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Abstract 

This work studied whether a blind source separation (BSS) and component selection 

procedure could increase the differences between Alzheimer's disease (AD) patients and 

control subjects' spectral and non-linear features of magnetoencephalogram (MEG) 

recordings. MEGs were acquired with a 148-channel whole-head magnetometer from 62 

subjects (36 AD patients and 26 controls), who were divided randomly into training and test 

sets. MEGs were decomposed using the algorithm for multiple unknown signals extraction 

(AMUSE). The extracted AMUSE components were characterised with two spectral – median 

frequency and spectral entropy (SpecEn) – and two non-linear features: Lempel-Ziv 

complexity (LZC) and sample entropy (SampEn). One-way analyses of variance with age as a 

covariate were applied to the training set to decide which components had the most significant 

differences between groups. Then, partial reconstructions of the MEGs were computed with 

these significant components. In the test set, the accuracy and area under the ROC curve 

(AUC) associated with each partial reconstruction of the MEGs were compared with the case 

where no BSS-preprocessing was applied. This preprocessing increased the AUCs between 

0.013 and 0.227, while the accuracy for SpecEn, LZC and SampEn rose between 6.4% and 

22.6%, improving the separation between AD patients and control subjects. 

 

Keywords: Algorithm for multiple unknown signal extraction (AMUSE); Alzheimer's disease 

(AD); blind source separation (BSS); magnetoencephalogram (MEG); non-linear analysis; 

spectral analysis. 
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1. Introduction 

Magnetoencephalogram (MEG) signals reflect the brain magnetic fields non-

invasively [1]. This recording is closely related to the commonly used electroencephalogram 

(EEG) [1]. Although MEG equipment is more complex and expensive than EEG systems, the 

acquisition of the brain magnetic fields has some advantages over the EEG. For example, 

MEG signals are independent of any reference point. Additionally, they are less affected by 

extracerebral tissues than the EEG [1]. Thus, MEG can be useful to explore both normal and 

abnormal brain activities [1], such as the alterations caused by Alzheimer's disease (AD). 

AD is the most common neurodegenerative disorder among elderly people in western 

countries [2]. It causes a progressive and irreparable impairment of mental functions which 

leads to the patient's death [2,3]. Moreover, AD diagnosis largely depends on the exclusion of 

other dementias and it can only be confirmed by necropsy [2,3]. Due to the fact that AD 

affects the brain cortex and that the EEG and MEG reflect brain cortical activity, the 

usefulness of these recordings to help in the diagnosis of this dementia has been extensively 

researched in the last decades [3,4]. 

EEG and MEG have been analysed with several signal processing techniques to gain 

insight into AD [3–5]. For instance, spectral features have been used to quantify the 

abnormalities in the spectra of AD patients' EEGs and MEGs [3,6–8]. Additionally, non-

linear analysis methods can provide useful information about the brain dynamics in this 

dementia [4,5,8–10]. Nevertheless, it is desirable to develop novel strategies to help in AD 

detection from the analysis of the electromagnetic brain activity [9,11,12]. Techniques based 

on spatial filtering can help to achieve this goal, as these algorithms offer additional 

perspectives to examine EEG and MEG signals [11–14]. For instance, common spatial 

patterns (CSP) have been recently applied to enhance characteristics of EEG recordings in 

mild cognitive impairment (MCI) patients who eventually developed AD [11]. 
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Another kind of spatial filtering techniques is blind source separation (BSS) [15,16]. 

BSS methods estimate the underlying components of the EEG and MEG signals without a 

priori information about those components (i.e., the components themselves and the process 

that produced the observed recordings are unknown) [15–17]. Since these techniques isolate 

specific physiological activities into different components, they have been used to reject 

artefacts [16–19]. This application is based on the fact that BSS isolates the artefacts into a 

few components. Then, the brain recordings are reconstructed without the artefactual 

components [18,19]. EEG and MEG data can also be processed with BSS methods to help in 

the recognition of neurological disorders. For example, BSS can separate specific brain 

activity related to epilepsy [20] or the Creutzfeldt–Jakob disease [21]. Considering these 

research studies, it can be hypothesised that the application of BBS, together with features 

extracted from electromagnetic brain activity recordings, may enhance features associated 

with diseases like AD. This is due to the fact that some BSS components of the EEG and 

MEG signals may be more sensitive to AD than others [12,14,22]. Hence, the most relevant 

components may be selected and the electromagnetic brain signals may be partially 

reconstructed using only these components to achieve a better discrimination between AD 

patients and healthy subjects [14]. 

In this work, we wanted to evaluate whether a BSS preprocessing might enhance the 

separation between AD patients and elderly control subjects based on spectral and non-linear 

features of MEG signals. Additionally, we aimed at determining whether the range of BSS 

components with significant differences between demented patients and controls differed 

when both kinds of features (spectral and non-linear ones) were considered. We also intended 

to confirm the results of a previous pilot study [14]. 

 

2. Subjects and magnetoencephalogram recordings 
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MEG recordings were acquired from 62 subjects: 36 AD patients (24 women and 12 

men) and 26 elderly control subjects (17 women and 9 men). All patients were recruited from 

the “Asociación de Enfermos de Alzheimer” (Spain) and fulfilled the criteria of probable AD 

according to the guidelines of the National Institute of Neurological and Communicative 

Disorders and Stroke – Alzheimer's Disease and Related Disorders Association (NINCDS-

ADRDA) [23]. Brain scans and thorough medical, physical, neurological, psychiatric and 

neurophysiological examinations were performed to diagnose the dementia. No patient was 

receiving medication that could affect the MEG. The control group consisted of elderly 

control subjects without past or present neurological disorders. Table I shows the mean and 

standard deviation (SD) of the age and mini-mental state examination (MMSE) score [24] for 

all AD patients and control subjects. It is worth noting that the difference in age between 

groups was not significant (p-value = 0.1911, Student's t-test). All control subjects and AD 

patients' caregivers gave their informed consent to participate in the study, which was 

approved by the local ethics committee. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 1 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

The population was divided randomly into a training set (18 AD patients and 13 

control subjects) and a test set (formed by other 18 demented patients and 13 controls). The 

training set was used to develop the BSS preprocessing and to find the classification rules for 

each case. Then, these algorithms were applied, without further modification, to the test set to 

independently assess the improvement in the separation between AD patients and control 

subjects due to the BSS preprocessing. The demographic data and clinical features of training 

and test sets are also summarized in Table I. 

MEG signals were acquired with a 148-channel whole-head magnetometer (MAGNES 
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2500 WH, 4D Neuroimaging) placed in a magnetically shielded room at the “Centro de 

Magnetoencefalografía Dr. Pérez-Modrego” (Spain). Five minutes of MEG were recorded 

from each of the subjects while they lay on a patient bed in a relaxed state, awake and with 

eyes closed. The sampling frequency was 678.19 Hz. To reduce data length, the recordings 

were decimated to 169.55 Hz. This procedure consisted of filtering the MEGs according to 

the Nyquist criterion and down-sampling them by a factor of four. For each subject, an 

average number of 17.60 ± 6.23 epochs (mean ± SD) of 10 seconds (1695 samples) that were 

simultaneously artefact-free at all channels were selected for analysis. Finally, signals were 

digitally filtered between 1.5 and 40 Hz. 

 

3. Methods 

Our methodology is introduced in the following lines. In order to test the BSS 

preprocessing on completely unseen data, the selection of the most sensitive components to 

AD was performed using the training set, whereas the assessment of the improvement in the 

separation between AD patients and controls was carried out with the test set. Firstly, a BSS 

algorithm was applied to extract the components from the MEG recordings orderly. Secondly, 

two spectral and two non-linear analysis methods were applied to every BSS component in 

the training set. For each of these four features, different ranges of components that accounted 

for the most significant differences between the demented patients and controls were selected 

to partially reconstruct the MEG signals. Afterwards, the four metrics were applied to the 

partially reconstructed MEG signals and to the original recordings (without the BSS 

preprocessing) of the training set. Subject classification rules were then derived using linear 

discriminant analysis (LDA). Finally, these classification thresholds for the original MEG 

recordings and the BSS preprocessed signals were applied to the test set in order to evaluate 

the enhancement in the separation between AD patients and controls due to the BSS and 
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component selection procedure. 

 

3.1. Blind source separation (BSS) algorithm 

BSS techniques estimate the set of n unknown components, s(t) = [s1(t), …, sn(t)]
T, 

where T denotes transposition, which were linearly mixed by the full rank m × n matrix A (m 

≥ n) to form m temporally and spatially correlated recordings, x(t) = [x1(t), …, xm(t)]T [15,16]. 

Here, x(t) represents the MEGs, which are related to s(t) by: 

x(t) = As(t), (1) 

where x(t) and s(t) are supposed to have zero mean. 

Several assumptions are needed to estimate s(t) and A from x(t) [16,17]. The most 

important one is that the components are mutually independent or, alternatively, that they 

should be decorrelated at any time delay. Additionally, the mixing process should be linear 

and instantaneous. It has been proven that EEG and MEG data fulfil these hypotheses [16,17]. 

For simplicity, we assume that m = n thanks to the fact that only the most relevant 

components will be retained to partially reconstruct the MEG signals. Moreover, considering 

m = n allows us to consistently compare the same number of extracted components instead of 

estimating different values of n for each signal epoch [14]. 

Some BSS algorithms use the temporal structure of x(t) to compute a demixing matrix, 

W. Then, the estimated inner components, y(t) = [y1(t), …, yn(t)]
T, are recovered by 

[16,18,19]: 

y(t) = Wx(t). (2) 

It has been shown that some BSS components may be more affected by AD than 

others [12,14]. Therefore, the range of the most sensitive components to AD – yrange(t) – may 

be back projected using the inverse of W (W-1) to compute a partial reconstruction of the 

MEGs – xpartial(t) – that may have enhanced features of AD:  
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xpartial(t) = W-1
yrange(t). (3) 

Thus, features extracted from the BSS-processed signals xpartial(t) may distinguish AD 

patients better than those extracted from the original MEGs – x(t) – [12,14,22]. 

In contrast to other applications of BSS to EEG/MEG, we do not aim at isolating 

specific physiological activity [17–21]. Instead, we apply BSS as a preprocessing step to 

enhance the differences between AD patients and controls' brain activity [12,14,22]. Thus, 

xpartial(t) does not intend to resemble the brain activity accurately, but it may provide a better 

separation between subject groups than the MEG data without the BSS preprocessing [14]. 

In order to compare components from different MEG epochs and subjects and to 

decide which are more sensitive to AD, an order or criterion must be established [12–14]. For 

this reason, MEG signals were decomposed with the algorithm for multiple unknown signals 

extraction (AMUSE) [15,25], which provides an order for the components [12].  

Considering that the components should have no correlations at any time delay, 

AMUSE decorrelates the input signals at two times delays, typically τ = 0 and τ = 1 samples 

[12,15,18]. This algorithm always produces the same outcome when applied to the same input 

dataset. Moreover, it orders the components by decreasing linear predictability [12]. Hence, it 

is possible to define a certain range of components – yrange(t) – by retaining only those whose 

index is between predefined limits. The implementation of AMUSE is as follows [12,14,25]: 

1. Apply a principal component analysis to the input signals, x(t), to whiten them 

[12,25]. If { }·E  denotes the expectation value of a variable, the covariance 

matrix of x(t) is computed as: 

( ) ( ) ( ){ }T0 ttEx xxR = , (4) 

and then the whitened data, z(t), are estimated using [14]: 

z(t) = Qx(t), (5) 

where 
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( )[ ] 2
1

0
−

= xRQ . 
(6) 

2. Thereafter, decorrelate the signals at a particular time delay, τ (usually τ = 1) 

[12,14,15,18]. Firstly, compute the time-delayed covariance matrix at that time 

delay as [25]: 

( ) ( ) ( ){ }T
ττ −= ttEz zzR , (7) 

and then compute the eigenvalue decomposition of ( ) ( )( ) 2T
ττ zz RR + . If V 

denotes the eigenmatrix of this decomposition, the demixing matrix W is 

calculated using [25]: 

QVW
T

= , (8) 

and the BSS components are finally recovered with Eq. (2) [14]. 

 

3.2. Feature extraction 

Every MEG channel and AMUSE component was characterised with two spectral – 

median frequency (MF) and spectral entropy (SpecEn) – and two non-linear features: Lempel-

Ziv complexity (LZC) and sample entropy (SampEn). These features were selected on the 

basis of previous studies that showed their usefulness to distinguish AD patients' EEGs and 

MEGs from those of healthy elderly subjects [5,7,8,14,26,27]. Moreover, since two of them 

are spectral features (MF and SpecEn) and the other two (LZC and SampEn) are non-linear 

analysis methods, the usefulness of the BSS and component selection procedure could be 

tested with both types of techniques. 

3.2.1. Median frequency (MF) 

MF has been used to study the electromagnetic brain activity in AD [7,8] since this 

dementia is associated with a slowing of brain frequencies [3]. This feature summarises the 

signal spectrum. It provides information about the relative power of low- and high-frequency 
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electromagnetic oscillations produced by local synchronies of neural assemblies. In order to 

calculate the MF, the power spectral density (PSD) of each signal is estimated as the Fourier 

transform of its autocorrelation function [7]. Then, the MF is computed as the frequency 

which contains half the PSD power: 

( ) ( )∑∑
==

=










 MF

ff

fPSDfPSD
1.5Hz

40Hz

1.5Hz2
1

. 
(9) 

 

3.2.2. Spectral entropy (SpecEn) 

SpecEn has been applied to AD patients' EEG and MEG recordings to measure the 

flatness of the signal spectrum [7,26]. This is due to the fact that this dementia causes a 

slowing in the frequency content of the electromagnetic brain signals [3] and this measure is a 

convenient way of quantifying these changes. A broad and flat spectrum entails high SpecEn 

values, whereas a predictable signal with narrow spectral content offers a low SpecEn [28]. In 

order to estimate the SpecEn, the PSD is normalised (PSDn) so that ( )∑ = 1fPSDn . 

Afterwards, SpecEn is computed applying the Shannon's entropy to the PSDn [28]: 

( )
( ) ( )[ ]∑

=

−
=

Hz

Hzf

nn fPSDfPSD
N

SpecEn
40

5.1

log
log

1
, 

(10) 

where N denotes the number of frequency bins and the factor ( )Nlog
1−  normalizes SpecEn 

[28]. 

3.2.3. Lempel-Ziv complexity (LZC) 

LZC has been used to analyse various biomedical signals [29], including AD patients' 

MEG activity [27]. This metric evaluates the signal complexity by measuring the number of 

distinct substrings and their rate of recurrence along the time series [30]. It assigns larger 

values to more complex data [30]. This non-linear feature can offer information about the 

electromagnetic brain dynamics taking into account that it mainly depends on the signal 
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bandwidth and, to a smaller degree, on the sequence probability density function [29,31]. 

Additionally, LZC can be interpreted as a harmonic variability metric [29]. To compute this 

feature, the recording must be coarse-grained into a finite symbol sequence [29]. In this study, 

this transformation has been performed by comparing the data points with the median of the 

signal. The algorithm to compute the LZC can be found in [29] or [31]. 

3.2.4. Sample entropy (SampEn) 

In 1991, approximate entropy was introduced to assess the irregularity of biomedical 

recordings by evaluating the appearance of repetitive patterns in the data [32]. This statistic 

counts each sequence as matching itself to avoid the occurrence of log(0) in the computations. 

Thus, this irregularity estimation is biased [33]. To reduce this bias, SampEn was developed 

as a modification of approximate entropy [33]. Likewise ApEn, SampEn is an irregularity 

metric that associates higher values with more irregular signals and it can provide information 

about changes in the regularity of brain local synchronizations [26]. This metric has two input 

parameters: a run length m and a tolerance window r [33]. In this study, SampEn was 

estimated with m = 1 and r = 0.25 times the SD of the original time series [26,33]. The 

implementation of the SampEn is detailed in [26] or [33]. 

 

3.3. Statistical analysis 

Normality and homoscedasticity were verified with Kolmogorov-Smirnov and 

Levene's tests, respectively. Since variables met parametric test assumptions, a one-way 

analysis of variance (ANOVA) with age as a covariate was applied to statistically assess the 

differences between AD patients and control subjects' MF, SpecEn, LZC and SampEn values 

of the AMUSE components in the training set. The selection of the AMUSE components that 

were responsible for the most significant differences between the subject groups was based on 

the p-values obtained from this ANOVA. 
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The distributions of the four features before and after the BSS preprocessing were 

inspected visually by means of boxplots. Moreover, a linear discriminant analysis (LDA) was 

applied to the MF, SpecEn, LZC and SampEn values from the original MEGs (without the 

BSS preprocessing) and to the partially reconstructed signals of the training set. This LDA 

provided the optimum classification rule for the training set in each case. Then, this 

classification threshold was tested without further alteration on the test set. Specificity was 

defined as the percentage of healthy subjects correctly detected and sensitivity represented the 

proportion of all AD patients for whom the test was positive. Accuracy denoted the total 

fraction of subjects well recognised. Finally, we computed the area under the receiver-

operating characteristic curve (AUC) in the test set as a summary of the separation between 

groups. The AUC can be interpreted as the probability that a randomly selected control 

subject has a value of the considered feature larger than that of a randomly chosen AD patient 

[34]. 

 

4. Results 

4.1. Qualitative study of the AMUSE components 

AMUSE was applied to blindly decompose MEG background activity epochs of 10 s 

(1695 samples) recorded from all 36 AD patients and 26 controls. Given that AMUSE orders 

the components by decreasing linear predictability [12], the MF, SpecEn, LZC and SampEn 

values of the components for both subject groups could be straightforwardly compared [14]. 

Fig. 1 depicts the values of these features for each AMUSE component averaged over all AD 

patients and control subjects. Overall, the values of MF, SpecEn, LZC and SampEn increased 

with the AMUSE component index. This relationship is particularly clear for MF, indicating 

that the order provided by AMUSE is related to the low- or high-frequency content of the 

components [14]. Moreover, the SampEn results confirm that higher AMUSE component 
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indexes correspond to more irregular (i.e. less predictable) data. Additionally, lower MF, 

SpecEn, LZC and SampEn values tended to be found in the AD patients' AMUSE 

components. This finding agrees with the fact that AD has been related to spectral 

abnormalities and a decrease in complexity and irregularity of the electromagnetic brain 

activity [3–5,8]. 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 1 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

 

4.2. Training set results 

First of all, a one-way ANOVA with age as a covariate was used to statistically assess 

the differences between subject groups of the training set for each AMUSE component and 

feature. Fig. 2 depicts these results, showing that the evolution of the p-values is similar for 

all metrics. The components with the most significant differences are gathered together and 

have low AMUSE components indexes, although the very first components provide less 

differentiation between groups. For each feature, we selected two ranges of AMUSE 

components that would be used to partially reconstruct the MEGs – xpartial(t). These ranges 

were defined as the continuous intervals of 15 and 30 components (10% and 20% of all the 

148 available components, respectively) which provided the lowest average p-value for every 

metric in the training set. Table 2 shows these ranges. 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 2 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 2 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 
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Afterwards, the MEG signals of the training set were partially reconstructed with the 

ranges specified in Table 2. An average value of MF, SpecEn, LZC or SampEn was computed 

per each channel and subject from these partially reconstructed signals – xpartial(t) – and from 

the original MEGs: x(t). In order to simplify the analysis, we averaged the 148 values of MF, 

SpecEn, LZC or SampEn for every subject [8,14]. Fig. 3 shows the corresponding boxplots 

computed from x(t) and from xpartial(t) reconstructed with 15 components in the training set. It 

can be observed that the BSS preprocessing modifies the distribution of the four measures, 

enhancing the separation between AD patients and control subjects. In order to provide 

additional information about the differences in the frequency content of AD patients and 

control subjects and how the BSS preprocessing affects the spectra, Fig. 4 depicts the average 

normalised Fourier spectra (PSDn) for the original (without BSS) and the BSS preprocessed 

MEGs for the subjects in the training set. 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 3 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 4 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

Finally, LDA was applied to the average values of MF, SpecEn, LZC or SampEn of the 

original MEG recordings – x(t) – and the partially reconstructed MEG signals – xpartial(t) – to 

find the optimal subject classification rules in the training set. These classification rules were 

evaluated, without further alteration, with the test set. 

 

4.3. Test set results 

This section describes the improvement assessment in the group separation for each 

feature due to the BSS preprocessing. Firstly, we applied the classification rules for the case 
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where no component selection procedure was used – x(t) – to the unseen test set. The results 

are depicted in Table 3. Secondly, the MEGs of the test set were decomposed and the ranges 

of components indicated in Table 2 were used to compute partial reconstructions: xpartial(t). 

Then, the classification rules obtained in the training set for BSS preprocessed signals were 

used to classify the partially reconstructed signals of the test set. These classification results 

are detailed in Table 4. In addition to the accuracy, sensitivity and specificity, Tables 3 and 4 

show the corresponding AUCs computed in each case for the test set. It can be seen that, 

except for the MF, the component selection procedure provided increases in the accuracy 

between 6.4% and 22.6% in comparison with the case where no BSS preprocessing was used. 

Additionally, the improvement in the AUC due to the BSS preprocessing ranged between 

0.013 and 0.227. 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 3 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

INSERT TABLE 4 AROUND HERE 

----------------------------------------------------------------------------------------------------------------- 

 

5. Discussion and conclusions 

AMUSE was applied to decompose artefact-free MEG epochs of 36 AD patients and 

26 controls. The population was divided randomly into training and test sets to avoid the 

optimization of the parameters involved in the methodology (ranges of components and 

classification rules) on the whole dataset. Every component was characterised with two 

spectral (MF and SpecEn) and two non-linear (LZC and SampEn) features. For each of these 

metrics, a one-way ANOVA with age as a covariate was used to decide which components 

had the most significant differences between AD patients and controls in the training set. 
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These ranges of components were used to compute the partial reconstructions of the MEG 

signals: xpartial(t). LDA provided the classification rules for each case in the training set. Then, 

these rules were applied to the test set without further modification to compare the separation 

between groups achieved using the original MEG recordings and with that of the partially 

reconstructed MEGs. The results suggest that the BSS and component selection procedure 

improves the separation between the AD patients and control groups since this preprocessing 

usually increased both the accuracy and AUC. 

The BSS and component selection procedure increased the accuracy between 6.4% 

and 22.6% for all features apart from MF, for which the accuracy remained unchanged or 

decreased (-6.4%) when the BSS preprocessing was applied. Nevertheless, the AUCs of all 

features improved between 0.013 and 0.227. It is remarkable that our accuracy and AUC 

results were computed in different ways. Whereas the accuracy was calculated in the test set 

with the classification rules developed in the training set, the AUC was estimated using data 

only from the test set. Furthermore, in contrast to the maximum accuracy value obtained for a 

variable, the AUC depends on the whole range of sensitivity/specificity pairs provided by that 

variable, thus offering an idea of how separated the groups are [34]. Therefore, our results 

suggest that the BSS preprocessing provide a more robust separation between groups for both 

kinds of features: spectral and non-linear ones. Moreover, our analyses showed that similar 

ranges of components contained the most significant differences for both types of features. 

These ranges only differ slightly in the case of MF. Therefore, it could be hypothesised that 

this BSS and component selection procedure could also be applied with other spectral and 

non-linear features and that the ranges of components with the largest differences between 

AD patients and healthy controls for other analysis techniques might be similar to those 

reported in this study. 
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Previous research by other authors had shown the utility of the BSS and component 

selection preprocessing when spectral and time-scale features were computed from EEGs of 

MCI patients who later proceeded to AD [12,22]. These EEG signals were characterised with 

the relative powers in six frequency bands [12]. Afterwards, an LDA was applied to classify 

the subjects. The accuracy improvement due to this methodology was 10% [12]. 

Nevertheless, the individual improvement in each variable was not measured in [12]. 

Additionally, a later study used a “bump modelling” of the partially reconstructed EEG 

wavelet time-frequency transform and a neural network classifier to further improve the 

subject classification [22]. In contrast to these studies, our classification method allowed us to 

assess the improvement in each variable (MF, SpecEn, LZC or SampEn) separately. We have 

also found that the BSS and component selection procedure is useful when the MEG signals 

are analysed with non-linear methods. Similarly, a study with the same EEGs analysed in [12] 

and [22] found that the ability of both spectral and non-linear features to distinguish the 

subject groups improved with the application of a different kind of spatial filters: CSP [11]. 

CSP finds spatial filters which maximise the difference in signal power between two classes 

to be discriminated (e.g., patients and controls) [11]. Since different spatial filtering 

techniques have proven to be useful in this application, it is necessary to test other algorithms 

which may also provide improvements in the classification of healthy elderly subjects and 

patients with neurological disorders. 

Certain limitations of our study merit consideration. First of all, the sample size was 

small. Although the AD patients and control subjects were divided randomly into a training 

set and a test set to evaluate the methodology with completely unseen data, our results should 

be taken with caution. Additional analysis with a larger database should be performed. A 

training set with a higher number of subjects would allow us to develop a more consistent and 

optimised preprocessing methodology, while a larger test set would increase the reliability of 
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the estimated results. Moreover, it could be particularly interesting to distinguish MCI 

patients from control subjects in order to predict AD [12]. Additionally, given the fact that 

this application of spatial filtering techniques is relatively new, the performance of other 

algorithms should be tested. 

To sum up, this paper describes a BSS and component selection preprocessing to 

improve the separation between spectral and non-linear features extracted from AD patients 

and control subjects' MEG activity. In order to avoid the optimization of the parameters 

involved in the BSS preprocessing on the whole population, the subjects were divided 

randomly into training and test sets. Thanks to the fact that the BSS algorithm (AMUSE) 

orders the extracted components by decreasing linear predictability [12], it was possible to 

compare components extracted from AD patients and control subjects to decide which of 

them provided more significant group differences in the training set. Then, these significant 

components were projected back to the MEG signals, and these partially reconstructed MEGs 

were characterised with spectral and non-linear features. The improvement in the group 

separation was compared with the case where no BSS preprocessing was applied to the same 

MEG recordings in the test set. This preprocessing increased the AUC for all features 

between 0.013 and 0.227 while the accuracy rose in three of the four features between 6.4% 

and 22.6%. These results suggest that the BSS and component selection procedure improves 

the group separation, thus corroborating previous studies [14]. 
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Table legends 

Table 1. Demographic and clinical features for all participants, and the training and test sets. 

Data are given as mean ± SD. 

All subjects 
 AD patients Control subjects 

Number of subjects 36 26 
Number of females 24 17 

Age (years) 74.06 ± 6.95 71.77 ± 6.38 
MMSE score 18.06 ± 3.36 28.88 ± 1.18 

Training set 
 AD patients Control subjects 

Number of subjects 18 13 
Number of females 12 9 

Age (years) 74.11 ± 7.38 71.38 ± 4.84 
MMSE score 17.72 ± 3.63 28.92 ± 1.04 

Test set 
 AD patients Control subjects 

Number of subjects 18 13 
Number of females 12 8 

Age (years) 74.00 ± 6.70 72.15 ± 7.82 
MMSE score 18.39 ± 3.15 28.85 ± 1.34 

 

Table 2. Ranges of AMUSE components (estimated from the training set) selected to partially 

reconstruct the MEG signals for each feature. 

Retained components MF SpecEn LZC SampEn 

Subset of 15 
components (10%) 

18 to 32 9 to 23 7 to 21 7 to 21 

Subset of 30 
components (20%) 

13 to 42 6 to 35 3 to 32 6 to 35 

 

Table 3. Classification results and AUC obtained from the MEG recordings without the BSS 

preprocessing in the test set using the decision rules developed with the training set. 

 MF SpecEn LZC SampEn 

Accuracy (%) 77.4 61.3 61.3 58.1 
Sensitivity (%) 88.9 55.6 55.6 72.2 
Specificity (%) 53.9 69.2 69.2 38.5 

AUC 0.855 0.727 0.786 0.645 
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Table 4. Classification results and AUC obtained from the partially reconstructed MEG 

signals in the test set using the algorithms developed with the training set. 

 MF SpecEn LZC SampEn 

Number of 
components 

retained 

30 
(20%) 

15 
(10%) 

30 
(20%) 

15 
(10%) 

30 
(20%) 

15 
(10%) 

30 
(20%) 

15 
(10%) 

Accuracy (%) 77.4 71.0 71.0 67.7 67.7 74.2 80.7 80.7 
Sensitivity (%) 77.8 66.7 77.8 72.2 72.2 72.2 83.3 83.3 
Specificity (%) 76.9 76.9 61.5 61.5 61.5 76.9 76.9 76.9 

AUC 0.878 0.868 0.786 0.782 0.838 0.838 0.872 0.863 
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Figure legends 

Fig. 1. Average values of (a) MF, (b) SpecEn, (c) LZC and (d) SampEn for every AMUSE 

component in all AD patients and control subjects. 
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Fig. 2. p-values of a one-way ANOVA with age as a covariate computed for each AMUSE 

component in the training set for (a) MF and SpecEn and (b) LZC and SampEn. 
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Fig. 3. Boxplots for (a) MF, (b) SpecEn, (c) LZC and (d) SampEn computed using the original 

MEG recordings without the BSS preprocessing and the MEGs partially reconstructed with 

15 components from AD patients (AD) and control subjects (CS) in the training set. 
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Fig. 4. Normalised frequency spectra (PSDn) for AD patients and control subjects in the 

training set computed using (a) the original MEG recordings without the BSS preprocessing 

and (b) the MEGs partially reconstructed with components 9 to 23. 
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