21,241 research outputs found

    Towards Compatible and Interderivable Semantic Specifications for the Scheme Programming Language, Part I: Denotational Semantics, Natural Semantics, and Abstract Machines

    Get PDF
    We derive two big-step abstract machines, a natural semantics, and the valuation function of a denotational semantics based on the small-step abstract machine for Core Scheme presented by Clinger at PLDI'98. Starting from a functional implementation of this small-step abstract machine, (1) we fuse its transition function with its driver loop, obtaining the functional implementation of a big-step abstract machine; (2) we adjust this big-step abstract machine so that it is in defunctionalized form, obtaining the functional implementation of a second big-step abstract machine; (3) we refunctionalize this adjusted abstract machine, obtaining the functional implementation of a natural semantics in continuation style; and (4) we closure-unconvert this natural semantics, obtaining a compositional continuation-passing evaluation function which we identify as the functional implementation of a denotational semantics in continuation style. We then compare this valuation function with that of Clinger's original denotational semantics of Scheme

    A QBF-based Formalization of Abstract Argumentation Semantics

    Get PDF
    Supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project).Peer reviewedPostprin

    Modeling time and valuation in structured argumentation frameworks

    Get PDF
    Temporal Argumentation Frameworks (TAF) represent a recent extension of Dung's abstract argumentation frameworks that consider the temporal availability of arguments. In a TAF, arguments are valid during specific time intervals, called availability intervals, while the attack relation of the framework remains static and permanent in time; thus, in general, when identifying the set of acceptable arguments, the outcome associated with a TAF will vary in time. We introduce an extension of TAF, called Extended Temporal Argumentation Framework (E-TAF), adding the capability of modeling the temporal availability of attacks among arguments, thus modeling special features of arguments varying over time and the possibility that attacks are only available in a given time interval. E-TAF will be enriched by considering Structured Abstract Argumentation, using Dynamic Argumentation Frameworks. The resulting framework, E-TAFāˆ—, provides a suitable model for different time-dependent issues satisfying properties and equivalence results that permit to contrast the expressivity of E-TAF and E-TAFāˆ— with argumentation based on abstract frameworks. Thus, the main contribution here is to provide an enhanced framework for modeling special features of argumentation varying over time, which are relevant in many real-world situations. The proposal aims at advancing in the integration of time and valuation in the context of argumentation systems as well.Fil: Budan, Maximiliano Celmo David. Universidad Nacional del Sur. Departamento de Ciencias e IngenierĆ­a de la ComputaciĆ³n; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y TecnologĆ­as. Departamento de MatemĆ”tica; Argentina. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas. Centro CientĆ­fico TecnolĆ³gico Conicet - BahĆ­a Blanca; ArgentinaFil: Gomez Lucero, Mauro Javier. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas. Centro CientĆ­fico TecnolĆ³gico Conicet - BahĆ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierĆ­a de la ComputaciĆ³n; ArgentinaFil: ChesƱevar, Carlos IvĆ”n. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas. Centro CientĆ­fico TecnolĆ³gico Conicet - BahĆ­a Blanca; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y TecnologĆ­as. Departamento de MatemĆ”tica; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierĆ­a de la ComputaciĆ³n; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas. Centro CientĆ­fico TecnolĆ³gico Conicet - BahĆ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e IngenierĆ­a de la ComputaciĆ³n; Argentin

    Attacker and Defender Counting Approach for Abstract Argumentation

    Get PDF
    In Dung's abstract argumentation, arguments are either acceptable or unacceptable, given a chosen notion of acceptability. This gives a coarse way to compare arguments. In this paper, we propose a counting approach for a more fine-gained assessment to arguments by counting the number of their respective attackers and defenders based on argument graph and argument game. An argument is more acceptable if the proponent puts forward more number of defenders for it and the opponent puts forward less number of attackers against it. We show that our counting model has two well-behaved properties: normalization and convergence. Then, we define a counting semantics based on this model, and investigate some general properties of the semantics.Comment: 7 pages, 2 figures;conference CogSci 201

    Some Supplementaries to The Counting Semantics for Abstract Argumentation

    Full text link
    Dung's abstract argumentation framework consists of a set of interacting arguments and a series of semantics for evaluating them. Those semantics partition the powerset of the set of arguments into two classes: extensions and non-extensions. In order to reason with a specific semantics, one needs to take a credulous or skeptical approach, i.e. an argument is eventually accepted, if it is accepted in one or all extensions, respectively. In our previous work \cite{ref-pu2015counting}, we have proposed a novel semantics, called \emph{counting semantics}, which allows for a more fine-grained assessment to arguments by counting the number of their respective attackers and defenders based on argument graph and argument game. In this paper, we continue our previous work by presenting some supplementaries about how to choose the damaging factor for the counting semantics, and what relationships with some existing approaches, such as Dung's classical semantics, generic gradual valuations. Lastly, an axiomatic perspective on the ranking semantics induced by our counting semantics are presented.Comment: 8 pages, 3 figures, ICTAI 201

    Weakly complete axiomatization of exogenous quantum propositional logic

    Full text link
    A weakly complete finitary axiomatization for EQPL (exogenous quantum propositional logic) is presented. The proof is carried out using a non trivial extension of the Fagin-Halpern-Megiddo technique together with three Henkin style completions.Comment: 28 page

    Non-deterministic algebraization of logics by swap structures1

    Get PDF
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoffā€™s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics. This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI, suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics

    Truth-value semantics and functional extensions for classical logic of partial terms based on equality

    Full text link
    We develop a bottom-up approach to truth-value semantics for classical logic of partial terms based on equality and apply it to prove the conservativity of the addition of partial description and partial selection functions, independently of any strictness assumption.Comment: 15 pages, to appear in the Notre Dame Journal of Formal Logi
    • ā€¦
    corecore