46 research outputs found

    Dynamic phase-locking states and personality in sub-acute mild traumatic brain injury:An exploratory study

    Get PDF
    Research has shown that maladaptive personality characteristics, such as Neuroticism, are associated with poor outcome after mild traumatic brain injury (mTBI). The current exploratory study investigated the neural underpinnings of this process using dynamic functional network connectivity (dFNC) analyses of resting-state (rs) fMRI, and diffusion MRI (dMRI). Twenty-seven mTBI patients and 21 healthy controls (HC) were included. After measuring the Big Five personality dimensions, principal component analysis (PCA) was used to obtain a superordinate factor representing emotional instability, consisting of high Neuroticism, moderate Openness, and low Extraversion, Agreeableness, and Conscientiousness. Persistent symptoms were measured using the head injury symptom checklist at six months post-injury; symptom severity (i.e., sum of all items) was used for further analyses. For patients, brain MRI was performed in the sub-acute phase (~1 month) post-injury. Following parcellation of rs-fMRI using independent component analysis, leading eigenvector dynamic analysis (LEiDA) was performed to compute dynamic phase-locking brain states. Main patterns of brain diffusion were computed using tract-based spatial statistics followed by PCA. No differences in phase-locking state measures were found between patients and HC. Regarding dMRI, a trend significant decrease in fractional anisotropy was found in patients relative to HC, particularly in the fornix, genu of the corpus callosum, anterior and posterior corona radiata. Visiting one specific phase-locking state was associated with lower symptom severity after mTBI. This state was characterized by two clearly delineated communities (each community consisting of areas with synchronized phases): one representing an executive/saliency system, with a strong contribution of the insulae and basal ganglia; the other representing the canonical default mode network. In patients who scored high on emotional instability, this relationship was even more pronounced. Dynamic phase-locking states were not related to findings on dMRI. Altogether, our results provide preliminary evidence for the coupling between personality and dFNC in the development of long-term symptoms after mTBI.</p

    Modelling of the switching behavior of functional connectivity microstates (FCμstates) as a novel biomarker for mild cognitive impairment

    Get PDF
    It is evident the need for designing and validating novel biomarkers for the detection of mild cognitive impairment (MCI). MCI patients have a high risk of developing Alzheimer’s disease (AD), and for that reason the introduction of novel and reliable biomarkers is of significant clinical importance. Motivated by recent findings about the rich information of dynamic functional connectivity graphs (DFCGs) about brain (dys)function, we introduced a novel approach of identifying MCI based on magnetoencephalographic (MEG) resting state recordings. The activity of different brain rhythms {δ, θ, α1, α2, β1, β2, γ1, γ2} was first beamformed with linear constrained minimum norm variance in the MEG data to determine ninety anatomical regions of interest (ROIs). A dynamic functional connectivity graph (DFCG) was then estimated using the imaginary part of phase lag value (iPLV) for both intra-frequency coupling (8) and also cross-frequency coupling pairs (28). We analysed DFCG profiles of neuromagnetic resting state recordings of 18 Mild Cognitive Impairment (MCI) patients and 20 healthy controls. We followed our model of identifying the dominant intrinsic coupling mode (DICM) across MEG sources and temporal segments that further leads to the construction of an integrated DFCG (iDFCG). We then filtered statistically and topologically every snapshot of the iDFCG with data-driven approaches. Estimation of the normalized Laplacian transformation for every temporal segment of the iDFCG and the related eigenvalues created a 2D map based on the network metric time series of the eigenvalues (NMTSeigs). NMTSeigs preserves the non-stationarity of the fluctuated synchronizability of iDCFG for each subject. Employing the initial set of 20 healthy elders and 20 MCI patients, as training set, we built an overcomplete dictionary set of network microstates (nμstates). Afterward, we tested the whole procedure in an extra blind set of 20 subjects for external validation. We succeeded a high classification accuracy on the blind dataset (85 %) which further supports the proposed Markovian modelling of the evolution of brain states. The adaptation of appropriate neuroinformatic tools that combine advanced signal processing and network neuroscience tools could manipulate properly the non-stationarity of time-resolved FC patterns revealing a robust biomarker for MCI

    Dynamic phase-locking states and personality in sub-acute mild traumatic brain injury:An exploratory study

    Get PDF
    Research has shown that maladaptive personality characteristics, such as Neuroticism, are associated with poor outcome after mild traumatic brain injury (mTBI). The current exploratory study investigated the neural underpinnings of this process using dynamic functional network connectivity (dFNC) analyses of resting-state (rs) fMRI, and diffusion MRI (dMRI). Twenty-seven mTBI patients and 21 healthy controls (HC) were included. After measuring the Big Five personality dimensions, principal component analysis (PCA) was used to obtain a superordinate factor representing emotional instability, consisting of high Neuroticism, moderate Openness, and low Extraversion, Agreeableness, and Conscientiousness. Persistent symptoms were measured using the head injury symptom checklist at six months post-injury; symptom severity (i.e., sum of all items) was used for further analyses. For patients, brain MRI was performed in the sub-acute phase (~1 month) post-injury. Following parcellation of rs-fMRI using independent component analysis, leading eigenvector dynamic analysis (LEiDA) was performed to compute dynamic phase-locking brain states. Main patterns of brain diffusion were computed using tract-based spatial statistics followed by PCA. No differences in phase-locking state measures were found between patients and HC. Regarding dMRI, a trend significant decrease in fractional anisotropy was found in patients relative to HC, particularly in the fornix, genu of the corpus callosum, anterior and posterior corona radiata. Visiting one specific phase-locking state was associated with lower symptom severity after mTBI. This state was characterized by two clearly delineated communities (each community consisting of areas with synchronized phases): one representing an executive/saliency system, with a strong contribution of the insulae and basal ganglia; the other representing the canonical default mode network. In patients who scored high on emotional instability, this relationship was even more pronounced. Dynamic phase-locking states were not related to findings on dMRI. Altogether, our results provide preliminary evidence for the coupling between personality and dFNC in the development of long-term symptoms after mTBI.</p

    Magnetoencephalography abnormalities in adult mild traumatic brain injury: a systematic review

    Get PDF
    Background The global incidence of traumatic brain injuries is rising, with at least 80% being classified as mild. These mild injuries are not visible on routine clinical imaging. The potential clinical role of a specific imaging biomarker be it diagnostic, prognostic or directing and monitoring progress of personalised treatment and rehabilitation has driven the exploration of several new neuroimaging modalities. This systematic review examined the evidence for magnetoencephalography (MEG) to provide an imaging biomarker in mild traumatic brain injury (mTBI). Methods Our review was prospectively registered on PROSPERO: CRD42019151387. We searched EMBASE, MEDLINE, trial registers, PsycINFO, Cochrane Library and conference abstracts and identified 37 papers describing MEG changes in mTBI eligible for inclusion. Since meta-analysis was not possible, based on the heterogeneity of reported outcomes, we provide a narrative synthesis of results. Results The two most promising MEG biomarkers are excess resting state low frequency power, and widespread connectivity changes in all frequency bands. These may represent biomarkers with potential for diagnostic application, which reflect time sensitive changes, or may be capable of offering clinically relevant prognostic information. In addition, the rich data that MEG produces are well-suited to new methods of machine learning analysis, which is now being actively explored. Interpretation MEG reveals several promising biomarkers, in the absence of structural abnormalities demonstrable with either computerised tomography or magnetic resonance imaging. This review has not identified sufficient evidence to support routine clinical use of MEG in mTBI currently. However, verifying MEG’s potential would help meet an urgent clinical need within civilian, sports and military medicine

    Deviant Dynamics of Resting State Electroencephalogram Microstate in Patients With Subjective Tinnitus

    Get PDF
    Given the importance of central reorganization and tinnitus, we undertook the current study to investigate changes to electroencephalogram (EEG) microstates and their association with the clinical symptoms in tinnitus. High-density (128 channel) EEG was used to explore changes in microstate features in 15 subjects with subjective tinnitus and 17 age-matched controls. Correlations between microstate parameters and subjective tinnitus symptoms were also analyzed. An increased presence of class A microstate and decreased presence of class D microstate were found in coverage and lifespan of microstate parameters in the tinnitus patients. Syntax analysis also demonstrated an aberrant pattern of activity, with reduced transitions from class D to class B in tinnitus patients. Moreover, a significant positive correlation of tinnitus loudness with increased lifespan of microstate class C was found. Significant differences in temporal characteristics and syntax of the EEG microstate classes were found at rest between tinnitus patients and the healthy subjects. Our study indicates that EEG microstates may provide a possible valuable method to study large-scale brain networks, which may in turn be beneficial to investigation of the neurophysiological mechanisms behind tinnitus
    corecore