1,659 research outputs found

    Target Acquisition in Multiscale Electronic Worlds

    Get PDF
    Since the advent of graphical user interfaces, electronic information has grown exponentially, whereas the size of screen displays has stayed almost the same. Multiscale interfaces were designed to address this mismatch, allowing users to adjust the scale at which they interact with information objects. Although the technology has progressed quickly, the theory has lagged behind. Multiscale interfaces pose a stimulating theoretical challenge, reformulating the classic target-acquisition problem from the physical world into an infinitely rescalable electronic world. We address this challenge by extending Fitts’ original pointing paradigm: we introduce the scale variable, thus defining a multiscale pointing paradigm. This article reports on our theoretical and empirical results. We show that target-acquisition performance in a zooming interface must obey Fitts’ law, and more specifically, that target-acquisition time must be proportional to the index of difficulty. Moreover, we complement Fitts’ law by accounting for the effect of view size on pointing performance, showing that performance bandwidth is proportional to view size, up to a ceiling effect. The first empirical study shows that Fitts’ law does apply to a zoomable interface for indices of difficulty up to and beyond 30 bits, whereas classical Fitts’ law studies have been confined in the 2-10 bit range. The second study demonstrates a strong interaction between view size and task difficulty for multiscale pointing, and shows a surprisingly low ceiling. We conclude with implications of these findings for the design of multiscale user interfaces

    Virtual Valcamonica: collaborative exploration of prehistoric petroglyphs and their surrounding environment in multi-user virtual reality

    Get PDF
    In this paper, we present a novel, multi-user, virtual reality environment for the interactive, collaborative 3D analysis of large 3D scans and the technical advancements that were necessary to build it: a multi-view rendering system for large 3D point clouds, a suitable display infrastructure and a suite of collaborative 3D interaction techniques. The cultural heritage site of Valcamonica in Italy with its large collection of prehistoric rock-art served as an exemplary use case for evaluation. The results show that our output-sensitive level-of-detail rendering system is capable of visualizing a 3D dataset with an aggregate size of more than 14 billion points at interactive frame rates. The system design in this exemplar application results from close exchange with a small group of potential users: archaeologists with expertise in rock-art and allows them to explore the prehistoric art and its spatial context with highly realistic appearance. A set of dedicated interaction techniques was developed to facilitate collaborative visual analysis. A multi-display workspace supports the immediate comparison of geographically distributed artifacts. An expert review of the final demonstrator confirmed the potential for added value in rock-art research and the usability of our collaborative interaction techniques

    Automatic Speed Control For Navigation in 3D Virtual Environment

    Get PDF
    As technology progresses, the scale and complexity of 3D virtual environments can also increase proportionally. This leads to multiscale virtual environments, which are environments that contain groups of objects with extremely unequal levels of scale. Ideally the user should be able to navigate such environments efficiently and robustly. Yet, most previous methods to automatically control the speed of navigation do not generalize well to environments with widely varying scales. I present an improved method to automatically control the navigation speed of the user in 3D virtual environments. The main benefit of my approach is that automatically adapts the navigation speed in multi-scale environments in a manner that enables efficient navigation with maximum freedom, while still avoiding collisions. The results of a usability tests show a significant reduction in the completion time for a multi-scale navigation task

    Generalized Trackball and 3D Touch Interaction

    Get PDF
    This thesis faces the problem of 3D interaction by means of touch and mouse input. We propose a multitouch enabled adaptation of the classical mouse based trackball interaction scheme. In addition we introduce a new interaction metaphor based on visiting the space around a virtual object remaining at a given distance. This approach allows an intuitive navigation of topologically complex shapes enabling unexperienced users to visit hard to be reached parts

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Architectural and Urban Spatial Digital Simulations

    Get PDF
    This study concerns digital tools and simulation methods necessary for the description, conception, perception, and analysis of spatial architectural and urban design. The purpose of the study is to categorize, analyse, and describe the influence of digital simulation tools and methods in architectural and urban design. The study analyses techniques, applications, and research in the field of digital simulations of architectural/urban ensembles while also referring to the benefits of their use both at the level of scientific and spatial perception of architectural/urban design

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore