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Abstract

Temporal Argumentation Frameworks (TAF') represent a recent extension of
Dung’s abstract argumentation frameworks that consider the temporal avail-
ability of arguments. In a TAF, arguments are valid during specific time in-
tervals, called availability intervals, while the attack relation of the framework
remains static and permanent in time; thus, in general, when identifying the set
of acceptable arguments, the outcome associated with a TAF will vary in time.
We introduce an extension of TAF', called Extended Temporal Argumentation
Framework (E-TAF), adding the capability of modeling the temporal availabil-
ity of attacks among arguments, thus modeling special features of arguments
varying over time and the possibility that attacks are only available in a given
time interval.

E-TAF will be enriched by considering Structured Abstract Argumenta-
tion, using Dynamic Argumentation Frameworks. The resulting framework,
E-TAF*, provides a suitable model for different time-dependent issues satisfy-
ing properties and equivalence results that permit to contrast the expressivity of
E-TAF and E-TAF* with argumentation based on abstract frameworks. Thus,
the main contribution here is to provide an enhanced framework for modeling
special features of argumentation varying over time, which are relevant in many
real-world situations. The proposal aims at advancing in the integration of time
and valuation in the context of argumentation systems as well.
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1. Introduction

Human commonsense reasoning is in many occasions the result of an analy-
sis of alternatives and the evaluation of their support. The study of this process
suggested several formalisms that were introduced attempting to provide a way
of modeling this useful mechanism; notably, the field of argumentation has con-
tributed with many proposals since ancient times [12, 14, 39, 35]. Thus, argu-
mentation can be associated with the interaction of arguments for and against
a claim supported by some form of reasoning from a set of premises, with the
purpose of ascertaining if that conclusion is acceptable.

A variety of argument-based formalisms have emerged providing useful tools
in areas such as legal reasoning, autonomous agents, and multi-agent systems [30,
38, 14, 5, 40, 36, 44, 11]. In such environments, an agent may use argumen-
tation to perform individual reasoning to reach a resolution over contradictory
evidence or to decide between conflicting goals; but also, multiple agents may
use dialectical argumentation to identify and settle differences, interacting via
different processes such as negotiation, persuasion, or joint deliberation. Many
of such accounts of argumentation are based on Dung’s foundational work char-
acterizing Abstract Argumentation Frameworks [24] where arguments are con-
sidered as atomic entities and their interaction is represented solely through an
attack relation. In an effort to extend the knowledge representation abilities of
the system, other research approaches have considered different possibilities of
representation of the internal structure of the arguments [13, 29, 26, 37].

In many cases, commonsense reasoning requires the representation of time;
thus, its consideration is also of relevance in the modeling of the argumentation
capabilities of intelligent agents [6, 7, 33]. Temporal Argumentation Frame-
works (TAF) [22, 23] are a recent extension of Dung’s abstract frameworks that
consider the temporal availability of arguments. In a TAF, arguments are valid
only during specific time intervals that are referred to as awvailability intervals;
thus, when identifying the set of acceptable arguments the outcome associated
with a TAF will vary in time. Although arguments in TAF become associated
with availability intervals, the attack relation between them is assumed to be
static and permanent in time, i.e., if an argument is available at a given time
any attack in which it participates effectively occurs.

In what follows, we will develop two formalisms starting from existing ones.
We will take as point of departure the Temporal Argumentation Frameworks,
and then we will trim down the formalism of Dynamic Argumentation Frame-
works to a simpler framework; later, these two formalisms will be put together
as a novel approach. We will briefly describe these two changes below.

In Ezxtended Temporal Argumentation Frameworks (E-TAF') we will add to
TAF's the capability of modeling the availability of attacks between arguments.
This novel feature of F-TAF will allow to model special features of arguments
varying over time, where an attack can be only available in a given time interval
with the intended meaning that the attacking argument is more reliable than
the attacked one in this interval.



The formalism of Structured Abstract Argumentation (SAA) is based on a
simplified version of the recently introduced Dynamic Argumentation Frame-
works [41]. One of the technical contributions in their design is to consider
structural elements for the arguments involved, thus expanding the represen-
tation capabilities of Dung’s frameworks but maintaining a degree of abstrac-
tion. In this formalization, arguments are represented as structures standing for
trees of smaller abstract entities corresponding to individual reasoning steps.
These individual reasoning steps may be considered as abstractions of rules in
a rule-based argumentation system without having to the make explicit use of
a concrete knowledge representation language. Using this type of frameworks
with less abstract characteristics, we can enrich the E-TAF, and the resulting
framework E-TAF™ will be able to provide a suitable model for different time-
dependent issues, such as reliability, strength, or skills; thus, these features can
be associated with arguments to facilitate the building of applications in several
real-world situations.

The main contribution of this work is to provide an enhanced framework for
modeling special features of argumentation varying over time, which are rele-
vant in many real-world situations. This proposal has also the aim of advancing
in the integration of time and valuation in the context of argumentation sys-
tems. We are interested in preserving the generality of the approach as much as
possible, keeping it independent from any particular representation language,
and considering the internal structure of the arguments involved. Putting these
developments in the theoretical context of computational argumentation, we
will also present some properties and equivalence results for contrasting the
expressivity of E-TAF and E-TAF* with classical abstract argumentation.

We can summarize the rest of the paper following the steps just described.
Next, in Section 2, we will introduce the basic elements of abstract argumenta-
tion; then, in Section 3, we will show how time availability of arguments affects
abstract argumentation, and in Section 4, the extension of E-TAF will show
the addition of availability intervals to attacks. Later, in Section 5, a framework
for structured argumentation will be presented, and in Section 6 we will add
temporal elements to these type of frameworks. We will end this work reviewing
the related literature and offering some conclusions.

2. Abstract Argumentation

Dung presented in [24, 25] the notion of Abstract Argumentation Frameworks
(AF) as a way of concentrating on important characteristics of a defeasible argu-
mentation system from a bare bones, general point of view. In these frameworks,
an argument is considered as an abstract entity with unspecified internal struc-
ture, and whose role in the model is determined only by how it is related to
other arguments through a relation of attack. This abstraction allows the defi-
nition of a number of general argumentation semantics based on acceptability,
which then can be applied to any concrete argumentation system instantiating
the AF.



Definition 1 (Argumentation Framework [25]). An argumentation frame-
work (AF) is a pair (AR, Atts), where AR is a set of arguments, and Atts is a
binary relation defined over AR (representing attack), that is, Atts C AR X AR.

Given an AF, an argument A is considered acceptable if it can be defended
from all the arguments that attack it (attackers) with arguments in AR. These
intuitions are formalized in the following definitions, originally presented in [25].

Definition 2 (Acceptability). Let AF = (AR, Atts) be an argumentation
framework, then:

- A set S C AR is said to be conflict-free in AF' if there are no arguments
A,B € S such that (A, B) € Atts.

— An argument A € AR is considered acceptable with respect to a set S C
AR in AF iff for each B € AR that attacks A there exists an arqument
C € S such that (C, B) € Alts; it is also said that B is attacked by S.

— A conflict-free set S C AR is said to be admissible in AF iff each argument
in S is acceptable with respect to S.

— An admissible set S C AR is a complete extension of AF iff S contains
each argument that is acceptable with respect to S.

From the above definitions, different semantics refining admissibility have been
introduced by Dung [25]. Given AF = (AR, Atts) the following semantics were
defined:

— preferred semantics: A set E C AR is a preferred extension of AF iff F is
a C-maximal admissible set; or equivalently is a C-maximal complete set.
An argument A € AR is acceptable with respect to the preferred semantics
iff A is in every preferred extension E. It can be shown that there exists
always at least one preferred extension.

— stable semantics: A set E C AR is a stable extension of AF iff F is a
conflict free set and E attacks every argument in AR\ E. An argument
A € AR is acceptable with respect to the stable semantics iff A is in every
stable extension E. Every stable extension is a preferred extension, but
the converse does not hold.

— grounded semantics: A set E C AR is the grounded extension of AF
iff £/ is a C-minimal complete set. An argument A € AR is acceptable
with respect to the grounded semantics iff A is a member of the grounded
extension E. There is always exactly one grounded extension, and this
extension is a subset of all preferred and stable extensions.

Notice that regarding the arguments to be accepted by each semantics, we are
following a skeptical approach, i.e., when more than one extension is possible
we accept the arguments that belong to all of them. Dung [25] also presented a
fixed-point characterization of the grounded semantics based on the character-
istic function F' defined below.



Definition 3. Let (AR, Atts) be an AF. The associated characteristic function
is defined as follows: F : 247 — 2AR .

F(S) =4ef {A € AR |A is acceptable w.r.t. S}

The following proposition suggests how to compute the grounded extension
associated with a finitary AF (i.e., such that each argument is attacked by at
most a finite number of arguments) by iteratively applying the characteristic
function starting from 0.

Proposition 1 ([25]). Let (AR, Atts) be a finitary AF. Let i € NU {0} such
that F'()) = F**Y(0). Then F*(0) is the least fived point of F, and corresponds
to the grounded extension associated with the AF.

Example 1. Consider the AF = (AR, Atts) graphically represented in Fig. 1, where
AR ={A,B,C,D,E,F,G,H,I,J, K} and Atts = {(A, B), (B, C), (E, F),(F, D), (D, E),
(H,I),(I,H),(H,J),I,J),(J, K)}.

The sets E1 = {A,C,G,H,K} and B2 = {A,C,G,I,K} are admissible and complete.
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Figure 1: Argumentation Framework

Finally, E1 and E2 are the mazimal sets verifying the previous conditions, and there-
fore they are preferred extensions of AR. As we can see, for a given argumentation
framework there may exist multiple preferred extensions. The intersection of these sets,
{A,C,G, K}, corresponds to the set of accepted arguments according to the preferred
semantics.

In this example there is no stable extension, as there are cycles of odd length. When
there are no cycles of odd length, the stable extensions coincide with the preferred ex-
tensions.

The set Eg = {A,C,G} is admissible, since it defends all the arguments it contains.
Ey is also complete since it contains all the arguments in AR defended by Ey. Finally,
it can be verified that Eo is the minimal set satisfying the previous conditions, and
therefore it corresponds to the grounded extension of AR.



Finally, the grounded extension for the example in Fig. 1 can be obtained by applying
the fixed point characterization from Prop. 1.

FOP) =10

FY(0) = F(0) = {A,G}

F2(0) = F({A,G}) = {A,G,C}
F*(0) = F({A,G,C}) = F*(0)

3. Modeling Temporal Argumentation with TAF

Modeling time has been a concern of researchers in Artificial Intelligence for
many decades (see for instance [1] for a landmark paper in the area). Reviewing
that research is out of the scope of this paper and we refer the interested reader
to [45, 28]. In the area of Argumentation in Artificial Intelligence, the first
attempts to introduce temporal temporal argumentative reasoning can be traced
to [6, 7, 33, 22]. Next, we will recall the basis of [23].

Timed Abstract Frameworks (TAF) [22, 23] incorporate time to abstract
frameworks adding that dimension to arguments; thus, arguments are valid only
during specific intervals of time that are called availability intervals. Attacks
between arguments are considered only when both the attacker and the attacked
arguments are simultaneously available. Therefore, when identifying the set
of acceptable arguments, the outcome associated with a given TAF may vary
accordingly to time.

To represent time, we assume that a correspondence was defined between
the time line and the set of positive real numbers including 0, represented as
Rt ={z € R|0 < x}. A time interval, representing a period of time without
interruptions, will be then represented as defined below. Notice that we use ‘—’
instead of ‘)’ as a separator for legibility reasons.

Definition 4 (Time Interval). Given a,b € R, a time interval, or just an
interval, is a set of positive real numbers. We consider four possible time inter-
vals:

(a=b) =gef {r ERT |a <z < b}
(a=b] =gef {r ERT|a <z <D}
[a—b) =4ef {x €ERT|a <z < b}
[a=b] =gef {z €RT|a <z <b}

As is usual, any of the intervals shown is considered empty if b < a, and the
interval [a—a] represents the point in time {a}. For the infinite endpoint, we
use the symbol +00, as in [a——+00), to indicate that there is no upper bound for
the interval, and an interval containing this symbol will always be closed by “)”.

To model discontinuous periods of time we introduce the notion of time intervals
set. Although a time intervals set suggests a representation as a set of sets (set
of intervals), we chose a flattened representation as a set of reals (the set of all



real numbers contained in any of the individual time intervals). Thusly, we can
directly apply traditional set operations and relations on time intervals sets.

Definition 5 (Time Intervals Set). A time intervals set, or just intervals
set, is a finite set S of time intervals.

Note that S € R*; when convenient, we will use the set of sets notation for time
intervals sets. Concretely, a time interval set .S will be denoted as the set of all
disjoint and C-maximal individual intervals included in the set. For instance, we
will use {(1-3], [4.5—8)} to denote the time interval set (1-3] U [4.5—8). We
now formally introduce the notion of Timed Argumentation Framework, which
extends Dung’s AF by incorporating the availability function. This function
will be used to capture those time intervals where arguments are available.

Definition 6 (Timed Argumentation Framework). A timed argumenta-
tion framework (or simply TAF) is a triple ® = (AR, Atts, Av), where AR
is a set of arguments, Atts is a binary relation defined over AR (representing
attack), and Av : AR — o(R™) is an availability function for timed arguments,
such that Av(A) is the set of availability intervals of an argument A.

Notice that we assume that a set S of intervals is equivalent to the set of time
points associated with every interval in S. Thus, the image for Av is p(R™).
Example 2. Figure 2 depicts the TAF ® = (AR, Atts, Av) where:

AR ={A,B,C,D,E,F,G,H,I,J K}

Atts = {(A, B), (B, C), (B, F), (F, D), (D, E), (H, 1), (I, H), (H,,), (I, J,), (J, K)}.

Av = {(4,{[0-30}); (B, {[10-50]}); (C, {[0-60]}); (D, {[10-30]}); (E, {[10-30]});
(£, {[0-30]}); (&, {[0-90}); (H, {[10-50]}); (1, {[20—30]}); (4, {[20—30]});
(K, {[20-30})}

The following definitions formalize argument acceptability in TAF, and are
extensions of the acceptability notions presented in section 2 for AF. Firstly,
we present the notion of ¢-profile, binding an argument to a set of time intervals,
which constitutes a fundamental component for time-based acceptability.

Definition 7 (T-Profile). Let ® = (AR, Atts, Av) be a TAF. A timed argu-
ment profile for A in ®, or just t-profile for A, is a pair (A, Ta) where A € AR
and and Ty is a set of time intervals where A is available, i.e., Ta C Av(A).
The t-profile (A, Av(A)) is called the basic t-profile of A.

Definition 8 (Collection of T-Profiles). Let ® = (AR, Atts, Av) be a TAF.
Let (X1,7Tx,), (X2, 7Tx,), -, (X, Tx,) be t-profiles. The set S = {(X1,Tx,),
(X2, Txs), s (X0, Tx,))} is a collection of t-profiles iff it verifies the following
conditions:

i) Xi # X; for alli,j such thati#j,1<4i,j<n.

it) Tx, # 0, for all i such that 1 <i < n.
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Figure 2: TAF corresponding to example 2

Since the availability of arguments varies in time, the acceptability of a given
argument A will also vary in time. To do this, it is necessary to introduce
two new concepts corresponding to the intersection and inclusion of t-profiles,
denoted as t-intersections and t-inclusions, formalized below:

Definition 9 (t-intersection). Let ® = (AR, Atts, Av) be o TAF. Let Sy and
S be two collections of t-profiles. We define the t-intersection of S1 and Ss,
denoted S1 Ny S2, as the collection of t-profiles such that:

S1Ne So ={(X, Tx NTx/) | (X, Tx) € S1,(X,Tx) € So,and Tx N Tx: # 0}

Definition 10 (t-inclusion). Let S; and Sy be two collections of t-profiles.
We say that Sy is t-included in Sy, denoted as S1 C; So, if for any t-profile
(X, Tx) € Sy there exists a t-profile (X, T%) € Sy such that Tx C T.

The following definitions reformulate Dung’s original formalization for abstract
argumentation considering t-profiles instead of arguments. First, we will extend
the notion of conflict-free set to t-profiles in a TAF, and then we will define
how an argument is defended over time.

Definition 11 (¢-conflict-free). A collection S of t-profiles is said to be
t-conflict-free in a TAF ® if there are no t-profiles (A, Ta),(B,Tg) € S such
that (A, B) € Atts and To N Tp # 0.

Definition 12 (Defense of A from B by S). Given ® = (AR, Atts, Av), let
S be a t-conflict-free collection of t-profiles, and A, B € AR, with t-profiles
(A, Av(A)) and (B, Av(B)) respectively. The defense t-profile of A from B
w.r.t. S, denoted as T(ﬁls) is defined as follows:

T 1s) =der Av(A)N U Av(B)NTe
Ce{X | (X,Tx)€eS, (X,B)eAtts}



Intuitively, A is defended from the attack of B when B is not available, plus
those intervals where the attacker B is available but it is in turn attacked by an
argument C in the set S. The following definition captures the defense profile
of A, but considering all its attacking arguments.

Definition 13 (Acceptable t-profile of A w.r.t. S). Let & = (AR, Atts, Av)
be a TAF, let S be a collection of t-profiles. The acceptable t-profile for A w.r.t.
S, denoted as T(as) is defined as follows:

Tials) =des N (Av(A) \ Av(B)) U T4s)
Be{X|(X,A)eAtts}

Where ﬁﬁls) is the time interval where A is defended of its attacker B by S.
Then, the intersection of all time intervals in which A is defended from each
of its attackers by the set S, is the time interval where A is available and is
acceptable with respect to S.

Now, we introduce versions of admissibility and completeness suitably extended
for the context of temporal argumentation frameworks.

Definition 14 (t-admissible/ t-complete). Given the TAF ® = (AR, Alts, Av):

~ A collection S of t-profiles is t-admissible in @ iff for all (A, Tias)) € S
it holds (A, T as)) is an acceptable t-profile of A w.r.t. S.

— A t-admissible collection S is a t-complete extension of ® iff S contains
all the t-profiles that are acceptable with respect to S.

As in the framework proposed by Dung, we can define now the acceptability
semantics for TAF'.

Definition 15. Let ® = (AR, Atts, Av) be a TAF, we can define the t-preferred
semantics, t-stable semantics, and t-grounded semantics as follows:

— t-preferred semantics: A collection E of t-profiles is a t-preferred exten-
sion of ® iff E is a C;-mazximal t-admissible collection of t-profiles.

~ t-stable semantics: Given a collection E = {(Y;, Ty, 1)) |1 <@ < n} of
t-profiles that satisfies t-conflict-freeness, E is a t-stable extension of ®
iff for all X € AR\ {Y;|1 < i <n} with t-profile (X, Tx) it holds that:

Tx \ U Tviie)y =0

=1

— t-grounded semantics: A collection E of t-profiles is the t-grounded ex-
tension of ® iff E is a Ci-minimal t-complete collection of t-profiles.

Regarding the arguments to be sanctioned in each semantics, we will take the
skeptical approach, i.e., when more than one extension exist we will accept
the arguments that belong to all of them. Skeptical acceptability for the three
semantics described can be defined as follows:



Definition 16. Let ® = (AR, Atts, Av) be a TAF, and let {F1,Es,...,E,}
be the set of t-preferred (t-stable) extensions of ®. An argument A € AR is
acceptable under t-preferred (t-stable) semantics with a t-profile (A, Ta) iff
Ta = Niz1 Taje,) and Ta # 0.

An argument A € AR is acceptable under t-grounded semantics in the time
interval T agy iff (A, Taip)) € E, where E is the t-grounded extension.

As in abstract frameworks, the equivalence between a C;-maximal t-complete
extension and C;-maximal t-admissible sets holds; and, t-preferred extensions
are equivalently defined as t-complete C;-maximal sets. The formal statement of
these equivalences appears below; the proof follows directly from the definitions.

Proposition 2. Let ® = (AR, Atts, Av) be a TAF, and let E be a collection of
t-profiles. Then, E is a Ci-maximal t-admissible collection of t-profiles iff E is
a Ci-mazimal t-complete extension.

Also, the t-stable, t-preferred, and t-complete semantics admit multiple exten-
sions, whereas the t-grounded semantics ascribes a single extension to a given
argument system. In particular, the fixed point characterization for grounded
semantics proposed by Dung can be directly applied to TAF by considering the
following modified version of the characteristic function.

Definition 17. Let (AR, Atts, Av) be a TAF. Let S be a collection of t-profiles.
The associated characteristic function is defined as follows:

F(S) =aes {(A, Tea1s))|A € ARand (A, Tias)) is the acceptable t-profile of Aw.r.t. S}

Note that there exiat always an t-grounded extension, and the t-grounded ex-
tension is a t-subset of all t-preferred and t-stable extensions; also, a t-stable
extension is also a t-preferred extension and a t-preferred extension is also a
t-complete extension.

Example 3. Suppose we want to establish the acceptability of C in the TAF ® pre-
sented in example 2. As it was shown in example 1, by considering only the Atts
relation we could conclude that the argument C' is acceptable.

Let us analyze the acceptability of the argument C in the time interval Av(C) in each
semantics of TAF . First we analyze the t-preferred extension, next the t-stable exten-
sion and finally the t-grounded extension. The collections of t-profiles

St = {(A,{[0-30]}); (B, {(30-501}); (C, {[0—-30], (50—60]}); (F, {[0-10)});
(G, {[0-90]}); (H, {[10-50]}); (K, {[20-30]})}.

S2 = {(A, {[0-30]}); (B, {(30-50]}); (C, {[0—30], (50—601}); (F, {[0-10)});
(G, {[0-90}); (H, {[10-20), (30—501}); (1, {[20—30]}); (K, {[20—-30]})}-

are t-admissible, since they defend every t-profile they contain, i.e., for the specific
time intervals involved. S1 and Sa are also t-complete since they include all the t-
profiles defended by C' in their associated time intervals. Finally, it can be verified that
S1 and S2 are the maximal sets satisfying the previous conditions, and therefore both
of them correspond to the t-preferred extension; also, as we can see, it is possible to
obtain multiple t-preferred extensions. The intersection of these collections results in
a collection of accepted t-profiles. For the particular example given above, we have

10
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Figure 3: Representation of the arguments associated with Ex. 3 in a time line

S10e S2 = {(A, {[0-30]}); (B, {(30—50]}); (€, {[0—-30], (50—60]}); (F, {[0-10)});
(G, {[0-901}); (H, {[10-20), (30—50}); (K, {[20-30]})}.

In this example there is no t-stable extension, as there are odd length cycles. When
there are no cycles of odd length, the t-stable extension coincides with the t-preferred
extension. For example, suppose now that we want to establish the acceptability of C
in the TAF ® presented in example 2. As shown in example 1, by considering only
the Atts relation we could conclude that the argument C is acceptable. Let us obtain
the t-grounded extension of ® by applying the fixed point characterization.

FO() =0

FH(0) = {(A,{[0-30]}); (B,{(30—50]}); (C, {[0—10), (50—60]});
(G, {[0-901}); (H, {[10-20), (30—50]}); (F, {[0—10)})}

F2(0) = {(A,{[0-30]}); (B,{(30—50]}); (C, {[0—30], (50—60]});
(G, {[0-901}); (H, {[10-20), (30—50]}); (F, {[0—10)})}

F3(0) = F2(0)
Consequently, F?(() is the t-grounded extension of ®. Next, we describe how the tem-

poral availability of C was obtained in F2(() by applying the definitions 12 and 13
starting from F*(0). By applying definition 12:

Teiry = A0C) N U metx.mo | (7)€ F1 0), (x.5)ensy (AV(B) N Ta) =
= {[0-60]} N ({[10-50]} N {[0-30]}) =
— {[0-60)} N [10—30] =
— {1030}
By definition 13 :

Teirr oy = (Av(C) \ Av(B)) U T(gwl(m)) =

11



= {[0—-10), (50—60]} U {[10—30]} = {[0—30], (50—60]}

4. E-TAF: Extending TAF with time intervals for attacks

Our presentation up to this point assigns a temporal availability to argu-
ments, indicating the temporal interval where the argument is available to sup-
port its conclusion; but, the effectiveness of the argument is still static, i.e., its
ability to support its conclusion does not change in the time interval in which
is available. However, there are domains where the effectiveness of the argu-
ment can vary in time; for example, the reliability of the information used for
recommending a particular investment changes as time passes.

Considering this fluctuation of the effectiveness through the time, it is clear
that the success of an attack between two arguments depends on the time inter-
val in which that attack occurs; therefore, the success of an attack will depend
on the time subinterval when the attacker is more effective than the argument
receiving that attack. This situation is local to the pair of arguments in conflict;
simultaneously, in its time interval, the attacker could be performing an attack
to a different argument but its attack being effective in a different subinterval
of its availability. Therefore, in the case described, two attacks performed by
the same argument have different time intervals of effectiveness associated; for
this reason, it is necessary to associate time to the argument and the attack
separately.

Associating time intervals to attacks is an important extension of the rep-
resentation capabilities of a TAF. This separation allows to model what-if
scenarios to analyze different situations where, for instance, the effectiveness of
attacks and the availability of arguments and attacks change. We will illustrate
these situations below.

We now introduce Extended Temporal Argumentation Frameworks (E-TAF')
adding that capability to TAF's; thus, this framework takes into account not only
the availability of the arguments as in TAF's but adds the consideration of the
availability of the attacks each argument delivers. That is, as the example that
follows illustrates, an argument might be available for consideration but the
attack it carries might not.

In certain situations regulated by law, there is the concept of statute of
limitations. This is a legislative act that sets a time limit on legal action in
certain cases; that is, an enactment in a common law legal system that sets
the maximum time after an event that legal proceedings based on that event
may be initiated. All systems of law have statutes restricting the time within
which legal proceedings may be brought. The periods prescribed may vary
according to how serious the offense was, some crimes never prescribe, and
the time limitations can be extended in special situations.! One reason for

IThe statute of limitations may vary in different countries; for the case of the U.S. see for
instance http://www.statuteoflimitations.net
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having a statute of limitations is that over time evidence can be corrupted or
disappear; thus, the best time to bring a lawsuit is while the evidence is not lost
and as close as possible to the alleged illegal behavior. Another reason is that
people want to get on with their lives and not have legal battles from their past
come up unexpectedly. The injured party has a responsibility to quickly bring
about charges so that the process can begin. Examples of offenses regulated
by statute of limitation laws are fraud, medical malpractice, debt collection,
wrongful death, etc.

Consider the following situation: John has left debts unpaid in Alabama,
US, during 2008. He has canceled them in 2009, but he paid his debts with
counterfeited US dollars, committing fraud. This fraud was detected on Jan 1,
2010. A possible argument exchange for prosecuting John could be as follows:

e Argy: (Plaintiff) John left debts unpaid in Alabama in 2008, therefore the
availability of the argument Arg; is [Jan 1, 2008—+00)

e Args: (Defendant) John paid all his debts in Alabama for 2008, thus Args
is available in the time interval [Jan 1,2009—+00)

o Args: (Plaintiff) John did not cancel his debts in Alabama for 2008, as
he paid them with counterfeited US dollars, committing fraud, so Args is
available in [Jan 1,2010—+00)

According to Alabama’s statute of limitations, the attack from Args to Args
would be valid just until Jan 1, 2012 (that is, 2 years from the moment it was
discovered). Note that Args is valid by itself (as the fraud was committed
anyway), but the statute of limitations imposes a time-out on the attack re-
lationship between arguments Args and Args; thus, John would be not liable
of prosecution for committing fraud if the dialogue would have taken place in
2012, as the attack from Args to Args would cease to be applicable.

Next we formalize the definition of the proposed extension of TAF, which
provides the elements required to capture timed attacks between timed argu-
ments.

Definition 18 (Extended TAF). An extended timed abstract argumentation
framework (or simply E-TAF ) is a 4-tuple © = (AR, Atts, ArgAv, AttAv) where:

i) AR is a set of arguments,
it) Atts is a binary relation defined over AR representing attack,

iii) ArgAv : AR — o(R™) is the availability function for timed arguments,
and

i) AttAv : Atts — p(RT) is the availability function for timed attacks,
where AttAv((A, B)) C ArgAv(A) N ArgAv(B).

13



Ttems (i), (ii), and (4ii) represent the TAF part of the extended framework. The
item mentioned in iv), AttAv((4, B)) C ArgAv(A) N ArgAv(B), ensures that
the availability of the attack cannot exceed the availability of the arguments
involved, and RT is the set of positive real numbers plus 0. To simplify the

notation, we will continue using Av(A) for ArgAv(A) and we will use 74, g for
AttAv((A, B)).

Example 4. Consider the E-TAF © = (AR, Atts, ArgAv, AttAv) in Fig. /
AR ={A,B,C,D,E,F,G,H,1,J,K}
Atts = {(A, B), (B, C), (E, F), (F, D), (D, E), (H,I), (I, H)}.

ArgAv = {(A, {[0-30]}); (B, {[10-50]}); (C, {[0-60]}); (D, {[10-30]});
E,{[10-30]}); (F, {[0-30]}); (G, {[0-90]}); (H, {[10-50]});
1,{[20-301}); (J, {[20-30]}); (K, {[20-30]}) }

(

» B), {[15=301}); (B, €), {20-501}); ((H, 1), {[20—-25]});

— o~~~

AttAv = {
(1, H),{[20-301}); ((D, E), {[20-30}); ((E, F'), {[20—30]});
(F} D), {[20=30]}); ((H, J), {[20-25]}); (1, J), {[20—25]});
(4 K), {[20-25]})}

~~

(A.B) (B.C)
[15-30] 20-50]
A B C
[0-30] [10-50] [0-60]
G
[0-90]

(D.E)
20-30]

(E.F)
20-30]

[10-30] D) [0-30]

20-30]

Figure 4: An example of E-TAF

The following definitions are extensions of the definitions 11, 12 and 13, taking
into account the availability of attacks.
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Definition 19 (at-conflict-freeness). Let © =(AR, Atts, ArgAv, AttAv) be
an E-TAF. A set S of t-profiles is called at-conflict-free in © if there are
no t-profiles (A, Ta), (B,Tg) € S such that (A, B) € Atts and

TanNTeNTap) #0

Definition 20 (Defense of A from B by S). Given an E-TAF defined as
© = (AR, Atts, ArgAv, AttAv), S a collection of t-profiles, and A,B € AR,
with t-profiles (A, Av(A)) and (B, Av(B)) respectively. The defense t-profile of
A from B w.r.t. S, denoted as T(ﬁ‘s) is defined as follows:

Ts) =def U (T(g,a) N Tic,3) N Tc)

(CTe)e{(X,Tx) 1 (X, Tx)€ES, (X,B)€Atts}

From the previous definitions, the notion of acceptable t-profile of A w.r.t. S
in E-TAF coincides with the corresponding definition in TAF.

Definition 21 (Acceptable t-profile of A w.r.t. S). Given an E-TAF © =
(AR, Atts, ArgAv, AttAv), let S be a set of t-profiles. The acceptable t-profile
for Aw.r.t. to S, denoted as T(a|s) is defined as follows:

Tials) =des N (Av(A)\ Tip,.4)) UTH )
Be{X|(X,A)eAtts}

Thus, this definition reflects that the intersection of all time intervals in which A
is defended from each of its attackers by the set S, is the time interval where A is
available and is acceptable with respect to S. The acceptability formalization for
TAF directly applies to E-TAF. In the same way that the original definition of
t-conflict-free was recast into at-conflict-free, we proceed to characterize the no-
tions of at-admissible and at-complete. Given the © =(AR, Atts, ArgAv, AttAv),
we can define now the semantics for F-TAF as follows:

— at-preferred semantics: A collection E of t-profiles is an at-preferred ex-
tension of © iff FE is a Cy;-maximal at-admissible collection of t-profiles.

— at-stable semantics: Given a collection E = {(Y;, Ty, |p)) |1 < i < n} of
t-profiles that satisfies at-conflict-freeness, F is a at-stable extension of ©
iff for all X € AR\ {Y;|1 < i < n} with t-profile (X, Tx) it holds that
Tx \Ui Tviiey = 0.

— at-grounded semantics: A collection E of t-profiles is the at-grounded
extension of O iff F is a C;-minimal at-complete collection of t-profiles.

Regarding the arguments to be accepted in each semantics, we will take the
skeptical approach, i.e., when more than one extension is possible we will accept
the arguments that belong to all of them in the common time interval they are
active. Skeptical acceptability for the three semantics described can be defined
as follows:
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Definition 22. Let © = (AR, Atts, ArgAv, AttAv) be an E-TAF, and let
{E1, Ea, ..., E,} be the set of at-preferred (at-stable) extensions of ©. An ar-
gument A € AR acceptable under at-preferred (at-stable) semantics with a
t-profile (A, Ta) iff Ta = (Niey T(ajg,) and Ta # 0.

An argument A € AR is acceptable under at-grounded semantics in the
time interval Toaipy iff (A, Tiag)) € E, where E is the at-grounded extension.

Extending the notion presented in proposition 2, the equivalence between a
Cis-maximal at-complete extension and C;-maximal at-admissible collections
of t-profiles holds; and, at-complete extensions are equivalently defined as at-
complete C;-maximal collections of t-profiles. The formal statement of these
equivalences appears below; the proof follows directly from the definitions.

Proposition 3. Let © =(AR, Atts, ArgAv, AttAv) be an E-TAF, and let E be
a collection of t-profiles. Then, E is a Ci-mazimal at-admissible collection of
t-profiles iff E is Cy-maximal at-complete extension.

The fixed point characterization for grounded semantics proposed by Dung can
be applied to E-TAF just by considering the following modified version of the
characteristic function.

Definition 23 (Characteristic function). The associated characteristic func-
tion for © = (AR, Atts, ArgAv, AttAv) is defined as follows:

F(S) =aes {(A, Teays))|A € ARand (A, T(as)) is the acceptable t-profile of Aw.r.t. S}

The relations between at-grounded extensions, at-preferred extensions, at-stable
extensions, and at-complete extensions is given in the following proposition.

Proposition 4. Let © =(AR, Atts, ArgAv, AttAv) be an E-TAF, then:

(1) There always exists an at-grounded extension.

(2) An at-preferred extension is also an at-complete extension.

(3) An at-stable extension is also an at-preferred extension.

(4) The at-grounded extension is a t-subset of all at-preferred and at-stable

extensions.

Example 5. Suppose we want to establish the acceptability of C' in the E-TAF ©
presented in the Figure 4. As shown in example 1, by considering only the relation
Atts we could say that the argument C is acceptable.

Now we analyze the acceptability of the argument C in the time interval Av(C)
in each semantics of E-TAF. First we analyze the at-preferred extension, next the
at-stable extension and finally the at-grounded extension. The sets of t-profiles are
at-admissible, since they defend every t-profile that they contain, i.e., for the specific
time intervals involved.

St = {(A,{[0-30]}); (B, {[10-15), (30—50]}); (C, {[0—30], (50—60]});
(F,{[0-20)}); (D, {[10-20)}); (E, {[10-20)}); (G, [0-90]});
(H, {[10—25], (30 — 50]}); (1{(25—30]}); (J, {(25—301}); (K, {[20—-30]})}

~— —
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| (B,C)
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Figure 5: Representation of the temporal attack relations

S2 = {(A4,{[0=30]}); (B, {[10-15), (30-50]}); (C, {[0—30], (50—60]});
(F,{[0-20)}); (D, {[10-20)}); (£, {[10-20)}); (G, {[0—90]});
(H, {[10-20), (30—50]}); (1{[20—30]}); (; {(25—30]}); (K, {[20—30]})}

S1 and Sz are also at-complete since they include all the t-profiles defended by C
in their associated time intervals. Finally, it can be verified that S1 and Sz are the
mazimal sets satisfying the previous conditions, and therefore both of them correspond
to the at-preferred extension. As we can see, its possible to obtain multiple at-preferred
extensions. The intersection of these sets results the set of accepted t-profiles, then

510 S2 = {(A,{[0-30]}); (B, {[10-15), (30—50]}); (C, {[0—30], (50—60]});
(F,{[0-20)}); (D, {[10—20)}); (E, {[10-20)}); (G, {[0—90]});
(H, {[10-20), (30—501}); (I{(25—30]}); (J; {(25—30]}); (K, {[20—30]})}

In this example there is no at-stable extension, as there are odd length cycles. If there is
no cycle of odd length, the at-stable extension coincides with the at-preferred extension.
Suppose now we want to establish the acceptability of C in the E-TAF © presented
in example 4. As shown in the AF of Example 1, by considering only the Atts relation
we could say that the argument C' is acceptable. Let us obtain the at-grounded exten-
sion of © by applying the fixed point characterization.
F°0)=0
F'(0) = {(A,{[0-30]}); (B, {[10-15)(30-50]}); (C, {[0—20), (50—60]} );
G, {[0-90]}); (H, {[10-20), (30501 }); (1, {(25—30]});
J,{(25-30]}); (K, {(25-30]}); (F, {[0—20)}); (D, {[10—20)});
E,{[10-20)})}
F* A,{[0-301}); (B, {[10-15)(30-50]}); (C' {[0—30], (50—60]});
G, {[0-90]}); (H,{[10-20), (30—50]}); (1, {(25—30]});
J,{(25-30]}); (K, {(25-30]}); (7, {[0-20)}); (D, {[10-20)});
E,{[10-20)})}

F3(0) = F2(0)

0) =
) =

(
(
(
(
{(
(
(
(

Consequently, F2(()) is the at-grounded extension of ©.

Next, we describe how the temporal availability of C' was obtained in F2(B) by applying
the definitions 20 and 21 from F*(0).
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By applying definition 20:

Teir ) = U (T(,c) N T(a,B) N Av(A)) =

(A, Av(A)) E{(X,Av(X) (X, Av(X))EFL(0),(X,B)EAtts}

= {[40—50]} N {[20—50]} N {[15—30]} =
= {[20-30]}

Applying definition 21 we obtain:

Tar @) = (Av(C)\ Ts.c)) U TEr oy =
= {]0-20), (50—60]} U {[20—30]} = {[0—30], (50—60]}

From the previous examples, it follows that argument C is accepted only for the time
intervals {[0 — 30], (50 — 60]}.

Given an E-TAF © = (AR, Atts, ArgAv, AttAv), and an argument A € AR, we
will use At-PReg(A), At-STo(A), and At-GRe(A) to denote the set of intervals
on which A is acceptable in © according to at-preferred, at-stable, and at-
grounded semantics respectively, using again the skeptical approach where it
corresponds. Formally, At-PRg(A) = T, ", where (A,7,7°) is in every at-
preferred extension of ©; At-STe(A) = T4, where (A,7;'®) is a member
of every at-stable extension for the E-TAF ©; and At-GRg(A)= TAGT@, where
(A, TF7) is in the at-grounded extension for the E-TAF ©.

The following property establishes a connection between acceptability in our
extended temporal framework E-TAF and acceptability in Dung’s frameworks.?

Lemma 1. Let © = (AR, Atts, ArgAv, AttAv) be an E-TAF and let « € R™
representing a point in time. Let © = (AR. Atts) be a Dung abstract frame-
work obtained from O in the following way: AR, = {A € AR | a € T4} and
Atts;, = {(A,B) € Atts | a € Ta,p}. Let E a collection of t-profiles in ©,
and E, = {X|(X,Tix|p) € E and o € Tx|p)} (thus,E, C AR). It holds
that, if E is an at-preferred extension (respectively an at-stable extension or an
at-grounded extension) w.r.t. ©, then E! is a preferred extension (respectively
a stable extension or a grounded extension) w.r.t. ©.

Intuitively, the AF ©/, represents a snapshot of the F-TAF framework © at the
time point «, where the arguments and attacks in ©/, are those that are available
at the time point a in ©. Then, this Lemma states that an at-preferred extension
(respectively an at-stable extension or the at-grounded extension) E for E-TAF
at the time point « coincides with a preferred extension E!, (respectively a stable
extension or the grounded extension) of ©,.

The converse of the statement of Lemma 1 does not hold. The fact that F, is
an extension with respect to 0, does not guarantee that F is an extension with

2Proofs are included in the Appendix.
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respect to ©, since we only have the certainty that F satisfies the conditions to
be an extension in the time point a.

Lets see a counterexample. Given a E-TAF © = (AR, Atts, ArgAv, AttAv),
where:

- AR = {A, B},

— Atts = {(A, B)},

— ArgAv = {(A, {[0 — 40))}; (B, {[30 — 60]})}, and
- AttAv = {((4, B), {[30 — 35]}))}.

If we have a collection of t-profiles E = {(A, [0—40]), (B, [30—60])} and assuming
that we take into account the time point o = 50, then we obtain a set of
argument F, = {B} that is an extension with respect to ©,, but does not
guarantee that E is an extension with respect to ©. Indeed, F is not a conflict-
free collection of t-profiles, since the argument A attacks the arguments B in
the time interval [30 — 35].

5. Adding Structure to Abstract Argumentation: Structured Argu-
mentation Frameworks

We will now present a form of structured argumentation that maintains a
degree of abstraction, but allows to represent the internal structure of an argu-
ment. This framework will permit to take into account the information (rea-
soning steps and evidence) that forms the argument’s structure that supports
a particular conclusion; these elements are not available in the fully abstract
level.

There are several reasons for moving from an abstract argumentation frame-
work to a structured argumentation framework that retains some degree of
abstraction, namely: (1) introducing the internal structure of the arguments
through a set of reasoning steps and the evidence, gives the possibility of seeing
these structured arguments as a generalization of different systems of structured
argumentation, such as ABA [16], ASPIC+ [37], Logical Argumentation [13],
or DeLP [29], without committing to a particular one; (2) considering the in-
ternal structure of arguments allows to consider the aggregation (accrual) of
the arguments that support the same conclusion; and, (3) the meta-information
associated with each piece in the structure (in this case time availability and
reliability), permits to obtain extra information about the argument, by propa-
gating and combining the meta-information associated with the elements of its
structure.

Structured Abstract Argumentation Frameworks (SAF) are a simplified ver-
sion of the Dynamic Argumentation Frameworks (DAF) [41] where argumental
structures are conceived as structures standing for trees of smaller abstract
entities representing individual reasoning steps, called arguments. In what fol-
lows, we will reintroduce the elements of the framework presented in Rotstein
et al. [41] necessary for our work.
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The original DAF was designed with the purpose of dealing with dynamics
through the consideration of a varying set of evidence. Depending on the con-
tents of the current set of evidence, some arguments will be active and some
others will be inactive. Once the set of arguments that are active is ascertained,
the situation can be handled as an instance of a Dung’s abstract framework;
thus, in this sense, these frameworks can be considered as an extension of Dung’s
frameworks.

To obtain a SAF, we will simplify the DAF formalism by integrating the
evidence as part of the set of arguments, as we will mention below. The dynamics
of the framework will be handled through the specification of the temporal
availability of the arguments, as shown in the next section. Therefore, a SAF T’
becomes an enriched AF with the usual components (AR, Atts), but with the
addition of structure for arguments, and a preference criterion 2> to determine
when an attack is successful becoming part of the Atts relation [42, 2, 3].

The formalism we are introducing for SAF departs from the terminology
used in Dung’s abstract frameworks as we explain in the following paragraph.
The arguments with structure in a SAF are called argumental structures, and
the constituent elements are called arguments, where an argument is an abstract
entity representing an indivisible reasoning step connecting a set of premisses
with a claim; thus, an argument’s premises provide backing for the claim. Both,
premises and claim, are assumed to be expressed in a language £ that will re-
main unspecified and will depend on the domain of application. We will assume
sentences in £ as literals, and use the complement notation to express contra-
dictory literals such as o and @. The following definition, adapted from [41],
formalizes the notion of argument.

Definition 24 (Argument). Given a language £, an argument A is a rea-
soning step concluding o € £ from a set of premises {B1, ..., Bn} € 2%, where
Bi # a, Bi £, Bi # Bj, for 1 <i,j < n. Given an argument A € Args, we
will write cl(A) and pr(A) to denote its claim and the set of premises involved
in it, respectively; also, we will write interface(A) = (pr(A),cl(A)) to refer to
this pair of elements that characterize the argument A. Evidence will be consid-
ered as arguments where the set of premises is empty, i.e., if A is evidence then

pr(A) = 0.

We say that an argument B supports an argument A if the claim of the
argument B is part of the premises of the argument A. Formally:

Definition 25 (Supporting Argument). An argument B is a supporting
argument for an argument A iff cl(B) € pr(A), and when cl(B) =  we say
that B supports A through 5. Given a set Args of arguments, an argument
A; transitively supports an argument Ay within Args iff there is a sequence
[Ai, ..., Ag] of arguments in Args where cl(A;) € pr(Ajt1), for every j such
thati < j <k —1.

An important relation between arguments is the one that reflects that they
might support conflicting conclusions. Formally:
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Definition 26 (Conflict between Arguments). Given a set Args of argu-
ments, the set ><x1C Args x Args denotes a conflict relation over Args, verifying
Aq 1 Ag iff cl(Ay) = cl(Asg), where @ denotes the complement of a.

Like in DAF, arguments in SAF can be aggregated into argumental structures.
These are defined as follows, introducing constraints correspond to sound, non-
fallacious argument structures (for full details see [41]).

Definition 27 (Argumental Structure). Given a set Args of arguments and
a conflict relation <1 defined over Args, an argumental structure in Args for a
claim o is a tree of arguments A verifying:

— Top Argument: The root argument Ao, € Args, called top argument, is
such that cl(Aiop) = «, and is noted as top(A);

— Node: A node is an arqgument A; € Args such that for each premise
B € pr(A;) there is exactly one child argument in Args supporting A;
through (;

— Premise Consistency: There are no «, 8 € pr(A) such that a = j;
— Consistency: There are no A, B € args(A) such that A< B;

— Non-Circularity: No argument A € args(A) transitively supports an arqu-
ment B € args(A) if cl(B) € pr(A);

— Uniformity: If A € args(A) is a child of B € args(A) in tree A and A
supports B through 3, then A is a child of every B; € args(A) in tree A
such that 8 € pr(B;), supporting B; through (3.

For any argumental structure A, we will write args(A) to denote the set of
arqguments in A. Extending the notation, we will also write cl(A) = « to denote
the claim of A, and pr(A) to denote the set of premises of arguments in A. We
will denote Str(argssa) the set of all argumental structures w.r.t. Args and <.

In Definition 27, the property of consistency invalidates inherently contradic-
tory argumental structures. The requirement of non-circularity avoids taking
into consideration structures yielding infinite reasoning chains. Finally, the
restriction of uniformity does not allow heterogeneous support for a premise
throughout a structure.

Example 6. Let Args be a set of arguments, where Args = {A1, A2, Az, A4, By, Ba,
B3, B4,C1,C2}, <t ={(A1, B1), (B4,C1)}, and A, B, and C are three argumental struc-
tures from Str(args), as depicted in figure 6, where:

top(A) = Ay and args(A) = {A1, As, Az, Ay}

Cl(Al) = CL,pT(Al) = {b7 C}7CI(A2) = bva(AQ) = {d}a

cl(As) = c,pr(As) = {f},cl(As) = f,pr(As) = {g,h}

c(A) = a,pr(A) ={d,g,h}
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top(B) = B1 and args(B) = {B1, Bz, B3, Ba}

c(B1) = t,pr(B1) = {~a,u},cl(Bz2) = ~a,pr(Bz2) = {v},
cl(Bs) = u,pr(Bs) = {p}, cl(Ba) = p,pr(Ba) = {z,y}
c(B) =t,pr(B) = {v,z,y}

top(C) = C1 and args(C) = {C1,C>}

c(Cy) = ~t,pr(Cr) = {q},cl(C2) = q,pr(C2) = {r},
c(C) = ~t,pr(C) = {r}

A N P
q
2

A B C

Figure 6: Representation of a Argumental Structures (Example 6)

It is important to stress that, within an argumental structure, given the Unifor-
mity requirement, a premise of an argument cannot be supported by different
arguments. For the sake of simplicity, in the sequel we will refer to argumental
structures just as “structures”.

Not any subset of the set of arguments of a given structure is a substructure
of it; that is, the arguments that are part of a substructure they should form a
structure themselves following the requirements of Definition 27. Formally:

Definition 28 (Substructures). Let Args be a set of arguments and A, A’ C
Args be two argumental structures. We will say that A’ is an argumental sub-
structure of A iff args(A’) C args(A).

The defeat relation in SAF, called attack in abstract frameworks, can be ob-
tained through the application of a preference relation over the structures form-
ing conflicting pairs (called attacks in SAF). When adding a preference criterion
over conflicts, this relationship can be refined into a defeat relation between ar-
guments.

Note that the attack relation in a Dung’s abstract argumentation framework
assumes that the attack is always successful becoming a defeat in the terminol-
ogy used in a SAF; meanwhile, in a SAF, the conflict has to be resolved using
a preference criterion, so that it becomes a defeat. We will now introduce suc-
cessively Conflict, Preference, and Defeat. Formally:
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Definition 29 (Conflict between structures). Let Str(a,gs ) @ set of struc-
tures, and let A, A" € Str(argssq) be two structures. We will say that A is in
conflict with B, denoted as A < B, iff there is an argumental substructure B’
of B such that top(A) <t top(B'). The structure B’ is called the disagreement
substructure.

Definition 30 (Preference). Let Str(args ) a set of structures, and let A, B €
St (Args,pa) be two structures in Str(aygs pay- Given a preference relation ‘2" de-
fined over Str(args ), we will say that A is at least as preferred as B when the
relation is satisfied.

This relation usually codifies semantic notions of argument comparison. For a
syntactic criterion that could be adapted to SAF see [42, 43].

Definition 31 (Defeat between structures). Let ST Args ) @ set of struc-

tures, and let A, B € Strargspq) be two structures in Str(args ). We will say
that A defeats B, iff A < B with disagreement structure B' of A such that A > B'.

The following example illustrates the definitions just introduced.

Example 7. In Ezample 6, A is in conflict with B (A < B), since B has a sub-
structure B’ that contains the argument Ba, and since as a and ~a are contradictory
A > B’ (Figure 7 shows the chosen B’ inside a dotted triangle). If the preference
criterion sanctions that A > B, the result is that A defeats B.

Also in Ezxample 6, B is in conflict with C (B < C), since C is trivially a sub-
structure of itself, and considering C as the B’ of the definition above(again, Figure 7
shows the required B’ inside a dotted triangle) we see that B 1 C assuming logical
contradiction between t and ~t. Furthermore, if the preference criterion determines
that B 2 C, it results that B defeats C.

A B C

Figure 7: Attack and Defeat between Argumental Structures (Example 7)

Definition 32 (Structured Argumentation Framework). A  Structured
Argumentation Framework I' is a tuple (Args,><, 2>), where Args is a set of
arguments, < is a conflict relation, and 2 is a preference criterion defined over
the set of all argumental structures Str(srgs pa)-
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All the semantic notions, such as acceptability and the usual argumentation se-
mantics, can be obtained for SAF just by instantiating Dung’s abstract frame-
work AF = (AR, Atts) with the set of all argumental structures Str(4,gs ) as
the set AR and the defeat relation among structures as the Atts relation. We
will not explore this issue any further in this paper.

6. E-TAF*: E-TAF over Argumental Structures

Many applications of argumentation require the explicit treatment of time;
usually, temporal information is not directly associated with arguments, but in-
stead it is attached to the basic pieces of knowledge (e.g., claims, rules, premises)
from which arguments are built. Other interesting features of arguments, such
as valuation, may also vary in time, causing the availability of attacks to change
dynamically. As with temporal information, valuation can be associated with
individual components of an argument, and propagated through a suitable val-
uation function as information attached to the whole argument [19].

We move in that direction by replacing E-TAF abstract arguments with
SAF argumental structures. As we will see next, this expanded framework,
referred to as E-TAF™, is expressive enough to capture temporal availability
and the notion of valuation varying over time as well, associated with individual
steps (called arguments in SAF) from which the argumental structures are built.
Argumental structures’ availability and valuation are obtained by integrating
the corresponding information attached to the arguments composing them.

The instantiation of E-TAF’s arguments with SAF’s argumental structures
gives us the ability of studying the temporal availability and valuation of ar-
gumental structures as a function of its internal components. Thus, we will be
able to determine how each component affects these features of an argumental
structure. Temporal availability and valuation factors are associated with SAF
arguments through the formal notion of 7*-argument, as we define below.

Definition 33 (7*-argument). Let I' = (Args,p<,2) be a SAF, called the
subjacent structured argument framework. We say (A, Ta,va) is a T*-argument
for the claim « in T' whenever:

i) A€ Args is an argument in I' (see Definition 24) such that cl(A) = a.
it) Ta C RT is the time interval set in which A is available.

iii) va 1 RY — [0,1] is a function that expresses the valuation of A over time.

The set of T -arguments over I' will be denoted Argsp, and I' will be referred to
as the subjacent SAF.

Definition 34 (Subjacent Argument(s)). Let I' = (Args,i<, 2) be a SAF.
Given a T*-argument A = (A, Ta,va) we will define a function subj(-) that will
return the argument in T' involved in the T*-argument, i.e., subj({(A, Ta,va)) =
A. Thus, cl(subj({A, Ta,va))) = cl(A), and pr(subj((A, Ta,va))) = pr(A) will
be the claim and the set of premises of (A, Ta,va).
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As in SAF, arguments may be in conflict, however in E-TAF* conflict de-
pends on the availability of the arguments involved. Therefore, two 7*-arguments
supporting contradictory information will be in conflict only when their time
availability overlaps, i.e., over the intersection of the temporal intervals in which
they are available; that is, we will restrict the conflict relation > to the temporal
intervals where both 7*-arguments are available simultaneously.

Definition 35 (Conflict between 7*-arguments). Let I' = (Args,,2) be
a SAF. Given a set Argsp of T -arguments, the relation >1 C Argsp x Argsp de-
notes a conflict relation over Args, propagating <, the conflict relation of the sub-
jacent T': (A, Ta,va) X (B, Tp,vp) iff subj({A, Ta,va)) < subj((B,Tp,vB)),
(i.e., A<t B), where TaNTp # 0, and > is conflict relation in the subjacent
framework T'.

Once the definition of 7*-argument is introduced as a reasoning step labeled
with temporal availability in a time interval set T, and the valuation factor over
T is defined, we will introduce the notion of 7*-structure in E- TAF*. Informally,
a T*-structure A is a tentative proof (as it relies to some extent on valuation
that varies over time) from a consistent set of 7*-arguments, supporting a given
conclusion @, and specifying its valuation degree over time.

Definition 36 (7*-structure). Let I' = (Args,<, 2) be a SAF. Let Argsp be
a set of T*-arguments and let > be a conflict relation over Argsp. We say that
(A, Ta,va) is a T*-argumental structure, or just a T*-structure, supporting a
conclusion «, iff

— subj(A) is an argumental structure over T, and cl(top(subj(A))) = a;

— Ta =(i_, Ta, where Ty, is the time interval for T*-argument that corre-
sponds to (A;, Ta,,va,) € A; if Ta =0 we say that the A is inactive.

—vp: RT —[0,1], such that va(t) = min{va, (t)|1 < i < n}, where va,(t)
corresponds to the T*-argument (A;, Ta,,va,) € A.

The set of all T*-structures w.r.t. Argsp and < is denoted as Strias ). We ex-
tend the notation subj(-) to a set A C Str(ags ) as subj(A)= {subj(A)|A € A},
notice that subj(A) is a subset of Args from the subjacent SAFT. When no con-
fusion is possible, we will also extend cl(-), pr(-), and interface(-) to cl(A), pr(A),
and interface(A) to refer to the claim, the premises, and the interface of A.

Definition 37 (7*-substructure). Let Striawgs ) be a set of T*-arguments,
and two T*-structures (A, Ta,va), (A, Tar,var) in Striargspa), (A", Tar,var) is a
7*-substructure of (A, Ta,va) iff subj(A") C subj(A). We will use the notation
(A, Tar,var) C (A, Ta,va) to indicate this relation when no confusion is possible.

The property of the 7*-substructure relation expressed in the proposition below
is obvious from the definition of 7*-structure.
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Proposition 5. Let Striaqes sy be a set of 7" -arguments, given two 7*-arguments
(A, Ta,va), (A, Tar,var) in Striargs pay, where (A, Tar, var) ds a T*-substructure
of (A, Ta,va) then Ty C Tar and vy < vy.

Finally, the definition of attack relation is analogous to that in SAF.

Definition 38 (Conflict between 7*-structures). Given Stragspq), and
T*-structures (A, Ta,va), (B, Ts, VB) € Str(argssq). such that Ty N Tg # 0, then
(A, Ta,va) is in conflict with (B, Tg,vg), denoted (A, Ta,va) =< (B, Tg,vs), iff
there exists a T*-substructure (B, Tp/,vp) of (B, Ts,vp) such that top(A) xi
top(B'). Furthermore, the T*-substructure (B, Tg/,vp/) is called the disagree-

ment T*-substructure.

To formalize the notion of acceptability of a 7*-structure in E-TAF™, we have
to consider that E-TAF* is a parameterized version of E-TAF w.r.t. a SAF
I’ in which we rely on compositional features for capturing time availability
and valuation of arguments. As a consequence, we can use the same 4-tuple
characterizing F-TAF in order to formalize E-TAF™, provided that a SAF
characterization is also given.

Definition 39 (E-TAF*). Let T = (Args,<,2) be a SAF. Then an E-TAF*
is a tuple W = (Str(args pa), <, AttAv,>) where:

i) Str(Argsm) s a set of T*-structures.

it) < is a conflict relation between T*-structures;

) Given (A, Ta,vs) = (B,Tp,vp), with the 7*-substructure (B, Tp/,vp/)
as the disagreement T*-structure of (B, Tp,vg) with (A, Ta,va), then the
availability of the attack is:

AttAv(((A, Ta, va), (B, Te, vB))) =der Ta N Tor

We will simplify the notation using 74 s instead of the more complex expres-
sion AttAv(((A, Ta,va), (B, Ts,vp))). Notice that an attack from (A, Ta,va)
to (B, 7g,vp) is available only in the time intervals where the valuation of
(A, Ta,va) is greater or equal than the valuation of (B, Tp, vp). This is reflected
in the following definition.

Definition 40 (Defeat between 7*-structures). Given the E-TAF* U, de-
fined as U = (Str(args ), X, AttAv,>), and (A, Ty, va), (B, Te, vB) € Str(argss)
wich are in conflict having (B, Tpr,vp ) (B, Tg,vp) as the disagreement sub-
structure, we say that (A, Ta,va) defeats (B, T, ug) in the time interval Tia mry,
if va > vp over that time interval.

Clearly, the notions of defense and acceptability for E-TAF* can be defined in
a similar way as was defined for E-TAF, taking into account the interactions
between 7*-structures and the reliability function associated with each of them.
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Definition 41 (Defense of (A, T, vs) from (B, Tp,vp) by S). Let ¥ be an
E-TAF™ defined as U = (Str(args pa), <, AttAv, >), let (A, Ta,va) and (B, Ts, vg)
be two T*-structures where (A, Ta,va) < (B, Tg,vp), and let S be an at-conflict-
free set of T-structures such that S C Str(agspa)- The defense t-profile of
(A, Ta,va) from (B, Tg,vg) w.r.t. S, denoted as ’7?%5) is defined as follows:

This) =def U (Te.a) N Ty N Te)

(C, Te, ve) E{ X, Tx, v) €S, | Tix,a) }

Definition 42 (Acceptable t-profile of (A, Ty, va) w.r.t. S). Let ¥ be an
E-TAF™ defined as ¥ = (Str(args m), X, AttAv, >), let S be a set of T*-structures
such that S C Str(argspq). The acceptable t-profile for (A, Ta,va) wr.t. to S,
denoted as T(p|s) is defined as follows:

T(al$) =def N (Ta\ Te.)) U Tays)
(Bv Tg» UB)G{(Xv Tx, UX)‘WX,A)}

Where T&S) is the time interval where (A, Ty, vp) is defended by S of its at-
tacker (B, Tg, vp).

Thus, this definition reflects that the intersection of all time intervals in which
an argument is defended from each of its attackers by the set S, is the time
interval where the argument is available and it is acceptable with respect to S.
Now using the elements from the above definition. The at-preferred, at-stable,
and at-grounded semantics for E-TAF* can be characterized in a similar way
as done for E-TAF.

As illustrated by the example in Fig. 5, it is possible for two otherwise
conflicting arguments in an E-TAF to be accepted with respect to at-grounded
semantics over different time intervals where the conflict does not appear; for
instance, this happens when the attack relation is available in a proper subset
of the time where the attacked argument is available. In practice, this situation
may arise when the existence of the conflict between arguments depends on
time, as was the case in the example represented in Fig. 5. For instance, two
arguments supporting, respectively, traveling in vacations and buying a new
car may be in conflict in certain time intervals where the person cannot afford
both expenditures; but, the conflict does not exist in other intervals where the
person has the money for both things (i.e., the attack is not available in these
intervals).

However, this situation cannot happen when the availability of attacks vary-
ing over time is consequence of valuation (or more generally, strength) of ar-
guments varying over time, as is the case with E-TAF*. Recalling that the
notation At-STw((A,Ta,va)), At-PRy((A, Ta,va)), and At-GRy((A, Ta,va)),
is used to denote the set of time intervals on which (A, 7a,va) is acceptable ac-
cording to at-stable, at-preferred, and at-grounded semantics respectively in W,
the following lemma establishes formally that two 7*-structure cannot coincide
in time if both belong to the same extension in a given semantics.
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Proposition 6. Given the E-TAF* W = (Str(args s), X, AttAv,>) and the two
m*-structures (A, Ta,va), (B, Tg, Us) € Str(argspa)- If the T -structure (A, Ty, va)
defeats (B, Tpr, vpr) over the time interval Ty N Tpr, where (B, Tp, vp/) is a 7*-
substructure of (B, Ts,vg) then it holds that:

° RPrq, N 7EBPT\II _ @)
o RSN’ Q’FBS“’ =0, and
° RGT\P N 7—BG7"\1, _ @

The key of the proof is to consider the disagreement 7*-substructure (B, Tp/, vp)
of (B, Tg, vp). Even if the attack of (A, Ta,va) against (B, Tg, vg) is not available
in certain time intervals, we can indeed ensure that the arguments are not simul-
taneously accepted, since in those intervals it will be an available attack from
the disagreement 7*-substructure (B’, 7p/, vp) back to (A, Ta,vs). Notice that
if the attack of (A, Ta,va) against (B, Tg, vp) is not available then it means that
the disagreement 7*-substructure (B, T/, vp/) is more reliable than (A, T, va).

It can be shown that the at-stable (respectively at-preferred or at-grounded)
intervals set associated with a 7*-structure is a subset of the at-stable (respec-
tively at-preferred or at-grounded) intervals set of any of its 7*-substructures.
Formally:

Proposition 7. Given the E-TAF" ¥ = (Str(args sq), X, AttAv,>) and the two
T*-structures (A, Ty, va), (A, Tar,var) € Str(args ), Such that (A', Ty, vpr) is a
T*-substructure of (A, Ta,va). Then:

° T}?T\I’ ;) &PT‘\I/7
o TSw O TASt‘I’, and
o 7&?7‘\1; :_) RGT\I; i

In the next example we show how the different elements introduced previously
can be used to analyze acceptability in E-TAF™.

Example 8. Let us consider the following set of T*-arguments:

Argsp =

A1, {[0-60]}, vy (B2, {[0-50]}, vs)
Az, {[0—80]}, v2

( )
( ) Bs, {[10-90]}, vr)
(A3, {[0-30]}, vs)

( )

(

By, {[0-80]}, vs)

(

{
Ay, {[0-40]}, v (C1,{[0-90]}, vo)
{

B1,{[0—100]},U5> 027{[0—60]},1)10)

where the valuation functions are defined below:
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Figure 8: Valuation function associated with A

The set of T™-structures obtained from the set of 7" -arguments is defined as follows
(see Fig. 9):
e (A, Ta,vs) where To = (i_, Ta, = {[0—30]} and its corresponding valuation
function vy = min{va, (t)|1 <i<n,t € Ta}, the process for obtaining va is
depicted in Fig. 8.

o (B,7s,vs) where Tz = (._, T, = {[10—50]} and its corresponding valuation
function vg = min{vp, (¢t)|1 < i < n} is depicted in Fig. 10.

e (C,7Tc,vc) where Te = (o, Te;, = {[0—60]} and its corresponding valuation
function ve = min{vg, (t)|1 < i < n} is depicted in Fig. 10.

Note that, in this example the reliability function of the 7*-structure (B, Tg,vs) and
its substructure (B, Tgr,vp/) are the same, i.e., min{vg, (t)|1 <i < n} for every time
point t, where vp,(t) is ve(t), and vio(t) coincides with vy(t), which is the reliability
function of (B', Tes, vp)-

Atts = {((Aa 7;\\7 UA)? (Ba 77137 U]E))a ((Ba 77137 U]E)v ((Cv %’ UC))}
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(B, Tg,vp) (C, T¢ve)

Figure 9: Instance of an E-TAF* (corresponding to Example 8)

AttAv(((A, Ta, vn), (B, Tor,vp))) = {a € R | o € {[0-30]} and vs(a) > va(a)} =
— {[15-30]}

AttAv(((B, Ty, vs), (C, Te, ve),)) = {a € R | o € {[10-50]} and v (@) > ve(a)} =
— {[20-50]}

This framework coincides with the E-TAF presented in example 4, Fig. 4, for
which argument acceptability was already analyzed.

7. Related Work

As discussed in the introduction, reasoning about time is a major concern
in commonsense reasoning, being also a valuable feature when modeling argu-
mentation capabilities for intelligent agents [7]. There have been also recent
advances in modeling time in argumentation frameworks (e.g. [23, 33]). How-
ever, to the best of our knowledge, there exists no other abstract argumentation
approach for reasoning jointly with time and valuation factors as the one pre-
sented in this paper, combining features of TAF and SAF in a single, unified
framework.

Recent research has led to Temporal Argumentation Frameworks (TAF) that
extend Dung’s AF by considering the temporal availability of arguments [22,
23]. In TAF, arguments are valid only during specific time intervals (called
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Figure 10: Representation of the valuation functions va, vs, vc

availability intervals). Thus, when identifying the set of acceptable arguments
the outcome associated with a TAF may vary in time. The TAF framework
allows to model so-called “intermittent arguments”, useful in the context of
argumentation dynamics. Even though arguments in TAF are associated with
availability intervals, in contrast with our approach their attacks are assumed
to be static and permanent in time.

In [46], an argumentative approach to reasoning about the trustworthiness
of information sources is presented. In contrast with our approach, time is not
considered explicitly, and meta-argumentation [15] (which allows Dung’s AF to
reason about itself) is used to model trust. In contrast, our approach considers
valuation functions whose outcomes are based on time intervals. In [37, 34],
Prakken & Modgil present a very rich formalization for adding structure to
abstract argumentation. His research has some parallels with the underlying
notions in SAF, although it is much more encompassing than ours (considering
argument schemes, rationality postulates, etc.). In contrast, our main motiva-
tion for structuring arguments was to empower the expressivity of our approach
when dealing with valuation.

Associating special constraints or additional information with attacks (as
done in this research work) is an idea which has also been explored in other
settings. In [47], Villata et al. explore a conceptualization of abstract argumen-
tation in terms of successful and unsuccessful attacks, such that arguments are
accepted when there are no successful attacks on them. They characterize the
relation between attack semantics and Dung’s approach, defining as well a re-
cursive algorithm for attack semantics using attack labeling. More recently [27],
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applications of argumentation to model social networks have come to rely on
votes on attacks in order to determine the status of the arguments involved. In
our approach, attacks are labeled with time intervals, which is indeed a distinc-
tive feature in comparison with other approaches. It must be noted that the use
of time as done in our approach could also be consistently added to the different
extensions of Dung’s discussed before.

In recent research, assigning valuation to arguments has also resulted in other
approaches in which probabilities are used, as the one presented in [31]. This
is a powerful probabilistic approach to argumentation, where logical arguments
can be qualified by the probability that the premises are true, and the resulting
argument graphs can be instantiated by probabilistic logical arguments. Exten-
sions of the argument graph can be qualified by the probability of the logical
arguments, and inconsistencies can arise in the probability assignments from
multiple sources. In contrast with this approach, in our analysis we do not rely
on probabilities, but rather on numerical values propagated within an abstract
structured argumentation framework. Additionally, the work in [31] does not
consider time as part of the resulting formalization.

Two important approaches that share elements of our research appear in
Barringer etal. [9] and [10]. In the first one [9], they studied the relationships
of support and attack between arguments through a numerical argumentation
network, where they considered both the strength of the arguments, as well as
the strength that carry the attack and support between them. This work puts
close attention to the relations of support and attack between arguments, and
to the treatment of cycles in an argumentative network. In addition, they of-
fered different motivations for modeling domains in which the strengths can be
time-dependent, presenting a brief explanation of how to deal with this issue in
a numerical argumentation network. In [10], the authors presented a temporal
argumentation approach, where they extend the traditional Dung’s networks
using temporal and modal language formulas to represent the structure of ar-
guments. First, they introduced the concept of usability of arguments defined
as a function that determines if an argument is usable or not in a given context,
and this status may be changed over time depending on the context dynamics.
They also improved the representational capability of the formalism using the
ability of modal logic to represent accessibility between different argumentative
networks; in this way, the modal operator is treated as a fibring operator to
obtain a result for another argumentation network context, and then apply it
to the local argumentation network context. As it was mentioned, these rep-
resent two research lines that have points in common with our work; however,
our motivation is to present a less abstract framework through the structured
argumentation frameworks, providing in this way representational advantages.
These additional capabilities will open new research lines such as (i) choosing
a concrete structured argumentation system to instantiate the abstract struc-
tured argumentation such as [16, 37, 13, 29] (see [32] for a set of tutorials); (i)
studying how the aggregation (accrual) of the arguments that support the same
conclusion can improve the semantics of argumentation systems, analyzing as
well alternative semantics for the underlying argumentation systems; and, (7i7)
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finding new ways of taking in consideration the additional meta-information
carried by the argumental structures formalized using SAF.

8. Conclusions and Future Work

Dung’s abstract argumentation framework [25] has been shown useful for
developing several extensions which were applied in different contexts (e.g.,
[18, 17, 21, 4], among many others). As discussed, this paper presents a novel
approach in which we integrate features from two separate directions in argu-
mentation. On the one hand, we consider time as a distinctive element, and
provide the mechanisms to associate time intervals to attacks. On the other
hand, we considered the structure of arguments as a way of abstracting away the
structural parts of arguments and their interrelationships (subargument, con-
flict, etc.). Consequently, we first characterized E-TAF, an extension of TAF
considering time intervals associated with attacks. Then, based on the notions
characterizing SAF, we added structure to E-TAF to formalize the notion of
valuation for an argument varying on time. The resulting framework F-TAF*
incorporates the ability of representing temporal availability and valuation fac-
tors associated with the arguments from which the argumental structures are
built. This information is then propagated to the level of argumental structures
using it to define temporal availability of attacks.

As future work we will develop an implementation of E-TAF™* by using the
existing DeLP system [29] as a basis.®> The resulting implementation will be
applied to different domains that require modeling agents associated with a val-
uation factor varying over time. We are also interested in analyzing the salient
features of our formalization in the context of other argumentation frameworks,
such as the ASPIC+ framework [37], where rationality postulates for argumen-
tation [20] are explicitly considered. Research in this direction is being pursued.

Appendix A. Proofs
Proposition 4 Let © =(AR, Atts, ArgAv, AttAv) be an E-TAF, then:

(1) There exist always an at-grounded extension.

(2) An at-preferred extension is also an at-complete extension.
(3
(

4

An at-stable extension is also an at-preferred extension.

)
)
)
) The at-grounded extension is a t-subset of all at-preferred and at-stable
extensions.

PRrROOF.

(1) From the definition of the characteristic function, at least the empty set is
an at-grounded extension.

3See http://lidia.cs.uns.edu.ar/delp
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(2) Results from the definition of at-preferred extension and Proposition 3.

(3) An at-stable extension is the collection of t-profiles that defeat all the t-
profiles that are outside the extension; for this reason, this collection of t-profiles
must be C;-maximal at-admissible, which is the condition of an at-preferred
extension.

(4) The at-grounded extension is the C-minimal complete collection of t-profiles,
since an at-preferred extension is equivalently defined as a C-maximal complete
collection of t-profiles, it is clear that the at-grounded extension should be in-
cluded in any at-preferred extension. In addition, from (3) any at-stable exten-
sion also should be an at-preferred extension, then the at-grounded extension
should be included in all at-stable extensions.

Lemma 1 Let © = (AR, Atts, ArgAv, AttAv) be an E-TAF and let « € RT
representing a point in time. Let © = (AR. Atts.) be a Dung abstract frame-
work obtained from O in the following way: AR, = {A € AR | a € T4} and
Atts, = {(A,B) € Atts | a € Ta,p}. Let E a collection of t-profiles in ©,
and E;, = {X|(X,Tix|p) € E and o € Tx|p)} (thus,E, C AR). It holds
that, if E is an at-preferred extension (respectively an at-stable extension or an
at-grounded extension) w.r.t. ©, then E! is a preferred extension (respectively
a stable extension or a grounded extension) w.r.t. ©.

ProOF. We will separate the proof in the three parts of the lemma correspond-
ing to each of the three semantics. First, we will prove the general property
of conflict-freeness that any extension corresponding to any semantics should
satisfy:

If E is an extension w.r.t. ©, then E!, is should be conflict-free w.r.t. ©,.

Let us assume that E/ is not a conflict-free set of arguments. In that case,
there should exist two arguments X,Y € E!, such that (X,Y) € Atts),. From
the definition of E},, we know that there are (X, 7(x|g)), (Y, T(v|r)) € E, such
that o € (X, Tixg)) N (Y, Tv|g)), and (X,Y) € Atts where o € T(x y). Con-
sequently, £ is not an at-conflict-free set contradicting our initial assumption
that E is extension, and this contradiction comes from assuming that E, is not
a conflict-free set.

We will now proceed under the assumption that F’, is a conflict-free set for the
three semantics mentioned.

a) If E is an at-preferred extension w.r.t. ©, then E! is a preferred extension
w.r.t. ©.

Let E be an at-preferred extension for ©, and let E/, be a set of arguments
such that B, = {X |(X,T(x|g)) € E and o € T(x|g)}, and let us assume that
E!, is not a preferred extension of ©,,. For this to be the case, knowing E/, is
conflict-free, at least one of the two conditions required for preferred semantics
should fail, namely:
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i) E! should be an admissible set. Let us assume that E!, does not satisfy

that condition. In this case, there should exist two arguments X,Y €
AR!, such that Y ¢ E/, X € E/, (Y,X) € Atts], and there should not
exist an argument Z € AR/, verifying that Z € E/, and (Z,Y) € Alts),.
From the definition of E,, we know that there is a t-profile (X, T x|g)) € E
where a € T(x|g), a t-profile (Y, 7y) such that (Y, X) € Atts and o €
T(v,x), and does not exist a t-profile (Z, 7z g)) € E such that (Z,Y) €
Atts, and a € T(zy) verifies Tiy,x) N T(zy)) N Tx # 0. But E is an
at-preferred extension, and therefore it should satisfies at-admissibility
(contradiction).

it) E! should be a C-maximal set. Let us assume that is not, then there
exists a set E! such that E/, C E” and it satisfies conflict-freeness and
admissibility. Let E,, = EU{(X,{a}) | X € E/l and X ¢ E!}. Note
that £ C; E,, (by construction). Also, E,, is at-admissible. Contradic-
tion, since E is an preferred extension and therefore it is the maximal set

w.r.t. t-inclusion which is at-admissible. (I

b) If E is an at-stable extension w.r.t. O, then E. is a stable extension w.r.t.
o,
Let E be an at-stable extension for ©, and let E/, be a set of arguments such
that F/, = {X | (X,Tx) € F and a € Tx}, and let us assume that E’, is not a
stable extension of ©/,. For this to be the case, knowing E/, is conflict-free, the
following condition required for stable semantics should fail: E!, should attack
all arguments that do not belong to it.

Let us assume that the condition fails; then, there exist at least an argument
X € AR\ E/, that is not attacked by any argument in E/,. Consequently, there
exists a t-profile (X, 7Tx) ¢ E, where E = {(Y;, Ty, 1)) |1 < i < n} such that
o € Tx and therefore Tx \ U;_; T(vi|p) # 0 since it contains at least the time
point o. But this is not possible since F is an at-stable extension, thus F attacks
all the arguments that do not belong to that at-stable extension, in particular
this is true for (X, Tx). This is a contradiction that arises from our assumption
that E/, does not attack all arguments that are outside of it. Therefore, E, is
a stable extension of ©/ . [J

¢) If E is an at-grounded extension w.r.t. ©, then E! is a grounded extension
w.r.t. ©.

Let E be an at-grounded extension for O, and let E!, be a set of arguments such
that B/, = {X | (X,7x) € E and «a € Tx}, and let us assume that E/, is not a
grounded extension of ©/,. For this to be the case, at least one of the conditions
required for grounded semantics should fail:

i) E! should be a complete set. Let us assume that is not, then there exists
an argument Z € AR/ such that Z ¢ E/ and Z is defended by E!,. In
that case, two situations are possible:
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7 is not attacked by any argument of AR!,. Then, there does not exist an
argument Y € AR/, such that (Y, Z) € Atts),. From the definition of E/,,
we can say that there exists a t-profile (Z,7Tz) ¢ E where o € Tz, and
does not exist a t-profile (Y, 7y) such that (Y, Z) € Atts and Ty,z) # 0
where o € T(y,z). Then, (Z,Tz) is acceptable with respect to £ at least
in the time point «, but E is an at-grounded extension and therefore it
satisfies at-completeness (contradiction).

Z is attacked by another argument of AR,,. Then, there exists an argu-
ment Y € AR/, such that (Y, Z) € Atts),, and exists an argument X € E/,
such that (X,Y) € Atts!,. From the definition of E’,, we can say that there
exists a t-profile (Z,Tz) ¢ F and « € Tz, a t-profile (Y, 7y) € AR such
that (Y, Z) € Atts where a € T(y,z), and a t-profile (X, 7(x|g)) € E such
that (X,Y) € Atts where o € T(x,yy and verifies Ty, z) N Tx,y) N Tz #
(since (Z,Tz) is defended at least in the time point « for a t-profile of E).
Contradiction, since this situation implies that E is not at-complete, and
therefore not at-grounded extension.

i1) E! should be a C-minimal set. Let us assume that is not, then there exists
a proper subset B C E! such that satisfies conflict-freeness, admissibility
and completeness. Let E,,, = {(X, Tix|p)\{a}) | (X, T(x|p)) € Eand X ¢
E}. Note that E C; E,, (for construction). Also, E,, is at-complete and
at-admissible. Contradiction, since E is a grounded extension and for that
is a minimal set w.r.t. t-inclusion which is at-complete and at-admissible.
O

Proposition 6 Given the E-TAF* W = (Str(args 0q), <, AttAv,>) and the two
T*-structures (A, Ta,va), (B, Tg, UB) € Str(argssq)- If the 7*-structure (A, Ty, va)
defeats (B', Tp/, vp/) over the time interval Ty N Tg:, where (B, Tp, vp/) is a 7*-
substructure of (B, 7g, vp) then it holds that:

° APrq, N 7EBPT\1, — @7
o T NTH™ =0, and
° RGT\I, N 7—BG7"\1, _ @

PROOF. Let E be the at-grounded extension for . Let (A, Ta,va), (B, Tp,vg)
be two 7*-structures in E. Since FE is the at-grounded extension for ¥, then
FE is a set that it is minimal w.r.t. t-inclusion, at-admissible, and at-complete.
For definition of at-admissible E is a at-conflict-free set, then there is no 7*-
structures (A, Ta,va) and (B, Tp,vp) € E such that (A, Ta,va), (B, Tp,vp) € <
and Tx N T # 0. Therefore, RG”’ N 7}BGT‘I’ = 0.

The proof of the result is based on the property that states that the set
E is conflict free, meaning there cannot be a conflict between two elements of
E. This condition is necessary for the three extensions (at-grounded, at-stable
and at-preferred), and consequently the proof for the other two extensions is
analogous. [J
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Proposition 7 Let ¥ be an E-TAF™ and (A, Ta,va), (A", Tar,var) € Str(args )
such that (A’ T, vas) is a 7*-substructure of (A, Ta,vs). Then:

_ TC;'T\I/ :_) &GT\I/.
- P/”!‘q/ :_) RPr\p7 and

St St
- /‘I’;R\I’7

PROOF. Let (A’,Ta,va) be a T*-substructure of (A, 7Ta,va). From the defi-
nition of 7*-substructure it holds that args(A’) C args(A) where args(A’) and
args(A) are sets of T*-arguments. Also, from the definition of 7*-structure
it holds that the time interval in which the 7*-structure is available is 7T, =
Ni_, Ta, for each T*-argument (4;, T;,v;) € args(A).

The time interval corresponding to a 7*-structure in the at-grounded ex-
tension is obtained considering the intersection of all the time intervals of the
T*-argument that are in it.

The time interval in which a 7*-structure belongs to the at-grounded ex-
tension is obtained considering the intersection of all the time intervals of each
T*-argument belong to the at-grounded extension. Formally,

n
G’I‘\I, _ GT‘\p
T =74
7

i=1
Since args(A’) C args(A), then
RGT\P _ m TAGr\p C n TAGT\[J _ T?T\p
A;€args(A) ' A;E€args(A’) '

since args(A’) C args(A).

The proofs for the other two semantics are analogous. [
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