriad of general-purpose
computing tasks. Just a few of the diverse examples include linear algebra
[Mor03][KrW03][LaMO01], finite element analysis [RuS01], lattice Boltzmann
computation [LWKO3] and Fast Fourier Transform calculations [MoAO03].

GPU Architecture

The ability to use the GPU for general purpose computing results from its evolution
over the past decade from a fixed-function pipeline architecture, to a fully programmable
Single Instruction Multiple Data (SIMD) parallel, or streaming, processor
[MoAO3][BFHO4]. This section describes the GPU architecture.

A stream is simply a collection of data operated on in parallel [BFH04]. The GPU is
optimized for rendering images, a task that involves performing fast, parallel operations
on large streams of data. As such, most GPUs include their own high-bandwidth memory
subsystems for storing and manipulating graphical data. For example, the current top-of-
the-line mainstream GPU from nVidia, the GeForce 6800, has 256 MB of memory
accessible via a 256-bit bus with an advertised bandwidth of 35.2 GB per second [Nvi04].
In late 2004, 3DLabs is expected to make available its high-end Wildcat Realizm 800

GPU with 640 MB memory, 512-bit bus, and an advertised memory bandwidth of 64

10

GB/second [Pci04a]. By way of comparison, the Intel 875 chipset that supports the
Pentium IV only provides 6.4 GB/second CPU-to-main memory bandwidth [Int04a].

In general, the GPU processes two kinds of data: vertices and textures [Mor03].
Vertices represent points in space and are used to build graphical primitives, such as
polygons, which can be assembled to form complex 3-dimensional objects. Vertices
possess attributes such as color, position vector and texture coordinates, which are stored
in registers and can be operated on by various functions [THOO02]. Textures, on the other
hand, are 1, 2, or 3-dimensional images applied to polygons, much like wallpaper or
shrink-wrap, to impart the look of a realistic surface. Textures are stored in GPU
memory as arrays of pixels, and each texture pixel is represented by a four-component
vector, holding the intensity values for red, green, blue and alpha (RGBA) color
channels.

To render an image, a user application must provide the GPU a set of vertices and/or
textures. Some or all of the data may already be in GPU memory, left over from previous
operations; otherwise, data must be uploaded to the GPU. The GPU can retrieve large
blocks of data from CPU main memory via DMA. To prevent fast GPUs from becoming
data-starved, modern PC busses include a dedicated interface for the GPU, the Advanced
Graphics Port (AGP), which provides a 2 GB per second path between the GPU and main
memory. This figure will increase to 4 GB per second when computers based on the
next-generation PCI Express bus standard become available within the next year
[Int04b][Pci04b]. Unfortunately, DMA hardware is not provided for transferring data

quickly in the opposite direction. Such a capability is important since any significant use

11

of the GPU for general-purpose computing requires transferring GPU-computed results
into CPU main memory for further processing [THOO02].

Once the appropriate data has been loaded into the GPU, it proceeds through the GPU
pipeline in the following general sequence. First, the GPU generates geometry using the
vertex information provided by the user application. The GPU transforms the geometry
into a chosen coordinate frame, clips it to fit within a specified viewport, or drawing
rectangle, if need be, and applies lighting and color calculations [THOO02]. Next, the
GPU applies textures to the geometry, and passes everything to the rasterizer which
converts the vector-based geometry data into a pixel-based representation for rendering
[THOO2]. These pixels, as they exist prior to rendering, are referred to as fragments.
Finally, the pixels are rendered into a section of GPU memory, called the frame buffer
[LaMO1], for display on the screen.

The functions of the GPU are accessible via an Application Programmer Interface
(API) such as OpenGL, created by Silicon Graphics, or Microsoft’s DirectX. These
provide standardized interfaces, data types and functions to access the features of many
GPUs. The extent the API feature set is supported or extended depends on the GPU
manufacturer.

What remains to be explained is how the GPU architecture can be applied to
solving general-purpose computing problems. The following from [TrS01] addresses this
and nicely captures the motivation behind using the GPU for general-purpose

computation:

Modern raster graphics implementations typically have a number of buffers with a depth of 32 bits per
pixel or more. In the most general setting, each pixel can be considered to be a data element upon which
the graphics hardware operates. This allows a single graphics language instruction to operate on multiple
data as in a SIMD machine.

12

Since the bits associated with each pixel can be allocated to one of four components, a raster image can
be interpreted as a scalar or vector valued function defined on a discrete rectangular domain in the Xy plane.
The luminance value of a pixel can represent the value of the function while the position of the pixel in the
image represents the position in the Xy plane. Alternatively, an RGB or RGBA image can represent a three
or four dimensional vector field defined over a subset of the plane. The beauty of this kind of interpretation
is that operations on an image are highly parallelized and calculations on entire functions or vector fields
can be performed very quickly in graphics hardware.

Further, typical scientific computing applications perform at about 1% of peak (CPU)
processor performance. Recall a CPU cache hierarchy excels when it performs repeated
operations on a block of data, but suffers when the block of data exceeds the cache size.
The GPU, however, generally has much more memory capacity than a CPU cache, and is
capable of performing operations in parallel [RuSO1].

Using the GPU Fixed-function Pipeline

An early attempt to use the GPU for general-purpose numerical computation used the
fixed-function pipeline of the GPU to perform matrix multiplication. 2D textures stored
the matrices, with matrix element values stored as individual pixels within the textures.
For reasons to be discussed later, the technique of using textures versus vertices to
represent data in the GPU is widespread in the literature. The matrix multiplication
algorithm referred to above exploits the spatial parallelism of GPU computation,
performing a series of element-by-element multiplications of texture pairs, with element-
by-element additions performed in between to accumulate results [LaMO1].

To implement the algorithm, a pair of order-n square matrix multiplicands A and B are
preprocessed using the CPU to create two new sets of textures, A’ and B’, each
containing N, N X n textures, such that the i th texture in A’ contains the i th column from
A copied across its columns, and the i th texture of B’ contains the i th row from B copied

across its rows. Figure 2-1 shows an example using 2 x 2 matrices. As if dealing

13

corresponding cards from two decks, the i th textures from A’ and B’ are transferred to
the GPU in pairs and multiplied element-by-element in what is called a multi-texturing
operation. Multi-texturing takes two textures as operands and combines them in one of
several user-selectable ways to produce an output texture. In this example, each pair of
textures is multiplied using the “modulate” multi-texturing mode, applied to a single
quadrilateral fragment in the rasterization stage of the GPU pipeline, then rendered to the
frame buffer. To accumulate results, the output of each texture multiply is rendered to
the frame buffer using the “sum” texture blending mode. In this mode, rendering causes
the contents of the rasterizer to be added, pixel-by-pixel, with the existing contents of the
frame buffer, thereby allowing the accumulation of results in the frame buffer [LaMO1].

Using this technique two order-1024 square matrices were multiplied in 0.546 seconds
on the nVidia GeForce3 [LaMO01]. This time includes converting matrices to texture
maps, transfering the textures to GPU memory, performing the calculations, copying the
frame buffer back to CPU main memory, and converting back to matrix format. GPU
performance is compared to a CPU-based benchmark, Automatically Tuned Linear
Algebra Software (ATLAS) running on a Pentium IV. However, direct comparison is not
possible because then-current GPUs were only capable of 8-bit fixed point arithmetic,
and ATLAS performed its calculations in 32-bit floating point. To acknowledge this
difference, GPU performance is stated in terms of byte operations per second (BOPS),
and compared with ATLAS’s FLOPS.

For the order-1024 matrix multiply, the GPU achieved 4.4 GBOPS and ATLAS

yielded 4.0 GFLOPS. Though no execution time metric is provided for ATLAS

14

[>
low

(a) matrices to be multiplied

result of first multi-texture
B] ’ rendering pass, in frame buffer
texture blend combines
5 6 5 6 second result with

% . frame buffer
516 15 | 18 \ 191 22
> >

Ay’ ’ 43 | 50

result of second multi-texture

rendering pass

B>
final result in
E _ 14 16 frame buffer
%
8 28 | 32

(b) Matrix A columns and matrix B rows copied into texture sets A’ and B’. Corresponding textures
multiplied element-by-element using GPU multi-texturing. Final result is computed in GPU by adding
results in texture blending operation.

Figure 2-1. A technique for multiplying matrices using GPU fixed-function pipeline and textures [LaMO01].

[LaMO1], ATLAS running on a Pentium IV can multiply two order-1000 matrices in
about 0.5 seconds [Mor03], which, precision issues aside, is comparable to the 0.546
GPU time achieved in [LaMO1].

For large operations, such as multiplying twenty order-1024 matrices, the time spent
transferring data to and from the GPU is negligible compared to the time spent
performing multiplication and accumulation calculations. Further, calculation time is
dominated by memory accesses within the GPU because the GPU architecture requires
frame buffer memory accesses for both accumulation operations and for copying results

from the frame buffer back into a texture [LaMO1].

15

Though the results of [LaMO01] are not entirely compelling from a performance or
practical standpoint (recall the GPU’s 8-bit limitation), it represents a starting point for
discussion because its techniques, observations and recommendations are recurring
themes in subsequent research.

First, to be useful in most scientific or engineering computing applications, the GPU
should be capable of handling at least 32-bit floating point numbers [LaMO1]. This
limitation has in fact been overcome by recent generations of GPU, which now support
32-bit processing throughout the entire pipeline [MoAO03][KrWO03][Nvi04].

Second, accumulating results between rendering passes requires multiple memory
accesses within the GPU, whereas a CPU can store intermediate results in fast registers.
So, future GPU architectures should include persistent registers for this purpose
[LaMO1]. Unfortunately, current GPU hardware still does not provide this capability
[BFHO4]. Further, though the memory bandwidth of current GPUs is almost five times
faster than those of three years ago, the integration of 32-bit floating point support offsets
this bandwidth improvement because more memory accesses per pixel must be made.
This is confirmed in [Mor03], where a GPU with 32-bit functionality multiplied two
order-1000 floating point matrices in just over 0.5 seconds, almost exactly the same time
required by the older-generation GPU operating on 8-bit data.

In addition to the above, there are other ways to increase GPU performance [LaMO01]:
up to four numbers may be packed into a single pixel by setting the red, green, blue and
alpha channels to different values; lowering the refresh rate of the monitor could yield a
10% performance improvement; running full screen versus in a window increases

performance; and using ABGR_EXT versus RGBA texture formatting in OpenGL can

16

improve performance by 40%, since it eliminates time-consuming re-reformatting within
the GPU.

The technique of texture blending in the fixed-function GPU pipeline has been used to
do finite element [RuS01], and Lattice Boltzmann [LWKO03] computations on GPU
hardware.

The GPU Programmable Pipeline

The three years following the work of [LaMO1] brought significant improvements to
GPU architecture. 8-bit fixed point has been replaced with IEEE 32-bit floating point
representation for each of the four color components in each pixel [KrW03]. GPU
internal memory bandwidth increased by a factor of four, and clock speed increased by a
factor of two. But the most significant advance with respect to GPU general purpose
computing is the move toward a programmable architecture. GPUs now contain
programmable vertex and fragment processors. Each processor respectively executes a
user-specified assembly-level vertex or pixel shader program consisting of 4-way SIMD
instructions that perform standard math operations, such as 3- and 4-component dot
product, addition and multiplication on large, parallel streams of data. Instructions for
texture fetching and other special-purpose instructions are also available. Each vertex or
pixel fragment to be processed is placed in a set of read-only input registers. The shader
program is executed next and the results written to a set of output registers. The shader
program performs an implicit loop, executing over all the elements of a stream

[THOO02][BFHO04].

17

Pixel Shaders versus Vertex Shaders

Pixel shaders have been used for matrix-vector, vector-vector and matrix-matrix
multiplication, and for 2D Fast Fourier Transforms [Mor03] [KrW03] [MoAO03].
Matrices are represented as a set of diagonal vectors inside a 2-dimensional texture to
facilitate efficient processing of banded diagonal matrices [KrWO03]. A more
straightforward approach breaks column vectors into smaller, four-element sub-columns,
and stores each sub-column as a texture pixel, placing the four individual elements into
the R, G, B and A components of the pixel [Mor03]. Despite differing methods for
packing data into textures, all exploit the 4-tuple parallelism of texture pixels to achieve
four 32-bit calculations per pixel for each SIMD shader instruction. Below, is
justification for using texture fragments versus vertices as the GPU data format of choice
[Mor03]:

Textured geometry is preferable because of the more compact representation when compared with
highly tessellated geometry with vertex colors. Also, unlike geometry, textures can also be output by the
GPU in the form of render target surfaces. If we store a matrix as a texture, and then perform a matrix
operation such as matrix addition by rendering two textures with additive blending into a third render target
surface, the storage format of the resulting matrix can be identical to the input format. This is a desirable
property because this way we can immediately reuse the resulting texture as an input to another operation
without having to perform format conversion.

A notable exception to the above approach develops a framework for general-purpose
GPU computing based on vertex shader programs, as opposed to pixel (texture- or
fragment-based) shaders [THO02]. The reasoning behind this choice is primarily
motivated by the state of GPU technology, which at the time offered higher, 16-bit
precision for vertex operations versus only 10 bits for texture operations, and a more
robust, 21-opcode instruction set for vertex shaders. The framework itself is discussed
later; however, there are several weaknesses in using vertex shaders, some of which have

since been addressed by later GPU designs [THOO02].

18

First, the results of vertex programs cannot be stored directly into a GPU memory
buffer without first passing through the GPU pipeline and being converted to pixels.
Then-current GPUs represented pixels with only 8-bit precision. Though internal vertex
computations are carried out with 16-bit precision, a significant precision loss is realized
when the result is retrieved as 8-bit pixels.

Second, program size is limited to 128 instructions, and branching and logical
Boolean operations are not supported. Such restrictions required awkward hand-coded
programming. For example, loops had to be “unrolled”, and the number of loops is
limited by the maximum instruction count. This limitation applies to both vertex and
pixel shaders [THOO02].

Lastly, there is no way to share data between multiple vertex program invocations.
Though vertex programs provide at least 96 registers for holding intermediate results
within a program, all registers are zeroed upon program termination [THOO02].

As has been discussed previously, precision is no longer an big issue, since 32-bit
floating point is supported by some models of GPU. Also, published specifications for
the nVidia GeForce 6800 advertise hardware support for pixel and vertex shader
programs of “unlimited” length, plus support for branching within pixel shader programs,
with the caveat that the operating system and API may impose limits on program length,
even though the hardware does not [Nvi04]. Further, Microsoft’s High-Level Shading
Language (HLSL) now supports branching and looping in pixel and vertex shader
programs [Msd04]. Despite these advances, GPU hardware still does not provide
persistent registers for vertex programs or a means to store the results of vertex

operations without rendering to pixels. Theremfore, most recent GPU-based

19

implementations use pixel shaders which operate on data stored as textures, and maintain
state between rendering passes by saving results to off-screen texture memory buffers
(a.k.a. render target textures) [MoA03][Mor03][KrWO03][BFHO04]. Older versions of
pixel shader were subject to clamping, whereby color intensities were restricted to values
between zero and one. Much effort has been devoted find a way to convert between real
values, represented as floats, to numbers that fit within the required [0,1] range, such as
in GPU-based finite element analysis [RuS01] and refractive caustics [TrS01]. It is less
complicated now since subsequent versions of HLSL, with Pixel Shader version 2.0 or
later, support the full floating point range [Mor03]. The abundance of applications based
on pixel shaders seems to indicate the pixel shader instruction set has caught up with the
vertex shader in terms of flexibility, leaving little incentive to use vertices for
computation. However, vertices are still used in most of these applications for setting up
the shape and size of the area to be rendered.
Frameworks, Models and Compilers for General Purpose GPU Computing

In the examples described thus far, getting a GPU to perform general purpose
computing required extensive knowledge of graphics hardware and graphics
programming, down to the assembly language level in many cases, on the part of the
programmer. Such programming is tedious and error-prone, and best managed by a
compiler [THOO2]. In fact, several languages now exist that allow shader programs to be
written in a high-level, C-like programming language [BFH04], including Microsoft’s
High-level Shading Language (HLSL), nVidia’s Cg, and the OpenGL Shading Language
[BFHO4]. While a step in the right direction, these languages are still graphics-oriented,

and require a programmer to express algorithms and data structures in terms of graphics

20

primitives, such as textures and triangles [BFH04]. Therefore they fall short of providing
an environment for generalized stream computing on the GPU.

There has, however, been some research devoted to this. One example, alluded to
previously, presents a framework with abstractions for expressing vectors, and functions
for operating on vectors, on a GPU. This framework defined a DFunction class which
allows unary, binary and ternary functions, with vector operands and scalar or vector
outputs, to be defined. The DVector class works behind the scenes to allocate an
OpenGL p-buffer in GPU memory to accumulate results, thus shielding the programmer
from the intricacies of graphics programming [THOO02].

Similarly, [KrWO03] devised a stream model for operating on vectors and matrices and
it defined clVec and cIMat container classes for expressing vectors and matrices
respectively. Upon initialization, vectors, originally stored as C++ arrays, are converted
to textures in the GPU and bound to texture handles. The class instance keeps track of
the texture handles and sizes associated with its respective matrix or vector, and makes
that information available through public functions. Arithmetic is performed via the
clVecOp function, with an enumerator 0p to select addition, multiplication, or subtraction
operations. The setting of op selects a corresponding pixel shader program to perform
the operation on the two input textures.

An important operation in graphics processing is reduction [KrW03]. Reduction is an
operation that condenses or evaluates all data in a stream to produce a smaller subset or a
single value. Examples include summing all elements of a matrix to produce a single
scalar, or finding the element with the minimum or maximum value. GPU hardware does

not yet provide efficient means for accomplishing reduction operations [KrW03]

21

[BFHO4]. Reduction, therefore, requires multiple rendering passes to accomplish. To
sum all of the elements in a matrix, for example, a pixel shader program could render a
quadrilateral with dimensions half those of the original matrix, placing into the elements
of the new matrix the sum of four adjacent pixels from the original. The pixel shader
executes recursively, operating on previous results, producing a quarter-sized texture
each iteration. The final result is a single pixel containing the desired sum. Figure 2-2
illustrates this concept. This reduction algorithm operates in O(log(n)) time, where n is
the dimension of the original matrix [KrW03]. Of course, the number of reduction passes
required can be reduced if the number of neighboring pixels summed on each pass is

increased [BFHO04].

Figure 2-2. Reduction operation achieved with GPU in successive rendering passes, summing groups of
four adjacent pixels in a texture and rendering to a quarter-sized render target texture in each pass.

Researchers at Stanford University went a step further than the examples above by
creating a language and compiler for stream computing on graphics hardware, called
Brook. Brook manages memory via Streams, data objects containing collections of
records. Parallel functions, called kernels, invoke parallel operations on streams in the
GPU. Reduction functions similar to those described above are also provided. The
Brook system consists of two parts, brcc a source-to-source compiler, and the Brook

Runtime (BRT), a library of runtime support routines for kernel execution. The compiler

22

maps Brook kernels into Cg shaders, which are subsequently compiled into GPU
assembly by commonly available vendor-provided compilers. brcc also produces C++
code which uses BRT to invoke the kernels. Originally developed as a language for
streaming processors such as Stanford’s Merrimac streaming supercomputer and the
Imagine processor, Brook has been adapted for use on the GPU, supports both OpenGL
and DirectX, and is freely available [BFH04].
GPU Performance

The GPU does not generally operate in the same address space as the host CPU,
therefore, an analysis of GPU performance must not only consider computation time, but
also the time spent transferring data into and out of the GPU. This concept is captured in
the metric computational intensity, the ratio of the total cost of executing an algorithm on
a device versus the cost of transferring the data into and out of the device [BFH04]. For
an application to effectively use the GPU, it must possess the following two key
properties [BFHO04]:

First, in order to outperform the CPU, the amount of work performed must overcome the transfer costs
which is a function of the computational intensity of the algorithm and the speedup of the hardware.
Second, the amount of work done per kernel call should be large enough to hide the setup cost required to
issue the kernel.

In [LaMO1], two order-1024 matrices were multiplied in 0.54 seconds, including
data transfer time, but there was a one-time 0.2 second set-up cost. Such an application
would obviously not be a suitable candidate for GPU acceleration unless many more
matrices are to be multiplied.

Setting up kernels or shader programs on a GPU requires a fixed amount of CPU time.
If multiple kernel calls are executed back-to-back, the setup time can overlap with the

kernel execution. If the streams are large, the GPU will be the limiting factor, but if

23

streams are small, it may not be possible to issue kernel calls fast enough to keep the
GPU busy [BFHO04].

The performance of Brook-compiled GPU applications has been compared against
optimized and well-known CPU benchmarks, as well as hand-coded or GPU vendor-
provided versions of the applications optimized for a particular GPU. In addition, both
DirectX and OpenGL configurations have been tested on the most capable GPUs
available in early 2004, the ATI X800XT and nVidia GeForce 6800, providing a fairly
complete and current evaluation of general-purpose GPU computing capability. The test
applications are linear algebra, FFT, and ray tracing [BFHO04].

For linear algebra, two low-level subroutines from the ATLAS Basic Linear Algebra
Subprograms (BLAS) library are emulated, SAXPY and SGEMV. SAXPY performs a
vector scale and sum operation, y = aX + Y, and SGEMV performs a matrix-vector
product followed by a scaled vector add, y = eAx + £y where X and Yy are vectors, A is a
matrix and ¢ and S are scalars. Vector length is 1024 and matrices 1024 single-
precision floating point. For the CPU benchmarks, the commercial Intel Math Kernel
Library is used for SAXPY, BLAS for SGEMV, and FFTW-3 for the FFT [BFH04].

In most of the trials the hand-coded, optimized GPU reference applications ran
slightly faster than the Brook-compiled versions. Generally, the ATI card outperformed
the nVidia card by a wide margin, almost by a factor of four in the worst case. This is
possibly due to higher floating point texture bandwidth on the ATI card, about 4.5
Gfloats/second, versus nVidia’s 1.2 Gfloats/sec. Peak compute performance of ATI and
nVidia was 40 billion and 33 billion multiplies per second respectively. Generally,

DirectX outperformed OpenGL since DirectX can render directly to a texture, whereas

24

with OpenGL, an additional copy operation is required to transfer the contents of the p-
buffer into a texture [BFHO04].

The ATI card running the reference GPU application under DirectX executed SAXPY
about eight times faster than the CPU version, achieving about 4.9 GFLOPS. Brook
running under the same circumstances achieved a 7x improvement over the CPU version.
In contrast, the nVidia card’s best performance for this application was only 1.5
GFLOPS, about 2.4-times improvement over the CPU version. For the reason noted
earlier, OpenGL versions generally achieved only half the performance of the DirectX
versions. For SGEMYV, the ATI card under DirectX provided about a 1.7x increase in
performance over the CPU, and the nVidia card actually ran slower than the CPU. For
the FFT application, the ATI card performance matched that of the CPU, and the nVidia
card achieved about 0.7 the performance of the CPU [BFHO04].

In the case of the ATI card under DirectX, the GPU either exceeded or matched the
CPU-based applications. Even more encouraging is that the CPU benchmarks were
optimized to make very efficient use of the CPU cache structure [Mor03][BFH04], which
means that the GPU would most likely provide even greater performance gains versus
non-optimized C++ applications. For instance, without its cache optimization, the
effective performance of the CPU-based FFT application FFTW would be cut by over 80
percent, making the GPU version a full six times faster by comparison [BFH04]. It
would certainly be beneficial if cache optimizations could be applied in the programming
of GPUs. Unfortunately, the order pixels are processed within the GPU is an
undocumented implementation detail, which makes it difficult to exploit data locality in

the same manner as is routinely done in CPU programming [Mor03].

25

For the SGEMYV application, the GPU beat the CPU, but not by as wide a margin
as in other applications. This is most likely because SGEMYV involves a vector-matrix
multiplication, requiring a multi-pass reduction step. If GPU hardware is equipped with
the persistent registers necessary to facilitate single-pass reductions, performance could
be significantly enhanced. For instance, computing the sum of 2%° 32-bit floats took
approximately 0.79 milliseconds on an ATI/DirectX platform, compared to 14.6
milliseconds on an optimized CPU implementation. While this is good, it is estimated
that such an operation would only take 0.18 milliseconds were the GPU hardware to
provide support for such reductions [BFHO04].

Conclusion

Some have envisioned supercomputing may one day be conducted on clusters of
inexpensive PCs equipped with multiple high-performance graphics cards versus multiple
CPUs [THOO02][Mor03]. The power of the modern GPU is indeed impressive, and it is
becoming increasingly easier to harness that power for general-purpose computing. With
respect to the JIMASS requirement, some of the examples in the literature are directly
applicable. For example, time-domain convolution has been accomplished more
efficiently by the common technique of first performing an FFT on two images,
multiplying them element-by-element in the frequency domain, then performing an
inverse FFT on the result [MoA03]. JMASS similarly requires an element-by-element
multiplication of two matrices, an operation that can be trivially accomplished with a
pixel shader program [MoAO03]. After multiplying the rotated reticle image with the IR
scene, JMASS requires that all elements be summed to produce a single luminance value.

Such reduction operations were considered in [KrW03] and [BFHO04], and it has been

26

shown that they can be accomplished faster on a GPU. Of the operations required by
JMASS, only the rotation operation seems to have no direct parallel in the literature. The
GPU does provide built-in means for mapping textures, via indexed lookups, to
transformed (including rotated) polygons [THOO02], making it likely that the GPU can be
used for accelerating the JIMASS rotation operation. However, to do so the GPU must
implicitly perform an interpolation on the original data. How best to implement these
operations on a GPU, and whether the GPU can deliver acceptable levels of accuracy will

certainly be subjects of this research.

27

This page intentionally left blank.

28

I11. GPU Implementation and JMASS Integration
Integration With JIMASS

For the GPU to be of any help to JMASS, JMASS must change the way it processes
reticle images. Recall from Chapter I baseline JMASS generates properly oriented reticle
images to multiply with the IR scene by rotating and interpolating a static reticle image
template. These image rotation and interpolation operations are performed forty times
per model time step, for a total of 100,000 times each during the simulation of a 10-
second engagement. A more efficient approach, proposed herein, is to store a set of pre-
rotated and interpolated reticle images of the required size in memory (either in the GPU
or in CPU main memory), and to look them up when needed versus generating them
repeatedly through costly transformation operations throughout the execution of the
simulation. Integrating GPU processing into JMASS essentially requires this sort of
approach to capitalize on the GPU’s fast texture memory and to limit costly data transfers
between CPU and GPU. Even if the GPU is not used, such a lookup-based approach is
much more efficient because it effectively eliminates hundreds of thousands of O(N?)
image rotation and interpolation operations.

AFIWC accepted this proposal and produced a modified version of JMASS which
implements a lookup-based approach for reticle images. A set of 100 incrementally
rotated images, spanning a complete rotation of a reticle, is sufficient to replace the
continuously variable rotations of the baseline approach. Prior to simulation start,
modified IMASS generates this set of 100 pre-processed reticle images, then, depending
on whether or not the GPU is being used, either uploads them to the GPU, or stores them

in CPU main memory for later use in the simulation.

29

The only image processing operation remaining to be performed by the GPU,
therefore, is the reticle-scene multiply-add operation. This consists of performing an
element-by-element multiplication of two arrays (the scene and reticle images), and a
summation of the result to produce a single output value. This operation is performed on
forty reticle-scene image pairs during each simulation time step after each IR scene
update. Upon each scene update, the new scene image is uploaded to the GPU. For spin
scan simulations, the scene is multiplied by forty consecutive reticle images (out of the
100), each with a slightly greater rotation than the next, and the forty results are returned
to JIMASS. For conical scan, the reticle images are called for in a random-access fashion,
such that the forty that are used may not be consecutive, or may even repeat. The conical
scan approach additionally requires the reticle and scene images be shifted with respect to
each other by specified amounts prior to the multiply-add operation, and the shift can be
different for each of the forty reticle images used in the time step.

GPU Implementation

Before attempting to implement the JMASS multiply-add operation on a GPU, several
design choices had to be made, starting with the graphics cards. First and foremost, the
graphics cards need to support the IEEE-754 floating point format. At the time of this
writing only two graphics cards meet this requirement, the ATI X800XT and the nVidia
6800 Ultra. Though it is possible that other exotic and far more expensive graphics cards
exist with similar or better features, these cards were chosen because they represent the
top of the line available to consumers, and because their GPU clock speed and feature
sets are directly comparable. A second important requirement is the graphics cards have

sufficient on-board memory to support the storage of the 100 reticle images, plus the

30

input scene and several textures for storing intermediate results between rendering passes.
The 256MB capacity of these cards was adequate in most cases. A final necessity with
respect to the graphics cards is they must support Pixel and Vertex Shader version 2.0 or
better because the reduction operations require dependent texture addressing’, which is
not fully supported in previous versions. For the graphics API, DirectX was chosen over
OpenGL because it provides quicker mechanisms for retrieving data from the GPU
[BFHO4]. Shader programs were written in Microsoft’s High-Level Shader Language
(HLSL) versus assembly language for the sake of simplicity. The code for controlling
the GPU and interfacing it with JMASS was written in C++ to facilitate easier integration
with JIMASS, which is also written in C++. This code is included in Appendix B.
Theory of Operation

The GPU interface is instantiated as an object, with methods for uploading reticle
images and for processing scene images. For spin scan, JMASS calls the GPU.process
method, sending as parameters references to both the scene array and an array for storing
the forty returned results, plus the starting reticle image index for the consecutive
sequence of reticles to multiply with the scene. For the conical scan implementation,
JMASS identifies the indices of the forty reticle images to use, and provides forty sets of
x-y offsets for shifting them with respect to the scene.

Due to the high degree of programmability and rich feature set offered by the graphics
cards and DirectX API, there are many ways to implement the multiply-add operation on
a GPU. For this research, two approaches were explored for organizing the computations

within the GPU.

3 Dependent texture addressing allows texture coordinates which address one texture pixel to be used to
derive the coordinates for another.

31

Sequential Approach

The first is called the “Sequential” approach. Figure 3-1 shows a step-by-step
progression of this algorithm. “Step 0” consists of uploading the 100 pre-processed
reticle images into GPU memory and storing each reticle image as a separate texture.
When 5127 images are used, this requires about 100MB (1MB = 2?° bytes) of GPU RAM
for storing the reticle images. This step occurs before the start of the actual JMASS
simulation. Once the simulation is started, IMASS calls the GPU.process method during
each simulation time step after a new IR scene is generated. As shown in Figure 3-1,
GPU processing takes place in three steps. During the first step, the new IR scene is
uploaded into GPU memory. In the second, multiply and add step, the scene is multiplied
(element-by-element) with forty consecutive reticle textures, producing a sequence of
forty new result images. Further, blocks of four adjacent pixels are summed, producing
result images that are a quarter the size of the original scene and reticle images. The forty
result images are rendered one at a time into a single, large texture in GPU memory,
arranged so as to fill five rows of eight images. At this point, the reticle and scene
images have been multiplied, but their elements have only been partially summed. These
intermediate results are stored in a single large texture. Step three, called the reduce step,
completes the summation operation by successively rendering from one intermediate
result texture into another sixteenth-size texture, summing blocks of 16 adjacent pixels.
After two or three such reduction operations, depending on the initial size of the reticle
and scene images, the final result texture contains forty pixels, with each pixel containing

the result of a corresponding reticle-scene multiply-add operation. The forty numbers are

32

GPU Memory

reticle[0]

reticle
images

[2€]

GPU Memary

reticle[0]

reticle
images

CPU q
Step 0. Prior to simulation start, generate and Step 1. Upioad IR scene image to GPU memory.
pre-load 100 reticle images into GPU memory.
40 rendering passes 2 or 3 rendering passes
reticle[a index] Render Target Texture In GPU Memory 2 Render Target ~ 3'd Target Final Target
* * =2 ¥ o= 16:1 v 16:1 v 16 v
4
ticle[start index +1 | / C:> ZE}% i “/Z/E>/D
reticle[start index +
4:1 /
* * > = — //
° * _— 40 pixels
® 1 23105 R 245007« v v e q
[
reticle[start index +39]
* * = z = o [4 58708

Step 2. Multiply and add. Using GPU programmable pipeline, multiply scene by a reticle
image element-by-element, then sum blocks of four adjacent pixels, producing a quarter-

sized result image (4:1 reduction). Store result in render target texture. Do for 40

consecutive reticles. Render target contains the 40 resulting images arranged in a grid.

Note: though not indicated above, reticle index values are mod 100.

Step 3. Reduce. Sum blocks of 15 adjacent pixels, producing a
1116 th-sized result image (16:1 reduction). Repeat up to three
times (depending on ariginal scene/reticle dimensions). End
resul is 40 pixels, each a floating point number that is the
desired matrix “dot product” of the scene with a reticle. These are
returned to JMASS. Return to Step 1 to process next scene.

Figure 3-1. “Sequential” approach for processing JMASS multiply-add operation in the GPU.

retrieved from the GPU and returned to JMASS, and the GPU waits for the next scene to

be uploaded (i.e., returns to “Step 17 in Figure 3-1). This “Sequential” approach requires

up to 43 rendering passes: 40 reticle-scene multiply and add operations, followed by up

to three reduction (summation) operations.

Palette Approach

A second method, called the “Palette” approach, achieves the same results, but gets

there by taking a different path. Figure 3-2 provides a step-by-step pictorial

33

representation of this algorithm. For clarity, the general approach is first described,
followed by specific details.

To begin with, this algorithm stores the reticle images in the GPU differently than the
previously described approach. Instead of storing the 100 reticle images as separate
textures, they are arranged by rows and columns, like tile, into one large “palette” texture.
After the scene image is uploaded to the GPU, it is multiplied with the larger palette
texture, taking advantage of a GPU addressing mode which effectively replicates the
scene image across the palette texture so many copies of the scene image line up to be
multiplied with the many reticle images contained in the palette texture. This is shown in
Figure 3-2, in the diagram for Step 2. In this manner, the scene can be multiplied by
many reticle images in a single rendering pass. After multiplying, blocks of four adjacent
pixels are summed such that the resulting texture is a quarter the size of the original
reticle palette texture. Thus, this first rendering pass produces a quarter-sized texture
holding the results of many reticle-scene multiplications, but the pixels have only been
partially summed. As in the “Sequential” approach, the summation operation is
completed by performing up to three 16:1 reduction operations, resulting in a final result
texture containing forty pixels, from which the values are retrieved and returned to
JMASS (see Figure 3-2, Step 3). This approach requires a maximum of four rendering
passes to complete.

Now that the basic approach has been presented, some of the important details left out
of the above discussion can be addressed. First, GPUs impose limitations on the
maximum allowable size for textures. Shader programs further impose that textures be

square and they have a power-of-two dimension to use dependent texture addressing.

34

‘Ndo a1 ur uonersdo ppe-Ardnmur eow N Sutssanold 107 yoeoidde ansred,, ‘z-¢ am3ng

‘auads pau szadold o) | 0els 01 LNy SSWAT 0 peLiniad ale synsad asay | safEw 8|25ad Of Yk 2Uaas ayl
40, 3onpoad 1op, xugeud aul Buiieiuod sjaxd wiod Bueoy g paik 01 suonzsedo UoReLIWNS | 9] el Sawl aauul ol dn paonpal si g daig woy ynsad 2yl yoeoldde | jepuanbas, ui g doig se awes aonpoy g deis

sjaxid oy

-

o

*

aX m &L

sassed Bulapualig a0 g

Be) 4 L9l

}ebie] |euly

1ebie] ¢

ﬂ

Sha=

186ie] Jspusy nuZ

te]

ssed Buuapual 2)buls g u sinaoo paguosap woreuIwns pue uogedndiynu ayl {uogonpal | i)
afiew yneal paziz-lapent e fuonpold "pauiung ale gizd Jugoelpe Jngy 4o =dnoub uogeandyniy 2U Jagy g S1€apun 912620 fueIs syl aiaysa 9520 gyl s30idap Sjdulesa 9A0e ay] SU0ReNdIEd panasuun s1euue
pue "safiew papaauun 1o ysew oy palsnipe si ajfiueaal Gumielp 4o 8yl 'Alessadal ale suoned)dinu 36ewn g Auo asneaag xapul 3j31a1 Buels aug) Ag psuiwaiap se 'ans|ed s8jo0a) ajeudoidde agy Ag 'auwadid
a|gewwlelfiold ngo a1 Guisn paldiynul uayl aps|ed aj013a) & 03 aZ1s Ul | enbs (Y8 anoge) salewn Jo pufi g X 8 ue oJul paledydal Agaiodaya 51 ausds Indul auy 'Guissalppe paleadal ybBnolyl poe pue Adiingy -z doais

ssed Bunepual aug

alnxe |
}ebue | Jlepusy pazis-lapeny)

N0 passew
SUOIE|ND|ED PapaesULn

E9 el (] m 5 =] 15 5
% 15 S 5 5 o= =] &
i) at] il 3] 2] (1] ok
3 & e € 3 " 3 fe3
e '3 == f-4 Iz =4 =2 L4
/_H © 4 o L1} =13 L 2t
k 1" £l TL 1 o B =

L a 5 * = F4 3 o

apafed 9|28y

‘
*

S 4

L ARIRTRIRT

.
¥
;‘.\
¥
¥
.‘
‘

.
¥
;‘.\
¥
¥
.‘
‘

SN

SN

SR

R

abewn susas pejedldey

Nd9 m sbiew auaos M peoiEy L d93s

‘514D UD S8Z1S UNTE] 8|0es0||e WNLLIKELL paadxa
01300 s 05 yANoua |jeLUs pue 'STUBIISUDD Japeys (Sxd 01 LLUOUOD 01 PaZIs Ovd-jo-lamad pue auenbs saunixal ayl Buidaay apys "wyyiobie aug) wuopad 01 Azaa JUSIZIYE UE SE USSOUYD SEm pOULALL S A@aindasuod safiew
3|2138) papaau O (g sUleluod eyl apajed suo sAese S1 alayl xapul a)2nad Builiels Jo a21oyd syl 4o ssajpdefial 'Ieyl sainsua Uonnouisip aadge auy] adauyl paoed abew ajanad auy 4o {56 OF X8 pUl Byl sajedIpUl K00 YJea Ul
Jaguinu ay) - safiew 3jonad £9 J0 JUALULIOSSE UE SUlzluod auajed yoeg "aaoqe umoys se 'salajed Jo 'spuf aunpal afle| Jnoy Buowe pagnquisip 'Alowall N4 oul papeo-atd ase sabew ajopal paielos-aud gg| a2yl o deis

£ ainpxel aj18|ed eloney

¢ 3InpaL 2Rsled a2ey

| sdnixal sls|ed sRiisy

EL [g | k] o o8 8 L 3 eo | za | | oma | es | & | 45| o8
El L FlEIEIELT 5 4 2 4 b 0 PRI i A 5 | S ES 75 15 | o5 | &v | Br
bl S B S B T 6 o [oe|ve ||| 6 s Pl] %] w | ar 57 e | er | zr w | or
G I T N I N HEIE] EE I E) A g | 2 | &£ | %= | == | & | ¢ |
" E! e ! o o £ 18 08 6{ 8¢ 24 =P =73 ¥ L2 1 0 & = 0g 6T =k s = =l T
° i i : < _ : el [wlow|o|w| ol 5]%]F ez |z | w2 | oz | 6l | Bl | 2L mm
il el I I LSRN I N so |va e |eo| 0| oo|es| s P L[T [T -V BT I (11 6 \\ g
Sl I Il I M oo [ww|os|a| | cFLE]®E]= A 3 5 ¥ £ z L o
28| e | 02| 6L | B | i | G S— EanardEdEdN kasa

0 8injxa] sll8|Ed 82lay

[o] SIBIEY

35

Since this addressing mode is vital to efficient accomplishment of this algorithm, the
textures are subject to all of the above constraints. The effect of these constraints is it is
impossible to fit the complete set of 100 reticle images into a single palette texture for all
but the smallest supported image size (128%). To solve this dilemma, four different
palettes are loaded into GPU memory, each containing a 64-image subset of the 100
reticle images. The 100 reticle images are distributed among the four palettes such that,
given any starting reticle index, there is always at least one palette which contains the
next 39 required reticles in a contiguous block. All that is required is some simple range
checking in the GPU interface to ensure the correct palette is chosen for the multiply-add
operation based on the starting index provided by JMASS. Storing the four palette
textures requires 64MB of GPU memory if the 256 image size is being used. For the
512 image size, however, the 256MB GPU memory capacity is not large enough to store
four reticle palettes. To solve this problem, a more complicated three-palette method was
devised, which consists of multiplying the scene with up to two different palettes,
essentially performing this algorithm twice, and combining the results at the end. The
three palette images require 192MB of GPU memory.

Though the fixes described above meant the “Palette” approach overcame texture size
constraints, the approach itself proved to be very inefficient; it always performed 64 (or
more) reticle-scene multiply-add operations, when only 40 are actually needed.
However, DirectX provides a way to narrow the size of the drawing rectangle so
rendering can be restricted to a desired rectangular subset of a render target texture. The
palette approach was therefore modified to automatically set the drawing rectangle so as

to exclude as much of the unneeded portions of the textures as possible from being

36

processed. Doing so reduced execution time for this algorithm by almost 20% compared
to its original incarnation. Some inefficiency still remains, however, because this method
can still allow up to eight extraneous images to be processed. Figure 3-3 shows this

remaining inefficiency.

Replicated scene image Reticle Palette

Quarter-sized Render Target
Texture

S| A A | A A A A Fii%e [w|ulws I
4‘-"4‘4‘ 18 7 1B | 19 m\\gl 0 i S _

A4 A AL £ ££] | st |a| =

A | A | A A A | A £ = 5= |2

A4 4 £ 44| £ 4 wflo (oo fuls]|e]|s

PSP IFIFSFIFIppe Wim:§§

(£ £ £ £]£]£[£]£]

unneeded images that will still be processed
because they cannot be blocked out by adjusting

images blocked out by adjusting drawing rectangle A
the drawing rectangle

Figure 3-3: Inefficiency can result in “Palette” GPU algorithm implementation. In this example, the forty needed
reticle images are indices 12-51 in the Reticle Palette. Though adjusting the drawing rectangle can block out some of
the unneeded reticle images (grayed-out strips at top and bottom), 1t cannot block out those which are highlighted in
the checkered pattern. This results in the GPU processing eight extra images that are not needed. The GPU therefore
takes longer to process certain ranges of reticle images than others, depending on the range given, and how many of
the unnecessary images can be masked by the drawing rectangle.

Preliminary tests show that the “Palette” approach works well on the smaller image
sizes (128” and 2567), but the “Sequential” approach may be the better of the two for the
5127 image size. Interesting to note, despite the fact that the “Sequential”” approach
requires up to 43 rendering passes, and the “Palette” approach requires only four, the two
algorithms are comparable in performance. Further, though the “Palette” approach works
at all three image sizes on the PCI-express platform, it does not support the 5127 image
size on the AGP platform. For some reason, perhaps due to DirectX or graphics card
AGP drivers, the AGP machine will not allow more than one reticle texture (which is a
full 64MB in this case) to be loaded into GPU memory. Instead, the remaining palette
textures are forced into AGP aperture memory (off the graphics card), causing GPU

processing to take minutes instead of seconds to accomplish. The “Sequential” approach

37

is most likely immune to this limitation because it does not require so many large
textures.

In both the “Palette” and “Sequential” approaches, the reticle and scene images are
stored in the GPU such that four image pixel values are packed into each texture pixel,
using the texture pixel’s four (R, G, B and A) color channels as a vector, thereby fully
exploiting the four-way parallelism of the GPU. However, through experimentation it
was found that maintaining such packing in the reduction stage slows the GPU down, and
it is better to transition to a single-channel texture format (having a single 32-bit floating
point R channel versus the full 4 x 32-bit RGBA) for the reduction passes. Doing so
results in as much as 1.21x speedup for these implementations.

Conical Scan

To support conical scan, a separate GPU algorithm was created, based on the
“Sequential” algorithm described above. The “Palette” approach could not be used
because it cannot process reticle images out of order, and the reticle images, being part of
a single, static texture that is accessed in one rendering pass, cannot be shifted by
differing amounts with respect to the scene. Because conical scan requires shifting
images by arbitrary amounts prior to multiplying them, the reticle and scene images
cannot be packed four-to-one into texture pixels as they are for the spin scan approaches.
Instead, a one-to-one correspondence has to be maintained between image and texture
pixels, so spatial integrity is retained after shifting. Although this reduces efficiency
somewhat, resulting in slightly higher GPU execution times, the performance is still

competitive with other approaches (see Chapter V). To implement this algorithm, the

38

shader programs were modified to add horizontal and vertical offset values to the texture

coordinates for the reticle images as shown in Fig 3-4.

Default orientation with reticle image centared an larger Conical scan requires the reticle image to
scene image. Axes added so displacement can be be shifted with respect to scene before the
shown in next picture at right. multiply-add operation.

Reticle-scene multiply-add operation performed on subset
of scene overlapped by the shifted reticle image.

Figure 3-4. Comnical scan variation of the JMASS optics processing. Same as “Sequential” implementation, except reticle image
must first be shifted with respect to the larger scene image, by specified x-y offsets, befors performing the multiply-add operatiorn.
The shift is performed m the GPU, using a vertex shader.

A special feature was also added to the code to permit scene sizes of arbitrary dimension,
versus the power-of-two and square shape constraints of the spin scan versions. Reticle
images, however, remain bound by those constraints, but this is not a detriment since
reticles are circular and hence symmetrical in shape. One final observation with respect
to shifting the images: some shift amounts can result in 5-10% longer execution times for
the GPU. This is likely due to cache misses or address translation within the GPU. For
the conical scan experiments, whose results are discussed in Chapter V, the shift amounts
are randomized to provide reasonably accurate estimates of performance that can be

expected.

39

This page intentionally left blank.

40

IV. Methodology
Problem Definition

Goals, hypotheses and approach. The primary goal of this research is to determine

whether, and to what extent, a GPU can speed up JMASS simulations. The image
processing calculations currently carried out in the JMASS software have been presented
as the main system performance bottleneck. The general approach, therefore, is to
replace the JIMASS image processing software routines with GPU hardware processing,
and compare the performance of the GPU-assisted JMASS with that of the baseline
JMASS system. It is expected that the GPU will provide some degree of acceleration
since its inherent parallelism, enhanced memory bandwidth and stream processing
characteristics make it better suited to these tasks than traditional pipelined CPU
processing.

The second goal of this research is to determine the performance gains achievable
using a GPU. To do so requires testing GPU and alternative processing methods apart
from JMASS in a controlled environment. The resulting experiments represent a control
group to be used as a basis for comparison and for interpreting the results of the
experiments which involve JMASS. To accomplish this goal, GPU performance is
compared with that of two CPU-based (i.e., software-based) alternatives for
accomplishing the reticle-scene multiply-add operation: a basic C++ software
implementation, and another which makes use of a widely available cache-optimized
linear algebra library. The first implements the reticle-scene multiply-add operation
using basic C++ loop structures, much like baseline JMASS does; the second uses the

cache-optimized Intel Math Kernel Library (MKL) sdot command to perform the

41

operation. Throughout the rest of this document, the three implementations are referred
to as GPU, C++ and MKL.

Using the experimental methodology defined herein, it is determined whether
currently available GPUs will reduce JIMASS execution time, and whether they provide
any advantage over CPU-based implementations. It is anticipated the GPU will do both.
In addition, the results will quantify IMASS speedup due to the GPU and the maximum
overall speedup achievable by optimizing the image processing operations. Ultimately,
the results will guide future hardware and software designs.

System Boundaries

For the primary goal of determining whether GPU hardware processing can improve
JMASS performance, the system under test includes: the JIMASS software; a high-
performance mainstream PC host with minimal I/O (only keyboard, monitor, mouse, and
disk drive); MS Windows XP operating system and the latest version of the DirectX API;
a top-of-the-line mainstream graphics card; and a custom-designed C++ module to
control GPU operations and provide an interface for exchanging data between JIMASS
and the GPU. The component under test in this case is the combination of the graphics
card and the custom interface software.

For the second goal of comparing GPU performance to that of CPU-based software
alternatives, three system configurations are used. Each configuration consists of a stand-
alone PC as defined above, a simple application to generate reticle images and scene
images (workloads), plus one of the following processing methods, described earlier, as

the component under test: GPU, C++, or MKL.

42

An additional initial phase of experiments is conducted prior to those indicated above
to select the best-performing GPU for use in subsequent experiments. See the
Experimental Design Section, Table 4-1 and Figure 4-1 for precise details on system
configurations and what is tested in each experimental phase.

System Services

The JMASS system simulates the flight of an IR-seeking missile from launch to
contact with the target. It simulates both the external environment and the missile’s
responses to that environment with the behavior of the simulated missile recorded for
later analysis. The overall system service provided by JMASS, therefore, is to generate
behavioral data for various simulated missiles and environments.

This research focuses on optimizing the subset of IMASS that performs the image
processing calculations which simulate the optical path of the missile’s IR seeker. The
image processing service receives an IR scene from the JMASS environment simulator,
multiplies it element-by-element with rotated versions of a template reticle image,
reduces each of the resulting images to a single pixel by summing all its pixels, and
returns the computed values back to the JIMASS simulator. JMASS supports various
image resolutions. The following image sizes, in pixels, are representative of those
routinely used in JMASS simulations: 1282, 256%, 5127 and 10247 (for conical scan).

Possible outcomes are either a correct or incorrect computation of results, or complete
failure to produce results. Incorrect results would result if the GPU algorithm were in
some way flawed. Possible causes include improper texture lookup or interpolation of
texture values. Floating point truncation is another possible source of error. In baseline

JMASS, calculations are carried out in double-precision floating point format. The

43

graphics cards, however, are limited to single-precision IEEE-754 standard 32-bit
floating point format. Additionally, although the ATI card supports IEEE-754 format, it
uses only 24 bits to represent each float (16 bits mantissa, 7 exponent), making the ATI
implementation more susceptible to truncation error. It can therefore be expected the
different implementations will produce different, if not incorrect, results. Due to the
graphics cards’ decreased precision, it is also possible numeric overflow may result.
Complete failure to produce results would be indicative of a system or subsystem failure.
Workload

For those experiments involving the JMASS system, the workload consists of running
an unclassified AFIWC-provided test scenario at each of three scene/reticle image sizes:
1282, 256% and 512 pixels. The specific scenario used is the unclassified Generic Man-
Portable Air Defense System (MANPADS) Threat Model, set for a 10-second
engagement. This scenario is representative of the types of workload used in JIMASS
simulations.

For the remaining experiments which do not involve JIMASS, the workload consists of
test images representing the IR scene, submitted repeatedly to the system for processing.
Since the GPU executes a deterministic mathematical operation on known input data, the
accuracy of the output is easily verified, and the test data for these experiments need not
originate from JMASS. The workload is varied by changing the size and content of the
test images, which are the only aspects of the workload that can be changed.

With respect to the content of the workload, three scene update schemes are used:
non-changing, fully changing, and moving point source. The non-changing scheme sends

the same image to the processor every time. It is expected that this scheme will provide

44

the most accurate, “best case” measurement of execution time, since it introduces no
delay between calls to the processing method (i.e., the GPU, C++ or MKL method under
test). The moving point source scheme causes a single, unit-valued pixel to trace out a
square path within the scene over time, emulating a JMASS point source simulation.
This is considered a “middle of the road” scheme in that it only changes two pixels of the
scene upon each update. Since the point source “moves” in a non-sequential way through
array memory, it may induce cache-specific behavior. The fully-changing scheme is
intended to more closely resemble JMASS since it changes every pixel in the scene
image between calls to the optics processing routine. The fully-changing scheme is
accomplished by adding the value of 1.0 to each pixel upon a scene update. Since
updating the scene in this manner requires some processing time, it is expected that
observed execution times will at least increase by some uniform amount. A change that
is disproportionate may indicate an unexpected interaction of factors.

The workload uses image sizes of 1282, 256> and 512 pixels. Conical scan
experiments, however, use scene image dimensions twice those of the reticle image. For
those experiments, the reticle image sizes (in pixels) are 128?, 256 and 5127 and the
corresponding scene image sizes are 256 5127 and 10247,

Image size is the most important factor of the workload, since it directly affects
execution time. Image content is important from the standpoint of verifying calculations
have been performed correctly, and that values do not exceed the range of 32-bit floating
point numbers. The scene update scheme, which periodically alters the contents of the

workload, might also impact performance.

45

Performance Metrics

Execution time is the natural choice for a performance metric since this research is
motivated by a requirement to reduce JMASS execution time. An additional metric is to
measure the differences, if any, between the results computed by baseline JMASS and
those produced by the GPU and software-based image processing implementations
developed for this research. Such deviations are expected to be relatively small, resulting
from floating point truncation. They are nevertheless reported because it is unknown
how such differences, however small, will affect simulation outcomes.

Parameters

Parameters are those aspects of the system or the workload which could affect system
performance if changed. The following is a comprehensive list of parameters, and their
associated levels where applicable. Note that only a subset of these are actually varied
during the experiments (see Factors below).

e System parameters:
0 PC platform.
= Processor type and speed, cache size
= Memory and I/O configuration
= [/O Bus architecture
= Operating system
= DirectX version
0 GPU (graphics card)
0 Software
= JMASS version
= JMASS configuration
= GPU algorithm implementation
= Pixel shader version
= Image processing implementation
e Workload parameters
0 Image size in pixels

0 Scene update scheme

46

Factors
Factors are those parameters which are expected to have the greatest impact on system
performance and so will be varied singly or in combination with other factors during the
experiments. The chosen factors, and their associated levels, are listed below.

e System factors:
0 PC platform.
= Bus architecture: AGP or PCl-express
0 GPU (graphics card): ATI Radeon X800XT or NVidia GeForce 6800
0 Software
= JMASS configuration: Baseline, Modifed IMASS (Software), Modified IMASS
(GPU-assisted)
= Image processing implementation: GPU, non-optimized software (C++), or
cache-optimized linear algebra library (MKL)
= GPU algorithm implementation: Palette versus Sequential
e Workload factors
0 Image size: 128% 256 and 5127 pixels IR scene and reticle images
0 Scene update scheme: non-changing, fully-changing, moving point source
The factor expected to cause the greatest performance variation is the image size
(workload) factor. This is because increasing image dimensions exponentially increases
the required number of multiplication and summation operations. Further, based on
review of the literature, there may be large performance differences between cache-
optimized and non-optimized software implementations. The PCI-express bus
architecture doubles the bandwidth for data transfers between host and GPU memories,
and so may also be an important factor.
GPU algorithm implementation (Palette or Sequential) represents two different ways to
organize the rendering operations performed by the GPU. Preliminary tests show the best

(i.e., fastest) method to use depends on the GPU and image size being used. Details of

the GPU algorithm implementation options are discussed in Chapter I11.

47

Parameters related to the PC platform (with the exception of bus architecture) are not
varied because it is expected that AFIWC will simply run JMASS on the highest-
performance mainstream PC available, equipped with minimal I/O and a large RAM
complement. While such parameters can certainly affect overall system performance,
any changes attributable to them would be the same regardless of whether GPU
acceleration was being used, so they are held constant during these experiments. Further,
because neither the JIMASS nor GPU processes require frequent disk access, the disk
subsystem is not seen as an important parameter with respect to JMASS or GPU
performance.

Evaluation Technique

The evaluation technique is primarily direct measurement since all resources are
readily available for experimentation, and execution time is easily measured. Further,
since graphics cards are proprietary devices, they defy simulation using standard software
tools or analytical methods. While strictly speaking simulation is not used, the first three
phases of experiments, described in detail in the following section, can be considered an
emulation which predicts to some degree how the GPU would perform if it were
integrated into JMASS. The results of such stand-alone subsystem testing can be
validated by comparing them with the results of the fourth phase of experiments, which
integrate the GPU with JMASS. This is discussed further in the Analysis of Results
section.

Experimental Design
Experiments are organized into four phases, each with its own specific purpose and

experimental design. The first phase is intended to compare the stand-alone (separate

48

from JMASS) spin scan image processing performance of the two graphics cards under
various workloads, using two different GPU algorithm implementations, and to select the
configuration which yields the best performance for use in subsequent experiments. In
this first phase of experiments, JMASS is not used. Instead, the two graphics cards, the
ATI X800XT and the nVidia 6800 Ultra, are treated as stand-alone subsystems which
emulate the JMASS image processing function. Since the nVidia card was not available
in a PCl-express version, only the AGP versions of the cards are compared. Each
replication of an experiment consists of submitting a test image (IR scene) to the graphics
card for processing 1,000 times and measuring the total execution time. Execution times
were measured using calls to the Windows C++ timeGetTime() command, which returns
the value of the system clock with one-millisecond resolution. Running 1,000 iterations
of the GPU algorithm ensures execution time results well above 1 millisecond for all
experiments. Running the GPU algorithm 1,000 times is roughly equivalent to the
amount of optics processing performed by JMASS to simulate 4 seconds of a missile’s
flight. The factors (levels) varied in this set of experiments are: graphics card (NVidia,
ATI); image size (1282, 2562, 5122); GPU algorithm implementation (Palette,
Sequential); and scene update scheme (non-changing, fully-changing). However,
because the “Palette” GPU implementation does not run correctly on the AGP platform at
the 5127 resolution, the subset of experiments involving the 512 image size are analyzed
separately to prevent skewing the results.
Two experimental designs are used in this phase of experiments. The first, involving

the 128% and 256 image sizes, is a 2%r full-factorial experimental design using the k = 4

factors listed above and r = 30 replications. In this phase, and in Phases Two and Three

49

Workload
Generation

Frogram
Image size:
128, 256, 512

Workload
Generation

Frogram
Image size:
128, 256, 512

Flatform: FPC with AGP bus

Custom
Interface —_— AT

AP (Spin Scan) < @
GPU Implemertation: o,

Palette

Sequential

Custom N
Interface —_— nvidia
AP (Spin Scan) -—
GPU Implemertation: r
Palette e
Sequential

(a) System configurations for Phase 1 experiments. Spin scan implementation.
Compares performance of ATI and nVidia GPUs under various workloads, scene
update schemes and GPU algorithm implementations.

Configuration A

Configuration B

Configuration C

Workload
Generation
Pragram

Image sizes:
128, 256, 512
Scene Update Schemes:
Mon-changing, Fulh-Changing,
Moving Point Source

Workload
Generation
Program

Image sizes:
128, 256, 512
Scene Update Schemes:
Mon-changing, Full-Changing,
Moving Point Source

Two Platforms Used:

E—
-——

Workload
Generation
Pragram
Image sizes:

128, 256, 512
Scene Update Schemes:
Mon-changing, Fullyv-Changing,

Mowing Point Source

PC with AGP bus

and

FC with PCl-express bus

Software Image Processing Implementation

CH+

Software Image Processing Implementation:
KL

GPU Image Processing Implementatian

GFU
Custam +—

Interface @’
APl (Spin Scan) L

(b) Three system configurations for the Phase 2 experiments. Spin scan implementation. GPU

image processing performance compared to software-based implementations under different
workloads and scene update schemes, on both AGP and PCI-express platforms.

Figure 4-1. System configurations for each phase of experiments. Figure continues on next page.

50

Two Platforms Used:
PC with AGP bus
and
Workload FC with PCl-express bus

Generation

Pragram —_— : :
Configuration A e Software Image F'ruccissmg Implementation

128, 256, 512
Scene Update Scheme:
Mon-changing

Workload

b on Software Image Processing Implementation:
Pragram -+ ML
Image sizes:
128, 256, 512
Scene Update Scheme:
Mon-changing

Configuration B

GPU Image Processing Implementatian

Wiorkload e

Configuration C Generation .
: Custam +— GEU

Program
Image sizes: Interface @
e anals AP (Conical Scan) ¥y

Scene Update Scheme: e
Mon-changing

(c) Three system configurations for the Phase 3 experiments. Conical scan implementation. GPU
image processing performance compared to software-based implementations under different
workloads and scene update schemes, on both AGP and PCI-express platforms.

Baseline JMASS

\Workload: 128, 956 512 Flatform: FPC with AGP bus

Configuration A

Modifed JMASS
{lookup-based,

software multiply-add)
Workload: 128, 256, 512

Configuration B

_ Custom
Modified JMASS — Interface sl

Configuration C GPU-assisted «— . «— =
Wu(rkluad: 128, 258, 212 API (Spin Scan) @

(d) System configurations for Phase 4 experiments. JMASS baseline performance
compared to Modified IMASS and GPU-assisted IMASS performance.

Figure 4-1 (continued). System configurations for each phase of experiments.

51

Table 4-1. Experimental designs for all phases of experiments.

Scene Update Scheme = Non-Changing Scene Update Scheme = Fully-changing
GPU: ATI GPU: nVidia GPU: ATI GPU: nVidia
Algorithm Algorithm Algorithm Algorithm
Size Palette Sequential| Palette Sequentialf Size Palette Seguential| Palette Segquential
128 exp1 exp3 exp5 exp7? 128 exp9 exp11 exp13 exp15
256 exp2 exp4 expb exp8 256 exp10 exp12 expl4 exp16

(a) Phase la experimental design. Spin scan. ATI vs. nVidia

Update Scheme
Non-Changing
Fully-Changing

GPU
ATI nVidia
exp1 exp3
exp2 exp4

(b) Phase 1b experimental design. Spin scan. ATI vs. nVidia. Image size = 512. Algorithm = Sequential.

Bus/Platform = AGP

Update Scheme = Non-Changing
Processing Method

Size GPU C++ MKL
128 expl exp4 exp7
256 exp2 exp5 exp8
512 exp3 expb exp9

Update Scheme = Fully-Changing
Processing Method

Size GPy Ctt MKL
128 exp10 exp13 exp16
256 expl1 expl14 exp17
512 exp12 exp15 exp18

Update Scheme = Moving Point Source
Processing Method

Size GPU C+ MKL
128 exp19 exp22 exp25
256 exp20 exp23 exp26
512 exp21 exp24 exp27

Bus/Platform = PCl-express

Update Scheme = Non-Changing

Size GPU CH+ MKL
128 exp28 exp31 exp34
256 exp29 exp32 exp35
512 exp30 exp33 exp36

Processing Method

Update Scheme = Fully-Changing

Size GPU Ci+ MKL
128 exp37 exp40 exp43
256 exp38 exp41 exp44
512 exp39 exp42 exp45

Processing Method

|Update Scheme = Moving Point Source

Size GPU C++ MKL
128 exp46 exp49 exp52
256 exp47 exp50 exp53
512 exp48 exp51 exp54

Processing Method

(c) Phase 2 experimental design. Spin scan. GPU vs. Software-based Processing Methods.

Reticle Image Size = 128 Reticle Image Size = 256 Reticle Image Size = 512
Bus/ Processing Method Bus/ Processing Method Bus/ Processing Method
Platform GPU C++ MKL Platform GPU C++ MKL Platform GPU C++ MKL
AGP exp1 exp3 exp5 AGP exp7? exp9 exp11 AGP exp13 exp15 exp17
PCl-e exp2 exp4 expb PCl-e exp8 exp10 exp12 PCl-e expl14 exp16 exp18

(d) Phase 3 experimental design. Conical scan. GPU vs. Software-based Processing Methods. Non-changing scene update scheme.

JMASS Version
Modified JMASS
Software GPU-assisted version
Size |Baseline Version ATI nVidia
128 exp1 exp4 exp7? exp10
256 exp2 exp5 exp8 exp11
512 exp3 expb exp9 exp12

(e) Phase 4 experimental design. Baseline vs. Modified IMASS Software and GPU-assisted versions.

52

as well, each experiment was repeated 30 times, back to back. The second experimental
design separately tests the 512 image size case. Though also full-factorial, there are only
two factors that can be varied: GPU and scene update scheme.

The full-factorial design tests all possible combinations of the factors, and identifies
the configuration that yields the best performance. Replication provides more samples
than single trials and allows the estimation of experimental error. Knowing experimental
error is advantageous because it isolates the error attributable to unknown sources from
the error produced by the factors under test. Therefore, confidence intervals can be
calculated for the effects and provide a qualitative indicator of the validity of the
experimental design. There are 25 -1) = 464 degrees of freedom in the mean squared
error calculations for the first design, and 116 for the second design. Since there are
greater than 30 degrees of freedom, confidence intervals for the effects are determined
using quantiles of the unit normal distribution. There are 20 total experiments in this
phase. Table 4-1(a and b) provides templates for this experimental design, Figure 4-1(a)
shows the system configurations used in the experiments.

In the second phase of experiments, the best-performing GPU from the first phase is
retained to be tested against both C++ and MKL software implementations of the JMASS
spin scan reticle-scene multiply-add operation. The intent of this phase is to compare
GPU hardware-accelerated image processing performance with that achievable using
software. In these experiments, JIMASS is not used. Instead, the three implementations
are treated as stand-alone subsystems which emulate the JMASS image processing
function. A test workload is submitted for processing 1,000 times, and the total

execution time measured. The experimental design is four-factor, full factorial with

53

replication. The factors (levels) used in these experiments are: processing method (GPU,
C++, MKL); bus/platform (AGP, PCI-express); scene update scheme (non-changing,
fully-changing, moving point source); and image size (128% 256, 512%). Each
experiment is conducted 30 times, providing 1566 degrees of freedom in the mean
squared error calculations. Since there are more than 30 degrees of freedom, confidence
intervals for the effects are determined using quantiles from the unit normal distribution.
There are 54 total experiments in this phase. Table 4-1(c) provides a template for this
experimental design, Figure 4-1(b) shows the system configurations used in the
experiments.

A third phase of experiments compares the performance of the GPU against CPU-
based approaches for performing the conical scan variation of the JMASS image
processing calculations on both AGP and PCI-express platforms at three reticle image
sizes: 1287, 2567, and 512°. For these experiments the non-changing scene update
scheme is used, and the experiments are broken into three subsets according to reticle
image size, and analyzed as three separate designs (for rationale, see Chapter V). Each
design is two-factor, full-factorial, with the following factors (levels): processing method
(GPU, C++, MKL) and bus/platform (PCI-express, AGP).

As in the previous phases, each experiment consists of running the algorithm 1,000
times and measuring the total execution time, and 30 replications were accomplished for
each experiment. Conical scan, however, requires more input parameters: a list of 40
reticle indices and shift offsets. These were chosen at random prior to each experiment
using the C++ rand command. A different seed was used for each experiment, drawn

from a uniform distribution between zero and 4,294,967,295. The seeds were generated

54

using the Matlab rand command. Conical scan also requires the scene image be larger
than the reticle image. For these experiments, the scene image dimensions were chosen
to be twice those of the reticle image, resulting in the scene having four times the number
of pixels as the reticle. As in the previous phases, confidence intervals for the effects are
based on the unit normal distribution. There are 18 total experiments in this phase. Table
4-1(d) provides a template for this experimental design, Figure 4-1(c) shows the system
configurations used in the experiments.

In the fourth and final phase of experiments, the two graphics cards are integrated with
JMASS, and the performance of GPU-assisted JMASS is compared to that of baseline
JMASS. The intent of this set of experiments is to determine whether, and to what extent
GPU hardware acceleration can speed up JMASS simulations. Experimental design in
this case is a two factor, full factorial experiment without replication (i.e., each
experiment was conducted once).

The first factor is the JIMASS software version, consisting of the following four levels:
baseline JMASS, Modified JMASS (Software), Modified JIMASS using the nVidia card
for acceleration, and Modified IMASS using the ATI card. The last two levels are also
referred to as “GPU-assisted JIMASS” throughout this document. Modified JMASS
(Software) is an improved version of baseline JMASS, implementing a lookup based
approach for the reticle images that eliminates the rotation, resizing and interpolation
operations (refer to the beginning of this chapter, and in Chapter V, for more details).
Modified IMASS (Software) processes the reticle-scene multiply-add operations in
software, analogous to the “C++” implementation in the Phase Two experiments. The

GPU-assisted version of Modifed JMASS is the same as Modified IMASS (Software),

55

except the reticle-scene multiply-add operation is performed in GPU hardware. The
second factor is image size, with the same three levels used in other experiments: 1287,
2567, 512%,

Configuring JMASS, integrating the GPU code and interpreting the JMASS results
required the assistance of JMASS subject matter experts. Only one replication was
performed for each experiment because the experiments take so long to run (almost two
hours for the 512 case), and because running them required travel to an out-of-state
contractor facility, so the time for conducting the experiments was limited. Though this
single-replication experimental design precludes conducting an analysis of variance, it
should be sufficient for the purposes of estimating likely speedup resulting from GPU
acceleration. There are 12 total experiments in this phase. Table 4-1(e) provides a
template for this experimental design, Figure 4-1(d) shows the system configurations
used in the experiments.

Analysis of Results

The full-factorial designs described above permit a comprehensive analysis of results.
Because the effects of processors and workloads interact in a multiplicative fashion
[Jai91], a multiplicative model, using a log-transform of the execution time results is used
for the analyses. The analysis model assumes that errors in the experimental results are
normally distributed, and there is no trend in variance with respect to mean responses.
Normal quantile-quantile plots of the errors, and plots of the errors with respect to the
mean responses are therefore used to validate use of the multiplicative model where
applicable. The mean effects of all factors and their associated levels are computed, and

a 90% confidence interval given for each. The same applies for all possible combinations

56

(i.e., interactions) of factors/levels. The mean effects for each level of a factor are used to
determine the average relative speedup (or slowdown) that results when one level is
chosen over another. Effects that are statistically significant have confidence intervals
that do not include zero. An effect whose confidence interval contains the mean of
another effect indicates statistically identical performance. In such cases, increasing the
number of replications or decreasing the confidence level (narrowing the confidence
interval) may permit the effects to be distinguished.

In addition to determining the confidence intervals for all effects, each factor, and
interaction of factors, is examined to determine its contribution to the total variation of
results (a.k.a. “allocation of variation™). Those factors which contribute the most to the
total variation generally have the greatest practical impact on performance. The
statistical significance of each factor can be further verified by performing an analysis of
variance, or “F-test”, using a 90% confidence level. For a factor to be considered
significant, its contribution to the variance of results must exceed that of the estimated
experimental error for the respective degrees of freedom.

For the first phase of experiments, which compares the performance of the two
graphics cards under various workloads using the two GPU algorithm implementations,
the analysis techniques described above are used to determine which factors/levels have
the greatest impact on performance. In addition, the two graphics cards are contrasted to
determine which provides the best average performance.

For the second and third phase of experiments, which compare GPU performance to

software-based alternatives for accomplishing the JMASS spin scan and conical scan

57

procedures, a similar analysis is performed to determine significant factors, and to
contrast the performance of the three implementations.

For the fourth phase, which tests GPU-assisted JMASS (using both ATI and nVidia
cards) against baseline JMASS and Modified JMASS (Software), the performance of the
four implementations is contrasted to determine whether, and to what extent, GPU
acceleration improves JMASS performance. Additionally, using insight from the
previous phases of experiments and Amdahl’s performance equation, it is possible to
determine the maximum JMASS speedup achievable with GPU acceleration.

Summary

The experiments described herein are designed to definitively address the research
goal, which is to determine whether, and to what extent GPU hardware acceleration can
be used to improve JMASS execution time. In addition, the results of this research
provide valuable insight as to how GPU algorithm implementations, scene update
schemes and bus technologies affect GPU performance in the accomplishment of certain
general-purpose computing tasks. Finally, the comparison of GPU-accelerated image
processing performance with that of non-optimized code and code using a cache-
optimized linear algebra library will likely provide AFIWC new alternatives for

optimizing the existing JMASS software, even if the GPU fails to be a good option.

58

V. Results and Analysis
Introduction
Experiments are conducted in four phases. In all but the fourth phase, where tests
were actually run using JMASS, experiments consist of calling the optics processing
algorithm 1,000 times and recording the total execution time. Recall that a single
iteration performs forty reticle-scene multiply-add operations (equivalent to performing a
dot product on forty pairs of vectors, with each vector containing the same number of
elements as there are pixels in the scene or reticle image), and returns the forty results in
an array back to the calling application. It follows that for 1,000 iterations, each
experiment results in 40,000 reticle-scene multiply-add operations. For reference, this is
the amount of optics processing that occurs in JMASS during a simulated 4-second
engagement. In those experiments involving a GPU, the execution time includes both the
GPU processing time, plus the time spent transferring data into and out of the GPU. Each
experiment was repeated 30 times. Results, analysis of variance and allocation of
variation for each phase are included in Appendix A. Analysis was performed using a
log-transform of the execution time results (cf., Chapter IV). An analysis of each phase
follows.
Phase One Experiments: ATI Versus nVidia
This phase compares the performance of the nVidia and ATI graphics cards executing
the JIMASS spin scan optics calculations. Since a PCI-version of the nVidia card was not
available, only the AGP versions of the cards are compared. The test platform for these
experiments was a 3.0 GHz P4 (HT) with 875P chipset and 1GB RAM, running

Windows XP Professional (SP2) and DirectX 9.0c. The factors varied were: GPU

59

(nVidia, ATI), image size (1287, 2567, 512%), GPU algorithm implementation (“Palette”
and “Sequential”), and scene update scheme (non-changing, completely-changing).
However, because the “Palette” GPU implementation does not run correctly on the AGP
platform at the 5127 resolution, the subset of experiments involving the 5127 image size
are analyzed separately to prevent skewing the results. For this subset, there are only two
factors: GPU and scene update scheme.

For the subset of experiments involving 128> and 256° image sizes, analysis of
variation (Table A-1a) indicates that all of the effects and interactions, except for the
interaction between algorithm and scene update scheme, are statistically significant. This
is due to the small amount of variance in the experimental results—the graphics cards
seem to be very consistent in their execution times—resulting in 90% confidence
intervals that are orders of magnitude smaller than the mean effects in most cases.
Analysis of variance for the 5127 image size experiments (Table A-1b) yields similar
results. Except for a few outliers, normal quantile-quantile plots of the errors (Part 1 of
Figures A-1la and b) are reasonably linear, satisfying the analysis model constraint that
errors be normally distributed. Plots of errors versus mean response indicate no trend in
variance with respect to response, satisfying the remaining model constraint (Part 2 of
Figures A-1a and b). F-test results for 2"r designs indicated statistically significant
results with respect to experimental error [Jai91] Although the statistical F-test is not
discussed further in this research, it was in fact passed in all cases of interest: the ratio of
the mean-square value of any given effect to the mean-squared error is generally greater

than 1,000 (mean-squared error is on the order of 10 in all experiments), which is much

60

greater than any F-distribution percentile for the ratio, given the relatively large degrees
of freedom of the error compared to the effects.

Though most of the effects and interactions are statistically significant, only a few
turned out to be of practical importance. For the 128 and 256> experiments, allocation of
variation (Table A-1a) indicates that over 61% of the variation is attributable to the
choice of GPU, 35% to image size, and nearly 2% to an interaction between GPU
algorithm and image size. Each of the remaining effects and interactions, including GPU
algorithm and scene update scheme, account for less than 1% to the total variation, and
are unimportant for practical purposes. For the 512% subset of experiments, almost 100%
of the variation is due to choice of GPU. The effects of the scene update scheme factor
and its interaction with the GPU account for much less than 1% of the total variation, and
so are unimportant. Since varying the scene update scheme made little difference in
these experiments, the examples and discussion that follow only address the non-
changing scene update scheme case. The non-changing scene update scheme carries out
no processing between calls to the GPU, resulting in execution times that more purely
reflect the actual GPU processing time.

Effect of GPU

Performance in these experiments for all the image sizes was most dramatically
affected by the choice of GPU. On average, the ATI card performs 4.8 times faster than
the nVidia card when processing 128 and 256 image sizes. This can be derived from
the analysis results for these experiments shown in Table A-1a, where the mean effect of
the GPU is shown to be -0.3424. Since a multiplicative model using a log-transformation

of the data is used, this figure means the ATI card performs the experiment in 10 ***** =

61

0.45 the time of the average GPU, given an average image size, scene update scheme and

0 %3424 = 2 2 times

GPU algorithm implementation. Similarly, the nVidia GPU requires 1
the execution time of the average GPU under average conditions to accomplish the same
calculations. Since the execution time of the mean GPU is 1 / 0.45 = 2.2 times that of the
ATI card, and the nVidia execution time is 2.2 times that of the mean GPU, the nVidia
execution time is therefore 2.2% = 4.8 times that of the ATI card, on average.

A similar approach can be used to compare the two graphics cards for the 512° image
size case. Per Table A-2a, the mean effect with respect to choice of GPU indicates the
ATI card provides a full 5.0 times speedup over the nVidia card for the JMASS optics
calculations at the 512° resolution.

One may intuitively validate the above GPU comparisons by simply using the (non-
transformed) mean execution times to do a case-by-case comparison of the GPUs. Table
5-1 shows the mean execution times for the Phase One experiments, and Figure 5-1
shows the same information graphically. Dividing the nVidia execution time by the ATI
execution time for a given image size and algorithm implementation yields speedup (ATI
over nVidia) in the range of 3.84 — 6.98. Speedup figures for all applicable combinations
of image size and GPU algorithm appear in Table 5-2.

In these experiments, the ATI card was consistently and significantly faster than the
nVidia card. Such a performance disparity between these particular cards was noted by
[BFHO4] and is most likely attributable to the fact that the nVidia card carries out floating
point operations at full IEEE-754 floating point precision, while ATI card does not.
Though the ATI card supports the IEEE-754 format, it only implements 24 of the

required 32 bits per float (16 bits matissa, 7 for exponent). ATI therefore likely trades

62

Table 5-1. GPU execution time, in seconds, for performing 1,000 iterations of the JMASS spin scan optics
processing calculations, or equivalently, performing a dot product on 40,000 pairs of vectors whose
dimension is indicated in the Image Size column. Times shown are for all applicable combinations of
GPU, image size, and GPU algorithm combinations, using non-changing scene update scheme.
Accompanying figure shows the same information graphically. The ATI card is faster (up to 7x) than the
nVidia card in all cases. For the ATI card, the “Palette” approach provides slightly improved times over
the “Sequential” approach at 128” and 256> image sizes. For the nVidia card, the “Palette” approach was
best for the 1287 size, and the “Sequential” approach was best for the 2567 image size. For the 512* image
size, only the “Sequential” approach is used because the “Palette” approach does not work correctly on the
AGP platform.

GPU Execution Time (seconds) Spin Scan Procedure

ATI NVIDIA
GPU algorithm GPU Algorithm
Image Size Palette Sequential Palette Sequential
128 0.640 0.870 2.456 4216
256° 2.059 2.199 14.377 10.124
512° NA 7.226 NA 37.427

GPU Comparisan, AGP
40—

—o— ATl Sequential approach

—%- ATl Palette approach (128 and 256° only)
nVidia Sequential approach

35 8- nvidia Palette approach (1282 and 2562 only)

]
o
T

e
w
T

Execution time {1000x), seconds
]
[==]
T

) - ' I
01638 06554 26214
Reticle/Scene total pixels (correspaonds to 1282, 2562 and 5122 image sizes) X 105

Figure 5-1. Graphical depiction of the data in Table 5-1, comparing nVidia and ATI GPU execution times
for the three image sizes, using Palette and Sequential GPU algorithm implementations. The Palette
approach provides slightly better performance over the Sequential approach for the ATI card at the 128>
and 256 image sizes.

63

Table 5-2. Comparison of ATI and nVidia graphics cards showing relative speedup provided by ATI over
nVidia for executing the JIMASS spin scan image processing calculations. ATI is faster than nVidia in all
cases.

ATI Speedup over nVidia

GPU algorithm

Image Size Palette Sequential
128° 3.84 4.85
2567 6.98 4.60
512? NA 5.18

speed for precision, and this is reflected in the accuracy of computed results. While
testing the JMASS algorithm on the ATI GPU, a result (of an element-by-element
multiplication of two images, then summation) on the order of 10'* can fall short of the
correct answer by as much as 0.016% due to floating point truncation. The nVidia card is
more accurate, yielding error about one-twentieth that of ATI. The impact of this error
on JMASS simulations is discussed later in this chapter.
Effect of image size

For the subset of experiments involving the 128 and 256 image sizes, the 256> case
took, on average, 3.3 times more time to execute than the 1282 case. Note that although
the workload increases by a factor of four when moving from the 128 to the 256 image
size, the execution time increases by a lesser factor, indicating the GPU performs better
when the larger image size is used, on average.
Effect of GPU algorithm implementation

For the subset of experiments involving the 128 and 256> image sizes, the GPU
algorithm interacts with the image size factor to contribute about 2% of the total
variation. Though not very significant in terms of overall performance, the mean effects
for this interaction (Table A-1a) indicate that, on average, the “Palette” approach
performs better with 128% images, and the “Sequential” approach performs better with

256° images. For the ATI card specifically, the “Palette” approach performs slightly

64

better than the “Sequential” approach for both the 128 and 256 image sizes. For the
nVidia card, results are mixed, with the “Palette” approach being best for the 128 image
size, providing a 1.7x speedup over the “Sequential” approach, and the “Sequential”
approach being better for the 256 image size, providing a 1.4x speedup over the
“Palette” approach. The bottom line is the best choice for the algorithm depends on
which graphics card and image size one intends to use. The fact the two graphics cards
respond differently to the two approaches is most likely attributable to their differing
internal architectures—the details of which are proprietary.

The single configuration that maximizes performance of the average case is the
“Palette” approach for the 128> images, and the “Sequential” approach for all others. The
“Palette” approach provides a 1.15x speedup over the “Sequential” approach for both
128 and 256° image sizes, while using the “Palette approach in conjunction with the
128” image size (or using the “Sequential” approach in conjunction with the 256 image
size) provides an additional 1.32x speedup over other combinations.

Useful work performed

When comparing the two GPUs, the concept of “useful work” supplements this
analysis. Useful work is a measure of a processor’s effective rate for performing the
floating point calculations required by the user, independent of implementation.

Consider that each reticle-scene multiply-add operation requires size? floating point
multiplications, plus size*-1 additions, with size being the image width in pixels (128, 256

or 512). Thus, the amount of useful work performed in each experiment is:

useful work = 1,000 iterations x 40 reticle-scene operations/iteration x (2 size?-1) FP operations
(FLOPS) execution time

65

This metric is specific to this application, and provides insight into the efficiency and
suitability of the processing method under consideration.

Table 5-3 compares the useful work performed by the two GPUs for the Phase One
experiments. The entries in the table correspond to the execution times listed in Table 5-

1. In viewing the useful work figures, keep in mind the ATI card does not process at full

Table 5-3. Useful work, in GFLOPS, performed by the ATI and nVidia graphics cards at various image
size and GPU algorithm combinations, using non-changing scene update scheme. Figures represent the
number of useful floating point calculations performed per second in accomplishing 1,000 iterations of the
JMASS spin scan optics processing calculations, or equivalently, performing a dot product of 40,000 pairs
of vectors whose dimension is indicated in the Image Size column.

Useful Work Performed by GPU (GFLOPS)

ATI NVIDIA
GPU algorithm GPU Algorithm
Image Size Palette Sequential Palette Sequential
128 2.0 1.5 0.53 0.31
256 2.5 2.4 0.36 0.52
512° NA 2.9 NA 0.56

floating point precision, so comparing useful GFLOPS between the two cards is only
valid if one accepts ATI’s floating point limitations.

The ATI card’s best times for performing the experiments were 0.640, 2.059 and
7.226 seconds for the 128% 256 and 5127 image sizes, respectively, achieving rates of
useful work between 2.0 and 2.9 GFLOPS. In contrast, the nVidia card’s best times for
these experiments were 2.456, 10.124 and 37.427 seconds for the 128% 256 and 512°
image sizes, with corresponding useful work rates between 0.52 and 0.56 GFLOPS. Note
that in all but one case, for any given GPU and algorithm combination, the rate of useful
work increases with image size, which is consistent with the interpretation of
experimental results presented earlier in this chapter. Such behavior is to be expected
because larger image sizes result in a higher proportion of the total execution time being

spent in actual GPU processing, versus transferring data into and out of the graphics card.

66

Applying terminology from the literature, processing larger image sizes increases
computational intensity, enabling the GPU to be used more efficiently.
Phase Two Experiments: GPU Versus CPU-based Implementations

The second phase of experiments compares GPU performance with that of two
alternative, CPU-based, processing methods for accomplishing the JMASS spin scan
optics calculations: a C++ software implementation, and C++ code using the cache-
optimized Intel Math Kernel Library (MKL). The factors are: processing method (GPU,
C++, MKL), bus/platform (AGP, PCI-express), scene update scheme (non-changing,
fully-changing, moving point source), and image size (1287, 256%, 512%). Though the
scene update scheme had little effect in the first phase of experiments, which involved
only the GPUs, the factor is retained for this phase because of its potential to affect the
CPU-based implementations. For these experiments, the ATI card is used as the
representative GPU since it proved to be consistently faster than the nVidia card. For the
GPU algorithm, the “Palette” approach was used for the 128 and 256° image sizes
because it yields slightly better performance than the “Sequential” approach does on the
ATI card. The “Sequential” approach was used for the 5127 image sizes because it is the
only approach that works on both AGP and PCI-express platforms at the 512° resolution.
Tests are conducted on AGP and PCl-express platforms, using the AGP and PCI-express
versions of the ATI X800XT graphics card. The 3.0 GHz P4 machine from the first
phase of experiments serves as the platform for the AGP experiments, and a 3.6 GHz P4
(HT) with 925X chipset and 4GB RAM, running Windows XP Professional (SP2) and

DirectX 9.0c is used for the PCI-express experiments. Though the two machines do not

67

exactly facilitate an “apples-to-apples” comparison, it is shown that the differences
between these two platforms had little effect on the execution times of these experiments.

Consistent with the previous phase of experiments, experimental error was very small,
yielding 90% confidence intervals orders of magnitude smaller than the mean effects in
most cases (see Table A-2a). The effects of the factors and their interactions are
statistically significant, but only a few are of practical importance. Processing method
(GPU, C++ or MKL) accounts for about 9% of the total variation; image size accounts
for 89%:; and the interaction between image size and processing method accounts for
1.2%. All other factors and interactions contribute less than 1% of the total variation, so
may be considered unimportant for practical purposes. Except for a few outliers, normal
quantile-quantile plots of the errors (Figure A-2a, Part 1) are reasonably linear, satisfying
the analysis model constraint that errors be normally distributed. Plots of errors versus
mean response indicate no trend in errors with respect to response, satisfying the
remaining model constraint (Part 2 of Figure A-2a).
Effect of scene update scheme

As in the first phase of experiments, scene update scheme is not a significant factor.
Perhaps this is to be expected since the Pentium 4 level two cache (512K on the AGP
platform, 1MB on the PCI-express machine) can easily hold one or more 128 or 256°
images, and perhaps one 5127 image (PCI-machine only), allowing the fully-changing
scene update scheme to occur very quickly. From examining the execution times (Table
A-2a), a fully-changing scene update scheme does little more than add about 3-4% more
time to each experiment, and does not appear to affect any method, including the cache-

optimized MKL implementation, any more than the others. The moving point source

68

update scheme, which changes two scene pixels per update, produced almost identical
results to the non-changing update method. Because scene update scheme has little effect
on performance, the analyses and examples that follow only address the non-changing
case.
Effect of processing method

In all cases, the GPU implementation ran faster than the MKL and C++
implementations, providing 1.7x and 2.5x speedup over the two, respectively, on average.
These figures come from interpreting the mean effects computed in Table A-2a in the
same fashion as was done in the previous phase. For the smallest image size tested
(128%), GPU speedup is less than this average, providing only 1.2x speedup over MKL,
and about 2x speedup over C++. This is the closest the CPU-based approaches come to
matching the speed of the GPU. As image size is increased the gap widens and the GPU
provides an increasing performance advantage over the CPU-based approaches. This is
shown in Table 5-4, which lists the relative speedup provided by the GPU on the two

platforms at the three image sizes. Note the GPU generally has less of an advantage on
Table 5-4. Speedup provided by GPU over CPU-based methods.

AGP platform PCl-express Platform

Image Size C++ MKL C++ MKL
128% 2.0 14 2.1 1.2
256° 2.5 1.8 2.4 1.3
512° 3.5 2.8 3.0 2.7

the PCI-express machine because the CPU-based approaches run their fastest on this
machine, almost certainly due to its faster CPU. The speedup figures are computed by
dividing the execution time of the CPU-based method by that of the GPU method for a

given image size and platform. The complete list of execution times for this phase of

69

Table 5-5. Execution times, in seconds, compared for the GPU and CPU-based processing methods, at the
three image sizes, and on both AGP and PCl-express machines. Times are for completing 1,000 iterations
of the JMASS spin scan image processing calculations. Figure 5-2 shows the same information

graphically.
Comparison of GPU and CPU-based Approaches
Execution Times (seconds) Spin Scan Procedure
AGP platform PCl-express Platform
Image Size GPU C++ MKL GPU C++ MKL
128° 0.640 1.267 0.876 0.576 1.199 0.664
256° 2.059 5.234 3.776 1.980 4.787 2.645
512? 7.226 25.032 20.448 7.283 21.885 19.409
0 Method Comparison, SPINSCAN, AGP
—— cpPU
— MKL
30— Ce+

] w
[l =}
I

Execution time {1000x), seconds
]
S

0
0.1638 0.6954 26214
Scene/Reticle total pixels (corresponds to 1282, 2562 and 5122 image sizes) X 105

(a)

Method Comparison, SPINSCAN, PCI

—# GPU
—&— MKL
3BH = Csr

Execution time (1000x), seconds
)
(=]
T

0 |
0.1638 0.6554 26214

Scene/Reticle total pixels (corresponds to 1282, 2562 and 5122 image sizes) X 105

(b)
Figure 5-2. Comparison of GPU and CPU-based processing methods in executing the JMASS spin scan
procedure on the (a) AGP platform, and (b) PCI platform.

70

experiments is listed in Table A-2a. For convenience, the execution times also appear in
Table 5-5, and are shown graphically in Figure 5-2.
Effect of platform

In this phase of experiments, the effect of graphics bus (AGP versus PCI-express) is
confounded with the difference in CPU speeds and cache sizes of the two machines used.
However, the analysis shown in Table A-2a indicates that the bus/platform factor
accounts for barely 0.3% of the total variation, making the choice of platform almost
irrelevant in these experiments. The mean effect for the platform/bus factor indicates that
the PCI-express platform, with its faster graphics bus, CPU, and larger cache, provided a
1.14x speedup over the AGP platform, on average. Though the PCI-express bus provides
a data path between the CPU main memory and GPU that is two times faster than AGP,
only relatively small improvements in GPU execution time are observed on the PCI-
express machine: 1.11x, 1.03x, 0.99x at the 1282, 256% and 5127 image sizes
respectively. For the 512* image size, the AGP card yielded better performance than the
PCI-express version, but only by a fraction of a percent. Note that the difference in GPU
performance between AGP and PCl-express platforms diminishes as image size is
increased. This is further evidence that larger image sizes allow the GPU to operate at
higher levels of computational intensity, thereby reducing platform-specific impacts on
the GPU processing time. At the 512” image size, the AGP and PCI-express graphics
cards perform almost identically, despite the difference in CPU speed between the two
platforms. This demonstrates that the GPU acts as an equalizer, allowing machines with

slower CPU’s to perform as fast (or faster) than machines with faster CPU’s.

71

Interaction between processing method and image size

This effect accounts for little (about 1.2%) of the total variation, but illustrates the fact
that the GPU is best used for the larger image sizes, compared to the CPU-based
alternatives. From Table A-2a the effects of various combinations of method and image
size result in slight penalties for using the GPU at the smaller image sizes, compared to
the other methods, and slight gains for using the GPU at the 512* image size.

Effect of image size

The image size factor accounts for the greatest amount of variation (89%) in this
phase of experiments. Unfortunately, this information is not particularly useful, since it
is known that successive increases in image size represent fourfold increases in workload,
and execution times vary widely with changing image size in these experiments. Since
image size seems to overshadow the other factors in this set of experiments, some subsets
of the experiments are analyzed to discover any trends that might otherwise have
remained hidden.

The first subset to be analyzed considers only those experiments involving the non-
changing scene update scheme. The analysis appears at Table A-2b, and is almost
identical to that of the larger set of experiments, further confirming that the various scene
update schemes have little effect on execution time.

If the above subset is further broken down, and a separate analysis performed for each
image size case (Table A-2c), a trend with respect to the bus/platform factor appears. At
the 128 image size, bus/platform accounts for about 6% of the total variation. As image
size increases, this figure drops: to 4% at 2567, and to less than 1% at the 5127 image

size. This would seem to indicate that as image size increases, the bus/platform factor

72

becomes less significant, on average. This may make sense for the GPU case, but does
not make sense for the C++ and MKL cases, whose performance is completely dictated
by platform. A better interpretation of this trend arises if one considers that, for the 5 12?
image size, the mean is most influenced by the MKL and C++ methods, whose execution
times are both on the order of 20 seconds, compared to the GPU, whose execution time is
on the order of seven seconds. In this case, the GPU execution time represents the
greatest deviation from the mean, and so should be expected to dominate the analysis.
Since GPU performance depends least on the bus/platform, it makes sense that the
bus/platform factor would have less impact as image size increases and the GPU becomes
more dominant.

For these subsets of experiments, particularly those involving the 128> and 256 image
sizes, the interaction between bus/platform and processing method accounts for a greater
share (2-3%) of the total variation than previously observed. This effect provides the
greatest performance reward when MKL is combined with the faster platform, about a
1.1x speedup (best case) over the “average” combination of platform and processing
method. This is simply because MKL methods run faster on the faster CPU, while the
GPU performs almost the same, regardless of platform.

Phase Three Experiments: Conical Scan

This phase of experiments compares the performance of the GPU against CPU-based
approaches for performing the conical scan variation of the JMASS image processing
calculations on both AGP and PCI-express platforms. As in the previous phases, each
experiment consists of running the algorithm 1,000 times and measuring the total

execution time. Each iteration results in 40 reticle-scene multiply-add operations, for a

73

total of 40,000 per experiment. Conical scan, however, requires more input parameters:
a list of 40 reticle indices and shift offsets. These were chosen at random prior to each
experiment using the C++ rand command. A different seed was used for each
experiment, drawn from a uniform distribution between zero and 4,294,967,295. The
seeds were generated using the Matlab rand command. Conical scan also requires that
the scene image be larger than the reticle image. For these experiments, the scene image
dimensions were twice those of the reticle image, so the scene contained four times the
number of pixels as the reticle image. Taking a cue from the results of the previous
phases, only the non-changing scene update scheme was used, and separate sets of
experiments were conducted for each image size.

For this phase of experiments, there are two factors: processing method (GPU, MKL,
C++) and bus/platform (AGP, PCI-express). Per the analysis shown in Table A-3, these
two factors, and their interaction, are statistically significant for all image sizes. Except
for a few outliers, normal quantile-quantile plots of the errors (Figure A-3, Part 1) are
reasonably linear, satisfying the analysis model constraint that errors be normally
distributed. Plots of errors versus mean response indicate no trend in error with respect to
response, satisfying the remaining model constraint (Figure A-3, Part 2).

Allocation of variation and GPU speedup figures for the three sets of experiments in
this phase are summarized in Table 5-6. Note that for the experiments involving the 128
and 2567 reticle image sizes, the bus/platform factor accounts for a much larger
percentage of the total variation than observed in previous phases of experiments. This is
explained by the fact that, although the GPU remains faster on average than the CPU-

based approaches, it does so by a smaller margin than was observed in the spin scan

74

experiments (in fact, MKL on the PCI-express bus is faster than the GPU at the 128°
image size). Since the GPU times are closer to those of the CPU-based methods, the
effect of the platform is more apparent in these experiments.

Recall from Chapter III the GPU takes longer to execute the conical scan procedure
for several reasons. First, shifting the images requires that a less efficient method be used
for storing textures in GPU memory. Second, conical scan requires random access to the
reticle images, forcing the use of the “Sequential” algorithm implementation, which, on
the ATI card, is slower for the 128” and 256” image sizes. Third, extra time is needed in
the vertex shader to add offsets to texture coordinates. Lastly, since the scene dimensions
are twice those of the reticle image in these experiments, four times more scene data has
to be uploaded to the GPU per iteration than with spin scan. With all that extra data
being uploaded to the GPU, one might expect to observe improved GPU performance
with the PCI-express bus. However, this is not the case. From Table 5-6, under
“Speedup of PCI GPU vs. AGP GPU”, it can be seen that the PCI-bus provides little

more speedup for the GPU than it did in previous phases of experiments.

Table 5-6. Summary of GPU performance versus that of the CPU-based methods for the conical scan
procedure. Allocation of variation for the effects of method and platform/bus are shown to indicate the
relative importance of each factor as image size is increased.

Average
GPU Speedup Speedup of Speedup of Allocation of Variation (%)
Over PCI Platform of PCI GPU Interaction of
Reticle Size C++ MKL over AGP vs. AGP GPU Method Platform Platform & Method
128> 1.3x 0.9x 1.3x 1.13x 34 53 13
256> 2.3x 1.9x 1.3x 1.05x 86 11 3
5122 2.5x 2.2x 1.1x 1.02x 99 1 0

The disadvantages described above seem to apply most to the two smaller image sizes.
However, consistent with previous experiments, the relative speedup provided by the

GPU increases as image size is increased, such that at the 5 12 image size, the GPU

75

Table 5-7. Execution times, in seconds, compared for the GPU and CPU-based Processing Methods, at the
three image sizes, and on both AGP and PCl-express machines. Times are for completing 1,000 iterations
of the JMASS conical scan image processing calculations. For these experiments, the scene contains four
times the number pixels as the reticle image. Accompanying figures show the same information
graphically.

Execution Times (seconds) Conical Scan Procedure

AGP platform PCl-express Platform
Reticle Size GPU C++ MKL GPU C++ MKL
128° 1.138 1.505 1.414 1.012 1.221 0.942
256> 3.037 7971 6.688 2.889 5.796 4.650
5122 10.639 27.759 24.235 10.430 24.920 22.256
Method Comparison, CONSCAN, AGP
40 -
—— GPU
- MKL
35 H 7 C++

%}
=
I

(]
o

©on

Execution time (1000x), seconds
(=]
(=]

5
| | \
0
0.1638 0.6554 26214
Reticle total pixels (comresponds to 1282, 256% and 5122 image sizes); Scene at 2x Reticle width X 105
(a)
Method Comparison, CONSCAN, PCI
40~
—#— GPU
—& MKL
B = C

0+

251

20

Execution time (1000x), seconds

3 \ |

0

0.1638 0.6554 26214
Reticle total pixels (corresponds to 1282, 2562 and 5122 image sizes); Scene at 2x Reticle width X 105

(b)

Figure 5-3. Conical scan execution times compared for the GPU and CPU-based Processing Methods, at
the three image sizes, and on both (a) AGP, and (b) PCI-express platforms. Plots show same information
contained in Table 5-7 above.

76

provides a sizeable 2.2x speedup over MKL, and 2.5x speedup over basic C++ for the
conical scan procedure.

Generally, all the methods were slower with conical scan than they were with spin
scan. Compare the execution times for these experiments, shown in Table 5-7, with those
of the Phase Two experiments. For the C++ approach, extra calculations are needed per
pixel to index into the subset of the scene array overlapped by the reticle. MKL does not
appear to provide an efficient means for performing the required operations on subsets of
matrices, so instead of performing a single MKL sdot operation on the two images, the
MKL routine computes starting indices for each row accessed in the scene array,
performs a dot product on each row of the reticle and scene subset, and accumulates the
results. This approach was still faster than basic C++, but by a smaller margin than
observed in previous experiments.

For the 128 and 256> image sizes, the interaction between method and bus/platform
accounts for about 13% and 3% of the total variation respectively, diminishing to below
1% for the 512% case. As in the Phase Two experiments, the effects of the various
combinations of method and platform are explained by the fact that the GPU provides a
higher margin of performance gain over the CPU-based methods when combined with
the slower platform, and the opposite generally holds true when the CPU-based methods
are combined with the faster processor. The impact of this interaction diminishes with
increasing image size because total variation becomes dominated by the GPU, and GPU

performance is little-affected by platform.

77

Phase Four Experiments: GPU Performance With JMASS

This phase of experiments compares the performance of baseline JMASS to that of
GPU-assisted JIMASS in running an actual JMASS simulation, specifically the JMASS
generic Man-Portable Air Defense System (MANPADS) threat model, set for a 10
second engagement, at the three image sizes. Only the spin scan case was tested because
integrating the GPU code for conical scan required extensive modifications to JMASS.

Two versions of JMASS were used, baseline JMASS and modified JMASS. Baseline
JMASS is the version currently used by AFIWC, and the target of this, and other,
hardware acceleration efforts. During each simulation time step, it performs costly image
processing computations in software to simulate the missile’s optical path: reticle image
rotation and interpolation, and a reticle-scene multiply-add operation. Modified JMASS
improves upon baseline JIMASS by switching to a lookup-based approach for the reticle
images, effectively eliminating thousands of repetitive rotation and interpolation
operations, leaving only the reticle-scene multiply-add operation to be done on a repeated
basis during the simulation. As a result of this research, it was mutually agreed upon
with AFIWC that they should transition JMASS to this lookup-based approach, not only
to support integration of GPU processing, but because it could improve JMASS
performance even if GPU acceleration were not used. Hence, modified JIMASS can run
in either “GPU-assisted” or “Software” modes. The GPU-assisted version performs the
reticle-scene multiply-add operation in GPU hardware, using the same GPU code
implementation that was used in the Phase Two experiments. The Software version
accomplishes the calculations in software, analogous to the “C++" processing method

used in the Phase Two experiments. GPU-assisted JMASS was tested with both ATI and

78

nVidia graphics cards. The platform was a 2.8 GHz Pentium 4 (HT) with 512MB RAM,
running Windows XP Professional (SP1) and DirectX 9.0b. Only one replication of each
experiment was conducted.

The results for these experiments appear in Table 5-8. From the table it can be seen
that Modified JMASS, both the Software and GPU-assisted versions, outperform baseline
JMASS in every case. From the analysis at Table A-4, the Software version provides
about 1.4x speedup over baseline JMASS, and the GPU-assisted version provides about

1.5x speedup over baseline JIMASS, on average.

Table 5-8. Execution times, in seconds, compared for original JIMASS, modified JIMASS and GPU-
assisted JMASS, at the three image sizes. Each experiment consisted of running the JIMASS generic
MANPADS threat model, set for a 10 second engagement.

Modified IMASS
Baseline =~ Multiply-add GPU-assisted
Image Size JMASS In Software ATI nVidia
128° 579 407 360 359
256° 2141 1574 1393 1411
512 8200 6289 5530 5525

Modified IMASS (Software) can be viewed as the first of two incremental
improvements over baseline JMASS: it implements the more efficient lookup-based
approach described above, providing 1.4x speedup over baseline JMASS, on average.
The GPU-assisted version provides a second incremental improvement, enhancing the
Software version by performing the reticle-scene multiply-add operation in GPU
hardware. The GPU speeds up the Software version by about 1.1x, providing an absolute
speedup over baseline JMASS of 1.5x, on average. Viewing the successive
improvements in this manner reveals that the biggest performance gain for JMASS comes
from transitioning to the lookup-based approach, and using the GPU to further optimize
the reticle-scene calculations provides only a small additional benefit. This information

is summarized in Table 5-9.

79

As indicated above, the GPU does not provide much of a performance boost to
JMASS. The reason for this lies in the fact that Modified JMASS (Software version), by
going to a lookup-based approach, does away with most of the time-consuming optics
processing, namely the reticle rotation and interpolation operations. In so doing, the
optics calculations become a much smaller contributor to the total IMASS execution

time. This is shown in Table 5-9, which gives the estimated* proportion of JIMASS

Table 5-9. Percentages of IMASS execution time spent performing optics versus other processing for the
three versions of JIMASS, and the speedup provided by these successive improvements. Optics processing
includes reticle rotation and interpolation, and the reticle-scene multiply-add operations. Modified JMASS
improves Original JMASS by essentially eliminating the rotation and interpolation operations via
preprocessing and look-up, but continues to perform the recticle-scene multiply-add operation in software.
GPU-assisted IMASS improves Modified JIMASS by performing the multiply-add operation in GPU
hardware. It can be seen that Modified JIMASS, in switching to a look-up based approach, makes
significant improvement to the optics processing. GPU-assisted JMASS provides further optimization to
the optics processing, virtually eliminating it as a factor in the total JMASS execution time. These figures
show that modifying JMASS to pre-process and look-up reticle images results in the largest improvement.
Using the GPU to speed up the remaining reticle-scene multiply-add operation adds a further small
improvement.

Modified JIMASS
Baseline JMASS Software GPU-Assisted
Other Optics Other Optics Other Optics

65% 35% 89% 11% >99% <1%
Incremental Speedup - 1.4x - 1.1x
over previous version
Absolute Speedup
over Baseline JMASS — 1.4x — 1.5x

execution time attributable to optics processing versus other activities for the three tested
JMASS versions. In baseline JMASS, optics processing accounts for about 35% of the

total execution time, whereas in Modified JMASS (Software), it only accounts for 11%.

* Estimates derived using known GPU execution times and the JMASS execution times from Table 5-8.
Example: for the 128> image size, the ATI GPU takes no more than 2 seconds to process the 2,425 spin
scan iterations required during the simulation of a 10 second engagement. Subtracting 2 seconds from the
360 second GPU-assisted (ATI) JMASS execution time yields 358 seconds for all “other” processing.
Dividing this number by the execution times of the JMASS versions at the 128 image size gives the
fraction of the total time spent in this activity for each. Percentages shown in Table 5-9 are averages.
Actual percentages for each image size case vary by +/- 3 percentage points. These estimates agree with
results provided by profiler software, which indicate that the optics processing carried out in Modified
JMASS (Software) accounts for about 10% of the execution time for that JIMASS version.

80

Using Amdahl’s famous equation, Modified JIMASS (Software) provides about 3.8x
speedup for the optics processing, compared to baseline JMASS. At this point, the best
speedup attainable by further optimizing the optics processing is 1.12x, the speedup that
would be gained by eliminating the optics calculations altogether. The GPU therefore
performs admirably in these experiments, because it almost accomplishes this, with GPU-
assisted JMASS reducing the optics processing time to 1% or less of the total IMASS
execution time. Equivalently, the GPU provides speedup on the order of 10-40x
(depending on the GPU and image size used) for the optics processing compared to
Modified IMASS (Software). The end result of all the improvements is the elimination
of about 35% of the baseline JMASS execution time, which is a significant improvement.
Unfortunately, the majority of this improvement is due to the efficiency of the lookup-
based approach, and not the GPU. The reticle-scene multiply-add operation does not
account for enough of the total JMASS execution time for the GPU to make a big
difference overall.

Somewhat puzzling in these results is the 10-40x speedup indicated for the GPU-
assisted versus non-GPU versions of Modified JMASS. Recall that the only difference
between the two versions is the method used for processing the reticle-scene multiply-add
operation: GPU hardware, or software. The GPU speedup observed in these experiments
is not in line with the results of the Phase Two experiments, in which the GPU yielded a
maximum of about 7x speedup over the software-based implementation. Using profiler
software, it was verified that the reticle-scene multiply-add operation in Modified JMASS
(Software) accounted for about 10% of the total execution time, meaning that for some

reason, it runs considerably slower than the functionally equivalent routine used in the

81

Phase Two experiments. One possible explanation for this difference is that IMASS
represents the scene as a C++ object, containing an assortment of attributes and methods,
versus using a simple array. AFIWC is investigating the cause of the apparent
inefficiency. If the inefficiency can be overcome, and the Modified IMASS multiply-add
routine can be made to run as fast as the one used in the Phase Two experiments, it is
expected that the already small advantage provided by the GPU-assisted version will
become even less significant, especially at the smaller two image sizes.

An inconsistency seems to exist in the results due to the small difference between the
ATI and nVidia cases (see Table 5-8). Using known GPU times for executing the
approximately 2,500 iterations required for simulating a 10-second engagement, the ATI
and nVidia cards should be expected to differ in their execution times by approximately
5,30, and 70 seconds at the 128, 256% and 512° image sizes respectively. However, the
actual differences observed in JMASS execution time when using the different graphics
cards were only 1, 17 and 5 seconds for the respective image sizes.

The simplest explanation for this disparity between expected and observed differences
in execution time is that JMASS execution times can vary from run to run enough to
mask the differences in GPU performance. In this case, a variation of 1-2% would be
enough. However, the existence of such variance cannot be confirmed because only one
replication of each experiment was performed.

Another possibility that was investigated is whether the graphics cards behave
differently when there is significant time delay between calls to the GPU. In the first
three phases of experiments, the GPU was tested by calling its processing algorithm

1,000 times, back to back, with almost no delay between calls. However, with JMASS,

82

there can be more than two seconds between calls to the GPU. To see if this was a factor,
some experiments were run with similar delays inserted between calls to the GPU. After
running the experiment using different image sizes and delay times ranging from 0.1 to
about two seconds, no differences were observed in GPU execution time. However, large
fluctuations, sometimes over 10%, were observed in the delay times themselves, even
when the GPU was completely removed from the experiment. Further investigation
revealed that the variance in execution time of the delay loop generally increased when
the size of the dummy array was increased, and most dramatically when it was increased
so as to exceed the capacity of the CPU’s level two cache. Though by no means
conclusive, such variation in the execution of a simple loop makes it conceivable that
similar variation could exist in the execution of a large and complex program like
JMASS.

One other possible explanation exists for the above-noted inconsistency, having to do
with the difference in the floating point precision of the two cards. Analysis of the
JMASS output reveals that the simulated IR detector signals produced by the two
graphics cards during JMASS simulation differ from each other, and from that produced
by baseline JMASS. This comes as no surprise, since baseline JMASS uses double-
precision while the GPU is limited to single-precision, or a subset thereof in the ATI
case. Per an AFIWC subject matter expert, it is possible that such differences could
cause the simulated missile to take longer to acquire or reacquire lock on the target, or to
lose lock more often, resulting in longer simulations. Another example of the graphics
cards producing different results lies in the “miss distance” displayed by JMASS at the

end of the simulation, indicating the missile’s final proximity to the target. Given the

83

same simulation parameters, baseline JMASS produces miss distances of just over half a
meter, nVidia just over a meter, and ATI about 3 meters. Because nVidia produces miss
distances that are closer to those generated by baseline JMASS, it is considered more
accurate. It is a possible concern that ATI’s considerably larger miss distance could lead
to falsely predicting a miss when a more accurate simulation would predict a hit. At this
point, however, it is only known that these differences exist. The impact, if any, such
differences might have on the outcome and validity of JMASS simulations remains to be
established.
Summary

These experiments accomplished the research goals identified in Chapter IV. The first
phase of experiments was designed to compare the candidate graphics cards, and a clear
winner emerged. The ATI processor outperformed the nVidia GPU in all cases,
providing an average 5x speedup over its rival. This advantage is somewhat unfair,
however, because the ATI GPU cuts corners with respect to floating point precision,
resulting in faster processing, but less accurate results. Though it is too early to tell, these
inaccuracies may make this card unsuitable for the JMASS application. The ATI and
nVidia GPUs sustained useful work rates of up to 2.9 and 0.56 GFLOPS respectively in
these experiments, displaying formidable processing power—especially considering that
these figures include the time spent transferring data into and out of the graphics cards.

The second phase of experiments pitted GPU hardware acceleration against software-
based alternatives for implementing the JMASS spin scan reticle-scene multiply-add
operation. Using the faster ATI graphics card as the representative GPU, GPU hardware

consistently outperformed C++ and Intel Math Kernel Library software implementations,

84

providing 1.4x to 3.5x speedup, with the GPU achieving its greatest advantage when
processing the largest 5127 image size.

The third phase of experiments compared GPU performance against the same
software-based alternatives for executing the conical scan variation of the JIMASS
multiply-add operation. In all but one case, the GPU outperformed C++ and Intel Math
Kernel Library implementations, providing 0.9x to 2.5x speedup.

The results of these experiments demonstrate that the GPU can indeed provide
significant speedup over software-based alternatives for performing both the spin scan
and conical scan variations of the JMASS reticle-scene multiply-add operation.
However, as was forewarned in Chapter I, even the most spectacular GPU speedup could
be expected to have little effect on IMASS system performance if the multiply-add
operation were not to account for a significant amount of the total JMASS execution
time. The fourth phase of experiments, which integrated GPU processing into JMASS,
revealed exactly that. The full suite of optics calculations performed by baseline JIMASS
(rotate, interpolate and multiply-add) only accounted for about 35% of the total baseline
JMASS execution time, which is much less than originally expected. Further, in order to
integrate GPU processing into JMASS, JMASS was modified to use a lookup-based
approach which eliminated the bulk of the optics computations. In this modified version
of JMASS, only the reticle-scene multiply-add operation remained to be optimized,
accounting for only 11% of the execution time. As described earlier in this chapter, the
GPU provided excellent acceleration, reducing the time spent in the multiply-add
operation so as to account for less than 1% of the total IMASS execution time, yielding

close to the theoretical maximum achievable acceleration of 1.1x. The bottom line, with

85

respect to JMASS, is that the GPU provided the best possible speedup given its frequency
of use. The results of the first three phases of experiments indicate that the GPU could
have a much greater impact, providing up to 3.5x speedup, in applications where the
multiply-add operation accounts for the bulk of the execution time.

On a very positive note, though the original intent of transitioning JMASS to the
lookup-based approach was to enable the integration of GPU processing, it resulted in a
1.4x speedup over baseline JIMASS. With the inclusion of GPU processing, the overall
speedup is increased to 1.5x. This equates to eliminating 40 minutes of a two-hour

simulation.

86

VI. Discussion
Summary of Findings

This research demonstrates GPU hardware can support JMASS spin scan and conical
scan simulations, performing the reticle-scene multiply-add operation up to 3.5x faster
than software-based solutions including those that have been cache-optimized. The GPU
advantage is greatest when processing larger image sizes, due to increased computational
intensity, achieving useful work rates as high as 2.9 GFLOPS for this application. Two
top-of-the-line consumer graphics cards, the ATI X800XT and nVidia 6800 Ultra, were
tested, and the ATI card was five times faster on average than its nVidia counterpart in
executing the JIMASS multiply-add operation. However, the ATI card is also less
accurate due to its reduced floating point precision, which may or may not impact the
validity of JIMASS simulation results.

This research resulted in a 1.5x speedup for JMASS by fostering its transition to a
lookup-based approach for processing the reticle images which eliminates hundreds of
thousands of unnecessary image transformation operations. This speedup is equivalent to
eliminating 40 minutes of every 2-hour simulation, and therefore delivers a significant,
immediate benefit to AFIWC.

Nevertheless, despite the speed increases afforded by the graphics cards for
performing the JIMASS image processing computations, GPU acceleration impact on
overall JIMASS performance does not reflect the speedup achieved by the GPU. This is
not due to any problem with the GPU--the GPU executed the multiply-add operation up
to 40 times faster than the JMASS program--but rather the multiply-add operation

accounts for just a small portion of the total JMASS execution time, so optimizing it has

87

a correspondingly small effect. The results of the first three phases of experiments
indicate that the GPU could have a much greater impact, providing up to 3.5x speedup, in
applications where the multiply-add operation accounts for the bulk of the total execution
time.

Final Observations and Recommendations

Since JMASS only uses the GPU about 1% of the time for the multiply-add operation,
the GPU can perform other JMASS processing as well. One such use is for IR scene
generation. Graphics cards excel at rendering complex and dynamic 3D scenes, and so
will be faster than the procedural methods currently used by JMASS to generate the scene
images. Combining scene generation and multiply-add operations in the GPU is very
efficient because the scene would reside natively in GPU memory, and would not have to
be uploaded via costly data transfers to the GPU after every scene update.

Efforts to accelerate JMASS more using hardware should be focused on the portions
of JMASS which have not been optimized (e.g., IR scene generation). Further effort and
expense devoted to optimizing the JMASS optics calculations, including reticle image
rotation and interpolation, and reticle-scene multiply-add (a.k.a. “convolution”), is not
recommended since these now only account for 1% of the JMASS execution time when
using the GPU (11% otherwise) and further optimization will yield no noticeable
performance gain for JMASS simulations.

The GPU implementations developed in this research can be further optimized. The
“Palette” approach used for spin scan can be made more efficient (cf., Chapter III) by not
processing unneeded images at the top and bottom rows of the palette. In hindsight this

inefficiency could be eliminated altogether by modifying the algorithm to take advantage

88

of the fact that sequencing through consecutive groups of 40 reticle images, mod 100,
returns to the initial group every five iterations. Thus, all needed reticle image orderings
can be stored in five smaller palette textures, each containing 40 reticle images instead of
64. Since each palette is used in its entirety, there is no need to resize the drawing
rectangle, and no processing of unwanted images. The smaller palette textures could also
support the 5 12? image size within GPU memory constraints, whereas the current
algorithm uses a more complicated and inefficient procedure to deal with the memory
limitation for this image size. The proposed approach would therefore support all three
image sizes with a more efficient, common algorithm.

Though designed specifically to support the JMASS image processing requirement,
the GPU implementations developed for this research could, with some modifications,
support any application that requires an abundance of image processing operations
involving shifting and multiplying images, and reducing the results. However, the GPU
hardware imposes some restrictions on expandability. In designing the GPU-based
algorithms, the chief limitations were GPU memory capacity, maximum supported
texture size, and the texture dimension and shape constraints imposed by shader
programs.

Given the 256MB memory capacity of the GPUs, 5127 is the largest reticle image size
that can be supported if all 100 reticle images are to be stored in GPU memory. The next
larger (power-of-two) image size, 10247, cannot be supported because 100 images of that
size would require 400MB of GPU memory, and few, if any, graphics cards are so

equipped.

&9

All the implementations rely on large-sized textures for storing collections of images,
such as those used for the reticle palettes and for storing intermediate results between
rendering passes. This seems to be a GPU-efficient approach. However, once again 512*
is the largest image size supported if a texture containing 64 images is desired. nVidia
allows very large 4096° texture sizes, but actually creating a floating point texture of that
size would use up the entire 256MB of available memory! Therefore, if future GPUs are
improved to support larger textures, GPU memory size must also be increased for it to
benefit this application.

Per Chapter III, pixel shader programs impose power-of-two dimension and square
shape limitations under certain circumstances. These restrictions can force using larger
textures than necessary, resulting in wasted GPU processing. Another limitation with
respect to pixel shaders is the limited depth of dependent texture addressing supported.
Dependent texture addressing allows texture coordinates which address one pixel to be
used to derive the coordinates for another. Limiting this practice decreases the number of
adjacent pixels that can be summed or multiplied during a rendering pass, and restricts
the creativity of the programmer. Removing these restrictions could allow programmers
to create more efficient algorithms.

This research has demonstrated that graphics cards can provide an impressive
performance boost for a general computing application, provided the application lends
itself to SIMD processing and can maintain high enough rates of computational intensity.
It has further been shown that GPU acceleration can enable slower computers to meet or
exceed the performance of faster and otherwise better-equipped machines. If GPU

technology continues to improve as it has (and given the current state of the PC gaming

90

industry there is no reason to expect otherwise), the limitations described above are not
likely to exist for long, and the GPU could indeed become the processor of choice for
many applications. In the meantime, the latest graphics cards, which support floating
point operations and can be flexibly programmed via rich APIs and shader programming
languages, are better prepared than ever to meet the demands of scientific, engineering

and modeling and simulation applications.

91

This page intentionally left blank.

92

Appendix A. Analysis Tables and Figures

List of Tables
Table Page
A-la. Analysis, Phase 1 (128 & 256%) experiments, ATI vS. nVidia.........cc.coovvvveererreereeresenerennnn 94
A-1b. Analysis, Phase 1 (512%) experiments, ATI vS. NVIdiao.cooovveovvovoveeeeeeeeeeeee e 97
A-2a. Analysis, Phase 2 experiments, GPU vs. C++ & MKL, Spin SCancceeeeeververrereerreenenne 99
A-2b. Analysis, Phase 2 experiments, non-changing scene update scheme onlyccccvveeeennennen. 103
A-2c. Analysis, Phase 2 experiments, separated by image SiZe€..........cccerverurerereiereenierieeieeeeneeneen 105
A-3. Analysis, Phase 3 experiments, GPU vs. C++ & MKL, conical Scanccccceevevevvereeneennnnne. 107
A-4. Analysis, Phase 4 experiments, baseline vs. GPU-assisted JMASSccociioiiiiiieinieneene 111

List of Figures
Figure Page
A-la. Quantile-quantile & errors vs. responses plots, Phase 1 (128> & 2567) experiments................. 96
A-1b. Quantile-quantile & errors vs. responses plots, Phase 1 (512%) experimentsccco......... 98
A-2. Quantile-quantile & errors vs. responses plots, Phase 2 experimentsccoeceevverveecvennennen. 102
A-3. Quantile-quantile & errors vs. responses plots, Phase 3 experimentscccoeceeevereeeeneennen. 110

93

00000

$103443 #0000~

852 L $900°0-
0LO'L L
8290 b
2:19 9 5
06E0 3
S00'L -
1590 3
8GLL 3
060 -
0LED b=
8v00- I
ZPE0 b
9LLO b=
ZPED b
0900~ b=
vLED b=
vEL'0- 3

ueaw aogy

00000 00000 €LO00 00000 00000 8E00°0 00000 80000 00000 LOOO'0 24900 00000 60000

6L000°0- ZL00'0 9SE0'0 L0000~ 6L000 ELS0O €L000'0- SBZO0 LP00'0- £6000- ZESZ'0- 29000 Y0E0'0r

LEO0'0- 9BLO'0 66950 ELLOO- 16200 ¥IBEO- LZ00'0- SSS¥0 PPL00- ¥BRLO- SOPL'Y- SBB00- Li8v'0-
L b= b= - 3 3 3 b L L b= b= -

3 3 3 b= L= - 3 b= 3 3 3 b= L=
L L- L L I - b= 2 L b= b= b= 3
b= 3 - 3 b= b b= - L b I 5 3
3 13 - 3 b= 3 5 I b= 3 L= L b=
b= b= 3 3 3 b= 5 b 5 3 3 3 b=
b 3 I 5 - L= 13 3 b= - - I 3
3 - b= L= I 3 13 b= - L= 3 3 3
L= L 3 3 L 3 13 b= b= L= - b b
3 b= b= 3 - b= b b b= L= 3 b= b=
3 L b= b= L - I b= b= L I b= 3
5 b= 3 b= b= I b= 3 - 3 2 b= L
L b= 3 b= b= 3 b= - 3 5 L= L b=
5 3 L= I 3 b b= 3 3 - 3 3 b=
b b= L= 3 & b 3 b= b 3 b= 3 3
3 3 3 3 I 3 3 3 3 3 3 3 3
ao8 axv agy o8y ao asg o8 av ol av a 2 g
37§ WwSHEpdn O

€410 8020
rereo- ¥Sv0
18iv's 85TL
- I
- i
b= 3
b= I
L= b
L b
b= b
5 3
3 3
3 3
3 I
3 3
I 3
i 3
L 3
b b
W I
ndo

pasenbs
aLAey
1)
e
13
4
9z

62
ve
€2
€l
Zl

Ll
o

dig

952
ek szL
alavd 3218

" pas 3lIwd b3Is 3UIvd p3s 3Ll3Wd D3I

SpUI 1L Uoinoaxg a8

wiyyobly wiyjoby wyobry oy
8 ndo v Ndo aNndo ¥ Nd9
SEIENDS Jo WS

962 962

: -8l : : 8zi

D3s 3LIvd DI 3UIWWd 3ZS D3s 3UIWd D3IS aLIWvd 32IS
wyjuobry wiypoBiy Buyo-Aiing wyobly wyjoBiy Byo-uon
8 nNdo ¥ Nd9 awayas ajepdn 8 ndo ¥ Nd9 awaydg slepdn

962 952

] f:4 aley 2, : .8l

S 3IUIWWd 3ZIS ©3s 3U3IWd O3S 3L3vd 328
wiypoBly wiyiuobiy Buyo-Aiing wiuobiy wiypoBy Buo-uoN
ando ¥ Nd9 awayas ajepdn 8 ndo v Ndo awayos ajepdn

‘sawayos ajepdn auaos BuiBueys-Ajny pue BuiBueyo-uou pue suonejuswajdw wiuoble NdO |enuanbag pue apajed Buisn

‘sazis abew| gz pUe gz 18 NdO |1V 0} BIpIAU sasedwo) “sjuawadxe auQ aseyd jo sishjeue pue synsay

el-v 3719Vl

94

vO-3LLL -/+b bs.z-j+b

G9'L [se']z

L, (4,2) Ps $0-300'L bg

2 3SW €0-322°2 °s
(1-1),z/3ss 90-3L1'S IS

(1-4) . anoge jo wns go-30¢°Z ass

L0-3¥¥°L 80-32r'9
£0738L'8 90-3L6'L

£40-302°L e0-302'S
40-32€6 90-399°C

$)09)48 10} 19|
T2 %06

SJoay)8 Jo Aap IS
SI0LIB JO ASP IS

90-3€0'} 90-326°¢C
S0-39€'L S0-36L'C

90-3¥6'L 90-38L°L
S0-3rS'T 90-36V°L

((1-1)/10013 pasebs Jo wns) souepea

SIOLI3 |ejuaiLiadxs Wolj pajenojes 388 ¥ YAONY

€000 €0-3LL'2
Jendy (1se)388 LEB'66 org'Le = 10}
0000 0000 =088S
0000 0000 =008vss £Z¥0 68E°0 =avss
0000 0000 =028SS LL00 0Lo0 =0VSS
0000 0000 =00VSs &S00 w00 =HYSS|
€990 6050 =08vss ZoL'se BEZ'ZE =dss
0000 0000 =08YSS 0200 8L0'0 =0SS
€000 2000 =Q0ss ver'o =14 4] =gSS
996} 908°) =7Jgss 082’19 182°9S =¥SS|
UoneleAy, Zyb,I3MZ UONEIEAY, ZvD,J C

UojjELIBA JO LUOIEI0Y

(3uoo) e~y 371GVl

£v8’l6e
3781
¥St°0
€£09°06}

=0SS-ASS = 1SS
=0SS

=NV3W

=ASS

95

"PI[eA 910J213Y] ST [9pOUl SISA[RUY "PudI) ou smoys 10]d sasuodsaI-SnSIoA-SIOLIF
'SI91[INO M3] ® 10J 1daoxd “reaul] Ajqeuoseai st jojd sjnuenb-suend) ‘sjuswniadxs (sozis a8ewr 967 2 871
‘ueos urds ‘RIPIAU 'SA [LV) B[9seyq 10j s10]d sasuodsai-snsion-s10119 pue d[ijuenb-g[puenb jeutioN ‘B-y 2Ingi

96

97

00000} 0000 Zvo°0 160°0 198°66
§0-31Z¥ -/+b [e10) lon3 av g v
=2, bs-/+ b = ueaw pue sj2949 10} '1'2 pauie|dxa UONeleA 9%
Skl [s6']z "0 %06
S199J9 JO ABP IS §0-395°7 bs 90-3¥1°6 900°0 £10°0 S69'vL LbS08)
Siou? Jo AP IS $0-318°C s ass| avss ass vSS 0ss
80-388'L 3s UONELEA JO UONEIO0NY
90-3¥1°6 3ss
pasenbs 506°1 0000 0000 2210 G505}
10-36.°C 90-366°} ZIM S103443 /2T 100°0- 1100~ 0S¢0 VAl
10-3€8'2 90-365'9 LI 906’ 620°0- Zr0'0- 00¥'L- 906'%
| viaaNn 1Ly 0851 b b b b
S80UBHEA €L5°1 b= I }- I
slous _mEmE_hmaxm- woJj paje|ndjed 35S ¢ ()E ¥68°0 b= 1- n L
6580 | I I I
LY 1ss ueaw av g v I
2z NVIW suRUOS 81epdn _ NdO
19Z°561 ASS sj8ye Jo uoeindwod
€ge'v. LO0'¥Z 2N 085°L ¥68°0 Bubya-Aliny
vTyL LELee 1IN €151 658°0 Byo-uou
VIQIAN ILv VIQIAN
SaleEnbs JO wns

Bubyo-A|ny
Byo-uou

{Spuodas) awi} uonnoaxa "sasuodsal Ueall "sjnsay

IVILNINDIS =91V 215=3ZIS
‘sawiayos ajepdn auaas BuiBueys pue BuiBueys-uou e NS |1V 0} BIPIAU Sajedwo)
‘aseo azis abew z |16 ‘suawadxa auQ aseud Jo siskjeue pue s)nsay

ql-v 31avl

‘PI[BA 910J213Y} SI [9pOu SISA[BUY "pudl) ou

smoys 10[d sasuodsaI-snSIdA-SION "SISIINO MIJ B 10J 1dooxd ‘reaur] Ajqeuoseas st joid ouenb-auend) ‘syuowLIddxd
(9z1s Z1 ¢ ‘ueods uids ‘@IPIAU SA [1V) q] 9seyd 1oJ sjojd sasuodsai-snsIsA-s1011 pue a[uenb-sqiuenb [puoN ‘qr-y 2mSigy

9l

cHed

Sl vl € 4 Vi L 60 8

o

sienpise

o

(uiojsuen 9OT) ALHd ~ SieNpISay ‘sAssuodsay ueay , O X

oL X

1 Hed

(sjenpisal jo adueleA pue ueal o} [pe) ajjuenp feuloN

8 9 14 4 0 ¥ g 8"

T T T T wl T T+ O w‘
i 19
L - 1?-

L

I
N
a|ueno [enpisay

(uuojsues 9O ALHd - 101d B|uenb-sjqueny 5 ObX

98

TIN ++0 ndo TN ++D

pousy powan

2-0d = UWope|disng dOY = uLope|4/sng
SaTenbs Jo ung

ndo

Gra'lL lselz T2 %06 G0-369°S
50-3€9'G
»3SW £0-309°L s 0000 G0-3€95
0g=! (b-ihpaaSS 80-31LST EL
BAOQR JO WS £O-3E0'Y ass G0-3€9°6
G0-3€9°6
LO-32EY SOELEY LO3EEL 90-3L€7 90-3009 90-39€9 4R 0000 603695 2
90-309'L 903598 L0-35E'E G0-36E'6 GO-I6EE SOIEI¥ 952
|50-3L5°4 90-38LE GOIPFT ¥O-3L6°L PO-3E0L WO-IERE 22
25 yd GO-3B6E
0000 GO-IBEE L
L0-3LLe 90-326°L L0-350'G 90-38E'} 90-396'¢ 90-366' Zlg
90-385'% 90-3LL8 90-390'% G0-3LL'8 GO-IBSS GO-3BYE 95z
S0-35E'L 90-369T 503011 $O-30EF ¥O-30L1 PO-3SED -8 50-3€9'G
Bua-fany| G0-3e9°G
0000 G0-3e96 2
L0-328'E SO3ELY 80-3E9L 90-362¢ 90-3ce’e 90-3659 FAL+
90-3£L°G 90-3¥8'S 90-3BET v0-380°F S0-3689 GO-3SLG a5z
S0-30LZ 90-98L'9 S0-3SEL p0-398Z G0-328L POALLT -4
TN ++2 ndo THW Rase) ndo Buyo-uou 0000 S0-386€ |
sioue pasenbs jo wns 0z91
= ABpTE P
Joeye usew = ' JoBle
WAONY

TAN

LiEE8 LZz oLy
8100 180°0
86Z°0 SYT'L
or0's LvS'Ey
viLiey
l61'a9r
8e5°0
LIEEYE

UG[eeA 5, b8 jo wne

uoneLBA Jo uoResoly

+=+0 ndo

9-0d = Wiofeidsng

Livo

1000

6LE0

0000

0000

Lo00
1000

1000
¥EOD

9900’
55

TAN

or9'0 €81} zis
0£0'0- L0570 a6z
sL9°0 8.00 821 a
BIIg
5000 £65°0 asyd
0L0'0 8v50 Ay
§00°0 Z85°0 uou 2
ajepdn eusog
8z0'0~ oLlg'o a2d
8200 5850 dov a
uloje|d/sng
8200 9950 TN
G810 €2L0 2
gz ¥ZE'D nNdo Y
NvInpels fuesm poyiel
Joaje ueaw ETE]
sjo8)3 uep jo uogeindwon
Zis
952
8Zi
az1g aanos jod
Zis
=14
9Zi
sz BuBueyo-in|
Zis
952
9zt
+32 oz1g Buibueyo-uou
powma ‘alwayog slepdn susag|

dOV = uloje|d/sng

‘suuojjeld JOy PUE 8-|0d uo ‘seweyos ajepdn auaos eaiy) pue sazis abew saiy) je

‘sayoeoidde paseq-ndo o) NdD Buuedwoo ‘sjuawuedxe om] eseyd jo siskjeue pue synsay

ez-v 3148vl

99

0000 GO-LE6L ¥ z00'0 6000 0.2 0000 bs jowns as
S Aap s op US[ENEAY, DEjowns
10-309's 90-36ZF 90-355'¢ 100°0- 10070 Z00'0 s yd
90-36¥'S 90-396') S0-30¥'L Z00'0 1000 v00°0- g
90-IPST BO-IPE9 90-IFE 000 0000 z00'0 uou
sasenbs Zig 952 82t
50843 a0
0000 50-369' T ¥E0'0 roL0 0.z 1000 bs jo wns ag|
s Aep s P UoNEpER Y, BE o Wne
v0-3¥6’L 50-396'8 50-3002 rI00 600°0" $00°0° 8-0d
pO-3PEL GO-396® S0-300T T_.o.n. 6000 000 _ oV
salenbs L5 85g BZL
sj08)3 gg
0000 g0-3e95 2 1000 000 0Lz 0000 bs jo wns o8|
= Aap e P uoneneA Y, BS jo wns
90-308'h 90-308G 90-3sE'L _ 1000 2000 100°0 _ 20d
80-30¢'F 90-308% 90-3%E 100'0- 2000 100°0" dov
sasenbs s Ainy uou
spay3 08
0000 SO-AUEL ¥ [T [T o8l 1200 bs jo wns av|
.__I.. Aepe P UoNEpER Y, BF JoWns
£0-3968 v0-36v8 £0-382'v §60°0 BZ00- §00°0 TN
GO-3SLT $O-INDL ¥0-3022 5000 010’0 sl 0
£0-356'6 PO-I6GE £0-ISK9 8600~ 8L0°0 080°0 ndo
sajenbs [962 8Zh
s10843 Qv
0000 GOLEL ¥ £00°0 zL00 oL 0000 bs jo wns v
g Rap i PP UOTETEA Y, BE jo wns
L0-3LEY L0-299F 0W-3299 00°0 10070~ 0000 TIW
90-36L'e GO-3IEL 90-396'G Z000 POO0- 2000 ++0
90-30L'9 G0-3SGT 90-3L09 £00°0" §00°0 2000 nds
sasenbs s d Ky uou
5128))3 v
0000 G0-3E95 T ¥60°0 TEr0 0.2 2000 bs jo wns av|
™ P e oF UOTeNeA Y, BE JoWns
$0-392°G p0-392°G £Z0'0 €200 THN
S0-30€'% G0-30EY 1000 L0070 +H0
¥0-389°Z p0-3892 9100 L0 ndo
sasenbs a-10d dov
5)08))3 gv
0000 [0000 1000 0% 0000 bs jo uns asav
i RBp e [58 J5 WhE
L0-3€1'8 80-36G'L L0-326% L0-3gLe 80-I6GL L0-IT6E ¥0-3Z0'6- PO-30LT ¥O-3ETE ¥0-3Z0'6 ¥O-39L°T vo-392'9 |2is
90-315'F L0300 L0-329F 90-31G'L L0-300E L0-3TOF €0-3€Z'F pO3BYS 03089 £0-3EZ') w038V vo-308'9 |9z
10-390°h 90-30VL 60-326T 10-390't 80-30PL 60-3T6T vO-302'c" PO-ITLT SO°A0PS v0-38Ze ¥OrITLT so-30v's- |ezi usid
lJoo-3sz€ 10-32TG 90-3641 90-362¢ L0-3ZTS 90-36L'L €0-348°L POr3ACTL- £0°360'M- £0-3LEL FORIETL £0-360°F |2is
90-3567 L0466 90-39€) 90-355v LOGMEE 90-39E') €0-3ELT- por3S96 03UV C0-3ELT PO-3SOE £0-3Lbl- fosz
10-320°F 90-399'C 60-3c09 10-3920'F 80398 60-3£0'9 ¥0-302°¢ v0-3T¥T- SOILLL $0-30Z°¢ PO-3ZIVT soraLLL szl Bua-fany|
10-30£'8 L0-300T L0-35LT 10-308'8 L0°F00Z L0-3SLT pO-3LLE pOrALYY PO3NEY vOr3LLE VORALYY o 3ver J2I5
10-36L8 L0-3WL} L0-38ET 10-36L'8 L0-3FLL LO-3EET v0-350'8 pO-ALVY POCILEY v0-350°6" ¥O3LLY po-3i8r Josz
LL-368'E 04368 0L-309°G L-368E OL-IFE'R 0L-309G Jeor3ez'e so-3eeT- S0-3LET 90-3€Ze S0-366T S0ILET _mm_ Bua-uoul
THIN +0 ndo TN +0 ndo TN 0 Neo DIN +2 nds 8jepdn susog
e40d doW a40d doV
ULopEId/SNg UUOHEI/SNE
[ETEnhE SUToEsil
12243 QoaY

51083 UORIRIBIU| JO UORBINAWOD

(panunuo9) ez-y 319v.L

100

400 Jojesawnu (Z Jo 1) [[ews pue 40q Jojeuiwousp abie| Joj [Ax.06'0]4 << ISINVSW

00ee oLLe L9E6aVE 903152 996Gl eLLe
[=z:060l4 [='1'06014 3ISWVSW s Jou3 400 VSN ¥ 400 WSS
158)-4 eallejuesaidey
000004 rilLey WLOL
0000 £€0-3L0°L 358
000°004 (AT E: [ej01qns
0000 0000 ¥ 0000 z00'0 00006 0000 bs jo wns aos|
= REp I8 °F ucfiepea % B jowns
60-3FL6 L0319} 80-3€96 90-34G°F S0-3e8 L0-388'8 90-3re’L 90-302¢ L0-366'¢€
60-3vL6 L0-3L9} 80-3E96 90-3.GF 90-3EBY L0-388'% 90-3FE’L 80302t L0-366'E
sasenbs
0000 0000 0000 a-0d 1000 2000 Lo0'0 a-10d Loo'o- 2000 Loo'o- 22d
000°0 000°0 00070 Jd8V 000~ Z00'0 o0 4OV 000 2000~ 000 OV
215 1d Ay uou 205 d Ay uou 245 d Hainy uou
FAY 95z j:rA
§10943 Qo8
pO-3LEL GOALEL ¥ LL00 kg0 000'06 y000 bs jo wns aav
Fo Rep s 5F UofiepeA % B o wns
P0-3E6'9 ¥0-3ES'9 w0320t w0320V G0-3E0€ GO-3E0E 9200 9z0'0" TAN 0zo'0 0zo'0 TAW 900°0- 9000 THIN
vO-3LE'S vO-3LE'S 503956 S0-3956 ¥0-39L°F +v0-39L°4 £20°0° €200 3 0L00 oLo'or ++2 €L0°0 EL00 =D
90-39¢'8 90-3%€'9 #0-390'L #0-390°L 03109 GO-3+0°9 £00°0" £00°0 ndo 0400 0Lo'o- nds 8000 8000 Ndo
saJenbs a0d dov &-10d d9ov 2-10d dov
%] 952 :rAY
Sjoal3 aavy
y0-368°F WwO3ELL 8 Looo £€0-369T 08 SO-36k'b bs jo wns asv
= Rep s op el ba jo wns
90-368'€ 90-3%E¥ BO-3ILL 90-3pL'€e 903611 £0-389'G 60-3.9'F l0-3Z5°¢ L0300
L350 L0-34FE L0-IPSE 40-396'8 90-301°L 80-395'L L0-3p¥'8 90-369°¢C 103646
90-3/8°€ 90-39V'L L0-3W0G 90-320F 90-399¢ 20-348€ L0-36L'6 90-360'1 60-3kLL
salenbs
£0-3L6'L £0-360T #O-3IFLL THAW €0-3€6')- €0-389°C vo-3alvi- THW §0-396°¢- $0-3E6°C
80-35¥'e- P0-368°G P0-3IGE'S ++0 #0-352'6 £0-350°L ¥0-352°1 +D ¥0-364'6 E£0-3F9°L
€0-3.16°)- £0-389°T $0-30L 'L ndo €0-3410°L €0-3E9°}- ¥0-322°9 ndo ¥0-386'6 £0-350°}
215 1d Ajng uou s d Ay uou 2.5 3d Kiiny uou
A 95z Bzl
Spal3 aov
yO-3LEL GOALEL P 0000 vO-3ve’L 06 90-3502C bs jo wns 28v
= Rep e 1P TET b5 jo wns
£0-36L°} 10-36L°} 80-3.6'6 B803LE6 80-3K0°L 80-390°L vo-3sly vO-38LY THAN v0-39Le- ¥0-39LE TAW ¥0-320°1- P0-320°L THAN
L0-32F°L L0-3Z¥'} L0365 LO-36SE 80-396'F 80-396'% vo-3.L¢ v0-3LLE +3 #0-300'9 ¥0-300'9 +2 ro-3ETT P0-3€ZT ++2
60-389°} 60-389°'L 80-350¢ 803508 L0-350°L L0-360°0 S0-304 7 S0-30L'Y ndo ¥0-3veT- PvO3PET ndo ¥0-35TE v0-35T¢ ndo
saJenbs a-0d dOV 2-10d =2l a10d dov
usid Ay e
Sj2ajl3 Dav

(penunuod) ez-y 31g9v.L

101

"PI[BA 910J313Y] ST

[opow sisA[euy “puai} ou smoys jo[d sasuodsaI-SnSIA-SIOLT SIIINO M3J B 10J 1dooxs ‘reaul] A[qeuoseal st jo[d s[iuenb-aiuend
‘sjuowIadxs (TN ‘++0 ‘NdO ‘ueods uids) 7 aseyd 10j s10d sasuodsa-sns1sA-s1011s pue s[uenb-a[ruenb feuoN z-y 2Insig

THed
sueaw
AL ; 59 e
m LE
. {5000
L]
gy 1 0
-' t! u. " m.w. —n * mw 10
»f - At i . m..
- . Y
B i : {5000
t {100
. 16100
z00

9071 ZHd — S[eNpIS3Y 'S asuodsay ueap

ox

(-

[Hed

(S[enpisal Jo JUBLIRA pUE UBalll 0} [pe) 3jjueny) [euson

4

4

0 <

v

T

T

T T

1 1

.

.
.

Lo

1
907 ¢Hd —-10id

ajnuenb-ajueng

102

L0-328'€ SOFELY
90-3€L'S 90-3PB'S
S0-300'C 903819

Sho'l lse')z
€0-3¢¢°L
90-38L°L
$0-362'6

80-3€9°L 90-35¢C 90-3EEE

90-38€T ¥0-380°1 S0-368'9

S0-358'} ¥0-398°C S0-328L
Joua pasenbs jo wns

0000 50-3zZ1L'g z
0000 S0-3kL'S I
I'0 %06
as| 0000 50-3Z1'8 z
as
ass|
90-365'9
S0-351'S
v0-3L1T
ors
0000 S0-3PL'S b
T+ ASp IS jop
Joaye ueall = I'D Joa)e
YAONY

S0
1000
9.€0
00168 629°CYL 08l 26L°0

1000
1000
8cz'0 18e0 0z 1000

1000
SE00
P00
68Z'6 0L8'vl 08k £80°0

UGIJELIEA %, 3Jenbs jo Wns
uoleue Jo uoljedo|ly

¥¥9°0 zIS

1£0°0- 95T

¥19°0- 8zl
08Ss
azis
1200 &|0d
1200 dov
ass
uuojjejd/sng
8200 W
8810 ++0
9azo ndo
vsS
poueiy

§)38)j@ Ulew
sjoay3 jo uonendwod

820091 1SS
1£6°281 0SS
SLo'Ele ASS
2€9°0 NYIW

TN ++0
POWBIN

810d = Wioje|d/sng

poulsiN
d9OV = Wiojie|d/sng
salenbsg jo wng

I ++0
pOYIBIN
9-10d = Wiogje|d/sng

AN ++0
pous
dOV = ulojeld/sng

szis

Buibueys-uou

=awayog ajepdn aua0s

‘Aluo awayos ajepdn suaos Buibueyo-uoN

qe-v 31avil

‘spoyjaw Buissaooid paseq-NdD 01 NdO sasedwo) ‘sjuswiiadxe om] aseyd Jo 1esqns

103

1000 ¥0-362°6 38S
jusdiad |BJOL 666°66 LLOTO9L
0000 ¥0-361°L 14 €200 9kL'0 0¢ +00°0 08vss
T+ A3p IS 1op
$0-3209 +0-30L'S 90-3ETV $0-3.09 #0-301'S 90-3ECTY
$0-3/9'¢ S0-39.'8 G0-385'6 $0-3.9'¢ S0-39.'¢ GO-38S6
G0-320¢ +0-3SL°} S0-386'S G0-320'c $0-3SL°} SO-396'S
salenbs
5200 €20°0- 000 §20°0- €200 2000 cls
6L0°0 600°0 0L0"0 6L0°0 60070~ oLo'o- 962
500°0- €L0°0 800°0- $00°0 eLo'o- 800°0 ezl
AN ++D Nndo TN ++0 ndo
&0d dOV
o8y
0000 03218 Z ze0'0 LS00 06 L00'0 bss o8SsS
T+ ASp IS jop
#0-398'} G0-392°,L G0-319C y1L0°0 600°0- §00°0 8-10d|
0-399'L S0-392°L S0-319C 00 600°0 S00°0 dOV|
salenbs 4%} 96¢ ezl
o8
0000 ¥0-3S1°L 14 (419 % 7291 09 LEDO bss ovss
+ AP IS jop
6000 000 #00°0 $60°0 0€0°0- 590°0 TANY
0000 0000 0000 S00°0 0L0'0 90’0 ++0
0100 0000 8000 0oL’0" 020°0 080°0 Ndo
salenbs ZI5 952 8zl
ov
0000 S0-3ci'e Z 960°0 €510 06 Z00°0 bss avss
v e jop
1000 1000 £z0'0- €200 THAN)
0000 0000 900°0 900°0- ++0
0000 0000 2L0°0 L0 ndo
salenbs 2-|0d doV
av

(panunuod) qz-v 319v.L

suoljorIalU| JO S}03)3

104

TABLE A-2c

Subset of Phase Two Experiments. Compares GPU versus CPU-based methods on PCl-e and AGP
platforms. Separate analysis performed for each image size case. Non-changing scene update scheme.

log-transform of data sum of squares
Size= Method Method
128 Bus/Pltfm GPU C+ MKL Bus/Pitfm GPU CH++ MKL
AGP AGP
PCl-e PCle
effect c.i = mean effect
dof stdev H-
MEAN -0.0813278 1 1.41E-04 0.000
SSY 4.407 180 sum of squared error
SS0 1.19056083
SST 3.217 Allocation of Variation
main effects SSx Y%evar 217E-04 7.82E-05 2.86E-04
A - Bus/Platform 0.002 90.000 0.180 5.609 1 1.41E-04 0.000§ 1.85E-05 6.18E-06 2.10E-05
AGP 0.032 0.001
PCl-e -0.032 0.001 SSE 6.27E-04
MSE 3.60E-06
|B- Method 0.048 60000 2959 91.989 2 200E-04 0.000}s. 1.90E-03 MSE'?
lcrPu 013 0018 %ci. 2[.95) 1,645
[C++ 0172 0.030
MKL -0.037 0.0
GPU C#+ MKL
AGP -0.008 -0.020 0.029 0.000 0.000 0.001
PCl-e 0.009 0.020 -0.028 0.000 0.000 0.001
AB s5q 0.003 30.000 0.077 2.382 2 2.00E-04 0.000
Total percent explained 3.2186 99.981
ISSE 6.2TE-04 0.018 174
log-transform of data sum of squares
Method Method
|Size= Bus/Pitfm Bus/PHfm
256 AGP AGP
PCl-e PCl-e
ANOVA
effect c.i = mean effect
dof stdev #-
MEAN 0.50144904 1 B8.788E-05 0.000
ssY 50.311 180 sum of squared error
SS0 45.261205
SST 5.050 Allocation of Variation Variance x1SSE x1 SSE
main effects SSx Yevar 1.78E-06 6.89E-05 1.08E-04
A - Bus/Platform 0.002 90.000 0.221 4.386 1 B8.788E-05 0.000) 8.20E-08 5.84E-06 5.?3E-06L
AGP 0.035 0.001 5.39E-05 7.47E-05 1.13E-04|
PCl-e -0.035 0.001
SSE 2.42E-04
|B- Method 0.078 60.000 4.664 92.368 2 1.24E-04 0.000|MSE 1.39E-06
GPU 0196 0.039 5, 1.18E-03 MSE'?
C++ 0.198 0.039 90% c.i. 2[.99] 1.645
IMKL -0.002 0.000
GPU C++ MKL
AGP -0.026 0.018 0.042 0.001 0.000 0.002
PCl-e 0.026 0.016 -0.042 0.001 0.000 0.002
AB ssq 0.005 30.000 0.164 3.241 2 1.24E-04 0.000
Total percent explained 5.049 99.995
IssE 2.42E-04 0.005 174

105

TABLE A-2c

(continued)

log-transform of data
Method
Size= Bus/Pitim GPU C++ MKL
512 AGP
PCl-e
MEAN 1.17642353
SSY 258.297
SS0 249.115018
SST 9.182 Allocation of Variation
main effects SSx Yevar
A - Bus/Platform 0.000 90.000 0.030 0.328
AGP 0.013 0.000
PCl-e -0.013 0.000
|B- Method 0.152 60.000 9.123 99.357
GPU -0.316 0.100
C++ 0.193 0.037
rM KL 0.123 0.015
GPU C++ MKL
AGP -0.015 0.016 -0.002 0.000
PCl-e 0.015 -0.016 0.002 0.000
AB ssq 0.001 30.000 0.029 0.314
Total percent explained 9.182 99.999
|SSE 5.99E-05 0.001

sum of squares
Method
Bus/Pifm GPU C++ MKL
AGP
PCl-e
ANOVA
effect c.i = mean effect
dof stdev *-
1 4374E-05 0.000
180 sum of squared error
6.50E-06 3.33E-06 2.25E-06
7.63E-08 473E-05 3.82E-07
1 4.374E-05 0.000
SSE 5.99E-05
MSE 3.44E-07
2 6.19E-05 0.000|s, 5.87E-04 MSE'?
90% c.i. 2[.95] 1.645
0.000 0.000
0.000 0.000
2 6.19E-05 0.000
174

106

TABLE A-3

Results and analysis of Phase Three experiments. Compares GPU versus CPU-based
methods for the JMASS conical scan procedure.

ﬁ: results (mean responses)
128 method
platform GPU C++ MKL
AGP
PCl-e
log-transform of data sum of squares
method method
platform GPU C++ MKL]plalform GPU CH++ MKL
AGP AGP 0.095 0.946 0.678
PCl-e PCl-e 0.001 0.226 0.020
ANOVA
effect c.i = mean effect
dof st dev -
MEAN 0.075 1 2.20E-04 0.000
SsY 1.967 180
SS0 1.012
SST 0.955
Allocation of Variation
main effects SSx % variation
A-bus/platform 0.006 90 0.506 52.969 1 2.20E-04 0.000
AGP 0.053 0.003
PCl-e -0.053 0.003
B-method 0.005 60 0.325 34.023 2 3.11E-04 0.001
GPU -0.044 0.002
C++ 0.057 0.003
MKL -0.013 0.000
GPU C++ MKL effects squared
AGP -0.027 -0.008 0.035 7.54E-04 5.86E-05 1.23E-03
PCl-e 0.027 0.008 -0.035 7.54E-04 5.86E-05 1.23E-03
AB ssq 0.004 30 0.123 12.849 2 3.11E-04 0.001
sum of squared error
SSE 0.002 0.159 174] 8.27E-04 1.74E-04 4.45E-04
TOTAL 0.955 100.000 4.18E-05 3.22E-06 2.37E-05
SSE 0.002
MSE 8.71E-06
s, 2.95E-03 MSE'?
90% c.i. 2.95) 1.645

107

TABLE A-3 (continued)

[SIZE= results (mean responses)
256 method
platform GPU
AGP
PCl-e
log-transform of data sum of squares
method method
platform GPU C++ MKL |platform GPU CH+ MKL
AGP AGP 6.982 24383 20.434
PCl-e PCl-e 6.370 17.472 13.364
ANOVA
effect c.i = mean effect
dof st dev *-
|IMEAN 0.683 1 5.20E-05 0.000
SSsY 89.004 180
SS0 84.076
SST 4.928
Allocation of Variation
main effects SSx % variation
A-bus/platform 0.006 90 0.505 10.252 1 5.20E-05 0.000
AGP 0.053 0.003
PCl-e 0.053 0.003
B-method 0.071 60 4.260 86.442 2 7.35E-05 0.000
GPU 0.212 0.045
C++ 0.149 0.022
MKL 0.063 0.004
GPU C++ MKL effects squared
AGP -0.042 0.016 0.026 1.78E-03 2.63E-04 6.73E-04
PCl-e 0.042 0.016 -0.026 1.78E-03 2.62E-04 6.73E-04
AB ssq 0.005 30 0.163 3.304 2 7.35E-05 0.000
sum of squared error
SSE 0.000 0.002 3.41E-05 6.09E-06 3.30E-06
TOTAL 4928 100.000 1.14E-06 1.13E-05 2.86E-05
SSE 0.000
MSE 4.86E-07
S, 6.97E-04 MSE™
90% c.i. 2[.95) 1.645

108

TABLE A-3 (continued)

SIZE=
512
platform

results (mean responses)

method

MKL

log-transform of data

AGP
PCl-e
ngatform GPU
AGP
PCl-e
MEAN 1.270
SSsY 295.726
SS0 290.096
SST 5629
main effects
A-bus/platform
AGP 0.015
PCl-e -0.015
B-method
GPU -0.247
C++ 0.150
MKL 0.096
GPU
AGP -0.011
rPCl-e 0.011
AB ss(q
SSE
TOTAL

method

0.000
0.000
0.000

0.093
0.061
0.023
0.009

0.008

-0.008

0.000

sum of squares

method
MKL |platform GPU C++ MKL
AGP 31635 62.503 57.501
PCl-e 31.108 58.511 54.469
ANOVA
effect c.i = mean effect
dof stdev -
1 4.94E-05 0.000
180
Allocation of Variation
SSx % variation
90 0.043 0.759 1 4.94E-05 0.000
60 5575 99.029 2 6.99E-05 0.000
MKL effects squared
0.003 1.24E-04 6.44E-05 9.55E-06
-0.003 1.24E-04 6.44E-05 9.55E-06
30 0.012 0.210 2 6.99E-05 0.000
sum of squared error
0.000 0.001 1.41E-06 8.02E-07 7.09E-05
5.629 100.000 4.41E-07 1.32E-06 1.56E-06
SSE 0.000
MSE 4.39E-07
Se 6.63E-04 MSE'?
90% c.i. 2[.95] 1.645

109

"PI[EA 210J2I3Y] ST [9POW SISA[BUY "puai] OU
smoys 30[d sasuodsal-snsIA-SIOLIT ‘SIAIINO MaJ e J0j 1dooxa ‘reaur] A[qeuoseas si j0[d snuenb-a[nuend) ‘sjuowadxd
(TN “++0 ‘NdO “ueds [eo1u0d) ¢ aseyq 10§ s10]d sasuodsaI-sns1aA-s10110 pue [iuenb-suenb [puoN “¢-y 2InSig

THed T Hed T Hed
SuBBW SueaWw SuBaW
(SO N~ O o -4 AN St o D M b 60 80 Lo 90 50 vQ. z0 SL0 Lo 500 0 SO0y
~ ™ T T T T T T - 5 r T T T — T -~ T o
¥
v
v i H I 10
' H
' ' ! m 0 i
& ' 5000
' 1t
wm &W 1400 m
g :
i 5100
f 1%
. ! . .. 40 1200
o _ Is
M 41 L] - ~SZ00
D071 215 EHd SENPISBY S\ BSUOISEY UBAI f0bX DO 9GE EHel ~ SENPISY 54 S5UDdSaY UBaKy fO4¥ D07 82} EHd ~ SENPISAY SA BSUOdSEY BB
[Hed [Hed [Hed
I LK fou) SRR PR el R
3 (SENISa |0 BUBLEA PUE UBSW O] IpE) SiUENG [BLLON z sl L -5 s0 o ..mw.....!,. Si - . it TR :
S R S P e P o o ey
' ; —
L v |..I.Il|.|\l\1|........ .l..\.\l\..l :
L 0 . !
& .-.‘ 1 m 5000 m
qm 12 100
I £
_..m G sioo ®
- 1*
) 00
]\\\l\l\u o) ;
DOTZLG EH 10 BEND-BIEND wo:- 9071 952 EHd ™ Wid HREND-BUEND T 507824 £Hd — 10id uBrb-ayEnD

Cis =2z 98¢ = az1§ &§CI = az1y

110

TABLE A-4

Analysis of Phase Four experiments, comparing baseline JMASS to Modified JMASS, Software and GPU-assisted versions.

Image Size
128
256
512

Image Size
128
256
512

Mean Effects

A image size
128
256
512

B method
Orig
Mod
NV
ATI

Interaction AB
128

256
512

JMASS Execution Time

JMASS JMASS GPU Assisted
Orig _ Modified NV ATi
579 407 359 360
2141 1574 1411 1393
8200 6289 5525 5530

JMASS Execution Time (log transform)

JMASS JMASS GPU Assisted
Orig Modified NV ATi sum of squares
2.763 2610 2.555 2.556 7.632 6.810 6.529
3.331 3.197 3.150 3.144 11.093 10221 9.920
3.914 3.799 3.742 3.743 15.318 14.429 14.005
MEAN 3.209
SsY 126.384
SSO 123.535
SST 2.848
Allocation of Variation
% variation
ssq multiplier SSx explained
0.694 4 2778 98
-0.588 0.345
-0.003 0.000
0.591 0.349
0.023 3 0.070 2
0.127 0.016
-0.007 0.000
-0.060 0.004
-0.061 0.004
0 1 0.001 0
Orig Mod NV ATI
0.015 -0.005 -0.006 -0.004
-0.002 -0.001 0.004 0.000
-0.013 0.006 0.003 0.004
squares
2.12E-04 2.05E-05 3.96E-05 1.41E-05
3.40E-06 2.19E-06 1.43E-05 2.16E-07

1.62E-04 3.61E-05 6.27E-06 1.78E-05

111

6.535
9.884
14.008

This page intentionally left blank.

112

Appendix B. GPU Implementation Code

Contents
File Page
WINADPDGPULCPD eeeneieiiet ettt ettt ettt et e st et e et e e st e esteessessaesseesseenseansesnsesseanseanseanseans 114
GPU_combined.h (spin scan implementation)cceeveereeierienienieeieeie et 118
VS DIZEEX.EXE 1.ttt ettt ettt ettt ettt et e s e s et e te e bt ebeebeeseeateneen b e b e ebeebeeaeeb e eneense e et e ebeeneeneeneentennen 131
JoRT o) 1o @8 o« AR US USSR 132
VS ONEDYOMNE.EXE .. eutiiiieiieiieieeteetteettesteebeesbeesteesaesteesseesseessesssesseenseesseessenssesssesssessaenseessesseesssensennsenns 133
J ORI 018151 0 o) 1 TN o F TSRS 134
AT K] 03 (e Lo QN AT 135
JoR I O] F: 03 (e Lo QN AT 136
WINL CONSCANCPDP -ttt ettt ettt ettt ettt sat e st e et e em bt ea e eb e e eb e e bt e bt enbeeabesaeesbeenbeenaeenteaneeans 137
GPU_CONSCAN.h (conical scan implementation)............cccecuereerrierieeieeeeneesieesieesesneseeesseessesnesns 141
VS_CONSCANLXL .ttt ettt ettt ettt ettt ettt a ettt b ettt ss e bt st ebesbeseebenneneenin 152
PS_CONSCANLXE .ottt st a e et e ne e ene 153
GPU_UTILITY h (utility routines used by both implementations)............ccceeoeereerierenieneeneeeeeee 154

113

// winAppGPU.cpp
/7

// by: Maj Sean Jeffers

// descr: windows test application for GPU-based algorithms

// 27 dec 04 —- modified to output both normal and log-transformed execution time data
/7

V4

#include “stdafx.h"
#include "winAppGPU.h"
#define MAX_LOADSTRING 100

#include <iostream>
#include <fstream>
#include <iomanip>

#include <cmath>
#include "GPU_COMBINED.h" //combined-h or CLASS_ONEBYONE.h CLASS_ONEBYONE_R32F.h

// Global Variables:

HINSTANCE hinst; // current instance

TCHAR szTitle[MAX_LOADSTRING]: // The title bar text

TCHAR szWindowClass[MAX_LOADSTRING]; // the main window class name
const int EXPER

const int SCENE_SIZE

const int WL

const char* BUS_str

const char* APRCH_str =

const i = 2;

int REPS 2;
const int SIZE_SQ = SCENE_SIZE*SCENE_SIZE;
// WL 3 pt source vars
const int xmin = SCENE_SIZE/4;
const int ymin = SCENE_SIZE/4;
const int xmax = SCENE_SIZE-xmin;
const int ymax = SCENE_SIZE-ymin;
//initial conditions

int oldx = xmin;
int oldy = ymin;
int delx = -1;
int xinc = -1;
int dely = 0;
int yinc = -1;

// Forward declarations of functions included in this code module:
void UpdateScene(int , float*);

ATOM MyRegisterClass(HINSTANCE hlnstance);

BOOL Initinstance(HINSTANCE, int);

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM):

LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM):

int APIENTRY _tWinMain(HINSTANCE hlnstance,
HINSTANCE hPrevinstance,
LPTSTR IpCmdLine,
int nCmdShow)

float reticle[SIZE_SQ]:;
float scene[SIZE_SQ]:
double answer[40];
double times[REPS]:
double timeslog[REPS];
doublle startTime;
double endTime;

doublle sum = 0.0;
double mean = 0.0;
double var = 0.0;
double stdev = 0.0;
double hi = 0.0;
double low = 0.0;
double sos = 0.0;
double sumlog = 0.0;
double meanlog = 0.0;
double varlog = 0.0;
double stdevlog = 0.0;
double soslog = 0.0;
double hilog = 0.0;
double lowlog = 0.0;

char WL_str[30]:
if QWL ==1){
strepy(WL_str,”1 - non-changing™);

}
else if (WL == 2){
strepy(WL_str,"2 - fully-changing™);

}
else {

}

//instantiate GPU object
Gpu gpu(hlnstance,nCmdShow, SCENE_SIZE);
//upload reticles
for (int i = 0; i<100; i++){
for (int j = J<SIZE_SQ; j++)
reticle[j] = (float)i:

strepy(WL_str,”3 - moving pt source™);

}
} gpu.uploadReticle(i,reticle);

char algorithm[40]:;

int alg =gpu.GetAlgQ:

if (alg ==1){
strcpy(algorithm,”BIGTEX™);

}
else if (alg == 2){
strcpy(algorithm, ""ONEBYONE™) ;

114

}
else if (alg == 3){
strcpy(algorithm, "CONSCAN ONEBYONE R32F™);

else
strcpy(algorithm,”NA™);

3

// do experiment REPS times

for (int rep = 0; rep< REPS; rep++){
//fill initial scene

for Eint J = 0; j<SIZE SQ; j+){
scene[j]l= (float)];

H

}

else {
for (int j = O; J<S|ZE SQ: j++){
} scene[j]— 0.0f;

H

startTime = (double)timeGetTime();
// run algorithm 1000 x
for (i 1 = 0; i<1000; i++){
gpu-Process(i%100,scene,answer) ;
UpdateScene(WL,scene);

}

endTime = (double) timeGetTime():

double timeDelta = (endTime-startTime)*0.001f;
double timeDeltaLog = loglO(timeDelta);
times[rep]= timeDelta;

timeslog[rep] = timeDeltalog;

sum += timeDelta;

sumlog += timeDeltalog;

3

//calc stats

mean = sum/(double)REPS;
meanlog sumlog/ (double)REPS;

hi = 0.0;
hilog = Z1000. 0;
low = 1000.0;

lowlog = 1000.0;

for (int i =0; i<REPS; i++){

if (tlmes[|]>h|)

hi = times[i]:;
if (tlmes[|]<low)

low = times[i];
var += pow((tlmes[l]—mean) 2.0)/(double)(REPS-1);
sos += pow(times[i].2):;
if (timeslog[i]>hilog)

hilog = timeslog[i]:
if (timeslog[i]<lowlog)

lowlog = timeslog[i]:
varlog += pow((tlmeslog[l]—meanlog) 2.0)/(double) (REPS-1);
soslog += pow(timeslog[i].2):

}
stdev = sqrt(var);
stdevlog = sqgrt (varlog):
//write results to file
char* name results/results_";
char* ext .dat";
char num[4]:

_itoa(EXPER,num,10);
char fllename[40]
Iename,name);
ename,num) ;

ilename,ext);
std: :ofstream outFlIe(flIename std::ios::app);://out
if (QoutFile){
= :MessageBox(0, "can"t open results file

} exit(l):

outFile <<"experiment#: "<<EXPER<<"\n"
<<"workload: "<<WL_str<<™"\n"
<<"bus: "<<BUS_str<<"\n~
<<"approach: "<<APRCH_str<<*"\n"
<<"algorithm: "<<algorithm<<™\n"
<<"size: "<<SCENE_SIZE<<"\n"
<<"mean: "<<mean<<"\n"
<<"variance: "<<var<<"\n"
<<"stdev: "<<stdev<<*\n*
<<"sum of sqgrs: "<<sos<<"\n"
<<"low: <low<<"\n"
<<"hi: "<<hi<<"\n"
<<"mean log: “<<meanlog<<®"\n"
<<"variance log: “<<varlog<<™\n*
<<"stdev log : “'<<stdevlog<<"\n*"
<<"sum of sqrs log: “<<soslog<<®"\n"
<<"low log: <<lowlog<<™\n*
<<"hi log: “<<hilog<<"\n*
<<"reps: "<<REPS<<"\n"
<<"data: "<<*\n";

for (i =0;i<REPS; i++){
outFile<<times[i]:
if (1((+1)%5) || (i==REPS-1))
outFile<<"\t"<<" ___"<<"\n";
else outFile<<"\t";

3
outFile<<"\n"<<"data log: <<"\n";
for =0;i<REPS; i++){
outFile<<std: :setprecision(6)<<std: :setw(3)<<timeslog[i]:
if (A(Ci+1)%5) || (i==REPS-1))
outFile<<"\t"<<" ___"<<"\n";
else outFile<<"\t";

outFile<<"\n"<<"answers:"'<<"\n";
for (i =0;i<40; i+H){

115

outFile<<std: :setprecision(9)<<std: :setw(18)<<

std: -setiosflags(std: :ios: :scientific)<<answer[i];
if (0(C i+1)%4
ou

tFile<<™\n";

3
outFile<<™\n";

// TODO: Place code here.
/7

MSG msg;
HACCEL hAccelTable;

// Initialize global strings

LoadString(hinstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING):
LoadString(hlnstance, IDC_WINAPPGPU, slendowCIass MAX_LOADSTRING) ;
MyRegisterClass(hlnstance):

// Perform application initialization:
if (MInitinstance (hinstance, nCmdShow))

return FALSE;
3

hAccelTable = LoadAccelerators(hlnstance, (LPCTSTR)IDC_WINAPPGPU);

// Main message loop
ghlle (GetMessage(&msg, NULL, O, 0))

if (!TranslateAccelerator(msg.-hwnd, hAccelTable, &msg))

TranslateMessage(&msg);
} DispatchMessage(&msg);
3

return (int) msg.-wParam;

3}
/7
;; FUNCTION: UpdateScene()

void UpdateScene(lnt;}WL float* p_scene){

f (P WL == 1
return;

%f (W = 2){
for (int j = 0; j < SIZE SQ iDL
p_scene[j] += 1.0f;

3
return;

}

else {

nt x = delx + OldX'

nt y = dely + ly;

f ((x<xm|n) || (x>xmax) X<

X|nc = -“xinc;
delx = delx+xinc:
dely = dely+yinc;
y += dely:

H
1T ((y<ymin) I| (y>ymax)) {
y_= oldy;

yinc = -yinc;
delx += Xxinc;
dely += yinc;
x += delx;

}

int index = y*SCENE_SIZE + x;

int indexold = oldy*SCENE_SIZE + oldx;
_scene[indexold] = 0.0F;

p_scene[index] = 1.0f;

oldx = x;

oldy =y;

return;

// FUNCTION: MyRegisterClassQ
// PURPOSE: Registers the window class.
// COMMENTS:
// This function and its usage are only necessary if you want this code
// to be compatible with Win32 systems prior to the "RegisterClassEx"
// function that was added to Windows 95. It is important to call this function
// so that the application will get “"well formed® small icons associated
/7 with it.
ATOM MyRegisterClass(HINSTANCE hlnstance)
{
WNDCLASSEX wcex;
wcex.cbSize = sizeof(WNDCLASSEX);

CS_HREDRAW | CS_VREDRAW;
(WNDPROC)Wn Proc;

wecex.style

wcex .. IpfnWndProc
wcex.cbClsExtra
wcex.cbWndExtra
wcex._hlnstance
wcex._hlcon
wcex.hCursor

wcex - hbrBackground
wcex . IpszMenuName
wcex . IpszClassName
wcex._hlconSm

hlnstance:

Loadlcon(hinstance, (LPCTSTR)IDI_WINAPPGPU);
LoadCursor(NULL, IDC_ARROW);

(HBRUSH) (COLOR_WINDOW+1) ;

(LPCTSTR) IDC_WINAPPGPU;

szWindowClass;

Loadlcon(wcex_hlnstance, (LPCTSTR)IDI_SMALL);

116

}

VA
VA
VA
VA
VA
VA
VA
VA
VA

return RegisterClassEx(&wcex) ;

FUNCTION: Initlnstance(HANDLE, int)

PURPOSE: Saves instance handle and creates main window

COMMENTS:

In this function, we save the instance handle in a global variable and
create and display the main program window.

/.
BOOL InitlInstance(HINSTANCE hilnstance, int nCmdShow)
{
HWND hWnd;

hinst = hinstance; // Store instance handle in our global variable

hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, O, CW_USEDEFAULT, O, NULL, NULL, hilnstance, NULL):

if (thwnd)

return FALSE;

ShowWindow(hWnd, nCmdShow) ;
UpdateWindow(hwWnd) ;

return TRUE;

FUNCTION: WndProc(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages for the main window.

WM_COMMAND
WNM_PAINT
WM_DESTROY

- process the application menu
- Paint the main window
- post a quit message and return

V4
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM IParam)
{

}

int wmld, wmEvent;
PAINTSTRUCT ps:

HDC hdc;

switch (message)

case WM_COMMAND:
wmld

break;
case WM_PAINT:

LOWORD(wParam) ;
wmEvent = HIWORD(wParam) ;

// Parse the menu selections:
switch (wmld)

case IDM_ABOUT:
DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hwWnd, (DLGPROC)About):
break;
case IDM_EXIT:
DestroyWindow(hwnd);
break;

default:
return DefWindowProc(hWnd, message, wParam, IParam);

hdc = BeginPaint(hWnd, &ps):

// TODO: Add any drawing code here...
EndPaint(hWnd, &ps):

break;

case WM_DESTROY:

default:

3
return O;

PostQuitMessage(0):;
break;

return DefWindowProc(hWnd, message, wParam, IParam);

// Message handler for about box.
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM IParam)
{

switch (message)

{
case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:

if (LONORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
{

EndDialog(hDlg, LOWORD(wParam));
return TRUE;

}
break;

3
return FALSE;

117

// file: GPU_combined.h
/7

// by: Maj Sean Jeffers
// requires external files:

// GPU_UTILITY.h -- contains namespace d3d utility functions InitD3DQ
// GPU_WndProc CALLBACK and Gpu_WndClass definition
// source/vs_bigtex.txt -- vertex shader used by MAddReduce() for BIGTEX

// source/ps_bigtex.txt -- pixel shader used by MAddReduce() for BIGTEX

// source/ps_onebyone.txt -- PS used for MAddReduce() for ONEBYONE

// source/vs_onebyone.txt -- PS used for MAddReduce() for ONEBYONE

// source/vs_16tapredux_2._txt -- vertex shader used by Redux(Q)

;; source/ps_16tapredux_2.txt -- pixel shader used by ReduxQ

// 27 dec -- combined BIGTEX for 128/256 and ONEBYONE for 512 size; modified both

// BIGTEX and ONEBYONE pixel shaders to take 128-bit tex"s in, but output

// to R32F for speed; ps_experimental and ps_maddreduce_new were modified

7/
#ifndef GPU_CLASS_H_BY_MAJ_JEFFERS
#define GPU_CLASS_H_BY_MAJ_JEFFERS

#include <d3dx9._h>
#include "GPU_UTILITY.h"

#include <stdlib_h>
#include <cstring>
#include <cmath>

Y — CONSTANTS--—-
#define GPU_WINDOW WIDTH 1024

#define GPU_WINDOW HEIGHT 768
#define D3D_FORMAT
#define STRIDE

V4

D3DFMT_A32B32G32R32F
16

class Gpu {

private:
HINSTANCE
int
IDirect3DDevice9*
const int
int
float

float
//D3DXVECTOR4
int
long
//int
int
int
bool
int
int
int

//Vs1
IDirect3DVertexShader9*
1D3DXConstantTable*
D3DXHANDLE

//PS1
IDirect3DPixelShaderg*
1D3DXConstantTable*
D3DXHANDLE

/7/VS2
IDirect3DVertexShader9*
1D3DXConstantTable*
D3DXHANDLE

//PS2
IDirect3DPixelShaderg*
1D3DXConstantTable*
D3DXHANDLE

D3DXHANDLE

hinst;
nCmdShow;
Device;

DataArray[2048*2048] ;
OutTexSize;
OutPixels;
ViewportSize;
Reducelterations;
TexIndex;

DualRT;

startl;

endl;

end2;

VS1_maddreduce;
VS1_VSCT;
VS1_PixelSizeHandle;

PS1_maddreduce;
PS1_PSCT;
PS1_PixelSizeHandle;

VS2_16tapreduce;
VS2_VSCT;
VS2_offsetHandle;

PS2_16tapreduce;
PS2_PSCT;
PS2_offsetHandle;
PS2_mulHandle;

// PARAMETERS PASSED TO PS & VS

D3DXVECTOR2
// VERTEX BUFFER & DECL

offset[3][16];

LPDIRECT3DVERTEXDECLARATIONS m_pDecl;

IDirect3DVertexBuffer9o*

// TEXTURES & SURFACES
IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*
// IDirect3DTexture9*
/7 1Direct3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

// transformation matrices

D3DXMATRIX
D3DXMATRIX
D3DXMATRIX

QuadVB;

Scene_Tex;
Scene_Surface;

Reticle_Tex[100]:
Reticle_Surface[100]:

RT_Tex;
RT_Surface;

Pal_Tex[4]:
Pal_Surf[4];

RT_Reduce_Tex[3]:
RT_Reduce_Surface[3]:
RT_Reduce Tex2[3]:
RT_Reduce_Surface2[3];

Ones_Tex;
Ones_Surface;

mWorld;
mView;
mProj;

118

V24 STRUCTS

struct CUSTOMVERTEX
{

FLOAT X3
FLOAT y:
}:
public:
//constructor
Gpu(HINSTANCE p_hlInst, int p_nCmdShow, int p_SceneSize)
chinst (p_hlInst), nCmdShow(p_nCmdShow). SceneSize (p_SceneSize/2)
{
Device =0;
ScenePixels = SceneSize*SceneSize;
TPixSizeX = -1.0f / (float)SceneSize;
fPixSizeY = 1.0f /7 (float) SceneSize;
//VS1
VS1_maddreduce = 0;
VS1 VSCT = 0:
VS1_PixelSizeHandle = 0O;
//PS1
PS1 maddreduce = 0;
PS1_PSCT = 0:
//VS2
VS2_16tapreduce = 0;
VS2_VSCT = 0:
VS2_offsetHandle = 0;
//PS2
PS2_16tapreduce = 0;
PS2_PSCT = 0:
PS2_offsetHandle = 0;
// vertex buffer ptr
QuadVB = 0;
if(1d3d:: InitD3D(hInst, nCmdShow,
GPU_WINDOW_WIDTH, GPU_WINDOW_HEIGHT, true, D3DDEVTYPE_HAL, &Device))
{
: :MessageBox(0, "InitD3DQ) - FAILED", 0, 0):
H
if(ISetupQ){
z:MessageBox(0, "Setup() - FAILED", 0, 0):
H
DualRT = false;
// modullar actions depending on algorithm
InitShadersQ);
InitReticlesAndScene();
InitRenderTargets_hybridQ:
3}//Gpu() CONSTRUCTOR
private:
1/
// InitShadersQ
// creates & compiles shaders

V{4
bool InitShadersQ{
HRESULT hr = 0;

// *** psi

1D3DXBuffer* PSBuffer = 0;
1D3DXBuffer* errorBuffer = 0;

char pathPS1[50]= """;

char pathvsi[50]= "*;

char* psbigtex = "source/ps_bigtex.txt";
char* vsbigtex = "source/vs_bigtex.txt";

char* psonebyone

""source/ps_onebyone.txt’;
char* vsonebyone

= ""source/vs_onebyone.txt";
if (SceneSize == 256){
strcpy(pathPS1, psonebyone) ;
strcpy(pathVsi,vsonebyone) ;

3
else {

strcpy(pathPS1,psbigtex);
} strcpy(pathVsl,vsbigtex):

hr = D3DXCompi leShaderFromFile(
pathPS1,

o,
"PSMain", // entry point function name
“ps 2 0",
D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&PSBuffer,

&errorBuffer,

&PS1_PSCT):

// output any error messages
if(errorBuffer)
{

= :MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
Release<ID3DXBuffer*>(errorBuffer);

3
if(FAILED(hr))
{
= :MessageBox(0, "PS1--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):

119

return false;

}

// create pixel shader

hr = Device->CreatePixelShader(
(DWORD*)PSBuffer->GetBufferPointer(),
&PS1_maddreduce);

if(FAILED(hr))

- :MessageBox(0, "CreatePixelShader PS1 - FAILED", 0, 0):
return false;

H
Release<1D3DXBuffer*>(PSBuffer);
/7 *** pS2

1D3DXBuffer* PS2Buffer = 03
1D3DXBuffer* errorBuffer2 = 0;

hr = D3DXCompi leShaderFromFile(
"source/ps_16tapredux 2._txt",

0.
"PSMain", // entry point function name

D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPVALIDATION OPTIMIZATION
&PS2Buffer,

&errorBuffer2,

&PS2_PSCT):

// output any error messages
if(errorBuffer2)
{

= :MessageBox(0, (char*)errorBuffer2->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer2);

if(FAILED(hr))

= :MessageBox(0, "PS2--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create pixel shader

hr = Device->CreatePixelShader(
(DWORD*)PS2Buffer->GetBufferPointer(Q,
&PS2_16tapreduce);

if(FAILED(hr))

- :MessageBox(0, "CreatePixelShader PS2 - FAILED", 0, 0):
return false;

H
Release<1D3DXBuffer*>(PS2Buffer);
/7 *** Vsi

1D3DXBuffer* VSBuffer = 03

ID3DXBuffer* errorBuffer3 = 0:

hr = D3DXCompi leShaderFromFile(
pathvsi,
o,

o,
"Main", // entry point function name
-, o,
D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&VSBuffer,

&errorBuffer3,

&VS1_VSCT):

// output any error messages
if(errorBuffer3)
{

= :MessageBox(0, (char*)errorBuffer3->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer3);

if(FAILED(hr))

= :MessageBox(0, "VS1--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create vertex shader

hr = Device->CreateVertexShader(
(DWORD*)VSBuffer->GetBufferPointer(),
&VS1_maddreduce);

if(FAILED(hr))

= :MessageBox(0, "CreateVertexShader VS1 - FAILED™, 0, 0);
return false;

H
Release<1D3DXBuffer*>(VSBuffer);
/7 *** \VS2

1D3DXBuffer* VS2Buffer = 0;

ID3DXBuffer* errorBuffer4d = 0;

hr = D3DXCompi leShaderFromFile(
"source/vs_1l16tapredux 2._txt",

o,
"Main", // entry point function name
"vs_2 0",

120

D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&VS2Buffer,

&errorBuffers,

&VS2_VSCT):

// output any error messages
if(errorBuffers)
{

= :MessageBox(0, (char*)errorBuffer4->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer4);

if(FAILED(hr))

}

= :MessageBox(0, "VS2--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

// create vertex shader
hr = Device->CreateVertexShader(

(DWORD*)VS2Buffer->GetBufferPointer(Q,
&VS2_16tapreduce);

if(FAILED(hr))

}

= :MessageBox(0, "CreateVertexShader VS2 - FAILED™, 0, 0);
return false;

Release<1D3DXBuffer*>(VS2Buffer);

//get VS1 pixelsize constant handle
VS1_PixelSizeHandle = VS1 VSCT->GetConstantByName(0, “PixelSize'™);

if (SceneSize != 256){

PS1 PixelSizeHandle = PS1_PSCT->GetConstantByName(0, "PixelSize™);

3

// get PS2 and VS2 const handles

VS2_offsetHandle = VS2_VSCT->GetConstantByName(0, "offset);
PS2_offsetHandle = PS2_PSCT->GetConstantByName(0, "offset');

return true;

3}/7/ InitShadersQ
1/

// InitReticlesAndScene()

// loads reticle images into GPU, creates reticle and scene surfaces
// and textures in GPU memory

V{4

bool InitReticlesAndSceneQ{
/7

// create scene texture and surface
//

HRESULT hr = 0;
hr = D3DXCreateTexture(

&S
if(FAILED(hD))

Device,
SceneSize, SceneSize,
1, // no mipmap chain
D3DUSAGE_DYNAMIC, //was O--keep DYNAMIC!
D3D_FORMAT,
D3DPOOL_DEFAULT,
cene_Tex);

return false;

//get interface to top level surface of Scene_ Tex
hr = Scene_Tex->GetSurfacelLevel (0,&Scene_Surface);
if(FAILED(hr))

return false;

// create 100 reticle textures or 4 8x8 pallettes, depending
// on whether image size is 512 or 256/128
if (SceneSize == 256){

}
else {

//create 100 individual reticle textures

for (int i = 0; i<100; i++){

hr = D3DXCreateTexture(
Device,
SceneSize, SceneSize,
1, // no mipmap chain
0,//D3DUSAGE_DYNAMIC, //usage
D3D_FORMAT,
D3DPOOL_DEFAULT,
&Reticle_Tex[i]):
if(FAILED(hr))
return false;

//get interface to top level surface of each tex
hr = Reticle_Tex[i]->GetSurfacelLevel (0,&Reticle_Surface[i]):;
if(FAILED(hr))

return false;

3

//create 4 reticle pallette textures

for (int i = 0; i<4; i+){

hr = D3DXCreateTexture(

Device,

SceneSize*8, SceneSize*8,

1, // no mipmap chain

0,//D3DUSAGE_DYNAMIC, //usage; DYNAMIC loads faster

D3D_FORMAT,

D3DPOOL_DEFAULT,

&Reticle_Tex[i]):;
if(FAILED(hr))

return false;

121

//get interface to top level surface of each tex
hr = Reticle_Tex[i]->GetSurfacelLevel (0,&Reticle_Surface[i]):;
if(FAILED(hr))

return false;

//create 4 dynamic textures in SYSTEMMEM to build pallettes

hr = D3DXCreateTexture(

Device,

SceneSize*8, SceneSize*8,

1, // no mipmap chain

D3DUSAGE_DYNAMIC, //can"t be DYNAMIC and RT

D3D_FORMAT,

D3DPOOL_SYSTEMMEM,

&Pal_Tex[i1):
if(FAILED(hr))

return false;

//get interface to top level surface
hr = Pal_Tex[i]->GetSurfaceLevel (0, &Pal_Surf[i]):
if(FAILED(hr))

return false;

3
}

return true;

3} 77/ InitReticlesAndScene(Q

InitRenderTargets_hybridQ

V{4
bool InitRenderTargets_hybridQ) {

HRESULT hr = 0;

//Set Init _RTSize -- the size of RT resulting from first mul-reduce op
//Set Reducelterations -- controls how many times the 16:1 reduce will be
/77 run after the 1st mul-reduce has been done
int Init_RTSize;

if (SceneSize == 64){
Init_RTSize = 256;
Reducelterations = 2;

}

else if (SceneSize == 128){
Init_RTSize = 512;
Reducelterations = 3;

}

else {
Init_RTSize = 1024;
Reducelterations = 3;
startl = 0;
endl = 40;

3

//Set OutTexSize--the size of the final RT we will get our
// result(s) from; affects GetRTData()

OutTexSize = 8*SceneSize/(2*((int)pow(4,Reducelterations)));
OutPixels = OutTexSize*OutTexSize;

//SET TexIndex-- the array index of the RT_Reduce_Surface[] that will contain
// the final result; affects GetRTData()
TexIndex = Reducelterations-1;

// create initial RT (half the reticle pallette size because of 4:1 reduction)
hr = Device->CreateTexture(Init_RTSize, Init_RTSize,1,
D3DUSAGE_RENDERTARGET, D3DFMT_R32F,
D3DPOOL_DEFAULT,&RT_Tex,0) ;//D3D_FORMAT
if(FAILED(hr))
return false;

//get interface to top level surface
hr = RT_Tex->GetSurfacelLevel (0, &RT_Surface);
if(FAILED(hr))

return false;

// create render targets for reduction op (2 or 3)
int Size = Init _RTSize/4;
for (int i=0; i<Reducelterations; i++){
hr = D3DXCreateTexture(
Device,
Size, Size,
1, // no mipmap chain
D3DUSAGE_RENDERTARGET, //can”t be DYNAMIC and RT
D3DFMT_R32F,//D3D_FORMAT
D3DPOOL_DEFAULT,
&RT_Reduce Tex[i1):
if(FAILED(hr))
return false;

//get interface to top level surface
hr = RT_Reduce_Tex[i]->GetSurfaceLevel (0, &RT_Reduce_Surface[i]):
if(FAILED(hr))

return false;

Size /= 4;
H

//create SYSTEMMEM tex to send result(s) to
hr = D3DXCreateTexture(
Device,
OutTexSize, OutTexSize,
1, // no mipmap chain
D3DUSAGE_DYNAMIC, // try dynamic and zero
D3DFMT_R32F, //D3D_FORMAT,
D3DPOOL_SYSTEMMEM,
&0nes_Tex):

122

if(FAILED(hr))

return false;
//get interface to top level surface of Ones_Tex[]
hr = Ones_Tex->GetSurfacelLevel (0, &0nes_Surface);
if(FAILED(Chr))

return false;

// *** OFFSET ARRAYS FOR 16:1 REDUCE -- sent to vs and ps to calculate texcoords for adjacent
// pixels in the 4x4 block

// PixelSize of input texture to first reduce op
float PixelSize2 = 1/(float) Init_RTSize;

// calculate displacements
for (int k = 0; k<Reducelterations; k++){
for (int i = 0; i<4; i++){
for(int j = 0; j<4; j++){
} offset[k][i*4 +j] = D3DXVECTOR2(PixelSize2*(float)j, PixelSize2*(float)i):
o
} PixelSize2 *= 4.0f;

return true;
3}/7/ InitRenderTargets_hybridQ

1/
// SetupQ
// Initializes geometry, renderstate, calls

// InitRenderTargets, InitShaders, InitReticlesAndScene

V{4

bool Setup(Q {

HRESULT hr = 0;

/)= DISABLE unneeded processing ------————————————
// turn off Stencil and Culling
hr = Device->SetDepthStenci ISurface(

0):
if(FAILED(hr))
return false;
hr = Device->SetRenderState (D3DRS_CULLMODE,D3DCULL_NONE);
if(FAILED(hr))
return false;
// disable lighting

Device->SetRenderState(D3DRS_LIGHTING, false):
1/ create geometry
D3DVERTEXELEMENT9 decl[]=

{0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
D3DDECL_ENDQ)

3:
// declare the vertex structure
hr = Device->CreateVertexDeclaration(decl, &m_pDecl);
if(FAILED(hr))
return false;
// create VB with only x,y position
hr = Device->CreateVertexBuffer(56 * sizeof(CUSTOMVERTEX), //was 4
D3DUSAGE_WRITEONLY,

0,
D3DPOOL_DEFAULT,

&QuadVB,
NULL):
if(FAILED(hr))
return false;

float left = -1.00f;
float right = 1.00f;
float top = 1.00f;
float bottom = -1.00f;
float top_row2 = 0.75F;
float top_row3 = 0.50f;
float top_row4 = 0.25fF;
float top_row5 = 0.00f;
float top_row7 = -0.50Ff;
float top_row8 = -0.75F;
float bot_rowl = 0.75F;
float bot_row2 = 0.50f;
float bot_row4 = 0.00f;
float bot_rows = -0.25F;
float bot_rowé = -0.50Ff;
float bot_row7 = -0.75F;

CUSTOMVERTEX* v;

QuadVB->Lock(0, 56 * sizeof(CUSTOMVERTEX), (VOID**)&v, 0);//was 4
//quad 0 full square

// left bottom

v[0].x = left;

v[0].y = bottom;//bottom
// left top

v[1].x = left;

v[1].y = top;

// right bottom

v[2].x = right;

v[2].y = bottom;//bottom
// right top

v[3].x = right;

v[3].y = top;
//quad 1 ri-5

// left bottom
v[4].x = left;

123

v[4].y = bot_row5;//5
// left top

left;

v[5].y = top;

// right bottom

right;
v[6].y = bot_row5;//5

// right top
v[7]-x = right;
v[7].y = top;

//quad 2 r2-6
// left bottom
v[8].x left;
v[8].y = bot_row6;

// left top
v[9].x left;
v[9].y = top_row2;

// right bottom
v[10].x = right;
v[10].y = bot _row6;

// right top
v[11].-x = right;
v[11].y = top_row2;

//quad 3 r3-7

// left bottom
v[12].x = left;
v[12].y = bot_row7;

// left top
v[13].x = left;
v[13].y = top_row3;

// right bottom
right;
v[14].y = bot_row7;

// right top
v[15].x = right;
v[15].y = top_row3;

//quad 4 r4-8
// left bottom

v[16].x = left;
v[16].y = bottom;
// left top
v[17].x = left;
v[17].y = top_row4;
// right bottom
v[18].x = right;
v[18].y = bottom;
// right top
v[19].x = right;
v[19].y = top_row4;

//quad 5 ri-6
// left bottom

v[20].x = left;
v[20].y = bot_row6;
// left top
v[21].x = left;
v[21].y = top:

// right bottom
v[22].x = right;
v[22].y = bot_row6;
// right top
v[23].x = right;
v[23].y = top:

//quad 6 r2-7

// left bottom
v[24].x = left;
v[24].y = bot_row7;

// left top
v[25].x = left;
v[25].y = top_row2;
// right bottom
v[26].x = right;
v[26].y = bot_row7;
// right top
v[27].x = right;
v[27].y = top_row2;

//quad 7 r3-8

// left bottom
v[28].x = left;
v[28].y = bottom;

// left top
v[29].x = left;
v[29].y = top_row3;

124

// right bottom

v[30].x = right;
v[30].y = bottom;
// right top
v[31].x = right;
v[31].y = top_row3;
//quad 8 T1

// left bottom
v[32].x = left;
v[32].y = bot_rowl;
// left top
v[33].x = left;
v[33].y = top:

// right bottom

v[34].x = right;
v[34].y = bot _rowl;
// right top
v[35].x = right;
v[35].y = top:
//quad 9 B2

// left bottom
v[36].x = left;
v[36].y = bottom;
// left to

p
v[37].x = left;
v[37].y = top_row7;

// right bottom

v[38].x = right;
v[38].y = bottom;
// right top
v[39].x = right;
v[39].y = top_row7;

//quad 10 T4
// left bottom

v[40].x = left;
v[40].y = bot_row4;
// left top
v[41].x = left;
v[41].y = top:

// right bottom
v[42] .x = right;
v[42].y = bot_row4;
// right top
v[43].x = right;
v[43].y = top:

//quad 11 B1

// left bottom
v[44].x = left;
v[44].y = bottom;

// left top
v[45].x = left;
v[45].y = top_row8;
// right bottom
v[46].x = right;
v[46].y = bottom;
// right top
v[47].x = right;

v[47].y = top_row8;

//quad 12 B4

// left bottom
v[48].x = left;
v[48].y = bottom;

p
v[49].x = left;
v[49].y = top_row5;

// right bottom
right;
v[50].y = bottom;

// right top
v[51]-x = right;
v[51].y = top_row5;

//quad 13 T2
// left bottom

v[52].x = left;
v[52].y = bot_row2;
// left top
v[53].x = left;
v[53].y = top;

// right bottom
v[54].x = right;

v[54].y = bot_row2;

// right top
v[55].x = right;

125

v[55].y = top;
QuadVB->UnlockQ);

// set vertex declaration (will not change again)
Device->SetVertexDeclaration(m_pDecl);

if (SceneSize == 256){
// set geometry (will not change again)
Device->SetStreamSource(0, QuadvB, 0, sizeof(CUSTOMVERTEX));
3
return true;
3}//Setup(Q
private:
1/

7/ LOAD INPUT SCENE ——m——mm—mmmmmmmmemm

V{4
bool LoadlnputScene(float p_inputArray[]) {
RECT SurfRect;
SurfRect. left =
SurfRect.top = 0;
SurfRect.right = SceneSize;
SurfRect_bottom = SceneSize;

o

HRESULT hr = 0;
hr= D3DXLoadSurfaceFromMemory(
Scene_Surface,

plinputArray,
D3D_FORMAT,
(16*SceneSize), //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format

o,
&SurfRect,
D3DX_FILTER_NONE,

0):
if(FAILED(hr))

return false;
return true;

3}//LoadlnputScene()

1/

// Redux(Q

VA 16:1 REDUCE OPERATION

// Uses files: vs_16tapredux_2.txt and ps_16tapredux_2.txt

V{4
bool Redux() {
HRESULT hr = 0;

// -——- set PS and VS shaders
Device->SetVertexShader(VS2_16tapreduce);
Device->SetPixelShader (PS2_16tapreduce):

// initial source tex is result of maddreduce op
Device->SetTexture(0, RT_Tex):

for (int i = 0; i < Reducelterations; i++) {

hr = Device->SetRenderTarget(O, RT_Reduce_Surface[i]):
if(FAILED(hr))
return false;

if (i>0)
Device->SetTexture(0, RT_Reduce_Tex[i-1]):

// set VS offset constant array
hr = VS2_VSCT->SetFloatArray(Device,
VS2_offsetHandle,
(Float*)&offset[i]1[0].
16);// 2*8 floats
if(FAILED(hr))
return false;

// set PS offset constant array
hr = PS2_PSCT->SetFloatArray(Device,
PS2_offsetHandle,
(Float*) &offset[i][8].
16);//2*8 floats
if(FAILED(hr))
return false;

// render-- do 16:1 reduction on source image
//Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0);
Device->BeginScene():

Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2):;
Device->EndScene():;

3
return true;

3} 77 Redux(Q)
1/
// bool MAddReduce(Q)

// for ONEBYONE (Palette) approach
// uses files: vs_onebyone.txt and ps_onebyone.txt

V{4
bool MAddReduce(int p_retlndexStart){
HRESULT hr = 0;

// -——- set PS and VS shaders
Device->SetVertexShader(VS1_maddreduce);
Device->SetPixelShader(PS1_maddreduce);

// set VS PixelSize const

// PixelSizeX & Y initialized as Global constants
hr = VS1_VSCT->SetVector(Device, VS1 PixelSizeHandle,

126

&D3DXVECTORA(FPixSizeX, fPixSizeY, 1.0f, 1.0F)):
if(FAILED(hr))
return false;

// -——- set RT
hr = Device->SetRenderTarget(0, RT_Surface);
if(FAILED(hr))
return false;
Device->SetStreamSource(0, QuadvB, 0, sizeof(CUSTOMVERTEX));

D3DVIEWPORTY vp;

vp_Width = SceneSize/2;
vp.Height = SceneSize/2;
vp.MinZ = 0.0F;
vp.MaxZ = 1.0F;

Device->SetTexture(0, Scene_Tex);//stage O = input scene

for (int v = 0; v<5; v++){
for (int h = 0; h<8; h++){
vp.X = h*SceneSize/2;
vp.Y = v*SceneSize/2;
Device->SetViewport(&vp);
// set sampler 1 with reti image for maddredux with scene
Device->SetTexture(1, Reticle_Tex[(p_retindexStart + (v*8+h))%100]):

// render-- madd scene with a single reticle image
Device->BeginScene():

Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);
Device->EndScene():;

3

// set streamsource to 8x5 rectangle ri-r5, Quad 1
Device->SetStreamSource(0, QuadVB, 4*S|zeof(CUSTOMVERTEX) sizeof(CUSTOMVERTEX)) ;
return true;

3} /7/MAddReduceQ

V4

MAddReduce_hybridQ
// For 128 and 256 input scene sizes.
// multiplies input scene with a 8x8 reticle pallette using WRAPing when
// sampling the scene and does 4:1 reduction. Scene width is 1/8 the width of the pallette.
// Adjusts size of rendering rectangle to cut out unneeded calculations.
// This rendering rectangle remains set for the reduction op, too.

VA
;/ Uses files: vs_bigtex.txt and ps_bigtex.txt

bool MAddReduce_hybrid(int p_retindex){

HRESULT hr = 0;

int row = 0;

int col = 0;

int diff p_retindex;//=0

//determines which of the 4 pallettes to use,
// ensuring 40 contiguous retiles present in the pallette
//set pallette as texture stage O
if (p_retindex <= 24){
Device->SetTexture(0, Reticle _Tex[0]):
row = p_retindex/8;
col = p_retindex%8;

}

else if (p_retindex<=49){
Device->SetTexture(0, Reticle Tex[1]):
diff = p_retindex-25;

row = diff/8;

} col = diff%8;

else if (p_retindex<=74){
Device->SetTexture(0, Reticle _Tex[2]):
diff = p_retindex-50;

row = diff/8;
col = diff%8;
}
else {
Device->SetTexture(0, Reticle Tex[3]):
diff = p_retindex-75;
row = diff/8;
} col = diff%8;

//new code
startl = diff;
endl = diff+40;
V4

if (col == 0)

Device->SetStreamSource(0, QuadvB, (row+1)*4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX));

else

Device->SetStreamSource(0, QuadVvB, (row+1+4)*4*sizeof(CUSTOMVERTEX), sizeof(CUSTOMVERTEX)):

//set VS and PS
Device->SetVertexShader(VS1_maddreduce);
Device->SetPixelShader (PS1_maddreduce):;

hr = VS1_VSCT->SetVector(Device, VS1 PixelSizeHandle,
&D3DXVECTORA(1. 0f/(float)(SceneS|ze*8)
1._0f/(float)SceneSize, 0.0F, 1.0F)):;

// ---set tex stage 1 to be input scene
Device->SetTexture(l,Scene_Tex);

= Device->SetRenderTarget(O, RT_Surface);

h
if(FAILED(hr))
return false;

127

// render: multiply input scene with reticle image and do 4:1 reduction

//Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0);
Device->BeginScene():

Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);//was O
Device->EndScene();

return true;
3}//MAddReduce_hybrid(QQ

1/
// GetRTData_hybrid(Q)
;; retrieve FINAL data from lockable render-to surface
void GetRTData_hybrid(double p_b[1) {
HRESULT hr = 0;
int q;
int col;
int row;

D3DLOCKED_RECT lockedRect;

Device->GetRenderTargetData(RT_Reduce_Surface[TexIndex]. Ones_Surface);
Ones_Surface->LockRect(&lockedRect,

0 , //lock entire tex

D3DLOCK_READONLY); //flags

//D3DXVECTOR4* imageData = (D3DXVECTOR4*) lockedRect._pBits;
float* imageData = (float*) lockedRect.pBits;

//perform final 4:1 reduction if necessary and add up 4 components of each pixel
if (OutTexSize>8){
for (int i = startl; i<endl; i++){

row = i/8;

col = i%8;

q = row*32 + col*2;

p_b[i-startl]= imageData[q]+
imageData[q+1] +
imageData[q+16] +
imageData[q+17];

3

}
else {
for (int i = startl; i<endl; i++){
} p_b[i-startl]=imageData[i]; //-x + imageData[i].y +imageData[i].-z + imageData[i].-w;

Ones_Surface->UnlockRect();

return;
}// GetRTData hybridQ

1/
// Release() and Delete()
;; cleanup functions
template<c!$?s T> void Release(T t) {
i
t->Release();
} H
3
template<class T> void Delete(T t){
iIfCt){
delete t;
t =0;
H
3
1/
// Cleanup(Q)

// releases textures/surfaces/interfaces/devices/memory
// allocated during program

V{4
¥oid CleanupQ)

//vertex buffer and declaration
Release<IDirect3DVertexBuffer9*>(QuadVB) ;
Release<LPDIRECT3DVERTEXDECLARATIONS> (m_pDecl);

//textures _and surfaces
Release<IDirect3DSurface9*>(Scene_Surface);
Release<IDirect3DTexture9*>(Scene_Tex) ;

int n = 4;

if (SceneSize==256) n=100;

for (int t = 0; t<n;t++){
Release<IDirect3DSurface9*>(Reticle_Surface[t]):
Release<IDirect3DTexture9*>(Reticle_Tex[t]);

}

//initial RT
Release<IDirect3DTexture9*>(RT_Tex);
Release<IDirect3DSurface9*>(RT_Surface);

for (int t = 0; t<Reducelterations; t++) {
Release<IDirect3DSurface9*>(RT_Reduce_Surface[t]):
Release<IDirect3DTexture9*>(RT_Reduce_Tex[t]):

}

128

Release<IDirect3DTexture9*>(0Ones_Tex);
Release<IDirect3DSurface9*>(0Ones_Surface);

//PS & VS

Release<IDirect3DPixelShader9*>(PS1 i maddreduce)
Release<ID3DXConstantTable*>(PS1_PSC
Release<IDirect3DVertexShader9*>(VS1_| maddreduce)
Release<ID3DXConstantTable*>(VS1 VSCT):
Release<IDirect3DPixelShader9*>(PS2_. 16tapreduce)
Release<ID3DXConstantTable*>(PS2_PSC
Release<IDirect3DVertexShader9*>(VS2_. 16tapreduce)
Release<ID3DXConstantTable*>(VS2_VSCT);

Device->Release();

3}// CleanupQ

public:
1/

// ProcessQ
// user interface to GPU algorithm
// input: reference to scene image array variable
// input: starting index in reticle pallette
// output: void (but 40 dot-product results are loaded to user array)
void Process(int p_retindex, float p_SceneArray[], double p_b[]) {
Load InputScene(p_SceneArray);
if (SceneSize == 256){
//do one at a time algorithm
MAddReduce(p_retlindex);

}
else{
//do big tex
} MAddReduce_hybrid(p_retindex);
Redux(Q:
GetRTData_hybrid(p_b):
return;
3}/7/ ProcessQ
1/
// uploadReticle

V{4

bool uploadReticle(int p_index, float p_array[1){
HRESULT hr = 0;
RECT rect;
RECT srcRect;
srcRect_top =
srcRect_bottom
srcRect._left =
srcRect.right = SceneSize;

SceneSize;

if (SceneSize == 256){
rect.left = 0;
rect.right = SceneSize;
rect._top =
rect.bottom = SceneSize;

hr= D3DXLoadSurfaceFromMemory(
Reticle_Surface[p_index].

p_array,
D3D_FORMAT,
(16*SceneSize), //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format

&SrcRec
D3DX_| FILTER NONE,

0):
if(FAILED(hr))
return false;

}
else {

if ((p_index<=63) && (p_index >=0)){
rect.top = SceneSize*(p_index/8);
rect_left = SceneSize*(p_index%8):;
rect.bottom = rect._top+SceneSize;
rect.right = rect.left+SceneSize;

hr= D3DXLoadSurfaceFromMemory(
Pal_Surf[0].//Reticle_Surface[0].

0,
&rect, //dest rect
_array,
D3D_FORMAT,
(16*SceneS|ze), /716 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format
0.

&SrcRec
D3DX_| FILTER NONE,

0):
if(FAILED(hr))
return false;

hy
i ((p_index>=25) && (p_index<=88)){
rect.top = SceneSize*((p_index-25)/8);
rect left = SceneSize*((p_index-25)%8);
rect.bottom = rect._top+SceneSize;
rect.right = rect.left+SceneSize;

hr= D3DXLoadSurfaceFromMemory(
Pal_Surf[1].//Reticle_Surface[1].

&Fect, //dest rect

p_array,
D3D_FORMAT,
(16*SceneSize), //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format

129

&srcRect,

D3DX_| FILTER NONE,

0):
if(FAILED(hr))
return false;

%f C (p_ |ndex+50)%100)>-0) && (((p_index+50)%100)<=63)) {
ect.top

rect Ieft
rect.bottom
rect.right

SceneSize*(((|
SceneSize*(((p.

p_index+50)%100)/8) ;
dex+50)%100)%8) ;

rect._top+SceneSize;
rect. left+SceneSize;

hr= D3DXLoadSurfaceFromMemory(
Pal_Surf[2].//Reticle_Surface[2].

&rect,

p_array,
D3D_FORMAT,

(16*SceneSize),

&SrcRec
D3DX_| FILTER NONE,

0):
if(FAILED(hr))
return false;

%f C (p_ |ndex+25)%100)>-0) && (((p_index+25)%100)<=63)) {
ect.top

rect Ieft
rect.bottom
rect.right

SceneSize*(((|

/716 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format

p_index+25)%100)/8) ;

SceneSize*(((p_index+25)%100)%8) ;
rect._top+SceneSize;
rect. left+SceneSize;

hr= D3DXLoadSurfaceFromMemory(
Pal_Surf[3].//Reticle_Surface[3].

0,

&rect,
(16*SceneS|ze),
0.

&SrcRec
D3DX_| FILTER NONE,

_array,
D3D_FORMAT,

0):
if(FAILED(hr))
return false;

%f (p_index == 99){
for (int i

= 0;

i<4;i+){

/716 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format

Device->UpdateTexture(Pal_Tex[i].Reticle_Tex[i]):
Release<IDirect3DSurface9*>(Pal_Surf[i]):
Release<IDirect3DTexture9*>(Pal_Tex[i]);

3

return true;
3} 77/ uploadReticleQ

int GetAlgQ{
iT (SceneSize == 256
return 2;//one by one

else
} return 1; //big tex
7/
V4 ~ Gpu() DESTRUCTOR
~GpuQ

Cleanup(Q):
}// ~ Gpu(Q) DESTRUCTOR

}:
#endif // GPU_CLASS H BY MAJ_JEFFERS

130

// file: vs_bigtex.txt
// BY MAJ SEAN JEFFERS
// 11 nov 04 —- multiplies 1x1 scene by 8x8 reticle pallette, then does

// 4:1 redux; results in RT that is quarter sized of pallette;
// sampling of scene done w/wrapping

// -- PixelSize.x = 1/ret pallette width

// - i = 1/scene width

// - = 0.0f (must!)

;; -- VS generates 8 texcoords for PS

uniform float4 PixelSize;
// structures

struct VS_INPUT

{

float4 Pos : POSITION;
}:

struct VS_OUTPUT
{

float4 Pos : POSITION;

float2 Tex : TEXCOORDO;
float2 Tex1: TEXCOORD1;
float2 Tex2: TEXCOORDZ2;
float2 Tex3: TEXCOORD3;
float2 Tex4: TEXCOORD4;
float2 Tex5: TEXCOORD5;
float2 Tex6: TEXCOORD6;
float2 Tex7: TEXCOORD7;

}:

/7
// vertex shader function (input channels)

V74
VS_OUTPUT Main(VS_INPUT input)
{

VS_OUTPUT output = (VS_OUTPUT)O:

output_Pos.xy = input._Pos.xy;// + PixelSize.xy;
output.Pos.z = 0.5F;
output_.Pos.w = 1.0F;

output.Tex = TFloat2(0.5Ff, -0.5F) * input.Pos.xy + 0.5F.xx ;
output.Texl = output._Tex + PixelSize.xz;
output_Tex2 = output.Tex + PixelSize.zx;
output_Tex3 = output.Tex + PixelSize.xx;

output.Tex4 = 8.0F*output.Tex;

output_Tex5 = output.Tex4 + PixelSize.yz;

output_Tex6 = output.Tex4 + Pixel H

output.Tex7 = output.Tex4 + Pixel
return output;

-yy:

131

// file: ps_bigtex.txt

// depends on file: vs bigtex.txt

// BY MAJ SEAN JEFFERS

// 11 nov 04 —- multiplies 1x1 scene by 8x8 reticle pallette, then does
// 4:1 redux; results in RT that is quarter size of pallette;
// sampling of small texture done w/wrapping

;; 27 dec 04 -- modified to have AGRB32 in and R32F out with dot product
/7
// globals
V4

sampler Rendersampler; // 8x8 reticle pallette (big texture)
sampler Rendersamplerl; // scene 1x1 small texture

/7
// structures
V4

struct PS_INPUT
{

float2 Tex : TEXCOORDO;
float2 Tex1: TEXCOORD1;
float2 Tex2: TEXCOORDZ2;
float2 Tex3: TEXCOORD3;
float2 Tex4: TEXCOORD4;
float2 Tex5: TEXCOORD5;
float2 Tex6: TEXCOORD6;
} float2 Tex7: TEXCOORD7;

struct PS_OUTPUT

float4 clr : COLOR; //was COLORO
}:

/7
;; Pixel Shader (input channels):output channel

PS_OUTPUT PSMain(PS_INPUT input)
{
PS_OUTPUT output = (PS_OUTPUT) O:

float4 a = tex2D(Rendersampler, input.Tex);

float4 b = tex2D(Rendersampler, input.Texl);
float4 c = tex2D(Rendersampler, input.Tex2);
float4 d = tex2D(Rendersampler, input.Tex3);
float4 e = tex2D(Rendersamplerl, input.Tex4):
float4 f = tex2D(Rendersamplerl, input.Tex5);
float4 g = tex2D(Rendersamplerl, input.Tex6):
float4 h = tex2D(Rendersamplerl, input.Tex7):

output_clr = dot(a,e) + dot(b.f) + dot(c.g) + dot(d.h):
//a*e + b*f + c*g + d*h;

return output;

132

// file: vs_onebyone.txt (was vs_experimental._txt)

// BY MAJ SEAN JEFFERS

// used by: GPU_combined.h and GPU_CLASS ONEBYONE_R32F.h

/7

// 17 oct 04-- use PixelSize.y for Tex2-4 components instead of -.x
// 27 dec 04 -—- renamed to vs_onebyone.txt

/7
;; variables that are provided by the application

uniform float4 PixelSize;
// structures
struct VS_INPUT
float4 Pos : POSITION;

}:

struct VS_OUTPUT
float4 Pos : POSITION;
float2 Tex : TEXCOORDO;
float2 Tex2: TEXCOORD1;

float2 Tex3: TEXCOORDZ2;
float2 Tex4: TEXCOORD3;

;; vertex shader function (input channels)

6§_0UTPUT Main(VS_INPUT input)

€ VS_OUTPUT output = (VS_OUTPUT)O:
output_Pos.xy = igggt.Pos_xy + PixelSize.xy:

output_Pos.z
output_Pos.w

1.0f;
float2 Tex = float2(0.5F, -0.5F) * input.Pos.xy + 0.5F.xx ;

output._Tex

output._Tex2
output._Tex3
output._Tex4

Tex:

Tex + float2(PixelSize.y, 0.0F);//use .y instead of
Tex + float2(0.0f, PixelSize.y);

Tex + Float2(PixelSize.y.PixelSize.y):;

return output;

133

file: ps_onebyone.txt (was ps_maddreduce_new.txt)
PS for mult, add, reduce, 4:1; 1 scene tex madd with 6 reticles,
then result of last madd added in
BY MAJ SEAN JEFFERS
1 oct 04 -- 1st ver. had 2 samplers, v2 had 8
2 oct 04 -- modified for t1 * sum(t2-t7) + t8, where t8 result of
last pass; eliminates need for a 3rd PS/VS
5 oct 04 -- changed to add only single pixel from t8 (previous result) texture
because it is already a smaller, reduced texture
14 oct 04 -- removed output struct
17 oct 04 -- changed data type to float4 instead of vector

new file name: ps_maddredce_new.txt

27 oct 04 -- this new version has only 2 samplers and no addback of
previous results

27 dec -- changed to "dot™ to accommodate R32F

globals

sampler Rendersampler;
sampler Rendersampler2;

VA
VA
V4

structures

struct PS_INPUT
{

float2 Tex : TEXCOORDO;

float2 Tex2 : TEXCOORD1:;
float2 Tex3 : TEXCOORD2;
float2 Tex4 : TEXCOORD3;
}:
// struct PS_OUTPUT
/7
// float4 clr - COLOR; //was COLORO
/7 };
/7
// Pixel Shader (input channels):output channel
V4

float4 PSMain(PS_INPUT input) :COLOR
{

float4 tla = tex2D(Rendersampler, input.Tex);//float4
float4 tlb = tex2D(Rendersampler, input.Tex2);
float4 tlc = tex2D(Rendersampler, input.Tex3);
float4 tld = tex2D(Rendersampler, input.Tex4);
float4 t2a = tex2D(Rendersampler2, input.Tex);
float4 t2b = tex2D(Rendersampler2, input.Tex2):;
float4 t2c = tex2D(Rendersampler2, input.Tex3):
float4 t2d = tex2D(Rendersampler2, input.Tex4):;

// madd src (t1) & one reticles (t2)

float4 pl = dot(tla, t2a); //tla*t2a; was float4
float4 p2 = dot(tlb, t2b); //tlb*t2b;

float4 p3 = dot(tlc, t2c); //tlc*t2c;

float4 p4 = dot(tld, t2d); //tid*t2d ;

//new
return pl + p2 + p3 + p4:

134

/7

// VS _16tapredux_2.txt

// BY MAJ SEAN JEFFERS

// 1 oct 04 —- modified to output 4 texcoords for block-of-4 reduction op
// note x-displacement is negated

// 3 oct 04 —- trying original approach to see if reduce error

// 17 oct 04 -- changed offset array size to [8] from [16]

// -- removed redundant PixelSize

/7
;; variables that are provided by the application

//float4 PixelSize;
float2 offset[8]: //was 16

// structures
struct VS_INPUT
{

float4 Pos : POSITION;
}:

struct VS_OUTPUT
{
float4 Pos : POSITION;

float2 TexO : TEXCOORDO;
float2 Texl : TEXCOORD1:;
float2 Tex2 : TEXCOORD2;
float2 Tex3 : TEXCOORD3;
float2 Tex4 : TEXCOORD4;
float2 Tex5 : TEXCOORDS;
float2 Tex6 : TEXCOORD6:
float2 Tex7 : TEXCOORD7;

}:

/7

;; vertex shader function (input channels)

VS_OUTPUT Main(VS_INPUT input)
{
VS_OUTPUT output = (VS_OUTPUT)O:
output.Pos.xy = input.Pos.xy ;//+ float2(-offset[1]-x, offset[1].x); //PixelSize.xy:
5F;

output_Pos.z
output_Pos.w

1.0f;

float2 Tex = float2(0.5F, -0.5F) * input.Pos.xy + 0.5F.xx ;
//Tex *= float2(1.0f,0.5F); //added float to test subset 12 nov

output._Tex0 = Tex

output.Texl = Tex + offset[1];
output.Tex2 = Tex + offset[2];
output.Tex3 = Tex + offset[3];
output.Tex4 = Tex + offset[4];
output.Tex5 = Tex + offset[5];
output.Tex6 = Tex + offset[6];
output.Tex7 = Tex + offset[7];

return output;

135

// PS 16:1 reduce

/7

// file: ps_l16tapredux_2.txt
// BY MAJ SEAN JEFFERS

// 3 Oct 04 - trying original approach to see if reduce error

;; 17 oct 04 -change offset array size to [8] from [16]

// globals

V4

uniform float2 offset[8]:

sampler Rendersampler;

/7
// structures
V4

struct PS_INPUT
{

float2 TexO : TEXCOORDO;
float2 Texl : TEXCOORD1:;
float2 Tex2 : TEXCOORD2;
float2 Tex3 : TEXCOORD3;
float2 Tex4 : TEXCOORD4;
float2 Tex5 : TEXCOORDS;
float2 Tex6 : TEXCOORD6:
float2 Tex7 : TEXCOORD7;

/7
;; Pixel Shader (input channels):output channel

float4 PSMain(PS_INPUT input) : COLORO
{
//PS_OUTPUT output = (PS_OUTPUT) O;

float4 ColorSum = 0.0F;

// sample first 8 taps (first 2 rows of 4x4 block)

float4 cO = tex2D(Rendersampler, input.Tex0):
float4 cl = tex2D(Rendersampler, input.Tex1l):
float4 c2 = tex2D(Rendersampler, input.Tex2):;
float4 c3 = tex2D(Rendersampler, input.Tex3):
float4 c4 = tex2D(Rendersampler, input.Tex4):
float4 c5 = tex2D(Rendersampler, input.Tex5):
float4 c6 = tex2D(Rendersampler, input.Tex6):
float4 c7 = tex2D(Rendersampler, input.Tex7):

// add color values of first 8 taps

ColorSum += c0;
ColorSum += c1;
ColorSum += c2;
ColorSum += c3;
ColorSum += c4;
ColorSum += c5;
ColorSum += c6;
ColorSum += c7;

// calculate texcoords for remaining 8 taps

float2 Tap8 = input.Tex0 + offset[0]:; //was 8-15
float2 Tap9 input.Tex0 + offset[1]:
float2 Tapl0 input.Tex0 + offset[2]:
float2 Tapll = input_Tex0 + offset[3];
float2 Tapl2 = input_Tex0 + offset[4];
float2 Tapl3 input.Tex0 + offset[5]:
float2 Tapl4 input.Tex0 + offset[6]:
float2 Tapl5 = input_Tex0 + offset[7];

// sample remaining 8 taps

c0 = tex2D(Rendersampler, Tap8);:
cl = tex2D(Rendersampler, Tap9);
c2 = tex2D(Rendersampler, Tapl0):
c3 = tex2D(Rendersampler, Tapll):
c4 = tex2D(Rendersampler, Tapl2);
c5 = tex2D(Rendersampler, Tapl3):
c6 = tex2D(Rendersampler, Tapl4):
c7 = tex2D(Rendersampler, Tapl5);:

// add last 8 taps to sum

ColorSum += c0;
ColorSum += c1;
ColorSum += c2;
ColorSum += c3;
ColorSum += c4;
ColorSum += c5;
ColorSum += c6;
ColorSum += c7;

return ColorSum;

136

// win_CONSCAN._cpp : Defines the entry point for the application.
// BY MAJ SEAN JEFFERS --tests conscan gpu code

#include “stdafx._h"

#include "win_CONSCAN_h"

#define MAX_LOADSTRING 100

#include <iostream>

#include <fstream>

#include <iomanip>

#include <cmath>

#include "GPU_CONSCAN.h™ //combined.h or CLASS_ONEBYONE.h CLASS_ONEBYONE_R32F.h

// Global Variables:

HINSTANCE hinst; // current instance

TCHAR szTitle[MAX_LOADSTRING]: // The title bar text

TCHAR szWindowClass[MAX_LOADSTRING]; // the main window class name
const int EXPER = 100;

const int SCENE_SIZE = 0;

const int SCENE_SIZE_X = 512;

const int SCENE_SIZE_Y = 512;

const int RETICLE_SIZE = 128;

const int WL =1;

const char* BUS_str

const char* APRCH_str = "ATI";
const int REPS = 2;

const int SIZE_SQ = SCENE_SIZE_X*SCENE_SIZE_Y;
const int RET_SIZE SQ = RETICLE_SIZE*RETICLE_SIZE;

// WL 3 pt source vars

const int xmin = SCENE_SIZE_X/4;
const int ymin = SCENE_SIZE_Y/4;
const int xmax = SCENE_SIZE-xmin;
const int ymax = SCENE_SIZE-ymin;
//initial conditions

int oldx = xmin;
int oldy = ymin;
int delx = -1;
int xinc = -1;
int dely = 0;
int yinc = -1;

// Forward declarations of functions included in this code module:
void UpdateScene(int , float*);

ATOM MyRegisterClass(HINSTANCE hlnstance);

BOOL Initinstance(HINSTANCE, int);

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM):

LRESULT CALLBACK About(HWND, UINT, WPARAM, LPARAM):

int APIENTRY _tWinMain(HINSTANCE hlnstance,
HINSTANCE hPrevinstance,
LPTSTR IpCmdLine,
int nCmdShow)

float reticle[RET_SIZE SQ]:
float scene[SIZE_SQ]:
double answer[40];

int retindex[40]:

int xdisp[40]:

int ydisp[40]:

double times[REPS]:
double timeslog[REPS];
doublle startTime;
double endTime;

doublle sum = 0.0;

double mean = 0.0;

double var = 0.0;

double stdev = 0.0;

double hi = 0.0;

double low = 0.0;

double sos = 0.0;

double sumlog = 0.0;

double meanlog = 0.0;

double varlog = 0.0;

double stdevlog = 0.0;

double soslog = 0.0;

double hilog = 0.0;

double lowlog = 0.0;

char WL_str[30];

it WL ==1){

} strepy(WL_str,”1 - non-changing™);
else if (WL == 2){

} strepy(WL_str,"2 - fully-changing™);
else {

} strepy(WL_str,”3 - moving pt source™);

//instantiate GPUConscan object
GpuConscan gpu(hlnstance ,nCmdShow, SCENE_SIZE X, SCENE_SIZE_Y,
RETICLE_SIZE);

//upload reticles
for (int i = i<100; i++){
; J<RET_SIZE_SQ; j++){

for Zint ij=
reticle[j] = (float)i:;

}
gpu.uploadReticle(i,reticle);

137

//initialize retindex and x/y disp arrays
for (int i = 0; i<40 ; i++){

retlndex[l] 39-i1;

xdisp[i

ydisp[i]

1
3

char algorithm[40]:;

int alg =gpu.GetAlgQ:

if (alg ==1){
strcpy(algorithm,”BIGTEX™);

}
else if (alg == 2){
strcpy(algorithm, ""ONEBYONE™) ;

}
else if (alg == 3){
strcpy(algorithm, "CONSCAN ONEBYONE R32F™);

}
else {
strcpy(algorithm,”NA™);

3
// do experiment REPS times
for (int rep = 0; rep< REPS; rep++){
//Fill ial scene
if (WL '=3){
for (int j = 0; j<SIZE_SQ; j++){
scene[j]1= (Float) ((JHSCENE_SIZE X)/(SCENE_SIZE_X/2)+1);
if (§>=SI1ZE_SQ/2) scene[j]+=2;

-
:

H

}

else {
for (int j = O; J<S|ZE SQ: j++){
} scene[j]— 0.0f;

H

startTime = (double)timeGetTime();

// run algorithm 1000 x

for (int i = 0; i<1000; i++){
gpu.Process(retlndex,scene,answer ,xdisp, ydisp);
UpdateScene(WL,scene);

}

endTime = (double) timeGetTime():

double timeDelta = (endTime-startTime)*0.001f;
double timeDeltaLog = loglO(timeDelta);
times[rep]= timeDelta;

timeslog[rep] = timeDeltalog;

sum += timeDelta;

sumlog += timeDeltalog;

3

//calc stats

mean = sum/(double)REPS;

ﬂeanlog sumlog/ (double)REPS;
i =0.0;

hilog = Z1000. 0;

low = 1000.0;

lowlog = 1000.0;

for (int i =0; i<REPS; i++){
if (tlmes[|]>h|)
hi = times[i]:;
if (tlmes[|]<low)
times[i]:
var += pow((tlmes[l]—mean) 2.0)/(double)(REPS-1);
sos += pow(times[i],2
if (timeslog[i]>hilog
hilog = timeslog[i]:
if (timeslog[i]<lowlog)
lowlog = timeslog[i]:
varlog += pow((tlmeslog[l]—meanlog) 2.0)/(double) (REPS-1);
soslog += pow(timeslog[i1].2):

}

stdev = sqrt(var);

stdevlog = sqgrt (varlog):

//write results to file

char* name ="results/results_";

char* ext ="_dat";

char num[4]:
_itoa(EXPER,num,10);

char fllename[40]

strcat(filename,ext):;
std::ofstream outFile(filename,std::ios::app);//out
if (QoutFile){
= :MessageBox(0, "can"t open results file”,"GPU" , 0):

} exit(l):

outFile <<"experiment#: "<<EXPER<<"\n"
<<"workload: "<<WL_str<<™"\n"
<<"bus: "<<BUS_str<<"\n~
<<"approach: "<<APRCH_str<<*"\n"
<<"algorithm: "<<algorithm<<™\n"
<<"size: "<<SCENE_SIZE<<"\n"
<<"mean: "<<mean<<"\n"
<<"variance: "<<var<<"\n"
<<"stdev: "<<stdev<<*\n*
<<"sum of sqgrs: "<<sos<<"\n"
<<"low: "<<low<<"\n"
<<"hi: "<<hi<<"\n"
<<"mean log: “<<meanlog<<®"\n"
<<"variance log: “<<varlog<<™\n*
<<"stdev log : “'<<stdevlog<<"\n*"
<<"sum of sqrs log: “<<soslog<<®"\n"
<<"low log: <<lowlog<<™\n*
<<"hi log: “<<hilog<<"\n*
<<"reps: "<<REPS<<"\n"
<<"data: "<<*\n";

138

for (i =0;i<REPS; i++){
outFile<<times[i]:
if (1((i+1)%5) || (i==REPS-1))
outFile<<"\t"<<" ___"<<"\n";
else outFile<<"\t";

3

outFile<<"\n"<<"data log: <<"\n";

for (i =0;i<REPS; i++){
outFi le<<std: :set precision(6)<<std: :setw(3)<<timeslog[i];
if (0(Ci+1)%5) || (i==REPS-1))

outFile<<"\t"<<" ___"<<"\n";
else outFile<<"\t";

3
outFile<<"\n"<<"answers:‘'<<"\n";
for (i =0;i8<40; i+H){
outFile<<std: :setprecision(9)<<std: :setw(18)<<
std: -setiosflags(std: :ios: :scientific)<<answer[i];
if (V(C i+1)%4))
outFile<<™\n";

3
outFile<<™\n";

MSG msg;
HACCEL hAccelTable;

// Initialize global strings

LoadString(hinstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING):
LoadString(hlnstance, IDC_WIN CONSCAN slendowCIass MAX_LOADSTRING) ;
MyRegisterClass(hlnstance):

// Perform application initialization:
if (MInitinstance (hinstance, nCmdShow))

return FALSE;
3

hAccelTable = LoadAccelerators(hlnstance, (LPCTSTR)IDC_WIN_CONSCAN):

// Main message loop:
ghile (GetMessage(&msg, NULL, 0, 0))

if (!TranslateAccelerator(msg.-hwnd, hAccelTable, &msg))

TranslateMessage(&msg);
} DispatchMessage(&msg);
3

return (int) msg.-wParam;

}

V4
;; FUNCTION: UpdateScene()

void Upd%}eScene(lnt a:WL float* p_scene){

(WL == 1)
return;

%f (W = 2){
for (int j = 0; j < SIZE SQ iDL
p_scene[j] += 1.0f;

3
return;
}
else {
int x = delx + OldX'
int y = dely + oldy:
if ((x<xm|n) | (x>xmax) X<
o
X|nc = -“xinc;
delx = delx+xinc:
dely = dely+yinc;
3 y += dely:
it ((y<ymin) II (y>ymax)) {
y = oldy;
yinc = -yinc;
delx += Xxinc;
dely += yinc;
x += delx;
H
int index = y*SCENE SIZE_ X + X3
int indexold = oIdy*SCENE SIZE_X + oldx;
p_scene[lndexold]
p_scene[index] = 1. 0f'
oldx = x;
oldy =y;
return;
3
}
/7
;; FUNCTION: MyRegisterClassQ
;; PURPOSE: Registers the window class.
// COMMENTS:
// This function and its usage are only necessary if you want this code

// to be compatible with Win32 systems prior to the "RegisterClassEx"

// function that was added to Windows 95. It is important to call this function
// so that the application will get “"well formed® small icons associated

/7 with it.

/7

ATOM MyRegisterClass(HINSTANCE hlnstance)

WNDCLASSEX wcex;

139

wcex.cbSize
wecex.style

wcex . IpfnWndProc
wcex.cbClsExtra
wcex.cbWndExtra
wcex._hlnstance
wcex._hlcon
wcex.hCursor

wcex - hbrBackground
wcex . IpszMenuName
wcex . IpszClassName
wcex._hlconSm

sizeof (WNDCLASSEX) ;
CS_HREDRAW | CS_VREDRAW;
(WNDPROC)WndProc;

03

hinstance;

Loadlcon(hinstance, (LPCTSTR)IDI_WIN_CONSCAN);
LoadCursor(NULL, IDC_ARROW);

(HBRUSH) (COLOR_WINDOW+1) ;

(LPCTSTR) IDC_WIN_CONSCAN;

szWindowClass;

Loadlcon(wcex_hlnstance, (LPCTSTR)IDI_SMALL);

return RegisterClassEx(&wcex) ;

}

/7

// FUNCTION: Initinstance(HANDLE, int)

/7

// PURPOSE: Saves instance handle and creates main window

/7

// COMMENTS:

/7

// In this function, we save the instance handle in a global variable and
// create and display the main program window.

/7
BOOL InitlInstance(HINSTANCE hilnstance, int nCmdShow)
{
HWND hWnd;
hinst = hinstance; // Store instance handle in our global variable

hWnd = CreateWindow(szWindowClass, szTitle, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, O, CW_USEDEFAULT, O, NULL, NULL, hilnstance, NULL):

if ('hwnd)
return FALSE;

ShowWindow(hWnd, nCmdShow) ;

UpdateWindow(hwWnd) ;

return TRUE;
}
// FUNCTION: WndProc(HWND, unsigned, WORD, LONG)
/7
// PURPOSE: Processes messages for the main window.
/7
// WM_COMMAND - process the application menu
// WM_PAINT - Paint the main window
// WM_DESTROY - post a quit message and return
/7

V4
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM IParam)
{

int wmld, wmEvent;
PAINTSTRUCT ps:
HDC hdc;

switch (message)

case WM_COMMAND:
wmid LOWORD(wParam) ;
wmEvent = HIWORD(wParam) ;
// Parse the menu selections:
switch (wmld)

case IDM_ABOUT:

DialogBox(hInst, (LPCTSTR)IDD_ABOUTBOX, hWnd, (DLGPROC)About):

break;

case IDM_EXIT:
DestroyWindow(hwnd);
break;

default:

return DefWindowProc(hWnd, message, wParam, IParam)

break;
case WM_PAINT:
hdc = BeginPaint(hWnd, &ps):
// TODO: Add any drawing code here. ..
EndPaint(hWnd, &ps):

break;
case WM_DESTROY:

PostQuitMessage(0):;

break;
default:

return DefWindowProc(hWnd, message, wParam, IParam);
3
return O;

3}

// Message handler for about box.
LRESULT CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM IParam)
{

switch (message)

{

case WM_INITDIALOG:
return TRUE;

case WM_COMMAND:
if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)

EndDialog(hDlg, LOWORD(wParam));
return TRUE;

break;

3
return FALSE;

140

// file: GPU_CONSCAN.h

by: Maj Sean Jeffers
requires external files:
GPU_UTILITY.h

source/ps_CONSCAN. txt
source/vs_CONSCAN. txt
source/vs_16tapredux_2.txt
source/ps_16tapredux_2.txt

2 jan 05

#ifndef GPU_CLASS_H_BY _MAJ_JEFFERS
#define GPU_CLASS_H_BY_MAJ_JEFFERS

<d3dx9._h>
"GPU_UTILITY.h"

#include
#include

<stdlib_h>
<cstring>
<cmath>

#include
#include
#include

#define GPU_WINDOW_WIDTH
#define GPU_WINDOW_HEIGHT
#define D3D_FORMAT

1024
768

CONSTANTS-——————

-- contains namespace d3d utility functions InitD3DQ
GPU_WndProc CALLBACK and Gpu_WndClass definition

-- PS used by MAddReduce(Q

-- VS used by MAddReduce(Q)

-- vertex shader used by Redux(Q)

-- pixel shader used by Redux(Q

27 dec 04 -- modified old ONEBYONE to use non-packed R32F textures throughout
-- this is expected to be basis for CONSCAN
-- renamed R32F to GPU_CONSCAN._h; changed to use CONSCAN vs and ps
-- border color not supported; clamping is

D3DFMT_R32F //A32B32G32R32F
4 /7 16

#define STRIDE
V4

class GpuConscan {

private:
HINSTANCE
int
IDirect3DDevice9*
//const int
const int
const int
const int
//int
//float
//float
//D3DXVECTOR4
int
long
//int
int
int
bool

//VS1

hinst;

nCmdShow;

Device;
SceneSize;
SceneSizeX;
SceneSizeY;
ReticleSize;
ScenePixels;
fPixSizeX;
fPixSizeY;
DataArray[2048*2048] ;
OutTexSize;
OutPixels;
ViewportSize;
Reducelterations;
TexIndex;

DualRT;

IDirect3DVertexShader9* VS1_maddreduce;

1D3DXConstantTable*
D3DXHANDLE
D3DXHANDLE
D3DXHANDLE

//PS1
IDirect3DPixelShaderg*
1D3DXConstantTable*

/VS2

IDirect3DVertexShader9*
1D3DXConstantTable*
D3DXHANDLE

//PS2
IDirect3DPixelShaderg*
1D3DXConstantTable*
D3DXHANDLE

D3DXHANDLE

VS1_VSCT;
VS1_PixelSizeHandle;
VS1_DisplacementHandle;
VS1_AspectHandle;

PS1_maddreduce;
PS1_PSCT;

VS2_16tapreduce;
VS2_VSCT;
VS2_offsetHandle;

PS2_16tapreduce;
PS2_PSCT;
PS2_offsetHandle;
PS2_mulHandle;

// PARAMETERS PASSED TO PS & VS

D3DXVECTOR2

// VERTEX BUFFER & DECL
LPD IRECT3DVERTEXDECLARAT ION9
IDirect3DVertexBuffer9o*

// TEXTURES & SURFACES
IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*

IDirect3DTexture9*
IDirect3DSurface9*
IDirect3DTexture9*
1Direct3DSurface9*

VA
V4

IDirect3DTexture9*
IDirect3DSurface9*

// transformation matrices

offset[4][16];

m_pDecl ;
QuadVB;

Scene_Tex;
Scene_Surface;

Reticle_Tex[100]:
Reticle_Surface[100]:

RT_Tex;
RT_Surface;

RT_Reduce_Tex[4]:
RT_Reduce_Surface[4]:
RT_Reduce Tex2[3]:
RT_Reduce_Surface2[3];

Ones_Tex;
Ones_Surface;

D3DXMATRIX mWorld;
D3DXMATRIX mView;
D3DXMATRIX mProj;
V4 STRUCTS

struct CUSTOMVERTEX

141

{

FLOAT X3
FLOAT y:
}:
public:
//constructor
GpuConscan(HINSTANCE p_hlnst, int p_nCmdShow, int p_SceneSizeX,
int p_SceneSizeY, int p_ReticleSize)
chinst (p_hiInst), nCmdShow(p_nCmdShow), SceneSizeX(p_SceneSizeX),
SceneSizeY(p_SceneSizeY), ReticleSize(p_ReticleSize)// /72
{
Device =0;
//fPixSizeX = -1.0f / (float)SceneSize;
//fPixSizeY = 1.0f / (float) SceneSize;
//VS1
VS1_maddreduce = 0;
VS1 VSCT = 0:
VS1_PixelSizeHandle = 0O;
//PS1
PS1 maddreduce = 0;
PS1_PSCT = 0:
//VS2
VS2_16tapreduce = 0;
VS2_VSCT = 0:
VS2_offsetHandle = 0;
//PS2
PS2_16tapreduce = 0;
PS2_PSCT = 0:
PS2_offsetHandle = 0;
// vertex buffer ptr
QuadVB = 0;
if(1d3d:: InitD3D(hInst, nCmdShow,
GPU_WINDOW_WIDTH, GPU_WINDOW_HEIGHT, true, D3DDEVTYPE_HAL, &Device))
{
: :MessageBox(0, "InitD3DQ) - FAILED", 0, 0):
H
if(ISetupQ){
z:MessageBox(0, "Setup() - FAILED", 0, 0):
H
DualRT = false;
// modullar actions depending on algorithm
InitShadersQ);
InitReticlesAndScene_OneByOne():
InitRenderTargets_hybridQ:
3}//Gpu() CONSTRUCTOR
private:
1/
// InitShadersQ
// creates & compiles shaders

V{4

bool InitShadersQ{
HRESULT hr = 0;
// *** psi

ID3DXBuffer* PSBuffer = 0:
1D3DXBuffer* errorBuffer = 0;

hr = D3DXCompi leShaderFromFile(
""source/ps_CONSCAN.txt",

o,
"PSMain", // entry point function name
“ps 2 0",
D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&PSBuffer,

&errorBuffer,

&PS1_PSCT):

// output any error messages
if(errorBuffer)
{

= :MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
Release<ID3DXBuffer*>(errorBuffer);

if(FAILED(hr))

= :MessageBox(0, "PS1--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create pixel shader

hr = Device->CreatePixelShader(
(DWORD*)PSBuffer->GetBufferPointer(),
&PS1_maddreduce);

if(FAILED(hr))

- :MessageBox(0, "CreatePixelShader PS1 - FAILED", 0, 0):
return false;

3

Release<1D3DXBuffer*>(PSBuffer);
/7 *** pS2

1D3DXBuffer* PS2Buffer = 0;
1D3DXBuffer* errorBuffer2 = 0;

142

hr = D3DXCompi leShaderFromFile(
""source/ps_16tapredux 2_txt",

0.
"PSMain", // entry point function name

D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPVALIDATION OPTIMIZATION
&PS2Buffer,

&errorBuffer2,

&PS2_PSCT):

// output any error messages
if(errorBuffer2)
{

= :MessageBox(0, (char*)errorBuffer2->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer2);

if(FAILED(hr))

= :MessageBox(0, "PS2--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create pixel shader

hr = Device->CreatePixelShader(
(DWORD*)PS2Buffer->GetBufferPointer(Q,
&PS2_16tapreduce);

if(FAILED(hr))

- :MessageBox(0, "CreatePixelShader PS2 - FAILED", 0, 0):
return false;

H
Release<1D3DXBuffer*>(PS2Buffer);
/7 *** Vsi

1D3DXBuffer* VSBuffer = 03

ID3DXBuffer* errorBuffer3 = 0:

hr = D3DXCompi leShaderFromFile(
"source/vs_CONSCAN.txt",
o,

o,
"Main", // entry point function name
-, o,
D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&VSBuffer,

&errorBuffer3,

&VS1_VSCT):

// output any error messages
if(errorBuffer3)
{

- :MessageBox(0, (char*)errorBuffer3->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer3);

if(FAILED(hr))

= :MessageBox(0, "VS1--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create vertex shader

hr = Device->CreateVertexShader(
(DWORD*)VSBuffer->GetBufferPointer(),
&VS1_maddreduce);

if(FAILED(hr))

= :MessageBox(0, "CreateVertexShader VS1 - FAILED™, 0, 0);
return false;

H
Release<1D3DXBuffer*>(VSBuffer);
/7 *** \VS2

1D3DXBuffer* VS2Buffer = 0;

ID3DXBuffer* errorBuffer4d = 0;

hr = D3DXCompi leShaderFromFile(
"source/vs_1l16tapredux 2._txt",

o,

"Main", // entry point function name

s -

D3DXSHADER_SKIPVALIDATION,//DEBUG, // | D3DXSHADER_SKIPOPTIMIZATION
&VS2Buffer,

&errorBuffers,

&VS2_VSCT):

// output any error messages
if(errorBuffers)
{

= :MessageBox(0, (char*)errorBuffer4->GetBufferPointer(), 0, 0):
Release<ID3DXBuffer*>(errorBuffer4);

if(FAILED(hr))

= :MessageBox(0, "VS2--D3DXCompileShaderFromFile(Q) - FAILED", 0, 0):
return false;

}

// create vertex shader

hr = Device->CreateVertexShader(
(DWORD*)VS2Buffer->GetBufferPointer(Q,
&VS2_16tapreduce);

143

1 F(FAILED(ChN))

= :MessageBox(0, "CreateVertexShader VS2 - FAILED™, 0, 0);
return false;

H

Release<1D3DXBuffer*>(VS2Buffer);

Ve get VS1 pixelsize constant handle
VS1_PixelSizeHandle = VS1 VSCT->GetConstantByName(0, “PixelSize'™);

VS1_DisplacementHandle = VS1 VSCT->GetConstantByName(O,"Displacement’);
VS1_AspectHandle = VS1_VSCT->GetConstantByName (0, "Aspect™);

// get PS2 and VS2 const handles
VS2_offsetHandle = VS2_VSCT->GetConstantByName(0, "offset);
PS2_offsetHandle = PS2_PSCT->GetConstantByName(0, "offset');
//vertex decl and set stream source were here, moved to Setup
return true;

3}/7/ InitShadersQ

1/
// InitReticlesAndScene_OneByOne()

// loads reticle images into GPU, creates reticle and scene surfaces
;; and textures in GPU memory

// FOR TESTING PURPOSES ONLY

// load the 100 reticle textures, [0..99] with sample data:
// places whole value equal to texture index into

// each pixel of the texture;

bool InitReticlesAndScene_OneByOne(Q{
/7

// create scene texture and surface
//

HRESULT hr = 0;
hr = D3DXCreateTexture(
Device,
SceneSizeX, SceneSizeY, //was SceneSize for both
1, // no mipmap chain
D3DUSAGE_DYNAMIC, //was O--keep DYNAMIC!
D3DFMT_R32F,
D3DPOOL_DEFAULT,
&Scene_Tex);
if(FAILED(hr))
return false;

//get interface to top level surface of Scene_ Tex
hr = Scene_Tex->GetSurfacelLevel (0,&Scene_Surface);
if(FAILED(hr))

return false;

//generate 100 reticle textures (half the scene width for CONSCAN)
for (int t = 0; t<100; t++){
hr = D3DXCreateTexture(
Device,
ReticleSize, ReticleSize, //was SceneSize/2
1, // no mipmap chain
0,//usage
D3DFMT_R32F,
D3DPOOL_DEFAULT,
&Reticle_Tex[t]):
if(FAILED(hr))
return false;

//get interface to top level surface of each tex
hr = Reticle_Tex[t]->GetSurfacelLevel (0,&Reticle_Surface[t]):;
if(FAILED(hr))

return false;

3
return true;

}

1/
// InitRenderTargets_hybridQ

V{4
bool InitRenderTargets_hybridQ) {

HRESULT hr = 0;

int Init_RTSize;

// set initial RT size

// scene can be 1024, 512 or 256

// reticle can be 512, 256 or 128

if (ReticleSize == 128){ //was SceneSize == 256
Init_RTSize = 512; //scenesize/4 * 8
Reducelterations = 3;

}

else if (ReticleSize == 256){
Init_RTSize = 1024;
Reducelterations = 3;

}

else {
Init_RTSize = 2048;
Reducelterations = 4;

3

//SET OutTexSize

// the size of the final RT we will get our

// result from

// affects GetRTData()

OutTexSize = 8*ReticleSize/(2*((int)pow(4,Reducelterations)));://was 4*SceneSize
//changed for CONSCAN

OutPixels = OutTexSize*OutTexSize;
//SET TexIndex

144

// the array index of the RT_Reduce_ Surface[] that will contain
// the final result; affects GetRTData()
TexIndex = Reducelterations-1;

// create initial RT (half the reticle pallette size)
hr = Device->CreateTexture(Init_RTSize, Init_RTSize,1,D3DUSAGE_RENDERTARGET,
D3DFMT_| R32F ,D3DPOOL_| DEFAULT, &RT_Tex,0); //D3D FORMAT
if(FAILED(hr))
return false;

//get interface to top level surface
= RT_Tex->GetSurfacelLevel(0, &RT_Surface);
|f(FAILED(hr))
return false;

// create render targets for reduction op (2 or 3)
int Size = Init_RTSize/4;
for (int i=0; i<Reducelterations; i++){
hr'= D3DXCreateTexture(
Device,
Size, Size,
1, // no mipmap chain
D3DUSAGE_RENDERTARGET, //could be DYNAMIC, but not DYNAMIC and RT
D3DFMT_R32F,// D3D_| FORMAT,
D3DPOOL_DEFAULT,
&RT_Reduce Tex[l]):
if(FAILED(hr))
return false;

//get interface to top level surface
hr = RT_Reduce_Tex[i]->GetSurfaceLevel (0, &RT_Reduce_Surface[i]):
if(FAILED(hr))

return false;

Size /= 4;
H

//create SYSTEMMEM tex to send result to
hr = D3DXCreateTexture(
Device,
OutTexSize, OutTexSize,
1, // no mipmap chain
D3DUSAGE DYNAMIC, // usage could be DYNAMIC, but not DYNAMIC and RT
D3DFMT_R32F,// D3D FORMAT
D3DPOOL_SYSTEMMEM.,
&0nes_Tex):
if(FAILED(hr))
return false;
//get interface to top level surface of Ones_Tex[]
hr = Ones_Tex->GetSurfacelLevel (0, &0nes_Surface);
if(FAILED(Chr))
return false;

//
// *** OFFSET ARRAYS FOR 16:1 REDUCE
//

// PixelSize of input texture to first reduce op
float PixelSize2 = 1/(float) Init_RTSize;

// calculate displacements
for (int k = 0; k<Reducelterations; k++){
for (int i = 0; i<4; i++){
for(int j = 0; j<4; j++){
} offset[k][1*4 +j] = D3DXVECTOR2(PixelSize2*(float)j, PixelSize2*(float)i):
Hy

PixelSize2 *= 4.0f;
H

return true;
3}/7/ InitRenderTargets_hybridQ

1/
// SetupQ

// Initializes geometry, renderstate, calls

// InitRenderTargets, InitShaders, InitReticlesAndScene
V{4

bool Setup(Q {

HRESULT hr = 0;

/)= DISABLE unneeded processing ------————————————
// turn off Stencil and Culling
hr = Device->SetDepthStenci ISurface(

0):
if(FAILED(hr))
return false;
hr = DeV|ce—>SetRenderState(D3DRS CULLMODE , D3DCULL_NONE) ;
if(FAILED(hr))
return false;
// disable lighting

Device->SetRenderState(D3DRS_LIGHTING, false):
1/ create geometry
D3DVERTEXELEMENT9 decl[]=

{0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
D3DDECL_ENDQ)

3:
// declare the vertex structure
hr = Device->CreateVertexDeclaration(decl, &m_pDecl);
if(FAILED(hr))
return false;
// create VB with only x,y position
hr = Device->CreateVertexBuffer(56 * sizeof(CUSTOMVERTEX), //was 4
D3DUSAGE_WRITEONLY,

145

D3DPOOL_DEFAULT,
&QuadVB,
NULL):
if(FAILED(hr))
return false;

float left
float right
float top
float bottom
float top_row2
float top_row3
float top_row4
float top_row5
float top_row7
float top_row8
float bot_rowl
float bot_row2
float bot_row4
float bot_rows
float bot_rowé
float bot_row7

CUSTOMVERTEX* v;
QuadVB->Lock(0, 56 * sizeof(CUSTOMVERTEX), (VOID**)&v, 0);//was 4

//quad 0 full square
// left bottom

v[0].x = left;
v[0].y = bottom;//bottom
// left top

v[1].x = left;
v[1].y = top;

// right bottom
v[2].x = right;
v[2].y = bottom;//bottom

// right top
v[3]-x = right;
v[3].y = top;

//quad 1 ri-5
// left bottom

v[4].x = left;
v[4].y = bot_row5;//5
// left top

v[5].x = left;
v[5].y = top;

// right bottom
v[6]-x = right;
v[6].y = bot_row5;//5

// right top
v[7]-x = right;
v[7].y = top;

//quad 2 r2-6
// left bottom
v[8].x = left;
v[8].y = bot_row6;

// left top
left;
v[9].y = top_row2;

// right bottom

v[10].x = right;
v[10].y = bot _row6;
// right top
v[11].x = right;
v[11].y = top_row2;

//quad 3 r3-7

// left bottom
v[12].x = left;
v[12].y = bot_row7;

// left top
v[13].x = left;
v[13].y = top_row3;

// right bottom
right;
v[14].y = bot_row7;

// right top
v[15].-x = right;
v[15].y = top_row3;

//quad 4 r4-8
// left bottom

v[16].x = left;
v[16].y = bottom;
// left top
v[17].x = left;
v[17].y = top_row4;
// right bottom
v[18].x = right;
v[18].y = bottom;

// right top

146

v[19] -x
v[19].y

//quad 5 ri-6

// left bottom
v[20].x = left;
v[20].y = bot_row6;

right;
top_row4;

p
v[21].x = left;
v[21].y = top:

right;
v[22].y = bot _row6;

// right top
v[23].x = right;
v[23].y = top;

//quad 6 r2-7
// left bottom

v[24].x = left;
v[24].y = bot_row7;
// left top
v[25].x = left;
v[25].y = top_row2;
// right bottom
v[26].x = right;
v[26].y = bot_row7;
// right top
v[27].x = right;
v[27].y = top_row2;

//quad 7 r3-8
// left bottom

v[28].x = left;
v[28].y = bottom;
// left top
v[29].x = left;
v[29].y = top_row3;
// right bottom
v[30].x = right;
v[30].y = bottom;
// right top
v[31].x = right;
v[31].y = top_row3;
//quad 8 T1

// left bottom
v[32].x = left;
v[32].y = bot_rowl;

// left top
v[33].x = left;
v[33].y = top;

// right bottom
right;
v[34].y = bot _rowl;

// right top

v[35].x = right;
v[35].y = top;
//quad 9 B2

// left bottom
v[36].x = left;
v[36].y = bottom;
// left top
v[37].x = left;
v[37].y = top_row7;
// right bottom
v[38].x = right;
v[38].y = bottom;
// right top
v[39].x = right;
v[39].y = top_row7;

//quad 10 T4
// left bottom

v[40].x = left;
v[40].y = bot_row4;
// left top
v[41].x = left;
v[41].y = top:

// right bottom
v[42] .x = right;
v[42].y = bot_row4;
// right top
v[43].x = right;
v[43].y = top:

//quad 11 B1
// left bottom
v[44].x = left;

147

v[44].y = bottom;

// left top
v[45].x = left;
v[45].y = top_row8;
// right bottom
v[46].x = right;
v[46].y = bottom;
// right top
v[47].x = right;
v[47].y = top_row8;

//quad 12 B4

// left bottom
v[48].x = left;
v[48].y = bottom;

// left top
v[49].x = left;
v[49].y = top_row5;
// right bottom
v[50].x = right;
v[50].y = bottom;
// right top
v[51].x = right;
v[51].y = top_row5;

//quad 13 T2

// left bottom
v[52].x = left;
v[52].y = bot_row2;

// left top
v[53]-x
v[53].y

right;
v[54].y = bot_row2;

// right top
v[55]-x = right;
v[55].y = top;

QuadVB->UnlockQ;

// set vertex declaration
Device->SetVertexDeclaration(m_pDecl);

// set geometry

Device->SetStreamSource(0, QuadvB, 0, sizeof(CUSTOMVERTEX));

//Device->SetSamplerState(1,D3DSAMP_ADDRESSU,D3DTADDRESS_CLAMP);
//Device->SetSamplerState(1,D3DSAMP_ADDRESSV,D3DTADDRESS_CLAMP);
return true;
3}//Setup(Q
private:
1/

7/ LOAD INPUT SCENE ——m——mm—mmmmmmmmemm

V{4
bool LoadlnputScene(float p_inputArray[]) {
RECT SurfRect;

SurfRect. left = 0;
SurfRect.top = 0;
SurfRect.right = SceneSizeX;
SurfRect._bottom = SceneSizeY;

HRESULT hr = 0;
hr= D3DXLoadSurfaceFromMemory(
Scene_Surface,

o,

p_inputArray,

D3DFMT_R32F,

(4*SceneSizeX), //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format
0

&éurfRect,
D3DX_FILTER_NONE,

0):
if(FAILED(hr))
return false;
return true;
3}//LoadlnputScene()

1/
// bool MAddReduce(Q)

V44
bool MAddReduce(int* p_retindex, int* p_xdisp, int* p_ydisp){
HRESULT hr = 0;

// -——- set PS and VS shaders
Device->SetVertexShader(VS1_maddreduce);
Device->SetPixelShader(PS1_maddreduce);

// set VS PixelSize const

/ _x = 1/reticle img width, .y = 1/scenewidthX, .z = 1/scenewidthY, .w = 0_0F

hr = VS1_VSCT->SetVector(Device, VS1 PixelSizeHandle,
&D3DXVECTOR4(1.0f/(float)ReticleSize, 1.0f/(float)SceneSizeX,
1._0f/(float)SceneSizeY, 0.0F));:

if(FAILED(hr))
return false;
//was 2/SceneSize and 1/SceneSize

148

// set Aspect in VS; allows for arbitrary scene dimensions
D3DXVECTOR2 aspect;

aspect.x = (float)ReticleSize/(float)SceneSizeX; //0.5F;
aspect.y = (float)ReticleSize/(float)SceneSizeY; //0.5F;

hr = VS1_VSCT->SetFloatArray(Device,
VS1_AspectHandle,
(float*)aspect,2);
if(FAILED(hr))
return false;

// -——- set RT
hr = Device->SetRenderTarget(

0,
RT_Surface);
if(FAILED(hr))
return false;
//Device->Clear(0,0,D3DCLEAR_TARGET,O0L,0,0);
Device->SetStreamSource(0, QuadvB, 0, sizeof(CUSTOMVERTEX));

D3DVIEWPORTY vp;

vp_Width = ReticleSize/2;
vp.Height = RetlcleSlze/Z
vp.MinZ = 0.0F;
vp.MaxZ = 1.0F;

Device->SetTexture(1, Scene_Tex);//stage 1 = input scene

D3DXVECTOR2 displacement;
float f_dis|

float f dispy:
float halfRetX:
float haIfRetY'
int index = 0;

for (int v = 0; v<5; v++){
for (int h = 0; h<8; h++){

vp.X = h*ReticleSize/2;
vp.Y = v*ReticleSize/2;
DeV|ce—>SetViewport(&vp):
// set sampler O with reticle image for maddredux with scene
index = v*8+h;
Device->SetTexture(0, Reticle Tex[p_retlndex[index]]):

//new displacement vector added for conscan x/y offset in VS

T _dispx = (Float)p_xdisp[index]/(float)SceneSizeX;

T _dispy = (Float)p_ydisp[index]/(float)SceneSizeY;

halfRetX = (float)(ReticleSize/2)/(float)SceneSizeX;

halfRetY = (float)(ReticleSizes/2)/(float)SceneSizeY;

displacement_x = 0.5F + f dispx - halfRetX +1.0f/(2.0f*(float)SceneSizeX);;
displacement.y = 0.5F - f dispy - halfRetY + 1.0f/(2.0F*(Float)SceneSizeY);

hr = VS1_VSCT->SetFloatArray(Device,
VS1_DisplacementHandle,
(float*)displacement,
2);
if(FAILED(hr))
return false;

// render-- madd scene with a single reticle image
Device->BeginScene():

Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2):;
Device->EndScene():;

3

// set streamsource to 8x5 rectangle ri-r5, Quad 1
Device->SetStreamSource(0, QuadVB, 4*S|zeof(CUSTOMVERTEX) sizeof(CUSTOMVERTEX)) ;
return true;

3} /7/MAddReduceQ

1/
// Redux(Q
;; 16:1 REDUCE OPERATION

V{4
bool Redux() {
HRESULT hr = 0;

// -——- set PS and VS shaders
Device->SetVertexShader(VS2_16tapreduce);
Device->SetPixelShader (PS2_16tapreduce):

// initial source tex is result of maddreduce op
Device->SetTexture(0, RT_Tex):

for (int i = 0; i < Reducelterations; i++) {

hr = Device->SetRenderTarget(O, RT_Reduce_Surface[i]):
if(FAILED(hr))
return false;

if (i>0)
Device->SetTexture(0, RT_Reduce_Tex[i-1]):

// set VS offset constant array
hr = VS2_VSCT->SetFloatArray(Device,
VS2_offsetHandle,
(Float*)&offset[i]1[0].
16);// 2*8 floats
if(FAILED(hr))
return false;

// set PS offset constant array

hr = PS2_PSCT->SetFloatArray(Device,
PS2_ offsetHandIe

149

(Float*) &offset[i][8].
16);//2*8 floats
if(FAILED(hr))
return false;

// render-- do 16:1 reduction
//Device->Clear(0,0,D3DCLEAR_TARGET,0L,0,0);
Device->BeginScene():

Device->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2):;
Device->EndScene();

3
return true;

3} /77 Redux(Q)
1/
// GetRTData_hybrid(Q)
;; retrieve FINAL data from lockable render-to surface
void GetRTData_hybrid(double p_b[1) {
HRESULT hr = 0;
int q;
int col;
int row;

D3DLOCKED_RECT lockedRect;

Device->GetRenderTargetData(RT_Reduce_Surface[TexIndex]. Ones_Surface);
Ones_Surface->LockRect(&lockedRect,

0 , //lock entire tex

D3DLOCK_READONLY); //flags

float* imageData = (float*) lockedRect.pBits;

//perform final 4:1 reduction if necessary and add 4 components of each pixel
if (OutTexSize>8){
for (int i = 0; i<40; i++){

row = i/8;

col = i%8;

q = row*32 + col*2;

p_b[i]= imageData[q] + imageData[q+1] + imageData[q+16] + imageData[q+17];

H
}
else {
for (int i = 40; i++){
} p_b[i]=imageData[i]:

Ones_Surface->UnlockRect();

return;
}// GetRTData hybridQ

1/
// Release() and Delete()
;; cleanup functions
template<c!$?s T> void Release(T t) {
i
t->Release();
} H
3
template<class T> void Delete(T t){
iIfCt){
delete t;
t =0;
H
3
1/
// CleanupQ)
// releases textures/surfaces/interfaces/devices/memory
// allocated during program

V{4
¥oid CleanupQ)

//vertex buffer and declaration
Release<IDirect3DVertexBuffer9*>(QuadVB) ;
Release<LPDIRECT3DVERTEXDECLARATIONS> (m_pDecl);

//textures _and surfaces
Release<IDirect3DSurface9*>(Scene_Surface);
Release<IDirect3DTexture9*>(Scene_Tex) ;

int n = 100;

for (int t = 0; t<n;t++){
Release<IDirect3DSurface9*>(Reticle_Surface[t]):
Release<IDirect3DTexture9*>(Reticle_Tex[t]);

}

Release<IDirect3DTexture9*>(RT_Tex);
Release<IDirect3DSurface9*>(RT_Surface);

for (int t = 0; t<Reducelterations; t++) {
Release<IDirect3DSurface9*>(RT_Reduce_Surface[t]):
Release<IDirect3DTexture9*>(RT_Reduce_Tex[t]):

}

Release<IDirect3DTexture9*>(0Ones_Tex);
Release<IDirect3DSurface9*>(0Ones_Surface);

//PS & VS

150

Release<IDirect3DPixelShader9*>(PS1_maddreduce);
Release<ID3DXConstantTable*>(PS1_PSCT);
Release<ID|rect3DVertexShader9*>(VSl maddreduce)
Release<ID3DXConstantTable*>(VS1_VSC
Release<IDirect3DPixelShader9*>(PS2_. 16tapreduce)
Release<ID3DXConstantTable*>(PS2_PSC
Release<IDirect3DVertexShader9*>(VS2_. 16tapreduce)
Release<ID3DXConstantTable*>(VS2_VSCT);

Device->Release();
3}// CleanupQ
public:
1/

// uploadReticle

V{4
bool uploadRetche(lnt p index, float p_array[1){
HRESULT hr =

RECT srcRect;

srcRect_top = 0;

srcRect. bottom = ReticIeSize' // /72 for CONSCAN

srcRect._left =

srcRect.right = RetlcleSlze //change from SceneSize/2 to ReticleSize

hr= D3DXLoadSurfaceFromMemory(
Reticle_Surface[p_index].
o,
p_array,
D3DFMT_R32F,
(4*ReticleSize), //16 for 4x32-bit, 8 for 2x32-bit, 4 for 1x32F format
77 SceneSize/2 for CONSCAN
&SrcRec
D3DX_| FILTER NONE,

0):
if(FAILED(hr))
return false;

return true;

// ProcessQ
// user interface to GPU algorithm
// input: reference to scene image array variable-- scene[SceneSizeX *SceneSizeY]
// input: references to arrays in calling program:
/7/ reticlelndex[40],, xdisp[40]. ydisp[40]. resultArray[40]
// output: double result array[40]——output to JMASS
void Process(int p_retindex[], float p_SceneArray[]. double p_resultArray[].
int p_xdisp[]. int p_ydisp[) {
Load InputScene(p_SceneArray);
MAddReduce(p_retIndex, p_xdisp, p_ydisp):
Redux(Q:
GetRTData_hybrid(p_resultArray);
return;
3}/7/ ProcessQ

int GetAlgQ{

return 3;//one by one, R32F, CONSCAN
3
7/
V4 ~ Gpu() DESTRUCTOR
~GpuConscan() {

Cleanup(Q):
}// ~ Gpu(Q) DESTRUCTOR

}:
#endif // GPU_CLASS H BY MAJ_JEFFERS

151

file: vs_CONSCAN.txt (adapted from vs_experimental)
BY MAJ SEAN JEFFERS
11 nov 04 -- multiplies 1x1 scene by 8x8 reticle pallette, then does

2 jan 05

5 jan 05 -

4:1 redux; results in RT that is quarter sized of pallette;
sampling of scene done w/wrapping
PixelSize.x = 1/ret pallette width
PixelSize.y = 1/scene width
PixelSize.z = 0.0f (must!)
VS generates 8 texcoords for PS
scene is 4x RT width; ret is 2x RT width
implements CONSCAN
PixelSize.w = x-displacement texcoord wrt scene
= x/scene_width , where x is pixel displacement {0..scene_width-1}
PixelSize.x = 1/ret width
PixelSize.y = 1/scene width
modified to have separate displacement and aspect consts

uniform float4 PixelSize;
uniform float2 Displacement;
uniform float2 Aspect;

V4

structures

struct VS_INPUT
{

}:

float4 Pos

struct VS_OUTPUT
{

}:

VA

float4 Pos

float2 Tex :
float2 Texl1:

float2 Tex2
float2 Tex3
float2 Tex4
float2 Tex5
float2 Tex6
float2 Tex7

POSITION;

POSITION;
TEXCOORDO;
TEXCOORD1;
TEXCOORD2;
TEXCOORD3;
TEXCOORD4 ;
TEXCOORDS;
TEXCOORDG ;
TEXCOORD7 ;

// vertex shader function (input channels)

VS_OUTPUT Main(VS_INPUT input)
{

VS_OUTPUT output = (VS_OUTPUT)O:

output_Pos.xy = input._Pos.xy;// + PixelSize.xy;
-

output_Pos.z
output_Pos.w

1.0f;

//reticle tex coords (ret width = 2x RT width)

output.Tex = float2(0.5F, -

output._Texl
output._Tex2
output._Tex3

//scene tex
output._Tex4
output._Tex5
output._Tex6
output._Tex7

5f) * input.Pos.xy + 0.5F.xx ;
= output.Tex + elSize_xw;
= output_Tex + PixelSize._wx;
= output_Tex + PixelSize.xx;

coords (scene width = 4x RT width)

Aspect*output.Tex + Displacement;//was 0.5f *adds in x-disp
output_Tex4 + PixelSize.yw;

output_Tex4 + PixelSize.wz; // y now SceneSizeX

= output.Tex4 + PixelSize.yz; //changed z to w, z now SceneSizeY

return output;

152

// file: ps_CONSCAN.txt

// depends on: Ffile vs onebyone.txt, GPU_CLASS ONEBYONE_R32F_h
// By: Maj Sean Jeffers
// descr: modified version of ps_maddreduce new for CONSCAN

;; PS for mult, add, reduce, 4:1; one-by-one approach using R32F textures only
// 27 dec 04 —-— use with GPU_CLASS_ONEBYONE_R32F.h for CONSCAN

// does maddreduce op with input tex"s R32F, output tex R32F

// -- "dot™ approach seems to work a little faster than other

// commented out approach; but both work

// -- eliminated "noise” caused by dot product by assigning tex samples
// to individual float vector components vs. full float4

;; 2 jan 05 -- modified to do conscan approach; accept 8 texcoords, all R32F tex"s
// globals

V4

sampler Rendersampler; //reticle img (2x RT width)
sampler Rendersampler2;//scene img (4x RT width)

/7
// structures
V4

struct PS_INPUT
{

float2 TexO : TEXCOORDO;
float2 Texl : TEXCOORD1:;
float2 Tex2 : TEXCOORD2;
float2 Tex3 : TEXCOORD3;
float2 Tex4 : TEXCOORD4;
float2 Tex5 : TEXCOORDS;
float2 Tex6 : TEXCOORD6;
float2 Tex7 : TEXCOORD7;

}:
// struct PS_OUTPUT
/7

{
;; 3 float4 clr - COLOR; //was COLORO

/7
;; Pixel Shader (input channels):output channel

float4 PSMain(PS_INPUT input) :COLOR
{

float4 t1;
tl.r = tex2D(Rendersampler, input.Tex0);

tl.g = tex2D(Rendersampler, input.Texl);

tl.b = tex2D(Rendersampler, input.Tex2);

tl.a = tex2D(Rendersampler, input.Tex3);

float4 t2;

t2_.r = tex2D(Rendersampler2, input.Tex4):;
t2_.g = tex2D(Rendersampler2, input.Tex5);
t2_b = tex2D(Rendersampler2, input.Tex6):;
t2_a = tex2D(Rendersampler2, input.Tex7):;

// madd ret (t1) & scene (t2)

return dot(tl, t2);

153

#ifndef GPU_UTILITY_BY_MAJ_JEFFERS
#define GPU_UTILITY_BY_MAJ_JEFFERS

namespace d3d {

LRESULT CALLBACK Gpu_WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM IParam)
{

return DefWindowProc(hWnd, message, wParam, IParam);

3
ATOM Gpu_WndClass(HINSTANCE hinstance) {

WNDCLASSEX wcex;
wcex.cbSize
wecex.style

wcex . IpfnWndProc
weex.cbClsExtra
wcex.cbWndExtra
wcex._hlnstance
wcex._hlcon
wcex.hCursor

sizeof(WNDCLASSEX) ;

CS_HREDRAW | CS_VREDRAW;

(WNDPROC)d3d: :Gpu_WndProc;// (WNDPROC)
03

hlnstance;

Loadlcon(hinstance, (LPCTSTR)IDI_WIN_CONSCAN);
LoadCursor(NULL, IDC_ARROW);

wcex - hbrBackground (HBRUSH) (COLOR_WINDOW+1) ;

wcex . IpszMenuName 0;//no menu

wcex. IpszClassName = "Gpu_WndClass™;

wcex.-hlconSm = Loadlcon(wcex.hInstance, (LPCTSTR)IDI_SMALL);

return RegisterClassEx(&wcex) ;

3

bool InitD3D(HINSTANCE hlnstance, int nCmdShow,
int width, int height,
bool windowed,
D3DDEVTYPE deviceType,

< 1Direct3DDevice9** device)

// create GPU window
d3d: :Gpu_WndClass(hlnstance) ;
HWND hWnd2 = CreateWindow("Gpu_WndClass"™, "GPU", WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, O, CW_USEDEFAULT, O, NULL, NULL, hlnstance, NULL):
if (*hwnd2){
return FALSE;

3
//ShowWindow(hWnd2, nCmdShow) ;
//UpdateWindow(hWnd2) ;

V4
// Init D3D:
V4

HRESULT hr = 0;
// Step 1: Create the IDirect3D9 object.

1Direct3D9* d3d9 = 0;
d3d9 = Direct3DCreate9(D3D_SDK_VERSION) ;

if(1d3d9)
{

= :MessageBox(0, "Direct3DCreate9() - FAILED™, 0, 0);:
return false;

H
// Step 2: Check for hardware vp.

D3DCAPS9 caps:
d3d9->GetDeviceCaps(D3DADAPTER _DEFAULT, deviceType, &caps):

int vp = 0;
if(caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDL IGHT)

vp = D3DCREATE_HARDWARE_VERTEXPROCESSING; //SOFTWARE if debug
else

vp = D3DCREATE_SOFTWARE_VERTEXPROCESSING;

// Step 3: Fill out the D3DPRESENT_PARAMETERS structure.

D3DPRESENT_PARAMETERS d3dpp:
d3dpp-BackBufferWidth
d3dpp-BackBufferHeight
d3dpp-BackBufferFormat
d3dpp-BackBufferCount
d3dpp-MultiSampleType
d3dpp-MultiSampleQuality
d3dpp.-SwapEffect

width;

height;
D3DFMT_X8R8G8B8;
DéDMULTISAMPLE_NONE;

DéDSWAPEFFECT_DISCARD;

d3dpp-hDeviceWindow hWnd2;
d3dpp -Windowed windowed;
d3dpp-EnableAutoDepthStenci | false;

d3dpp-AutoDepthStenci lFormat
d3dpp-Flags
d3dpp-FullScreen_RefreshRatelnHz
d3dpp-Presentationlnterval

D3DFMT_D24S8;
0-

DéDPRESENT_RATE_DEFAULT;
D3DPRESENT_INTERVAL _IMMEDIATE;

// Step 4: Create the device.

hr = d3d9->CreateDevice(
D3DADAPTER_DEFAULT, // primary adapter

deviceType, // device type

hwnd2, // window associated with device
vp, // | D3DCREATE_FPU_PRESERVE, // vertex processing
&d3dpp, // present parameters

device); // return created device

Ef(FAILED(hP))

// try again using a 16-bit depth buffer
d3dpp-AutoDepthStencilFormat = D3DFMT_D16;

154

hr = d3d9->CreateDevice(
D3DADAPTER_DEFAULT,
deviceType,
hwnd2,
vp,
&d3dpp,
device);

if(FAILED(hr))

d3d9->Release(); 7/ done with d3d9 object
: :MessageBox(0, "“CreateDevice() - FAILED", 0, 0);
return false;

3
}

d3d9->Release(); 7/ done with d3d9 object

return true;

3
3} //namespace d3d

#endif //GPU_UTILITY_BY_MAJ_JEFFERS

155

This page intentionally left blank.

156

[Air04]

[BFHO04]

[HeP96]

[IntO4a]

[Int04b]

[Jai91]

[J0i04]

[KrWo03]

[LaMO1]

[LWKO3]

[Mac03]

[MaV§83]

[MoA03]

Bibliography
Reticle resolution and scene update rates. Paper provided by AFIWC.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatabalian, M. Houston, P
Hanrahan. Brook for GPUs: stream computing on graphics hardware. To
appear at SIGGRAPH 2004. http://www.gpgpu.org/

J. Hennessy and D. Patterson. Computer architecture a quantitative approach.
2d ed., Morgan Kaufmann, 1996.

Intel 875 chipset.
http://www.intel.com/design/chipsets/875P/pix/875 schematic.gif

PCI Express bandwidth.
http://www.intel.com/technology/pciexpress/devnet/desktop.htm

R. Jain. The Art of Computer Systems Performance Analysis. John Wiley &
Sons, 1991.

JMASS code portions provided by AFTWC.

J. Kruger and R. Westermann. Linear algebra operators for GPU
implementation of numerical algorithms. ACM Trans. Graph. 22, 3, 908 916,
2003.

E.S. Larsen and D. McAllister. Fast matrix multiplies using graphics
hardware. The International Conference for High Performance Computing
and Communications, November 2001.

W. Li, X. Wei and A. Kaufman. Implementing Lattice Boltzmann
Computation on Graphics Hardware. The Visual Computer, vol. 19, no.7-8,
pp. 444-456, 2003.

M. Macedonia. The GPU enters computing’s mainstream. [EEE Computer,
October 2003.

J. May and M.E. Van Zee. Electro-optic and infrared sensors. Microwave
Journal, September 1983.

K. Moreland and E. Angel. The FFT on a GPU. In Proceedings of Graphics
Hardware, Eurographics Association, 2003.

157

[Mor03]

[Msd04]

[Nvi04]

[PciO4a]

[Pci04b]

[RuSO1]

[THOO02]

[TrS01]

A. Moravanszky. Dense matrix algebra on the GPU. To appear in ShaderX 2
Programming, Wordware, 2003.
http://www.gpgpu.org/cgi-bn/blosxom.cgi/Scientific%20Computing/

HLSL flow control.
http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid
=28000410

NVidia GeForce 6800 technical specifications.
http://www.nvidia.com/page/pg 20040406661996.html

3D labs. http://www.pciexpressdevnet.org/news/archive/msg00846.html

PCI express available this year.
http://www.pciexpressdevnet.org/news/archive/msg00842.html

M. Rumpf and R. Strzodka. Using graphics cards for quantized FEM
computations. In Proceedings VIIP 2001, 2001.

C. Thompson, S. Hahn, M. Oskin. Using modern graphics architectures for
general-purpose computing: a framework and analysis. International
Symposium on Microarchitecture, 2002.

C. Trendall and A. J. Stewart. General calculations using graphics hardware

with applications to interactive caustics. In Rendering Techniques 2000: 11"
Eurographics Workshop on Rendering, June 2001.

158

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
03-21-2005 Master’s Thesis Aug 2003 — Mar 2005

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Accelerating Missile Threat Engagement Simulations Using Personal Computer Graphics Cards 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR 5d. PROJECT NUMBER

Sean E. Jeffers, Major, USAF 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way AFIT/GE/ENG/05-08
WPAFB OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S

453d EWS/EWA ACRONYM(S)

Attn: Ms. ChiLe

102 Hall Blvd STE 331 11. SPONSOR/MONITOR'S

San Antonio, TX 78243-7020 REPORT NUMBER(S)

DSN 969-2391; COMM (210) 977-2391

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT The 453rd Electronic Warfare Squadron supports on-going military operations by providing battlefield
commanders with aircraft ingress and egress routes that minimize the risk of shoulder or ground-fired missile attacks on our
aircraft. To determine these routes, the 453rd simulates engagements between ground-to-air missiles and allied aircraft to
determine the probability of a successful attack. The simulations are computationally expensive, often requiring two-hours for
a single 10-second missile engagement. Hundreds of simulations are needed to perform a complete risk assessment which
includes evaluating the effectiveness of countermeasures such as flares, chaff, jammers, and missile warning systems. Thus,
the need for faster simulations is acute. This research speeds up these mission critical simulations by using inexpensive
commodity PC graphics cards to perform intensive image processing computations used to simulate a heat seeking missile’s
tracking system. The innovative techniques developed in this research reduce execution time by 33% and incorporate a user-
selectable fidelity feature to perform high-fidelity simulations when required. Furthermore, these image processing
computations use only 5% of the available computational capacity of the graphics cards, providing a ready source of additional
computational power for future simulation enhancements. Analysts can now meet shorter suspenses with more accurate
products, ultimately enhancing the safety of Air Force pilots and their weapon systems. With ongoing operations in Iraq and
Afghanistan, and a growing threat at home and abroad posed by the proliferation of man-portable missiles, the speed of these
simulations play an important role in protecting forces and saving lives.

15. SUBJECT TERMS
Computer graphics, Image Processing, Computerized Simulation, Combat Simulation

16. SECURITY CLASSIFICATION 17. LIMITATION OF 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF: ABSTRACT OF Dr. Rusty O. Baldwin
PAGE
REPORT ABSTRACT c. THIS PAGE uu 171 GES 19b. TELEPHONE NUMBER (Include area code)
u u u (937) 255-6565, ext 4445; e-mail: rusty.baldwin@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Strl. 23918

159

	Accelerating Missile Threat Engagement Simulations Using Personal Computer Graphics Cards
	Recommended Citation

	Microsoft Word - THESIS_for_PDF.doc

