29,676 research outputs found

    Tree Regular Model Checking for Lattice-Based Automata

    Get PDF
    Tree Regular Model Checking (TRMC) is the name of a family of techniques for analyzing infinite-state systems in which states are represented by terms, and sets of states by Tree Automata (TA). The central problem in TRMC is to decide whether a set of bad states is reachable. The problem of computing a TA representing (an over- approximation of) the set of reachable states is undecidable, but efficient solutions based on completion or iteration of tree transducers exist. Unfortunately, the TRMC framework is unable to efficiently capture both the complex structure of a system and of some of its features. As an example, for JAVA programs, the structure of a term is mainly exploited to capture the structure of a state of the system. On the counter part, integers of the java programs have to be encoded with Peano numbers, which means that any algebraic operation is potentially represented by thousands of applications of rewriting rules. In this paper, we propose Lattice Tree Automata (LTAs), an extended version of tree automata whose leaves are equipped with lattices. LTAs allow us to represent possibly infinite sets of interpreted terms. Such terms are capable to represent complex domains and related operations in an efficient manner. We also extend classical Boolean operations to LTAs. Finally, as a major contribution, we introduce a new completion-based algorithm for computing the possibly infinite set of reachable interpreted terms in a finite amount of time.Comment: Technical repor

    Graphical Reasoning in Compact Closed Categories for Quantum Computation

    Full text link
    Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for equational reasoning about compact closed categories. Automating this reasoning process is motivated by the slow and error prone nature of manual graph manipulation. A salient feature of our system is that it provides a formal and declarative account of derived results that can include `ellipses'-style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.Comment: 21 pages, 9 figures. This is the journal version of the paper published at AIS

    A theorem prover-based analysis tool for object-oriented databases

    Get PDF
    We present a theorem-prover based analysis tool for object-oriented database systems with integrity constraints. Object-oriented database specifications are mapped to higher-order logic (HOL). This allows us to reason about the semantics of database operations using a mechanical theorem prover such as Isabelle or PVS. The tool can be used to verify various semantics requirements of the schema (such as transaction safety, compensation, and commutativity) to support the advanced transaction models used in workflow and cooperative work. We give an example of method safety analysis for the generic structure editing operations of a cooperative authoring system

    Synthesising Graphical Theories

    Full text link
    In recent years, diagrammatic languages have been shown to be a powerful and expressive tool for reasoning about physical, logical, and semantic processes represented as morphisms in a monoidal category. In particular, categorical quantum mechanics, or "Quantum Picturalism", aims to turn concrete features of quantum theory into abstract structural properties, expressed in the form of diagrammatic identities. One way we search for these properties is to start with a concrete model (e.g. a set of linear maps or finite relations) and start composing generators into diagrams and looking for graphical identities. Naively, we could automate this procedure by enumerating all diagrams up to a given size and check for equalities, but this is intractable in practice because it produces far too many equations. Luckily, many of these identities are not primitive, but rather derivable from simpler ones. In 2010, Johansson, Dixon, and Bundy developed a technique called conjecture synthesis for automatically generating conjectured term equations to feed into an inductive theorem prover. In this extended abstract, we adapt this technique to diagrammatic theories, expressed as graph rewrite systems, and demonstrate its application by synthesising a graphical theory for studying entangled quantum states.Comment: 10 pages, 22 figures. Shortened and one theorem adde

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810
    corecore