20,912 research outputs found

    Superluminal Signals: Causal Loop Paradoxes Revisited

    Get PDF
    Recent results demonstrating superluminal group velocities and tachyonic dispersion relations reopen the question of superluminal signals and causal loop paradoxes. The sense in which superluminal signals are permitted is explained in terms of pulse reshaping, and the self-consistent behavior which prevents causal loop paradoxes is illustrated by an explicit example.Comment: 6 pages, 3 figure

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels

    Full text link
    We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or "smart speaker" placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978
    • 

    corecore