103 research outputs found
On a generalization of Abelian equivalence and complexity of infinite words
In this paper we introduce and study a family of complexity functions of
infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+
\cup {+\infty} and be a finite non-empty set. Two finite words and
in are said to be -Abelian equivalent if for all of length
less than or equal to the number of occurrences of in is equal to
the number of occurrences of in This defines a family of equivalence
relations on bridging the gap between the usual notion of
Abelian equivalence (when ) and equality (when We show that
the number of -Abelian equivalence classes of words of length grows
polynomially, although the degree is exponential in Given an infinite word
\omega \in A^\nats, we consider the associated complexity function \mathcal
{P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of
-Abelian equivalence classes of factors of of length We show
that the complexity function is intimately linked with
periodicity. More precisely we define an auxiliary function q^k: \nats
\rightarrow \nats and show that if for
some k \in \ints ^+ \cup {+\infty} and the is ultimately
periodic. Moreover if is aperiodic, then if and only if is Sturmian. We also
study -Abelian complexity in connection with repetitions in words. Using
Szemer\'edi's theorem, we show that if has bounded -Abelian
complexity, then for every D\subset \nats with positive upper density and for
every positive integer there exists a -Abelian power occurring in
at some position $j\in D.
Abelian-Square-Rich Words
An abelian square is the concatenation of two words that are anagrams of one
another. A word of length can contain at most distinct
factors, and there exist words of length containing distinct
abelian-square factors, that is, distinct factors that are abelian squares.
This motivates us to study infinite words such that the number of distinct
abelian-square factors of length grows quadratically with . More
precisely, we say that an infinite word is {\it abelian-square-rich} if,
for every , every factor of of length contains, on average, a number
of distinct abelian-square factors that is quadratic in ; and {\it uniformly
abelian-square-rich} if every factor of contains a number of distinct
abelian-square factors that is proportional to the square of its length. Of
course, if a word is uniformly abelian-square-rich, then it is
abelian-square-rich, but we show that the converse is not true in general. We
prove that the Thue-Morse word is uniformly abelian-square-rich and that the
function counting the number of distinct abelian-square factors of length
of the Thue-Morse word is -regular. As for Sturmian words, we prove that a
Sturmian word of angle is uniformly abelian-square-rich
if and only if the irrational has bounded partial quotients, that is,
if and only if has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the
proof of Proposition
Words with the Maximum Number of Abelian Squares
An abelian square is the concatenation of two words that are anagrams of one
another. A word of length can contain distinct factors that
are abelian squares. We study infinite words such that the number of abelian
square factors of length grows quadratically with .Comment: To appear in the proceedings of WORDS 201
Algorithms for Computing Abelian Periods of Words
Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the
notion of an \emph{Abelian period} of a word. A word of length over an
alphabet of size can have distinct Abelian periods.
The Brute-Force algorithm computes all the Abelian periods of a word in time
using space. We present an off-line
algorithm based on a \sel function having the same worst-case theoretical
complexity as the Brute-Force one, but outperforming it in practice. We then
present on-line algorithms that also enable to compute all the Abelian periods
of all the prefixes of .Comment: Accepted for publication in Discrete Applied Mathematic
Enumerating Abelian Returns to Prefixes of Sturmian Words
We follow the works of Puzynina and Zamboni, and Rigo et al. on abelian
returns in Sturmian words. We determine the cardinality of the set
of abelian returns of all prefixes of a Sturmian word in
terms of the coefficients of the continued fraction of the slope, dependingly
on the intercept. We provide a simple algorithm for finding the set
and we determine it for the characteristic Sturmian words.Comment: 19page
Privileged Words and Sturmian Words
This dissertation has two almost unrelated themes: privileged words and Sturmian words. Privileged words are a new class of words introduced recently. A word is privileged if it is a complete first return to a shorter privileged word, the shortest privileged words being letters and the empty word. Here we give and prove almost all results on privileged words known to date. On the other hand, the study of Sturmian words is a well-established topic in combinatorics on words. In this dissertation, we focus on questions concerning repetitions in Sturmian words, reproving old results and giving new ones, and on establishing completely new research directions.
The study of privileged words presented in this dissertation aims to derive their basic properties and to answer basic questions regarding them. We explore a connection between privileged words and palindromes and seek out answers to questions on context-freeness, computability, and enumeration. It turns out that the language of privileged words is not context-free, but privileged words are recognizable by a linear-time algorithm. A lower bound on the number of binary privileged words of given length is proven. The main interest, however, lies in the privileged complexity functions of the Thue-Morse word and Sturmian words. We derive recurrences for computing the privileged complexity function of the Thue-Morse word, and we prove that Sturmian words are characterized by their privileged complexity function. As a slightly separate topic, we give an overview of a certain method of automated theorem-proving and show how it can be applied to study privileged factors of automatic words.
The second part of this dissertation is devoted to Sturmian words. We extensively exploit the interpretation of Sturmian words as irrational rotation words. The essential tools are continued fractions and elementary, but powerful, results of Diophantine approximation theory. With these tools at our disposal, we reprove old results on powers occurring in Sturmian words with emphasis on the fractional index of a Sturmian word. Further, we consider abelian powers and abelian repetitions and characterize the maximum exponents of abelian powers with given period occurring in a Sturmian word in terms of the continued fraction expansion of its slope. We define the notion of abelian critical exponent for Sturmian words and explore its connection to the Lagrange spectrum of irrational numbers. The results obtained are often specialized for the Fibonacci word; for instance, we show that the minimum abelian period of a factor of the Fibonacci word is a Fibonacci number. In addition, we propose a completely new research topic: the square root map. We prove that the square root map preserves the language of any Sturmian word. Moreover, we construct a family of non-Sturmian optimal squareful words whose language the square root map also preserves.This construction yields examples of aperiodic infinite words whose square roots are periodic.Siirretty Doriast
Relations on words
In the first part of this survey, we present classical notions arising in combinatorics on words: growth function of a language, complexity function of an infinite word, pattern avoidance, periodicity and uniform recurrence. Our presentation tries to set up a unified framework with respect to a given binary relation.
In the second part, we mainly focus on abelian equivalence, -abelian equivalence, combinatorial coefficients and associated relations, Parikh matrices and -equivalence. In particular, some new refinements of abelian equivalence are introduced
- …
