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Abstract

This dissertation has two almost unrelated themes: privileged words and Stur-
mian words. Privileged words are a new class of words introduced recently. A
word is privileged if it is a complete first return to a shorter privileged word,
the shortest privileged words being letters and the empty word. Here we give
and prove almost all results on privileged words known to date. On the other
hand, the study of Sturmian words is a well-established topic in combinatorics
on words. In this dissertation, we focus on questions concerning repetitions in
Sturmian words, reproving old results and giving new ones, and on establishing
completely new research directions.

The study of privileged words presented in this dissertation aims to derive
their basic properties and to answer basic questions regarding them. We explore
a connection between privileged words and palindromes and seek out answers
to questions on context-freeness, computability, and enumeration. It turns out
that the language of privileged words is not context-free, but privileged words
are recognizable by a linear-time algorithm. A lower bound on the number of
binary privileged words of given length is proven. The main interest, however,
lies in the privileged complexity functions of the Thue-Morse word and Sturmian
words. We derive recurrences for computing the privileged complexity function
of the Thue-Morse word, and we prove that Sturmian words are characterized
by their privileged complexity function. As a slightly separate topic, we give an
overview of a certain method of automated theorem-proving and show how it
can be applied to study privileged factors of automatic words.

The second part of this dissertation is devoted to Sturmian words. We exten-
sively exploit the interpretation of Sturmian words as irrational rotation words.
The essential tools are continued fractions and elementary, but powerful, results
of Diophantine approximation theory. With these tools at our disposal, we re-
prove old results on powers occurring in Sturmian words with emphasis on the
fractional index of a Sturmian word. Further, we consider abelian powers and
abelian repetitions and characterize the maximum exponents of abelian powers
with given period occurring in a Sturmian word in terms of the continued frac-
tion expansion of its slope. We define the notion of abelian critical exponent for
Sturmian words and explore its connection to the Lagrange spectrum of irrational
numbers. The results obtained are often specialized for the Fibonacci word; for
instance, we show that the minimum abelian period of a factor of the Fibonacci
word is a Fibonacci number. In addition, we propose a completely new research
topic: the square root map. We prove that the square root map preserves the lan-
guage of any Sturmian word. Moreover, we construct a family of non-Sturmian
optimal squareful words whose language the square root map also preserves.
This construction yields examples of aperiodic infinite words whose square roots
are periodic.
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Tiivistelmä

Tässä väitöskirjassa on kaksi lähestulkoon erillistä pääteemaa: anadromit ja Stur-
min sanat. Anadromi on sana, joka on täydellinen paluu lyhyempään anadromiin
– lyhimmät anadromit muodostuvat kirjaimista ja tyhjästä sanasta. Tämä väitös-
kirja sisältää todistukset lähes kaikille näitä aivan vastikään määriteltyjä sanoja
koskeville tuloksille. Sturmin sanat taasen ovat vakiintuneempi tutkimuskohde
sanojen kombinatoriikan alalla. Sturmin sanoja koskien tässä väitöskirjassa esite-
tään uusia todistuksia tunnetuille tuloksille – kuten toistojen luonnehdinnalle –
sekä todistetaan aivan uusia tuloksia ja avataan uusia tutkimussuuntauksia.

Anadromeja koskevassa osuudessa johdetaan näiden sanojen perusominai-
suudet ja tutkitaan aihetta koskevia perustavia kysymyksiä. Keskiöissä ovat ana-
dromien ja palindromien yhteydet sekä kysymykset liittyen kontekstittomuu-
teen, laskettavuuteen ja anadromien lukumäärään eräissä kielissä. Osoittautuu,
että anadromien kieli ei ole kontekstiton, mutta anadromin voi tunnistaa line-
aariaikaisella algoritmilla. Lisäksi johdetaan alaraja tiettyä pituutta olevien bi-
näärianadromien lukumäärälle. Keskeisintä on kuitenkin Thuen–Morsen sanan
ja Sturmin sanojen anadromikompleksisuusfunktioiden tutkimus. Tässä työssä
johdetaan ryhmä rekursioyhtälöitä Thuen–Morsen sanan anadromikompleksi-
suuden laskemiseksi ja luonnehditaan Sturmin sanat niiden anadromikomple-
ksisuusfunktion avulla. Lopuksi esitellään erästä verrattain uutta automaattista
teoreemantodistusmenetelmää ja sovelletaan sitä automaattisten sanojen anadro-
mitekijöiden tutkimiseksi.

Väitöskirjan jälkimmäisessä osassa käsitellään Sturmin sanoja. Sturmin sanat
käsitetään erityisesti irrationaalisina rotataatiosanoina, mikä tarkoittaa, että ket-
jumurtoluvut ja niihin liittyvä teoria rationaaliapproksimaatioista ovat sovellet-
tavissa Sturmin sanoihin. Näitä lukuteorian menetelmiä runsaasti hyödyntäen
tässä väitöskirjassa sekä johdetaan aivan uusia tuloksia Sturmin sanoista että
esitetään paranneltuja todistuksia tunnetuille lauseille. Ensimmäisenä teemana
ovat toistot ja abelin toistot. Uusia menetelmiä käyttäen Sturmin sanojen toisto-
jen ja rationaali-indeksin luonnehdinnoille esitetään uudet todistukset. Seuraa-
vaksi uutena tuloksena määritetään Sturmin sanassa annettua jaksoa vastaavat
mahdolliset abelin toistojen eksponentit tämän sanan kaltevuuden ketjumurtolu-
kukehitelmän perusteella. Lisäksi osoitetaan Sturmin sanojen ns. kriittisen abe-
lin eksponentin yhteys irrationaalilukujen Lagrangen spektriin. Monia tuloksia
tarkastellaan Fibonaccin sanan erityistapauksessa. Osoittautuu esimerkiksi, et-
tä Fibonaccin sanan tekijän lyhin abelin jakso on aina Fibonaccin luku. Lopuksi
määritellään täysin uusi käsite: Sturmin sanojen neliöjuurifunktio. Tämä erikoi-
nen funktio yllättäen säilyttää Sturmin sanojen kielen. Yleisemmässä tapauksessa
konstruoidaan perhe optimaalisia ja neliöllisiä sanoja, joiden kielen neliöjuuri-
funktio säilyttää mutta jotka eivät ole Sturmin sanoja. Tämä konstruktio antaa
esimerkin jaksottomasta äärettömästä sanasta, jonka neliöjuuri on jaksollinen.
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1Introduction

1.1 Background

The subject matter of this dissertation belongs into the field of combinatorics on
words, a branch of combinatorics and discrete mathematics. Combinatorics on
words is concerned with the properties of words, that is, strings of symbols. This
field of word combinatorics has only recently been unified into a more coherent
and mature discipline. However, the concept of a word is a fundamental notion
in all of mathematics. In the introduction to the book Combinatorics on Words [90],
Robert Lyndon writes

This is the first book devoted to broad study of the combinatorics of
words, that is to say, of sequences of symbols called letters. This sub-
ject is in fact very ancient and has cropped up repeatedly in a wide
variety of contexts. Even in the most elegant parts of abstract pure
mathematics, the proof of a beautiful theorem surprisingly often re-
duces to some very down to earth combinatorial lemma concerning
linear array of symbols.

Founding of combinatorics on words is typically attributed to the Norwegian
mathematician Axel Thue. In his papers from 1906 [137] and 1912 [138], he sys-
tematically studied repetition-free words. Thue’s results were forgotten for many
decades and, during this time, were largely rediscovered by the American mathe-
maticians Marston Morse and Gustav A. Hedlund [101, 104]. Thue is best remem-
bered for proving the existence of overlap-free and square-free infinite words,
that is, words avoiding the patterns xyxyx and xx respectively. The overlap-free
infinite word found in 1906 by Thue was rediscovered by Morse in 1921, and it is
now usually called the Thue-Morse word.1,2

Starting from the late 1930’s, there has been active research on topics related
to words. In the 1938 and 1940 papers [102, 103], Hedlund and Morse founded

1This word is also implicit in the 1851 work of Prouhet [119].
2Certain properties of the Thue-Morse word are studied in this dissertation.



2 Introduction

the field of symbolic dynamics motivated by ideas from the theory of dynamical
systems. In the 1950’s, the French mathematician Marcel-Paul Schützenberger
initiated systematic research on semigroups and codes [132], where words played
a central role. Indeed, words are essential in algebra for free semigroups and
free groups. S. I. Adian and P. S. Novikov famously applied word-combinatorial
methods in their solution of the Burnside problem for groups in 1968 [110].

Words are obviously crucially important in computer science as well because,
in the end, computation is just string rewriting as has been known since the pi-
oneering works of Alan Turing and Emil Post. With the enormous growth of
computer science especially in the latter half of the 20th century, words were also
studied in relation to automata theory and formal language theory. The need for
a theory of words was recognized in the 1960’s. This need resulted in writing of
the book Combinatorics on Words [90], published in 1983, collecting the fragmen-
tary results on words into a unified whole for the first time. The book was written
by the pseudonymous M. Lothaire, a group of mathematicians closely related to
Schützenberger. Later in 2002 and 2005, Lothaire’s work was complemented by
two additional volumes, Algebraic Combinatorics on Words [91] and Applied Combi-
natorics on Words [92] (with different sets of contributors). These books have been
established as the standard references in combinatorics on words, a field that is
still growing today. For a more detailed account on the history of combinatorics
on words, see the notes sections in Lothaire’s books and the article The origins of
combinatorics on words [19] by Jean Berstel and Dominique Perrin.

1.2 Structure of the Dissertation

As the title suggests, this dissertation has two major topics: privileged words
and Sturmian words. In this dissertation, the discussion on these subjects does
not overlap, with the exception of Section 4.5, so Chapters 3 and 4, dealing with
these two topics, can be read independently of each other. The aim of this disser-
tation is not only to add to knowledge but to give a complete description of the
selected topics from the first principles and to serve as a comprehensive introduc-
tion to them. Next, we give an overview of the contents of the dissertation. More
detailed introductions are found in the beginning of each chapter. In Chapter 2,
we present the notation and definitions needed in the rest of the dissertation. This
chapter consists of two parts. First, we present the fundamental notion of a finite
word, accompanied by elementary propositions on periodicity and primitivity
of words. Moreover, we identify important subclasses of words, such as palin-
dromes and complete first returns. Secondly, we discuss the notion of an infinite
word with emphasis on periodicity and on fractional and integral powers occur-
ring in infinite words. We also introduce concepts from symbolic dynamics and
topology and conclude with discussion on morphic infinite words, such as the
Thue-Morse word and the Fibonacci word. The results and properties explained
are given without proof.

Chapter 3 is devoted to privileged words, the first of the major themes of this
dissertation. A word is privileged if it is a complete first return to a shorter priv-
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ileged word, the shortest privileged words being letters and the empty word.
When I3 got interested in privileged words, they had just been introduced in the
2011 preprint of the paper A characterization of subshifts with bounded powers by
Kellendonk, Lenz, and Savinien [84], and very little was known about them. For
Kellendonk et al., privileged words were just a tool they needed to invent in order
to characterize the property of having bounded powers by the Lipschitz equiva-
lence of certain metrics, so they did not investigate privileged words more than
what was necessary for them. Certainly they did not look at the subject from
the word-combinatorial point of view. The task of taking privileged words as the
central object of study was initiated by me in my first paper [113], followed by the
articles [115] and [64] (with Forsyth, Jayakumar, and Shallit). Chapter 3 contains
almost everything that is known of privileged words to date. We begin by deriv-
ing the elementary properties of privileged words. Because of an analogy in the
definitions, privileged words and so-called rich words4 have certain connections,
which we also explore. Taking a slight detour into the formal language theory,
we prove that the language of privileged words is not context-free in Section 3.4.
We also give an algorithm recognizing privileged words in linear time in Sec-
tion 3.5 and a lower bound for the number of binary privileged words of length n
in Section 3.6. In the paper [113], I initiated the study of the privileged complex-
ity function of the Thue-Morse word, the work being completed in [115]. This
work, taking the bulk of Chapter 3, deriving a recursive formula for computing
this privileged complexity function and applying the formula for studying the
asymptotics of the function, is further refined in Section 3.7. In Section 3.8, we
explore automatic words and automatic theorem-proving. Beginning with the
2012 paper [32], in the series of papers [51, 52, 70, 71, 72, 73, 107, 108, 131], Jeffrey
Shallit and his many coauthors have developed a method of proving theorems
on automatic words with the aid of a computer program. We show that their
method is applicable for examining privileged factors of automatic words. This
whole topic is very interesting for its own sake but also because the Thue-Morse
word is automatic. This section on automatic theorem-proving is not meant to be
a comprehensive study of the subject; rather, we give an overview of the subject
and prove a few results relevant to privileged words and especially to privileged
factors of the Rudin-Shapiro word. Finally, we show that Sturmian words, the
topic of Chapter 4, are characterized by their privileged complexity function; this
result is found in Section 4.5. Chapter 3 and Section 4.5 are based on the papers
[64, 113, 115].

In Chapter 4, we turn our attention to a completely new subject: the beauti-
ful Sturmian words. Excluding Section 4.5 on the privileged complexity function
of Sturmian words, throughout Chapter 4, we view Sturmian words as rotation
words of irrational angle. The continued fraction expansion and the convergents
and semiconvergents of the rotation angle provide deep insight into the structure

3Throughout this dissertation, the word “I” is used when I talk about my opinions or actions.
Otherwise, as is customary in mathematics, the word “we” is used to involve the reader to participate
in the development of ideas with the author as if we were talking by a blackboard.

4Rich words were also introduced quite recently in [69].
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of Sturmian words. We apply the powerful tools of Diophantine approximation
theory to obtain several completely new results on Sturmian words as well as
clean and short proofs of old results. Often, we focus on the Fibonacci word,
which is the simplest of all Sturmian words. This curious word often exhibits ex-
tremal behavior among all Sturmian words—or even among all infinite words—
so it is always interesting to specialize results for the Fibonacci word. Due to its
simplicity, this often results in beautiful statements and formulas. After giving
the somewhat lengthy but necessary definitions, background, and basic results
in Sections 4.2, 4.3, and 4.4, in Section 4.6, we prove an old result of Damanik
and Lenz [44, 45] on integer and fractional powers occurring in Sturmian words
but with new methods. The new proof is much shorter, and in my opinion easier
to follow. We also derive a formula for the fractional index of a Sturmian word,
and we apply this result to the particular cases of morphic Sturmian words and
the Fibonacci word. In Section 4.7, the dynamical point of view and continued
fractions, really show their power. We characterize the possible exponents of
abelian powers of given period. Moreover, we study abelian repetitions, which
are analogues of fractional powers. We relate a quantity called the abelian criti-
cal exponent of a Sturmian word to the Lagrange constant of its rotation angle.
Again, we apply the results to the particular cases of morphic Sturmian words
and the Fibonacci word. In particular, we prove that the minimum abelian pe-
riod of a factor of the Fibonacci word is a Fibonacci number. What remains is
Section 4.8 on the square root map on Sturmian words. This section is the longest
and most technical section in this dissertation. It consist completely of original
work by me and Whiteland and, in my opinion, contains the best results in this
dissertation. The square root

√
s of a Sturmian word s is obtained by writing s

as a product of minimal squares (there are only six minimal squares in the lan-
guage) and by deleting the first half of each of the squares. We prove that, surpris-
ingly, the square root map preserves the language of a Sturmian word, that is, the
words s and

√
s have the same factors. The proof of this result uses heavily con-

tinued fractions and the dynamical system behind Sturmian words. In contrast,
we describe this result in word-combinatorial terms in Subsections 4.8.3, 4.8.4,
and 4.8.5. Subsection 4.8.6 contains again results specific to the Fibonacci word.
The Section 4.8 on the square root map culminates in Subsection 4.8.7 where we
consider a natural generalization of the square root map for optimal squareful
words. It is very clear that typically a word in this class of words does not enjoy
the property that the square root map preserves its language. Fortunately, we
are able to identify a certain class of non-Sturmian infinite words that have this
property. We show that the (aperiodic) subshifts generated by these words have
a curious, even weird, property: for every word in such a subshift, the square
root map either preserves its language or maps it to a periodic word. Particularly,
the square root of an aperiodic word can be periodic. Section 4.8 is concluded by
Subsection 4.8.8 where we consider other natural generalizations of the square
root map. Unfortunately, all proposed generalizations totally fail to preserve the
language of Sturmian words or their generalizations. Chapter 4 is based on the
papers [62, 113, 114, 116] and on the extended abstract [117].
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2Preliminaries

This chapter introduces the notation and basic results needed in the following
chapters. First we give the fundamental definition of a finite word and discuss,
for example, the important notions of powers, periodicity, palindromes, and com-
plete first returns. Then we extend our view to include infinite words, and ex-
plore additional topics such as aperiodicity, recurrence and uniform recurrence,
and morphic words. All results are given without proof. For a more complete
treatment of the subject matter, we refer the reader to Lothaire’s excellent books
Combinatorics on Words [90], Algebraic Combinatorics on Words [91], and Applied
Combinatorics on Words [92] and to the book Automatic Sequences [7] by Allouche
and Shallit.

2.1 Finite Words

An alphabet A is a finite nonempty set of letters, or symbols. A word over A is a
finite sequence a0 · · · an−1 of letters of A obtained by concatenation. For instance
aabaabba is a word over the alphabet {a, b}. A concatenation of zero letters, the
empty word, is denoted by ε. If two words u and v consist of exactly the same
sequence of letters, then they are equal, and we write u = v. The concatenation
of two words u = a0 · · · an−1 and v = b0 · · · bm−1 is the word u · v = uv =
a0 · · · an−1b0 · · · bm−1 obtained by juxtaposing their letters. The concatenation of
two words is in general not commutative. With concatenation, we use the familiar
notation for multiplication; for instance, wn denotes the word ww · · ·w, where w
is repeated n times. The length of the word w, denoted |w|, is the number of letters
in w. The empty word ε is the unique word of length 0. We often consider words
over an alphabet of size 2. We call such words binary, and then we customarily
use the alphabet {0, 1}. In this dissertation, we typically use the lowercase letters
w, u, v, z to represent words and the lowercase letters a, b, c to represent letters of
an alphabet.

We denote the set of nonempty words over A by A+, and we set A∗ = A+ ∪ {ε}.
Endowed with the binary operation of concatenation, the sets A+ and A∗ become
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respectively the free semigroup over A and the free monoid over A. We let An

to be the set of words of length n over the alphabet A. A language is a subset of
A∗. If L is a language, then by L∗ we denote the monoid generated by L, and
analogously we let L+ to stand for the semigroup L∗ \ {ε}. If L = {w}, then we
simply write w∗ and w+ instead of {w}∗ and {w}+.

A word z is a factor of the word w if w = uzv for some words u and v. If the
factor z does not equal ε or w, then we say that z is a proper factor of w. If u = ε

(respectively v = ε), then we call the factor z a prefix (respectively suffix) of w. If
z is a prefix (respectively suffix) and a proper factor of w, then we say that z is a
proper prefix (respectively suffix) of w. A factor that is neither a prefix nor a suffix
is called an interior factor. When we say that a word w contains the word z, we
simply mean that z is a factor of w. If z is both a prefix and a suffix of w, then z is
a border of w. The factor z is central if |u| = |v|. If w = uv, then by u−1w we mean
the word v obtained by deleting the prefix u of v. Correspondingly, by wv−1 we
mean the prefix u of w. Whenever we use the notation u−1w (respectively wv−1),
we silently assume that u is a prefix (respectively v is a suffix) of w. We denote the
set of factors of w, the language of w, by L(w), and we let the set Lw(n) to contain
all factors of w of length n. If w = a0a1 · · · an−1, then w[i, j] stands for the factor
ai · · · aj whenever the choices of positions i and j make sense. If i = j, then we
write simply w[i] instead of w[i, j]. An occurrence of a factor u in w is a position i
such that w[i, i + |u| − 1] = u. If such a position exists, then we say that u occurs
in w. The number of occurrences of a factor u in w is denoted by |w|u. A position i
of w introduces a factor u if w[i− |u|+ 1, i] = u and u does not occur in w[0, i− 1].
We call a language factor-closed if it contains the factors of all of its elements.

The following important result of Lyndon and Schützenberger states that two
words commute only for trivial reasons [93]. We often use this folklore result
without explicit mention; we also remark that its proof is very straightforward.

Proposition 2.1.1. If u and v are two words such that uv = vu, then there exists a word
w such that u, v ∈ w∗.

An integer power is a word wn, where n ≥ 2. If n = 2, then we say that wn is
a square with square root w. A square is minimal if it does not have a square as a
proper prefix. A word w is primitive if it is not an integer power, that is, w is of
the form un only if n = 1. The primitive root of w is the unique primitive word u
such that w = un for some positive integer n. An overlap is a word of the form
wwa, where a is the first letter of w. In other words, an overlap is a word that can
be written as auaua for some word u. We have the following folklore result (see,
e.g., [124, p. 336]), which says that a primitive word cannot occur nontrivially in
its square. We often use this result without explicit mention.

Lemma 2.1.2. Let w be primitive. If w2 = uwv, then either u = ε or v = ε.

Let ρ be a rational number such that ρ ≥ 1. Suppose that w = uv and ρ = n +
|u|/|w| for an integer n. Then the fractional power wρ is defined to be the word
wnu. Fractional powers are related to periods of words. A positive integer is a
period of the word a0 · · · an−1 if ai = ai+p for i = 0, 1, . . . , n− p− 1.
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If w = a0 · · · an−2an−1, then the cyclic shift operator C acts on w as follows:
C(w) = an−1a0 · · · an−2. A word u is the kth conjugate of w if Ck(w) = u for
some k such that 0 ≤ k < |w|. If u is a conjugate of w, then we also say that u
is conjugate to w. In other words, the words w and u are conjugate if w = vz
and u = zv for some words v and z. The conjugation relation is an equivalence
relation. Lemma 2.1.2 implies that a word w has |w| distinct conjugates if and
only if w is primitive.

The reversal w̃ of w = a0a1 · · · an−1 is the word an−1 · · · a1a0. For typographical
reasons, the notation w∼ is sometimes used in place of w̃. A word w is a palindrome
if w = w̃. By convention, the empty word is a palindrome. The set of palindromic
factors of w is denoted by Pal (w). Moreover, the set Pal (w)∩Lw(n) of palindro-
mes of w of length n is denoted by Pal w(n). A language L is mirror-invariant if
for every u ∈ L we have ũ ∈ L. If the language of a word w is mirror-invariant,
then we say that w is closed under reversal.

A complete first return to the nonempty word w is a word starting and end-
ing with w and containing exactly two occurrences of w (these occurrences may
overlap).

Let < be a total order on an alphabet A. We extend this order to a total order
on A∗, also denoted by <, as follows: u < v for u, v ∈ A∗ if u is a prefix of v or
there exist factorizations u = wau′ and v = wbv′ such that a, b ∈ A and a < b.
This total order on A∗ is called a lexicographic order on A∗. In the case of the binary
alphabet {0, 1}, we set 0 < 1.

2.2 Infinite Words

An infinite word is a function w : N → A from the nonnegative integers to an
alphabet A. Following earlier notation, we write concisely w = a0a1a2 · · · with
ai ∈ A. The set of infinite words over A is denoted by Aω. The shift operator T
acts on infinite words as follows: T(a0a1a2 . . .) = a1a2 · · · , where ai ∈ A. In this
dissertation, infinite words are often called just words, but the context should
always be clear. To distinguish infinite words from finite words, the symbols
referring to infinite words are always written in boldface.

The notions of factor and prefix naturally extend to the setting of infinite
words. The language L(w) of an infinite word w is the set of its factors. The no-
tation w[i, j] makes sense also for infinite words, and it is analogously natural to
talk of occurrences of factors in infinite words. A factor u of an infinite word w is
right special (respectively left special) if ua, ub ∈ L(w) (respectively au, bu ∈ L(w))
for distinct letters a and b. If a factor is both right special and left special, then it
is called bispecial.

An infinite word w is ultimately periodic if it can be written in the form w =
uvω = uvvv · · · for some words u and v with v nonempty. If u = ε, then w is
said to be periodic or purely periodic. The word v is the period of w. If |v| is as short
as possible, then v is the minimum period of w. An infinite word that is not ulti-
mately periodic is aperiodic. We have the following fundamental characterization
of ultimately periodic words proven originally by Hedlund and Morse [102].
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Theorem 2.2.1 (The Morse-Hedlund Theorem). An infinite word is aperiodic if and
only if it has at least n + 1 factors of length n for all n ≥ 0.

That is, an infinite word w is aperiodic if and only if its factor complexity func-
tion pw(n), defined by the formula pw(n) = |Lw(n)|, satisfies pw(n) ≥ n + 1 for
all n ≥ 0. In particular, if an infinite word contains arbitrarily long right special
factors, then it is aperiodic.

An infinite word w is recurrent if every factor of w occurs in it infinitely many
times. An infinite word is recurrent if and only if each of its prefixes has at least
two occurrences. Let (in)n≥1 be the sequence of consecutive occurrences of a fac-
tor u in a recurrent infinite word w. The return time of the factor u is the quantity

sup{ij+1 − ij : j ∈ {1, 2, . . .}},

which can be infinite. The factors w[ij, ij+1 − 1] for j ≥ 1 are the returns to u in w.
If the return time of each factor of the recurrent word w is finite, then the infinite
word w is uniformly recurrent. Equivalently, the word w is uniformly recurrent
if for each factor u of w there exists an integer R such that every factor of w of
length R contains an occurrence of u. If there exists a global constant K such that
the return time of any factor u of w is at most K|u|, then we say that w is linearly
recurrent. Clearly a linearly recurrent word is uniformly recurrent.

Let w be an infinite word and u be its nonempty factor. The fractional index of
the factor u is defined as the quantity

sup{ρ ∈ Q : uρ ∈ L(w)}.

The index of a nonempty factor u is defined similarly by letting ρ take only integral
values. Notice that both indices can be infinite in general. If w is uniformly
recurrent and aperiodic infinite word, then the (fractional) index of every factor
of w is finite. The fractional index of an infinite word w is defined as the least
upper bound of the fractional indices of its factors; this quantity is also called the
critical exponent of w.

Let u and v be infinite words over an alphabet A. The distance of u and v is

d(u, v) =

{
2−k, if u 6= v,

0, if u = v,

where k is the length of the longest common prefix of u and v. Equipped with this
(ultra)metric, the set Aω of infinite words over A becomes a compact (ultra)metric
space. If a sequence (wn) of infinite words converges to an infinite word w with
respect to this metric, then we write

lim
n→∞

wn = w.

The notion of convergence to an infinite word extends for finite words. If a se-
quence of words (wn) has the property that wn is a proper prefix of wn+1 for
n ≥ 0, then the sequence (wn) converges to the unique infinite word w having
the words wn as prefixes, and then we write

lim
n→∞

wn = w.
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The situation can be viewed as the convergence of the sequence (wnaω) of infinite
words to w with respect to the above metric.

A subshift Ω is a subset of Aω such that

Ω = {w ∈ Aω : L(w) ⊆ L}

for some language L such that L ⊆ A∗. Equivalently, a subshift is a topologi-
cally closed and shift-invariant subset of Aω [91, Proposition 1.5.1]. If L = L(w)
above, where w is an infinite word, then it is said that the subshift Ω is generated
by w. The language L is called the language of the subshift Ω. If every word in a
subshift is aperiodic, then the subshift is called aperiodic. A subshift is minimal if
it does not contain nonempty subshifts as proper subsets. A nonempty subshift
is minimal if and only if it is generated by a uniformly recurrent word.

Let A and B be two alphabets. A morphism from A∗ to B∗ is a mapping
ψ : A∗ → B∗ such that ψ(uv) = ψ(u)ψ(v) for all words u, v ∈ A∗. Clearly a
morphism is completely determined by the images of the letters of A. Applica-
tion of a morphism naturally extends to infinite words. Let w = a0a1a2 · · · with
with ai ∈ A. Then

ψ(w) = ψ(a0)ψ(a1)ψ(a2) · · · .

A morphism ψ : A∗ → A∗ is said to be prolongable on the letter a if ψ(a) = au for
some word u such that ψn(u) 6= ε for all n ≥ 1. If the morphism ψ is prolongable
on the letter a, then clearly ψn(a) is a proper prefix of ψn+1(a) for n ≥ 0. Thus the
morphism ψ has a fixed point

ψω(a) = lim
n→∞

ψn(a) = auψ(u)ψ2(u) · · ·ψn(u) · · · .

A morphism ψ : A∗ → A∗ is primitive if there exists a positive integer n such that
for all a ∈ A the image ψn(a) contains every letter of A at least once.

Example 2.2.2 (The Thue-Morse Word). The primitive morphism

µ :
0 7→ 01
1 7→ 10

is prolongable on both letters 0 and 1. Its fixed point

t = µω(0) = 01101001100101101001011001101001 · · ·

is the famous Thue-Morse word. This infinite word has many remarkable prop-
erties. Its most fundamental property is its overlap-freeness: it does not contain
any overlaps (recall that an overlap is a word of the form auaua for some word
u and letter a). This property was discovered originally by Thue in 1906 [137];
for a proof see [90, Theorem 2.2.3]. The Thue-Morse word was later rediscovered
by Morse in 1921 [101], and it is also implicit in the earlier 1851 work of Prouhet
[119]. For more on the history, see the survey [6]. The Thue-Morse word will be
the central object studied in Section 3.7, Subsection 3.8.2, and Subsection 3.8.3.
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Example 2.2.3 (The Fibonacci Word). The Fibonacci morphism

ϕ :
0 7→ 01
1 7→ 0

is primitive and prolongable on the letter 0. Its fixed point

f = ϕω(0) = 0100101001001010010100100101001001 · · ·

is the beautiful word called the (infinite) Fibonacci word. The Fibonacci word is
a prototypical Sturmian word; this a class of words is studied in Chapter 4. The
word f is in many respects the simplest of all aperiodic words: it often exhibits
optimal behavior among all infinite words; see for instance [27]. Special focus on
the Fibonacci word is given in Subsection 4.7.3 and Subsection 4.8.6.
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3Privileged Words

3.1 Introduction

Privileged words are a new class of words introduced by Kellendonk, Lenz, and
Savinien in the 2011 preprint of [84]. Privileged words are the iterated complete
first returns obtained from the letters of an alphabet. In the paper [84], privileged
words were a tool for characterizing the aperiodic subshifts whose every factor
has bounded index by the the Lipschitz equivalence of certain metrics. In this
chapter, we take privileged words as the central object of study. In contrast to the
work of [84], we study them from the word-combinatorial point of view, not as a
tool in discrete geometry.1 Our focus is in studying the word-combinatorial prop-
erties of privileged words and in characterizing the privileged words in certain
languages such as the language of the Thue-Morse word and the languages of
Sturmian words. We prove almost everything that is known of privileged words
to date. According to my knowledge, all research articles mentioning privileged
words are the works [64, 66, 84, 109, 113, 115, 129, 131]. Every result presented in
this chapter is found in these papers.

We begin by giving basic definitions and results in Section 3.2. It is already
evident in these elementary results that privileged words share analogous prop-
erties with palindromes. This connection becomes clearer as we explore the link
between privileged words and rich words in Section 3.3.2 It turns out that priv-
ileged words generalize a property of palindromes: rich words are abundant in
palindromes but all words are abundant in privileged words. In Theorem 3.3.4,
we prove that a finite or infinite word is rich if and only if its sets of palindromic
and privileged factors coincide. Furthermore, we prove the surprising result that
a word is rich if and only if the word contains equally many palindromes and
privileged words of all lengths. Therefore privileged words are not just useful
for tracking powers in subshifts but also for studying palindromic richness. This

1The work in discrete geometry is continued in [129], where a generalization of privileged words,
called privileged patches, is used to generalize the results of [84].

2Rich words are words containing the maximum possible number of distinct palindromic factors.
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provides an alternative motivation to examine privileged words. Unfortunately,
privileged words are not good for measuring the palindromic defect of a word:
we construct an infinite word whose palindromic factors and privileged factors
share no meaningful relations and which is not rich by missing just one palin-
dromic factor. As the next theme in Section 3.3, we consider the relations between
privileged words and palindromes in infinite words. If the privileged factors of
an infinite word are all palindromes, then it is necessarily rich. We consider the
opposite problem: is it possible that all palindromes of an infinite word are privi-
leged without the word being rich? We answer this question positively, providing
some explicit examples. As a conclusion of Section 3.3, we consider briefly CR-
poor words, words whose all factors that are complete first returns are privileged.
We characterize the binary CR-poor words.

When a new class of words is introduced, often one of the first steps taken is
to seek answers to questions on regularity, context-freeness, computability, and
enumeration. The next four sections of this chapter are devoted to answering
such basic questions or, at least, to obtaining partial answers. First, in Section 3.4,
we answer to inquiries a language-theorist might make by proving that the lan-
guage of privileged words over an alphabet with at least two letters is not context-
free. The theorist is surely satisfied when we next, in Section 3.5, develop a linear
time algorithm recognizing privileged words. Our algorithm is inspired by the
building of the failure array in the famous Knuth-Morris-Pratt string-matching
algorithm. Next, we turn our attention to enumeration. First in Section 3.6, we
prove that there are at least 2n−4/n2 privileged binary words of length n. For
establishing the bound, we count the number of specific privileged words re-
lated to the generalized Fibonacci numbers. Unfortunately, the obtained bound
is not optimal. Then in Section 3.7, we turn our attention to a common theme in
combinatorics on words: complexity functions. Already, in the 1938 paper [102]
Hedlund and Morse demonstrated the importance of the function counting the
number of factors of length n occurring in an infinite word, dubbed the factor
complexity function.3 They proved, among other results, The Morse-Hedlund
Theorem. Since then, researchers have considered other complexity functions
counting specific types of factors such as palindromes [3] or Lyndon words [127].4

In Section 3.7 and Section 4.5, we study the privileged complexity functions of the
Thue-Morse word and the Sturmian words. The privileged complexity function
of the Thue-Morse word t is complicated. We derive a system of recurrences for
computing the values of this function. The main ingredient in the derivation is
the observation that decoding long privileged factors by the square of the Thue-
Morse morphism µ produces shorter privileged factors, so we are able to set up
bijective correspondences between different subsets of the set of privileged fac-
tors of t. The system of recurrences allows us to study the asymptotics of the
privileged complexity function of t: we prove sharp upper and lower bounds

3Actually, Morse and Hedlund used the name permutation index, and later Coven and Hedlund
used the name block growth [36, 37]; the terminology has changed.

4The number of factors of length n modulo a suitable equivalence relation has also gained interest.
For instance, the case of the conjugacy relation was considered recently in [29].
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for the function, showing that the inferior limit is 0 and that the superior limit
is infinite. Moreover, we show that the values of the function contain arbitrarily
large gaps of zeros. Further, this work allows us to easily study the analogous
properties of the privileged palindrome complexity function of t; in this case the
complexity function is bounded. Later, in Section 4.5 of the next chapter, we prove
that Sturmian words are characterized by their privileged complexity function.5

More precisely, we prove that a word is Sturmian if and only if it has exactly 1 pa-
lindrome of even length and exactly 2 palindromes of odd length for all lengths.
This result is similar to a theorem of Droubay and Pirillo stating that a word is
Sturmian if and only if it has exactly 1 palindrome of even length and exactly 2
palindromes of odd length for all lengths [50]; we recover their result as a side
product of ours.

Finally, in Section 3.8, we explore automatic words and automatic theorem-
proving. An infinite word is k-automatic if its nth letter is determined by the
state a finite automaton is taken when the input is the base-k representation of n.
Various properties of automatic words are thus intimately linked with automata
theory. Since there are many effective algorithms for studying finite automata,
the same holds for automatic words. In the past, different approaches have been
proposed for different decidability questions on automatic words. In the 2012
paper [32], Charlier, Rampersad, and Shallit proposed a more general technique.
They proved that every assertion about automatic words that can be expressed
in a certain restricted first order structure is decidable. They were able to prove
several old results with their new, unified approach. Surprisingly, the decision
algorithms based on their methods can often be used in practice. Shallit and his
coauthors developed software packages capable of verifying assertions input in
the first order language, and they were thus able to verify numerous old results
from the literature and to obtain completely new results basically with a click of
a button. This resulted in a series of papers [51, 52, 70, 71, 72, 73, 107, 108, 131] by
Shallit and his many coauthors. One of the software packages, called Walnut, de-
veloped by Mousavi, is publicly available for download and use [106]. We show
in Section 3.8 that this method of automated theorem-proving is applicable for
examining privileged factors of automatic words. This is particularly interesting
as the Thue-Morse word is automatic. We do not go deeply into details in this
section; we only give an overview of the principles behind automatic theorem-
proving. We prove that given a k-automatic word w there exists an automaton
accepting exactly the base-k representations those pairs (i, n) of integers such that
the factor w[i, i + n − 1] is privileged. Moreover, we prove that the privileged
complexity function of a k-automatic word is k-regular.6 In conclusion, we use
the Walnut prover to study the privileged factors of the Rudin-Shapiro word. We
investigate problems similar to those of Section 3.7. For instance, we show that
the values of the privileged complexity function of the Rudin-Shapiro word also
contain arbitrarily large gaps of zeros.

5This proof is postponed to Chapter 4 because I did not want to interrupt the flow with the lengthy
introduction of Sturmian words.

6These k-regular sequences generalize k-automatic sequences; see Subsection 3.8.3.
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Chapter 3 is concluded by Section 3.9 on open problems.

3.2 Definitions and Basic Properties

This section contains the definition of privileged words and the derivation of their
basic properties. We will see that privileged words share analogous properties
with palindromes.

Definition 3.2.1. A word w is privileged if

• |w| ≤ 1 or

• w is a complete first return to a shorter privileged word.

In other words, privileged words are the iterated complete first returns ob-
tained from letters together with the empty word.

The set of privileged factors of a finite or infinite word w is denoted by Pri (w).
We define

Pri w(n) = Pri (w) ∩ Lw(n).

The first few binary privileged words are

ε, 0, 1, 00, 11, 000, 010, 101, 111, 0000, 0110, 1001, 1111, 00000, 00100, 01010.

The number of privileged binary words of length n has been computed up to
n = 45, see Appendix B. Clearly an is privileged for all n ≥ 0. Not all privi-
leged words are palindromes: the words 00101100 and abca are privileged but
not palindromic. However, palindromes and privileged words have some analo-
gous properties, as we shall see next.

The next lemma is the first analogue to palindromes: a palindromic prefix of
a palindrome occurs also as a suffix.

Lemma 3.2.2. Let w be a privileged word and u a privileged prefix (respectively suffix)
of w. Then u is a suffix (respectively prefix) of w.

Proof. If |w| ≤ 1 or u = w, then the claim is clear. Suppose that |w| ≥ 2 and
|u| < |w|. By definition, the word w is a complete first return to a privileged
word v. If |v| < |u|, then by induction v is a suffix of u, and thus v would have
at least three occurrences in w, which is impossible. If u = v, then the claim is
clear. Finally, assume that |v| > |u|. Then by induction u is a suffix of v, and thus
a suffix of w. The proof in the case that the roles of prefix and suffix are reversed
is symmetric.

Lemma 3.2.3. Let w be a privileged word and u its longest proper privileged prefix
(respectively suffix). Then w is a complete first return to u. In other words, the longest
proper privileged prefix (respectively suffix) of a privileged word is its longest proper
privileged border.



3.2. Definitions and Basic Properties 15

Proof. If |w| ≤ 1, then there is nothing to prove. Suppose that |w| ≥ 2 and that
w is a complete first return to privileged word v. Now if |u| > |v|, then v is a
prefix of u, and thus by Lemma 3.2.2 also a suffix of u. Hence w has at least three
occurrences of v; a contradiction. Therefore |u| ≤ |v| and, by the maximality of
u, we have u = v, which proves the claim. The proof in the case that the roles of
prefix and suffix are reversed is symmetric.

The property in the next lemma holds also for palindromes: every border of a
palindrome is a palindrome.

Lemma 3.2.4. Borders of privileged words are privileged.

Proof. Let w be privileged and u be a border of w. Clearly, we may assume that
|w| ≥ 2 and that w is a complete first return to a privileged word v. Since v is the
longest proper border of w by Lemma 3.2.3, we may assume that |u| < |v|. By
Lemma 3.2.2, the word u is a suffix of w. Since v is a border of w, the word u is
also a suffix of v. Therefore u is a border of v and, by induction, privileged.

It is not difficult to see that the next proposition holds also for palindromes.

Proposition 3.2.5. Let w be a word and n be an integer such that n ≥ 1. If wn is
privileged, then wm is privileged for all integers m such that m ≥ 0.

Proof. Assume without loss of generality that w is primitive, and suppose that
n ≥ 2. Since w is primitive, Lemma 2.1.2 implies that the word wn is a complete
first return to wn−1. If wn is privileged, then by Lemma 3.2.4 the word wn−1 is also
privileged. Conversely, if wn−1 is privileged, then by definition so is wn. Hence
wn is privileged if and only if wn−1 is privileged. We conclude that w is privileged.
From this, we see in a similar way that wm is privileged for all m ≥ 0.

Next we prove a characterization of privileged words due to Luke Schaeffer
(private communication).

Definition 3.2.6. A nonempty word w has the property PR if for all integers n
with 1 ≤ n ≤ |w| there exists a word u such that

• 1 ≤ |u| ≤ n,

• u occurs in w[0, n− 1] only as a prefix, and

• u occurs in w[|w| − n, |w| − 1] only as a suffix.

Proposition 3.2.7. A nonempty word is privileged if and only if it has the property PR.

Proof. Suppose that w is a nonempty privileged word. Let n be an integer such
that 1 ≤ n ≤ |w|, and let u be the longest privileged prefix of w such that |u| ≤ n.
Since w is privileged, by Lemma 3.2.2, the word u is also the longest privileged
suffix of w having length at most n. If u occurred more than once in the prefix v
of w of length n, then v would have as a prefix a complete first return to u. As this
prefix is by definition privileged, we obtain a contradiction with the maximality
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of u. Hence u occurs only once in v. Similarly we can show that u occurs exactly
once in the suffix of w of length n. It follows that w has the property PR.

Suppose then that w is a nonempty word having the property PR, and set
k = |w|. If k = 1, then w is privileged, so we may suppose that k ≥ 2. As w has
the property PR, there exists a word u of length at most k− 1 such that u occurs
in w[0, k− 2] only as a prefix and in w[1, k− 1] only as a suffix. Let us show that u
also has the property PR. Let m be an integer such that 1 ≤ m ≤ |u|. Since w has
the property PR, it follows that there exists a word v of length at most m such
that v occurs in w[0, m− 1] only as a prefix and in w[k−m, k− 1] only as a suffix.
Since u is a prefix and a suffix of w and |u| ≥ |v|, it follows that v is a prefix and
suffix of u. If v would occur more than once in u[0, m − 1], then v would occur
twice in w[0, m− 1], which is impossible. Hence v occurs only once in u[0, m− 1].
Similarly v occurs only once in u[|u| − m, |u| − 1]. Therefore u has the property
PR. As |u| < |w|, by induction, the word u is privileged. As both of the words
w[0, k − 2] and w[1, k − 1] have only one occurrence of u, it follows that w is a
complete first return to u. Therefore w is privileged.

This characterization has the advantage that it is nonrecursive. A nonrecur-
sive definition for privileged words is needed later in Section 3.8.

3.3 Connections to Rich Words

In this section, we define rich words and study the connection between privileged
factors and palindromic factors of words focusing particularly on rich words.

The study of rich words was initiated in [69] by Glen et al. motivated by earlier
results of Droubay, Justin, and Pirillo on Sturmian and episturmian words [49].
Rich words are words having maximum number of distinct palindromic factors.

Definition 3.3.1. A word w is rich if it has |w| + 1 distinct palindromic factors
(including the empty word). An infinite word is rich if its every factor is rich.

Indeed, it is not difficult to see that every position in a word can introduce
at most one new palindromic factor, so any word w has at most |w|+ 1 distinct
palindromic factors [49, Proposition 2]. Therefore a word w is rich if and only if
the longest palindromic suffix of every prefix u of w occurs only once in u.

For instance, the words 01001010 and 1001001010010 are rich. On the contrary,
the word abca is not rich as its longest palindromic suffix a occurs twice in it. The
shortest nonrich binary words (up to renaming of letters) are 00101100 and its
reversal. Large classes of rich infinite words are also known. For instance, Stur-
mian words, the topic of Chapter 4, are known to be rich; see Proposition 4.5.4.
For more examples, see [69].

The next characterization of rich words was proved in [69, Theorem 2.14].

Proposition 3.3.2. For any finite or infinite word w the following are equivalent:

(i) w is rich,

(ii) every complete first return to a palindrome in w is a palindrome.
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In view of this result and the definition of privileged words, it is not surprising
that every word contains exactly |w|+ 1 distinct privileged factors (as we shall see
next). In a sense, privileged words are a “maximal generalization” of rich words
as every word is “rich” in privileged factors. Due to this similarity in definitions,
there are certain connections between the privileged factors and the rich factors
of words as we shall see later in this section.

Lemma 3.3.3. Every word w contains exactly |w|+ 1 distinct privileged factors.

Proof. It is sufficient to show that appending a new letter a to a word w introduces
exactly one new privileged factor. Since letters are privileged, the word wa has
as a suffix a privileged word u of maximal length. Assume on the contrary that u
occurs in w. Then wa has as a suffix a complete first return to u; denote it by v. By
definition v is privileged. This contradicts the maximality of u, so indeed u does
not occur in w. Finally, if appending a introduced another privileged factor, say
z, then by the maximality of u, we would have |z| < |u|. Thus z would be a suffix
of u, and by Lemma 3.2.2 the word z would be a prefix of u. Consequently, the
factor z would occur already in w contradicting the assumption that appending
the letter a introduced the factor z.

We are often interested only in the number of specific factors of a word, not in
the factors themselves. The privileged complexity function Aw : N → N of a finite
or infinite word w counts the number of privileged factors of length n occurring
in w, that is,

Aw(n) = |Pri w(n)| = |Pri (w) ∩ Lw(n)|.

Similarly, we define the palindromic complexity function of w:

Pw : N→N, Pw(n) = |Pal w(n)|.

Next we show that a word is rich if and only its privileged factors coincide
with its palindromic factors. This result is not surprising due to Proposition 3.3.2
and the definition of privileged words. Therefore the privileged complexity func-
tion and the palindromic complexity function of a rich word coincide. Surpris-
ingly, the converse also holds.

Theorem 3.3.4. Let w be a finite or infinite word. The following are equivalent:

(i) w is rich,

(ii) Pal (w) = Pri (w),

(iii) Pw(n) = Aw(n) for all n such that 0 ≤ n ≤ |w|.

Before proving Theorem 3.3.4, we prove the following helpful lemma.

Lemma 3.3.5. Let w be a finite or infinite word. If w is not rich, then there exists a
shortest privileged factor u that is not a palindrome. Moreover, Pal w(n) = Pri w(n) for
all integers n such that 0 ≤ n < |u| and Pal w(|u|) ( Pri w(|u|).
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Proof. If w is not rich, then there exists a position which does not introduce a
new palindrome. By Lemma 3.3.3, this position introduces a new privileged fac-
tor, which cannot thus be a palindrome. Hence there exists a shortest privileged
factor u in w that is not a palindrome. By the minimality of |u|, it follows that
Pri w(n) ⊆ Pal w(n) for all integers n such that 0 ≤ n < |u|. If every palindrome in
w is privileged, then the conclusion holds. Suppose that there exists a palindrome
p of minimal length that is not privileged. Let q be the longest proper palindromic
suffix of p (the palindrome q exists as evidently |p| > 1). By the minimality of p,
the palindrome q is privileged. As p is not privileged, it has as a proper suffix a
complete first return to q; let us denote this suffix by v. By definition v is privi-
leged. As q is the longest palindromic suffix of p, the word v is not palindromic.
By the minimality of |u| we have |p| > |v| ≥ |u|, so Pal w(n) ⊆ Pri w(n) for all
integers n such that 0 ≤ n ≤ |u|.

Proof of Theorem 3.3.4. Let us prove first that (i) and (ii) are equivalent.
Suppose that the word w is rich, and let u ∈ L(w). If |u| ≤ 1, then u is

clearly privileged and palindromic, so we may assume that |u| > 1. Suppose
first that u is privileged. By definition, the word u is a complete first return to a
shorter privileged word v and, by induction, the word v is a palindrome. Hence
u is a complete first return to a palindrome and is by Proposition 3.3.2 itself a
palindrome. Suppose next that u is a palindrome. Let z be the longest proper
palindromic prefix of u. Now u must be a complete first return to z. Otherwise
u would have a proper prefix that is a complete first return to z, and by Proposi-
tion 3.3.2 this prefix would be a longer proper palindromic prefix of u than z is.
By induction, it follows that v is privileged, so also u is privileged.

Assume that Pal (w) = Pri (w). Let q be a complete first return to a palindrome
p in w. By assumption, the word p is privileged, and thus q is also privileged.
Again, by assumption, the word q is a palindrome. The conclusion follows from
Proposition 3.3.2.

Clearly (i) and (ii) imply (iii). Suppose that Pw(n) = Aw(n) for all integers
n such that 0 ≤ n ≤ |w|. If w is not rich, then by Lemma 3.3.5 there exists an
integer m such that Pal w(m) ( Pri w(n), so Pw(m) < Aw(m), which is impossible.
Therefore w is rich, so (iii) implies (i).

A nonrich word might nevertheless contain relatively many palindromes. The
defect D(w) of a word w is defined to be the number |w|+ 1− |Pal (w)|, measuring
the abundance of palindromes in w. The word w is rich if and only if D(w) = 0.
This concept of defect is more interesting for infinite words, and we define the
defect D(w) of an infinite word w as

sup{D(u) : u is a prefix of w}.

If the defect of an infinite word is finite, then it still abundant in palindromes, and
we call such a word almost rich.

We have observed that in a rich word privileged factors and palindromic fac-
tors are the same. In nonrich words there is in general no relation between priv-
ileged factors and palindromic factors. Indeed, an infinite word might have only
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finitely many palindromic factors yet it always has infinitely many privileged
factors by Lemma 3.3.3. The next example shows that privileged factors are not
suitable for measuring the defect of an almost rich word.

Example 3.3.6. We show that there exists an infinite aperiodic word w with defect
1 having infinitely many nonpalindromic privileged factors and infinitely many
nonprivileged palindromic factors.7

Let w be the morphic image τ(f) of the Fibonacci word f under the morphism
τ : 0 → abcacba, 1 → d. Let p be a palindromic factor of f starting with the let-
ter 0. Then τ(p) clearly is a palindrome. Since τ(p) begins with abca and ends
with acba, the word τ(p) cannot be privileged. Thus w contains infinitely many
palindromes that are not privileged.8

Let us show next that the word τ(p)(cba)−1 is privileged. This implies that w
contains infinitely many privileged factors that are not palindromic; τ(p)(cba)−1

is not palindromic as it begins with abca and ends with abca. If p = 0, then
τ(p)(cba)−1 = abca is privileged. Suppose that |p| > 1. Since the Fibonacci word
is rich (see Proposition 4.5.4 p. 80), the palindrome p is a complete first return to
a shorter palindrome q. By induction, the word τ(q)(cba)−1 is privileged. It is
sufficient to show that the word τ(p)(cba)−1 contains exactly two occurrences of
τ(q)(cba)−1. This is trivial: since the primitive words τ(0) and τ(1) do not share
any factors, the word τ(p)(cba)−1 has more than two occurrences of τ(q)(cba)−1

if and only if p has more than two occurrences of q.
It remains to show that w has defect 1. Notice that the defect of τ(0) = abcacba

is 1. Consider a prefix u of w of length at least 4. Since τ maps palindromes to
palindromes, it follows that the longest palindromic suffix of u occurs only once
in u. Therefore w has defect 1.

Observe that it is only important that τ(0) and τ(1) are both primitive palin-
dromes with no common factors and that either τ(0) or τ(1) has defect 1. Thus
w could be made binary by a suitable choice for τ(0) and τ(1).

Lemma 3.3.5 and Theorem 3.3.4 imply that if Pri (w) ⊆ Pal (w), then Pal (w) =
Pri (w), that is, w is rich. It is natural to ask if there are examples of infinite
words w such that Pal (w) is properly contained in Pri (w). It turns out that this
is possible but not in the case of uniformly recurrent words containing infinitely
many palindromes (Proposition 3.3.11). We begin with a simple observation.

Lemma 3.3.7. Let w be a recurrent infinite word. If Pal (w) ( Pri (w), then w has
infinite defect.

Proof. As Pal (w) ( Pri (w), there exists a privileged factor u in L(w) that is not
a palindrome. Consider any factor v that is a complete first return to u in L(w)
(such a factor exists as w is recurrent). Suppose that z is a prefix of w having v
as a suffix, and let p be the longest palindromic suffix of z. By the assumption
Pal (w) ( Pri (w), the palindrome p is also privileged. If |p| > |u|, then p has ũ
as as a prefix. Since p has a privileged suffix u, it also has u as a prefix, so ũ = u,

7This example was inspired by [11, Example 3.4].
8This is also implied by Lemma 3.3.7.
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which is impossible. Thus |p| < |u|, so p is actually the longest palindromic suffix
of u. As z contains two occurrences of u, it follows that the longest palindromic
suffix of z occurs in z at least twice. As w is recurrent, there are infinitely many
prefixes of w having v as a suffix. Thus w has infinite defect.

Example 3.3.8. We show that there exists an infinite recurrent aperiodic binary
word w having the following properties: w is not closed under reversal, w con-
tains infinitely many palindromes, and Pal (w) ( Pri (w).

We define the infinite binary word w as the limit of the sequence (un) defined
as follows: u0 = 00101100 and un+1 = un0nun for n ≥ 1. It is clear that w is
recurrent and aperiodic and that it contains infinitely many palindromes of the
form 0m. However, the word w is not closed under reversal as 1101, the reversal
of the factor 1011, is not in L(w).

We claim that Pal w(n) = {0n, 10n−21} for n ≥ 7. Suppose that n is an integer
such that n ≥ 7. Let p ∈ Pal w(n) and m be the smallest integer such that p occurs
in um. As um−1 starts and ends with 00101100 and 1101 is not a factor of w, we
conclude that p is a central factor of um. There are thus only two possibilities:
p = 0m+4 or p = 10m+41. By a direct inspection, it can be verified that Pal w(6) =
{06}, Pal w(5) = {05}, Pal w(4) = {0000, 0110}, and Pal w(3) = {000, 010, 101}.
Thus all palindromic factors of w are privileged. The claim follows as w contains,
e.g., the privileged factor 00101100, which is not a palindrome.

Example 3.3.9. We show that there exists an infinite uniformly recurrent aperi-
odic binary word w having the following properties: w is not closed under rever-
sal, w contains only finitely many palindromes, and Pal (w) ( Pri (w).

Let us consider the Chacon word c, the fixed point of the (nonprimitive) mor-
phism 0 7→ 0010, 1 7→ 1 [58]. The word c is aperiodic, and it is uniformly re-
current because the letter 0 occurs in c in bounded gaps. A direct verification
shows that the word c does not contain palindromes of length 13 or 14. Therefore
Pal w(n) = ∅ for all n ≥ 13. There are total 23 palindromes in L(c). With the
same brute-force approach we see that all palindromes of c are privileged. The
Chacon word is not closed under reversal: for instance, the word 001001, the re-
versal of 100100, is not in L(c). Thus the Chacon word has the desired properties.

Example 3.3.10. We recall a construction of Berstel et al. [18] and show that there
exists an infinite uniformly recurrent aperiodic binary word w having the follow-
ing properties: w is closed under reversal, w contains finitely many palindromes,
and Pal (w) ( Pri (w).

Consider the infinite word v, the limit of the sequence (un) defined by setting
u0 = 01 and un+1 = un23ũn for n ≥ 0. The word v is aperiodic, uniformly
recurrent (it is even linearly recurrent), closed under reversal, and contains only
finitely many palindromes; namely only the letters 0, 1, 2, and 3. By applying the
morphism

h :

0 7→ 101
1 7→ 1001
2 7→ 10001
3 7→ 100001
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to the word v, we obtain a uniformly recurrent aperiodic binary word that is
closed under reversal and contains only finitely many palindromes (the longest
is of length 12). By a direct inspection, it can be verified that each palindrome
occurring in h(v) is privileged. Therefore the infinite word h(v) has the desired
properties.

It turns out that if a uniformly recurrent infinite word w contains infinitely
many palindromes, then the inclusion Pal (w) ⊆ Pri (w) cannot be proper. Notice
that such a word is necessarily closed under reversal.9

Proposition 3.3.11. Let w be a uniformly recurrent infinite word containing infinitely
many palindromes. If Pal (w) ⊆ Pri (w), then Pal (w) = Pri (w), that is, the word w
is rich.

Proof. Assume on the contrary that Pal (w) ⊆ Pri (w) and that w is not rich.
Then by Theorem 3.3.4, there exists a privileged factor u ∈ L(w) that is not a
palindrome. Since w is uniformly recurrent and contains infinitely many palin-
dromes, the word u is a factor of some palindrome p ∈ L(w). Clearly u cannot
be a central factor of p. Thus there exists a central factor q of p which begins with
u and ends with ũ (or symmetrically q begins with ũ and ends with u). It is im-
mediate that q is a palindrome. Thus by assumption, the word q is privileged. As
q has the privileged word u as a prefix, the word u is also a suffix of q. It follows
that u is a palindrome; a contradiction.

We conclude this section by considering briefly the so-called CR-poor words.
A word w is closed if |w| ≤ 1 or w is a complete first return to a shorter word.

In [9], Badkobeh, Fici, and Lipták consider words with the minimum number of
closed factors, called CR-poor words. By Lemma 3.3.3, any word w contains at least
|w|+ 1 distinct closed factors. Therefore CR-poor words are exactly the words w
having |w|+ 1 distinct closed factors. Equivalently, CR-poor words are the words
whose closed factors are all privileged.

Proposition 3.3.12. A word w is CR-poor if and only if w does not contain a complete
first return to ab for any distinct letters a and b.

Proof. Obviously a CR-poor cannot contain a complete first return to ab for dis-
tinct letters a and b as such a factor would clearly not be privileged (it starts and
ends with distinct letters).

Suppose then that w is not CR-poor. This means that w contains a closed factor
u that is not privileged. Now u is a complete first return to some word v. Since
u is not privileged, neither is v. Since powers of letters are privileged, the word
v must contain ab for some distinct letters a and b. Therefore u must contain a
complete first return to ab.

The language of CR-poor words is thus relatively simple. Even more can be
said if we restrict to only binary words.

9Since there are arbitrarily long palindromes and the word is uniformly recurrent, every factor is
a factor of some sufficiently long palindrome.
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Proposition 3.3.13. Let w be a binary word. Then the following are equivalent:

(i) w is CR-poor,

(ii) w does not contain a complete first return to 01 or 10,

(iii) every closed factor of w is a palindrome,

(iv) w is conjugate to a word in 0∗1∗.

In particular, a binary CR-poor words are rich.

Proof. Suppose that w is CR-poor. Because w is binary, it follows from Propo-
sition 3.3.12 that w avoids complete first returns to 01 and 10. Thus w is of the
form 0i1j0k or 1i′0j′1k′ , that is, w is conjugate to a word in 0∗1∗. Further, every
nonempty closed factor of w must be a power of a letter or of the form 0a1b0a or
1a′0b′1a′ . Since these factors are palindromes, every closed factor of w is a palin-
drome. Because every position in w introduces a new closed factor, that is, every
position in w introduces a new palindrome, the word w must be rich.

Suppose then that every closed factor of w is a palindrome. A complete first
return to 01 cannot be a palindrome since such a word begins and ends with a
distinct letter. Therefore w must avoid complete first returns to 01 and 10. By
Proposition 3.3.12, the word w must be CR-poor.

CR-poor words over larger alphabets are not necessarily rich as the CR-poor
word abca shows. For some more information on CR-poor words and closed
factors of words, see [9].

3.4 The Language of Privileged Words

Here we show that the language of privileged words over an alphabet with at
least two letters is not context-free. We want to avoid taking a lengthy detour
into formal language theory, so on regular and context-free languages, we refer
the reader to the Handbook of Formal Languages [124].

Let A be a fixed alphabet such that |A| ≥ 2, and consider Pri (A∗), the lan-
guage of privileged words over A. Let us show first that the language Pri (A∗) is
not regular.

Proposition 3.4.1. The language Pri (A∗) is not regular.

Proof. Let 0 and 1 be distinct letters in A. Consider the language L defined by
setting

L = Pri (A∗) ∩ 0+10+.

Let w ∈ L, so that w = 0n10m for some positive integers n and m. Since the words
w, 0n, and 0m are privileged, Lemma 3.2.2 implies that 0n is a suffix of w and 0m

is a prefix of w. Therefore n = m. Consequently, L = {0n10n : n ≥ 1}. By the
pumping lemma, L is not regular, and hence neither is Pri (A∗).
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A more complicated proof shows that Pri (A∗) is not context-free. We recall
Ogden’s Lemma [111].

Proposition 3.4.2 (Ogden’s Lemma). Let L be a context-free language. Then there
exists an integer n such that given w in L with at least n distinguished letters we can
find a decomposition w = uvxyz such that

• vxy contains at most n distinguished letters,

• vy contains at least one distinguished letter, and

• uvixyiz ∈ L for all i ≥ 0.

Theorem 3.4.3. The language Pri (A∗) is not context-free.

Proof. Let 0 and 1 be distinct letters in A. Assume that Pri (A∗) is context-free,
and consider the regular language 0+10+110+, denoted by R. By a well-known
closure property of the context-free languages, the language

L = Pri (A∗) ∩ R

is context-free. We claim that

L = {0a+110b+1110c+1 : a = c and a > b ≥ 0}.

It suffices to show that a word w of the form 0a+110b+1110c+1 word is privileged
if and only if a = c and a > b.

Suppose first that w is privileged. As in the proof of Proposition 3.4.1, we see
that necessarily a = c. Suppose that b ≥ a. Then 0a+110a+1 is a privileged prefix
of w; yet it is not its suffix. By Lemma 3.2.2, the word w cannot then be privileged.
Therefore a > b.

Suppose then that a = c and a > b. Clearly the longest proper privileged
prefix of w is 0a+1, which is also a suffix of w. As there are no other occurrences of
0a+1 in w, the word w is a complete first return to 0a+1. Therefore w is privileged.

Now let n be as in Ogden’s Lemma, and let w = 0n10n−1110n, where the first
n letters of w are distinguished. Notice that w ∈ L. There exists a decomposition
w = uvxyz, where vxy contains at most n distinguished letters, vy contains at
least one distinguished letter, and uvixyiz ∈ L for all i ≥ 0.

We see that if either v or y contain the letter 1, then the word uv0xy0z does
not contain enough letters 1 and thus cannot be in L. Therefore we may suppose
that v lies completely in the first block of letters 0. If y also lies entirely in the
first block of letters 0, then uv0xy0z = 0n−j10n−1110n for some positive integer j.
As n− j < n, by the above, we have uv0xy0z /∈ L. If y lies in the middle block
of letters 0, then v must be nonempty, and uv0xy0z = 0n−j10n−1−k110n for some
integers j and k such that j > 0 and k ≥ 0. As n − j < n, we again see that
uv0xy0z /∈ L. We conclude that y must lie in the last block of letters 0. However,
now uv0xy0z = 0n−j10n−1110n−k for some integers j and k such that j > 0 and
k ≥ 0. Since n− j ≤ n− 1, we see that uv0xy0z /∈ L.

Thus no decomposition uvxyz of w exists with uv0xy0z ∈ L. This is a contra-
diction with Ogden’s Lemma. We conclude that Pri (A∗) is not context-free.
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The language Pri (A∗) is, however, context-sensitive because it is decided by
a Turing machine in linear space. We show this later in Section 3.5.

A slight modification to the proof of Theorem 3.4.3 allows us to show that the
related language of closed words is not context-free. Let

C = {w ∈ A∗ : |w| ≤ 1 or w is a complete first return to a shorter word}.

The authors of [9] prove that C is not regular. We prove that it is not context-free.

Proposition 3.4.4. The language C is not context-free.

Proof. Let R and L be as in the proof of Theorem 3.4.3. Set L′ = C ∩ R. We will
show that L′ = L. Then the proof of Theorem 3.4.3 shows that C is not context-
free. Again, it is sufficient to show that a word w of the form 0a+110b+1110c+1 is
in L′ if and only if a = c and a > b.

Suppose that w ∈ L′ and that w is a complete first return to u. It must be
that u = 0k for some integer k such that 1 ≤ k ≤ a + 1 as other prefixes of w are
not its suffixes. If k < a + 1, then u has at least three occurrences in w, which is
impossible. We conclude that k = a + 1. Since u has exactly two occurrences in
w, we must have a = c. Similarly, it must be that b ≥ a.

If a = c and a > b, then clearly 0a+1 occurs exactly twice in w, as a prefix and
as a suffix. Therefore w is a complete first return to w, so 0a+1 ∈ L′.

3.5 Recognizing Privileged Words in Linear Time

In this section, we present an efficient algorithm for determining if a given word is
privileged. Our algorithm is a slightly tweaked version of the algorithm for build-
ing a “failure array” in the well-known Knuth-Morris-Pratt linear-time string-
matching algorithm [89].

Given input word w of length n, the Algorithm P on the right computes the
failure array T[0, n− 1] such that T[i] equals the length of the longest proper factor
that is both a prefix and a suffix of the prefix of w of length i + 1. By convention,
we set T[0] = 0.

Using this array T, we can determine if w is privileged. Let u be a privileged
prefix of w, and let i be the smallest integer such that i ≥ |u| and T[i] = |u|. Then
the prefix v of w of length i + 1 contains u twice: as a prefix and as a suffix. That
is, the prefix v is privileged. Hence from the array T, we can deduce the lengths
of all privileged prefixes of w. If |w| is among these lengths, then w is privileged.

In what follows, we prove precisely that the Algorithm P is correct and ana-
lyze its running time.

Theorem 3.5.1. Algorithm P returns “True” if and only if the input word is privileged.

Proof. Let w be the input to Algorithm P. It is easy to see that if |w| = 0 or |w| = 1,
then w is privileged and the algorithm returns “True”. Otherwise, we consider
the value for p at each iteration of the for-loop.

We now claim that at the end of each iteration of the for-loop p equals the
length of the longest privileged prefix of the first i + 1 letters of w.



3.5. Recognizing Privileged Words in Linear Time 25

Algorithm P
function CHECK-PRIVILEGED(w)

if |w| ≤ 1 then
return True

else
T[0]← 0
p← 1
for i = 1 to |w| − 1 do

j← T[i− 1]
while True do

if w[j] = w[i] then
T[i]← j + 1
if T[i] = p then

p← i + 1

exit while-loop
else if j = 0 then

T[i]← 0
exit while-loop

j← T[j− 1]

if p = |w| then
return True

else
return False

Observe that when entering the first loop we have p = 1, and this is the length
of the longest privileged prefix of the first letter of w. This establishes the base
case. Otherwise, we assume that p is the length of the longest privileged prefix u
of the first i letters of w at the beginning of the for-loop and prove our claim for
the end of this iteration. As discussed before describing Algorithm P, if T[i] = p,
then the prefix of length i + 1 of w has u as a suffix, and p is increased to i + 1.
Since p is increased as soon as this equality is found, this is the first time u is
repeated in w, and thus the word of length i + 1 read so far is privileged. This
proves our claim.

After w has been completely read by our algorithm, p represents the length
of the longest privileged prefix of w. The algorithm returns “True” if and only if
p = |w|, in which case w is privileged.

Theorem 3.5.2. Algorithm P runs in linear time.

Proof. Starting with the Knuth-Morris-Pratt algorithm, we have added one extra
if -statement in the main loop, allowing this algorithm to run in the same O(|w|)
time bound as the original algorithm.

More formally, we consider the number of times the inner while-loop is exe-
cuted, as all else takes constant time. The first time the while-loop is executed,
i = 1 and j = 0. Upon each iteration, we see that either
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1. i is incremented by 1 and j is incremented by at most 1;

2. j decreases.

We see that i is incremented by exactly 1 when w[j] = w[i] or j = 0 due to moving
to the next iteration of the for-loop. When j = 0, then j will remain 0 beginning
the next execution of the while-loop. When w[i] = w[j], then j will be set to j + 1
in the next execution of the while-loop.

If neither of the above cases are fulfilled, we see j that is set to T[j− 1], which
is known by a property of the failure array to be strictly less than j.

With these cases, we see that either i increases or i − j increases. Since the
algorithm terminates when i = |w| − 1, i will increase exactly |w| − 2 times. Also,
since j < i at each stage of the algorithm, i− j can increase at most |w| − 3 times.
Since these are the only possible cases, the while-loop will execute no more than
2|w| − 5 times. Thus Algorithm P takes O(|w|) time to complete.

3.6 Lower Bound for the Number of Binary Privileged Words

This section is devoted to proving the following lower bound on the number of
binary privileged words of length n.

Theorem 3.6.1. There are at least

2n−4

n2

privileged binary words of length n for all n ≥ 1.

We remark that Nicholson and Rampersad claim to have improved our result
[109]. They claim that there are at least

ckn

n(logk n)2

privileged words of length n over a k-letter alphabet for some constant c and
sufficiently large n. However, as of now, their proof has some issues, which they
are planning to correct (private communication).

Observe that if w = 0t1u10t and u contains no occurrence of 0t, then w is privi-
leged. We establish the lower bound of Theorem 3.6.1 by selecting an appropriate
value for t and by counting the number of these particular privileged words. First
we need a detour into generalized Fibonacci numbers.

We need to count the number of words of length n that contain no occurrence
of 0t. As is well-known [88, p. 269], and easily proved, this is G(t)

n , where

G(t)
n =

{
2n, if 0 ≤ n < t,

G(t)
n−1 + G(t)

n−2 + · · ·+ G(t)
n−t, if n ≥ t.

We point out that in the case where t = 2, this is Fn+1, the (n + 1)st Fibonacci
number, where F0 = 1, F1 = 1, and Fn = Fn−1 + Fn−2.
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It is known from the theory of linear recurrences that

G(t)
n = Θ(γn

t ),

where γt, 1 < γt < 2, is the unique simple and dominant root of the equation
xt − xt−1 − · · · − x − 1 = 0; see [99, 100]. Since γt

t − γt−1
t − · · · − γt − 1 = 0,

multiplying by γt − 1, we get that γt+1
t − 2γt

t + 1 = 0, so γt = 2− γ−t
t .

The next step is to find a good lower bound on γt.

Lemma 3.6.2. Let s be an integer such that s ≥ 2, and let β be a real number with
0 ≤ β ≤ 6

s . Then

2s − βs2s−1 ≤ (2− β)s.

Proof. For s = 2, the claim is 4− 4β ≤ (2− β)2 = 4− 4β + β2. Otherwise, assume
that s ≥ 3. The result is clearly true for β = 0, so we may assume that β > 0. By
the binomial formula, we have

(2− β)s = ∑
0≤i≤s

2s−i(−β)i
(

s
i

)
= 2s − βs2s−1 + ∑

2≤i≤s
2s−i(−β)i

(
s
i

)
= 2s − βs2s−1

+ ∑
1≤j≤(s−1)/2

(
2s−2jβ2j

(
s
2j

)
− 2s−2j−1β2j+1

(
s

2j + 1

))
(3.1)

+

{
βs, if s even,

0, otherwise.

It therefore suffices to show that each term of the sum (3.1) is positive or, equiva-
lently, that

2s−2jβ2j
(

s
2j

)
≥ 2s−2j−1β2j+1

(
s

2j + 1

)
.

for 1 ≤ j ≤ (s− 1)/2.
Now β ≤ 6/s by hypothesis, so β ≤ 6/(s− 2). Hence βs− 2β ≤ 6. Adding

2β − 2 to both sides we get βs − 2 ≤ 4 + 2β, and so (βs − 2)/(2 + β) ≤ 2. If
i ≥ 2 ≥ (βs− 2)/(2 + β), then (2 + β)i ≥ βs− 2, so 2(i + 1) ≥ β(s− i) and

2
β
≥ s− i

i + 1
=

( s
i+1)

(s
i)

.

Thus 2(s
i) ≥ β( s

i+1). Let i = 2j, and multiply both sides by 2s−2j−1β2j to get
2s−2jβ2j( s

2j) ≥ 2s−2j−1β2j+1( s
2j+1), which is what we needed.
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Proposition 3.6.3. Let t be an integer such that t ≥ 2, and define

αt = 2− 1

2t − t
2 −

t2

2t

.

Then αt ≤ 2− α−t
t .

Proof. It is easy to verify that

3t2

4
≥ t3

2t +
t4

22t

for all real t ≥ 2. Hence

0 ≤ 3t2

4
− t3

2t −
t4

22t ,

and adding t2t−1 to both sides we get

t2t−1 ≤ t2t−1 +
3t2

4
− t3

2t −
t4

22t =

(
t
2
+

t2

2t

)(
2t − t

2
− t2

2t

)
.

Setting βt = 1/(2t − t
2 −

t2

2t ), we therefore have

βtt2t−1 ≤ t
2
+

t2

2t ,

or

−βtt2t−1 ≥ − t
2
− t2

2t .

Add 2t to both sides to get

2t − βtt2t−1 ≥ 2t − t
2
− t2

2t .

Now it is easily verified that βt ≤ 6/t for t ≥ 2, so we can apply Lemma 3.6.2
with s = t to get 2t − βtt2t−1 ≤ (2− βt)t. It follows that

(2− βt)
t ≥ 2t − t

2
− t2

2t ,

and so βt ≥ (2− βt)−t. Consequently, we have

2− βt ≤ 2− (2− β)−t.

Since αt = 2− βt, we obtain

αt ≤ 2− α−t
t ,

as desired.
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We can now apply Proposition 3.6.3 to get a bound on G(t)
n .

Theorem 3.6.4. Let t and n be integers such that t ≥ 2 and n ≥ 0. Then G(t)
n ≥ αn

t ,
where

αt = 2− 1

2t − t
2 −

t2

2t

.

Proof. We prove the claim by induction on n. Clearly G(t)
n = 2n ≥ αn

t for 0 ≤ n < t
by definition. Otherwise, we have

G(t)
n = G(t)

n−1 + · · ·+ G(t)
n−t ≥ αn−1

t + · · ·+ αn−t
t =

αn
t − αn−t

t
αt − 1

.

However, αt ≤ 2− α−t
t by Proposition 3.6.3, so

αt − 1 ≤ 1− α−t
t .

Hence (αt − 1)αn
t ≤ (1− α−t

t )αn
t = αn

t − αn−t
t , so from above we obtain

G(t)
n ≥

αn
t − αn−t

t
αt − 1

≥ αn
t .

We need here only the lower bound of Theorem 3.6.4 for G(t)
n , but actually the

exact value of the dominant root γt of the equation xt − xt−1 − · · · − x − 1 = 0
can be expressed as power series. It is proven in [77] that

γt = 2− 2 ∑
k≥1

1
k

(
k(n + 1)− 2

k− 1

)
1

2k(n+1)
.

Notice that the sequence (γt) is increasing and converges to 2.
We now have the proper tools to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Each word of the form 0t1u10t, where |u| = n− 2t− 2 and
u contains no factor 0t, is privileged. The number of such words, as we have seen,
is G(t)

n−2t−2. It therefore suffices to pick the right t to get a lower bound on G(t)
n−2t−2.

Using the data in Appendix B, it is easy to see that the bound holds for n ≤ 10.
Assume that n ≥ 11. Now

G(t)
n−2t−2 ≥ αn−2t−2

t

= (2− βt)
n−2t−2

≥ 2n−2t−2 − βt(n− 2t− 2)2n−2t−3

= 2n−2t−2(1− βt(n/2− t− 1))

by Lemma 3.6.2 with s = n− 2t− 2 provided that βt ≤ 6/(n− 2t− 2). We now
choose t = blog2 nc + 1, so that 2t−1 ≤ n < 2t. It is now easy to verify that
βt ≤ 6/(n− 2t− 2) for n ≥ 11.
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On the other hand, it is straightforward to verify that

3t
4
≥ t2

2t+1

for all real t ≥ 0, so

3t
4
+ 1− t2

2t+1 > 0.

Adding 2t−1 to both sides and using the fact that 2t−1 ≤ n < 2t, we get that

n
2
< 2t−1 < 2t−1 +

3t
4
+ 1− t2

2t+1 ,

which implies that

n
2
− t− 1 ≤ 1

2

(
2t − t

2
− t2

2t

)
,

and so βt(n/2− t− 1) ≤ 1/2.
It follows that

G(t)
n−2t−2 ≥ 2n−2t−2(1− βt(n/2− t− 1) ≥ 2n−2t−3 ≥ 2n−5

n2 .

By taking into account privileged words with letters 0 and 1 exchanged, we obtain
that there are at least

2n−4

n2 .

binary privileged words of length n.

For additional ideas for improving Theorem 3.6.1, see Section 3.9 on open
problems.

3.7 Privileged Factors of the Thue-Morse Word

In this section, we prove a recursive formula for the privileged complexity func-
tion of the Thue-Morse word. With the aid of this formula, we study the asymp-
totic behavior of this privileged complexity function and the occurrences of zeros
in its values. Finally, we briefly study the corresponding properties of the privi-
leged palindrome complexity function of the Thue-Morse word.

3.7.1 Recurrences for At

Recall from Chapter 2 that the Thue-Morse word t is a fixed point of the mor-
phism µ and its square θ.

µ :
0 7→ 01
1 7→ 10

θ :
0 7→ 0110
1 7→ 1001
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Since t is overlap-free, the longest privileged proper border u of its privileged
factor w cannot overlap with itself in w, that is, |u| ≤ |w|/2. We implicitly assume
this fact in what follows.

Regarding complete first returns in t in general, the following interesting re-
sult can be inferred from [12, Theorem 4.3].

Proposition 3.7.1. Every factor of the Thue-Morse word except 0 and 1 has exactly 4
complete first returns.

In order to avoid complicated notation, we overload here some symbols for
alternative use. For the rest of the Section 3.7, the symbol Pri w(n) refers to the
set of privileged factors of t of length n having the word w as a prefix. In other
words, we set Pri w(n) = Pri t(n) ∩ w{0, 1}∗. Similarly we overload the symbol
Aw(n) by setting Aw(n) = |Pri w(n)|.

Let E be the exchange morphism defined by E(0) = 1 and E(1) = 0. For
every w ∈ L(t), also E(w) ∈ L(t) [90, Proposition 2.2.1], so we can focus only on
factors beginning with the letter 0. As 111 is not a factor of t, the complete first
returns to 0 are 00, 010, and 0110. Clearly the privileged factors of t beginning
with the letter 0 of length greater than 1 can be divided into three disjoint groups
depending on their first four letters. That is,

Pri 0(n) = Pri 00(n) ∪ Pri 010(n) ∪ Pri 0110(n)

for n > 1. Thus for the privileged complexity function At of the Thue-Morse
word, we have

1
2

At(n) = A00(n) + A010(n) + A0110(n)

for n > 1. Using overlap-freeness, we can easily see that

Pri 0(1) = {0},
Pri 0(2) = {00},
Pri 0(3) = {010}, and

Pri 0(4) = {0110}.

Hence At(1) = At(2) = At(3) = At(4) = 2.
Next we state the main results of this subsection.

Theorem 3.7.2. The privileged complexity function At of the Thue-Morse word satisfies

At(0) = 1, At(1) = At(2) = At(3) = At(4) = 2,
1
2 At(4n) = 3A00(n) + A010(n) + A010(n + 1) + A0110(n + 1) for n ≥ 2,

1
2 At(4n− 2) = A00(4(n− 1)) + A010(4n) + A0110(4n) for n ≥ 2,

At(2n + 1) = 0 for n ≥ 2.

Theorem 3.7.2 is directly implied by the upcoming Proposition 3.7.6 and the
following theorem, which allows us to compute the values of At; see Table 3.1
and Figure 3.1 on page 42.10

10These values are recorded as the sequence A268242 in Sloane’s On-Line Encyclopedia of Integer
Sequences [134].

https://oeis.org/A268242
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Theorem 3.7.3. The functions A00(n), A010(n), and A0110(n) satisfy

A00(4n) = 2A00(n),

A00(4n− 2) = A0110(4n),

A010(4n) = A010(n + 1) + A0110(n + 1),

A010(4n− 2) = A010(4n),

A0110(4n) = A00(n) + A010(n),

A0110(4n− 2) = A00(4(n− 1))

for all n ≥ 2.

Theorem 3.7.3 is a direct consequence of the Corollaries 3.7.16, 3.7.19, and
3.7.22 proven below.

Actually, a complete but very complicated system of recurrences can be de-
rived for the sequence (At(n)) only in terms of the function At. This was done
in [131] with help of a computer program. The principles behind this computer-
assisted method are elaborated in Subsection 3.8.2. The complete system consists
of the following recurrences:

At(4n + 3) = At(4n + 1)

At(8n + 1) = At(4n + 1)

At(8n + 5) = 0

At(16n + 6) = At(4n + 1) + At(4n + 2)− 1
2 At(16n + 2) + 1

2 At(16n + 4)

At(16n + 8) = 3At(4n + 1) + 3At(4n + 2)− 1
2 At(16n + 2)− 3

2 At(16n + 4)

At(16n + 10) = At(16n + 8)

At(16n + 12) = At(16n + 6)

At(32n) = At(2n + 1)− 1
2 At(4n + 1) + 3At(8n + 2)− 3At(8n + 4)

At(32n + 2) = −At(2n + 1) + At(4n + 1) + 3At(8n + 2)− 2At(8n + 4)

At(32n + 4) = −At(2n + 1) + At(4n + 1) + At(8n + 2)

At(32n + 14) = −At(2n + 1) + At(8n + 4)

At(32n + 16) = At(32n + 14)

At(32n + 20) = At(32n + 18)

At(32n + 30) = 2At(2n + 1) + At(8n + 2)− 3At(8n + 4)+

2At(8n + 6)−At(32n + 18)

At(64n + 18) = At(4n + 1)

At(64n + 50) = 0,

with At(1) = At(2) = 2. We do not use this large system here because for our
purposes it does not offer any advantage over the recurrences of Theorem 3.7.2.
Let us remark that the correctness of this large system can be in principle verified
using Theorems 3.7.2 and 3.7.3.
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2-16 18-32 34-48 50-64 66-80 82-96 98-112 114-128
2 2 14 0 2 0 16 0
2 2 6 0 2 0 8 0
4 4 4 0 2 4 4 6
8 8 8 0 2 12 4 18
8 8 8 0 2 12 4 18
4 4 4 0 2 4 4 6
0 6 2 0 2 4 4 8
0 14 2 0 2 12 4 24

Table 3.1: Values At(n) for n = 2, 4, 6, 8, . . . , 128 (the even numbers from 2 to 128).

α1 = 00101100 β1 = 01011010 γ1 = 01100110
α2 = 00110100 β2 = 010110011010 γ2 = 011010010110
α3 = 001100 β3 = 010010 γ3 = 0110010110
α4 = 0010110100 β4 = 0100110010 γ4 = 0110100110

Table 3.2: The setR of all complete first returns to 00, 010, and 0110 in t.

Since the Thue-Morse word is not rich (in fact, it has infinite defect [22]), it is
interesting to compare its privileged complexity with its palindromic complexity,
derived in [22]; see also [3].

Theorem 3.7.4. The palindromic complexity function Pt(n) of the Thue-Morse word
satisfies

Pt(0) = 1, Pt(1) = Pt(2) = Pt(3) = Pt(4) = 2,

Pt(4n) = Pt(4n− 2) = Pt(n) + Pt(n + 1) for n ≥ 2,

Pt(2n + 1) = 0 for n ≥ 2.

Before starting to collect results needed for proving Theorem 3.7.3, we need
to give some definitions.

The word ∂i,j(u), where i + j ≤ |u|, is obtained from the word u by deleting i
letters from the beginning and j letters from the end. Let ψ be a morphism having
a fixed point w, and let u be a nonempty factor of w. If u = ∂i,j(ψ(a0a1 · · · an+1)),
where ai is a letter, 0 ≤ i < |ψ(a0)|, and 0 ≤ j < |ψ(an+1)|, then we say that u
admits an interpretation (a0a1 · · · an+1, i, j) by ψ. The word a0a1 · · · an+1 associated
with the interpretation is called the ancestor of this interpretation. Here we con-
sider only the Thue-Morse morphism µ and its powers. In this particular case, all
sufficiently long factors have a unique interpretation by µ (this is proven later in
Lemma 3.7.8). Thus it is convenient to just talk about the interpretation and the
ancestor of a factor u of t. Considering a factor u of t, we often separate images of
letters by bars. For example, the factor 01100 admits the interpretation (010, 0, 1)
by µ, so it has ancestor 010, and we place bars as follows: 01|10|0. If a factor has a
unique interpretation, then there is only one way to place the bars in that factor,
and vice versa.



34 Privileged Words

In Table 3.2, we list the set R of all complete first returns to 00, 010, and 0110
in t. These words are needed later on. We leave it to the reader to verify that these
words actually are factors of t. By Proposition 3.7.1, the list is exhaustive (this fact
is easily verified directly).

Lemma 3.7.5. If w ∈ Pri 0(n) with n > 4, then w begins with a word inR.

Proof. Because |w| > 4, the word w has a proper prefix u that is one of the words
00, 010, or 0110. Since w is privileged, the word u is also a suffix of w, so w must
have a complete first return to u as a prefix. The conclusion follows.

We see that there are at least two odd length privileged factors beginning with
the letter 0, namely 0 and 010. It turns out that these are all.

Proposition 3.7.6. We have At(2n + 1) = 0 for all n ≥ 2.

Proof. We may focus on privileged factors beginning with the letter 0. Let w be
a privileged factor of t beginning with 0 such that |w| > 4. Now w begins with
one of the three privileged words 00, 010, or 0110. With respect to the morphism
µ, the bars must be placed as follows: 0|0, 01|0 or 0|10, and 01|10. If w begins
with 00 (respectively 0110), then it also ends with 00 (respectively 0110) and, by
the placement of the bars, we immediately see that w has even length. Assume
then that w begins with 010. As |w| > 4, by Lemma 3.7.5 the factor w has as a
prefix one of the words β1 = 01|01|10|10, β2 = 01|01|10|01|10|10, β3 = 0|10|01|0,
or β4 = 0|10|01|10|01|0 (bars with respect to µ). If w begins with some βi, then it
ends with βi. From the placement of the bars, we see that |w|must be even.

We frequently need complete information on short privileged factors. The
next lemma provides this knowledge. In what follows, we assume the lemma to
be known.

Lemma 3.7.7. Let w ∈ Pri 0(n) with n ≤ 12. Then w ∈ {0, 010, 0110} ∪R.

Proof. It was already remarked that if |w| ≤ 4, then w ∈ {0, 010, 0110}. If |w| > 4,
then by Lemma 3.7.5 the word w begins with a word in R. If w /∈ R then, as w
is privileged, the factor w must have as a prefix a complete first return to some
word in R. This prefix u cannot overlap with itself in w. Since |w| ≤ 12, it thus
follows that |u| ≤ 6. The words of minimal length in R have length 6, so w = u2

and u ∈ {α3, β3}. However, both α2
3 and β2

3 contain a third power (that is, an
overlap), yielding a contradiction. Therefore w ∈ R.

To prove the important Proposition 3.7.9, we need the following lemma.

Lemma 3.7.8. A factor w ∈ L(t) admits a unique interpretation by the morphism µk if
|w| ≥ 3 · 2k−1 + 1. Moreover, this bound is optimal in the sense that there exists a factor
of length 3 · 2k−1 that does not admit a unique interpretation by µk.

Proof. The factor 010 of t admits two interpretations by µ, the placements of the
bars being 0|10 or 01|0. It follows that µk−1(010) admits two interpretations by
µk for all k ≥ 1. This proves the latter assertion as |µk−1(010)| = 3 · 2k−1.
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Let w ∈ L(t). Suppose that w has 00 or 11 as a factor. Because these two
factors admit a unique interpretation by µ, it follows that w has a unique inter-
pretation by µ. Using overlap-freeness, it is straightforward to see that every
factor of t of length at least 4 except 0101 and 1010 have 00 and 11 as factors.
Since also 0101 and 1010 have unique interpretations by µ, the base case k = 1 is
established.

Suppose then that k > 1, and assume that |w| ≥ 3 · 2k−1 + 1. Since 3 · 2k−1 + 1
is odd, there is a factor u in L(t) of length at least 3 · 2k−2 + 1 such that w is a
factor of µ(u). Since |w| > 4, the factor w admits a unique interpretation by µ.
Therefore if w would admit two interpretations by µk, then u would admit two
interpretations by µk−1, which is impossible by the induction hypothesis. Thus w
admits a unique interpretation by µk.

Proposition 3.7.9. Let k be a positive integer, and set ψ = µk. If u and v are words in
L(t) such that |u| ≥ |v| ≥ 2, then |ψ(u)|ψ(v) = |u|v.

Proof. Clearly always |ψ(u)|ψ(v) ≥ |u|v. Suppose ψ(v) occurs in ψ(u), so ψ(u) =
wψ(v)z for some words w and z. There must exist words α and β such that ψ(α) =
w and ψ(β) = z since otherwise ψ(v) would admit two interpretations by ψ,
which is impossible by Lemma 3.7.8 because |ψ(v)| ≥ 2k+1 ≥ 3 · 2k−1 + 1. Hence
u = αvβ. This proves that |ψ(u)|ψ(v) ≤ |u|v.

Next we characterize the different classes of privileged factors in the Thue-
Morse word. In what follows, we say that a word w is θ-invertible if there exists a
word u such that θ(u) = w. Recall the words αi, βi, and γi from Table 3.2.

Lemma 3.7.10. Let n be an integer such that n > 2, and let w ∈ Pri 00(n). Then

(i) 4 | |w| ⇐⇒ 1w110 or 011w1 is a θ-invertible factor of t

⇐⇒ w begins with α1 or α2,

(ii) 4 - |w| ⇐⇒ 1w1 is a θ-invertible factor of t

⇐⇒ w begins with α3 or α4.

Proof. By Lemma 3.7.8, all factors of t of length at least 7 admit a unique in-
terpretation by θ so, for α1, α2, and α4, there is a unique way to place bars:
α1 = 001|0110|0, α2 = 0|0110|100, and α4 = 001|0110|100. There are potentially
two ways to place bars for α3: 001|100 and 0|0110|0. However, the latter is not
possible because (0110)3 is not a factor of t.

(i) Assume that 4 | |w|. If w begins with α4, then it also ends with α4. From
the placement of the bars, it can be seen that this is impossible; it would follow
that 4 - |w|. Similarly w cannot begin with α3. Hence w must begin with α1 or
α2. On the other hand, if w begins with α1 or α2, then 1w110 or 011w1 must be
θ-invertible by the placement of the bars. Then clearly 4 | |w|.

(ii) Assume that 4 - |w|. By (i), the factor w has to begin with α3 or α4. In either
case, the word 1w1 is a θ-invertible factor of t. The other direction is also clear: if
w begins with α3 or α4, then by (i) it must be that 4 - |w|.
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Lemma 3.7.11. Let n be an integer such that n ≥ 1, and let w ∈ Pri 010(n). Then

(i) 4 | |w| ⇐⇒ 10w01 is a θ-invertible factor of t

⇐⇒ w begins with β1 or β2,

(ii) 4 - |w|, 2 | |w| ⇐⇒ 011w110 is a θ-invertible factor of t

⇐⇒ w begins with β3 or β4,

(iii) 4 - |w|, 2 - |w| ⇐⇒ w = 010.

Proof. From Proposition 3.7.6, it follows that (iii) holds.
Similar to the previous proof, we know the placements of bars for the words

β1, β2, β3, and β4: β1 = 01|0110|10, β2 = 01|0110|0110|10, β3 = 0|1001|0, and
β4 = 0|1001|1001|0.

(i) Assume that 4 | |w|. Like in the previous proof, from the placement of the
bars, we see that w cannot begin with β3 or β4, so it must start with β1 or β2.
Thus 10w01 is θ-invertible. Again, the unique placement of the bars implies that
the converse is also true.

(ii) By (i), it is enough to notice that if w begins with β3 or β4, then 011w110 is
θ-invertible.

Lemma 3.7.12. Let n be an integer such that n > 4, and let w ∈ Pri 0110(n). Then

(i) 4 | |w| ⇐⇒ w is a θ-invertible factor of t

⇐⇒ w begins with γ1 or γ2,

(ii) 4 - |w| ⇐⇒ 10w or w01 is a θ-invertible factor of t

⇐⇒ w begins with γ3 or γ4.

Proof. The placement of bars is known: γ1 = 0110|0110, γ2 = 0110|1001|0110,
γ3 = 01|1001|0110, and γ4 = 0110|1001|10. As in the two previous proofs, the
conclusion directly follows by looking at the placements of the bars.

The three preceding lemmas allow us to prove the following useful result.

Corollary 3.7.13. Let w ∈ Pri t(n) and u be its longest privileged proper prefix such
that |u| > 4. Then 4 | |w| if and only if 4 | |u|.

Proof. Let S = {α1, α2, β1, β2, γ1, γ2}, and suppose that 4 | |w|. We may assume
that w begins with 0. The Lemmas 3.7.10, 3.7.11, and 3.7.12 imply that w begins
with some v in S . Because |u| > 4, Lemma 3.7.5 implies that u has as a prefix a
word in R. As no word in the set R is a proper prefix of another word in R, it
follows that u begins with v. The same three lemmas now imply that 4 | |u|. On
the other hand, if 4 | |u|, then u begins with a word in S . Consequently, the word
w begins with a word in S , so 4 | |w|.

Next, applying the results obtained so far, we describe bijective correspon-
dences between certain subsets of the set of privileged factors of t.
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Lemma 3.7.14. Let n be an integer such that n ≥ 2. The functions

f1 : Pri 00(n)→ Pri α1(4n), f1(w) = ∂1,3(θ(1w)) and

g1 : Pri 00(n)→ Pri α2(4n), g1(w) = ∂3,1(θ(w1))

are bijections.

Proof. We will first prove the claim for f1. If n = 2, then Pri 00(2) = {00} and
Pri α1(8) = {α1}, so the conclusion indeed holds. The latter part of this proof
shows that if Pri α1(4n) 6= ∅, then also Pri 00(n) 6= ∅. Thus the conclusion holds
also if n ∈ {3, 4, 5}, as then Pri 00(n) = ∅. Assume that n > 5.

Let w ∈ Pri 00(n), and let v be its longest privileged proper prefix. Notice that
now |v| ≥ 2. As v begins with 00, it follows by induction that f1(v) ∈ Pri α1(t).
Because v is always preceded by the letter 1, we have w = vw′1v, and thus

f1(w) = ∂1,3(θ(1v)θ(w′)θ(1v))

= ∂1,3(θ(1v))110θ(w′)1∂1,3(θ(1v))

= f1(v)110θ(w′)1 f1(v).

By Lemma 3.7.10, the factor f1(v) is always preceded by 1 and followed by 110.
Thus if f1(v) would occur more than twice in f1(w), then as θ(v) = 1 f1(v)110, the
word θ(v) would occur more than twice in θ(w), which is impossible by Proposi-
tion 3.7.9. Hence f1(w) is a complete first return to the privileged word f1(v), so
f1(w) ∈ Pri α1(4n).

Assume then that w ∈ Pri α1(4n). By Lemma 3.7.10, there exists z in Lt(n + 1)
such that θ(z) = 1w110. Set u = ∂1,0(z). Then f1(u) = w. Let v be the longest
privileged proper prefix of w. The assumption n > 5 implies that |v| > 4 (the
maximum length of a word in R is 12), so 4 | |v| by Corollary 3.7.13. Thus by
induction, there exists s in Pri 00(t) such that f1(s) = v. Thus f1(u) = w =
f1(s) · · · f1(s), and so u begins and ends with s. Now if s would occur more than
twice in u then, as s is always preceded by 1 and f1(s) = v, the word v would
occur more than twice in w, which is impossible. Thus u is a complete first return
to s, so u ∈ Pri 00(n).

Now, the claim for the function g1 follows as f1(w)∼ = g1(w̃) and α̃1 = α2.

Lemma 3.7.15. Let n be an integer such that n ≥ 1. The function

f2 : Pri 00(4n− 2)→ Pri 1001(4n), f2(w) = 1w1

is a bijection.

Proof. If n = 1, then Pri 00(2) = {00} and Pri 1001(4) = {1001}, so the conclusion
holds. The cases n = 2, 3 are also clear: Pri 00(6) = {α3}, Pri 1001(8) = {E(γ1)},
Pri 00(10) = {α4}, and Pri 1001(12) = {E(γ2)}; see Lemma 3.7.7. Assume that
n > 3.

Let w ∈ Pri 00(4n− 2). As the factor 00 is always preceded and followed by
the letter 1, we see that 1w1 ∈ L(t) and 1w1 begins and ends with 1001. Let
v be the longest privileged proper prefix of w. The assumption n > 3 implies
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that |v| > 4, so 4 - |v| by Corollary 3.7.13. Thus by induction, the word 1v1 is
privileged. The word 1w1 is a complete first return to 1v1, because otherwise w
would contain more than two occurrences of v. Thus 1w1 ∈ Pri 1001(4n).

Let then 1w1 ∈ Pri 1001(4n). Again, by applying Corollary 3.7.13 and in-
duction to the longest privileged proper prefix of the word 1w1, we obtain that
w ∈ Pri 00(4n− 2).

Corollary 3.7.16. We have A00(4n) = 2A00(n) and A00(4n− 2) = A0110(4n) for all
n ≥ 2.

Proof. As the ranges of the functions f1 and g1 are disjoint, the first claim follows
since by Lemma 3.7.10, we have Pri 00(4n) = Pri α1(4n) ∪ Pri α2(4n). The other
equality follows from Lemma 3.7.15 as A1001(n) = A0110(n) for all n ≥ 4.

Lemma 3.7.17. Let n be an integer such that n ≥ 2. The function

f3 : Pri 101(n + 1) ∪ Pri 1001(n + 1)→ Pri 010(4n), f3(w) = ∂2,2(θ(w))

is a bijection.

Proof. If n = 2, then Pri 101(3) = {101}, Pri 1001(3) = ∅, and Pri 010(8) = {β1}. If
n = 3, then Pri 101(4) = ∅, Pri 1001(4) = {1001}, and Pri 0110(12) = {β2}. We may
assume that n > 3.

Let w ∈ Pri 101(n + 1) ∪ Pri 1001(n + 1) and v be its longest privileged proper
prefix. By induction, the word f3(v) is in Pri 010(t). As v is a prefix and a suffix
of w, the word f3(w) starts and ends with f3(v). By Lemma 3.7.11, the word
f3(v) is always preceded by 10 and followed by 01. Thus if f3(w) contained more
than two occurrences of f3(v), then Proposition 3.7.9 would imply that w contains
more than two occurrences of v, which would be a contradiction. We conclude
that f3(w) ∈ Pri 010(4n).

Let w ∈ Pri 010(4n). By Lemma 3.7.11, there is a word u such that f3(u) = w.
Let v be the longest privileged proper prefix of w. By the assumption n > 3, we
have |v| > 4. By Corollary 3.7.13, we can apply induction to obtain a word s in
Pri 101(t) ∪ Pri 1001(t) such that f3(s) = v. Therefore f3(u) = w = f3(s) · · · f3(s).
By Lemma 3.7.11, the factor f3(s) is always preceded by 10 and followed by 01.
Therefore u begins and ends with s. Now, if u would contain a third occurrence
of s, then w would contain a third occurrence of v, which is impossible. Hence
u ∈ Pri 101(n + 1) ∪ Pri 1001(n + 1).

Lemma 3.7.18. Let n be an integer such that n ≥ 2. The function

f4 : Pri 101(4n− 2)→ Pri 010(4n), f4(w) = 0w0

is a bijection.

Proof. If n = 2, then Pri 101(6) = {E(β3)} and Pri 010(8) = {β1}. If n = 3, then
Pri 101(10) = {E(β4)} and Pri 010(12) = {β2}. Thus we may assume that n > 3.

Let w ∈ Pri 101(4n− 2) and v be its longest privileged proper prefix. As n > 3,
we have |v| > 4. By Corollary 3.7.13 and induction, we have f4(v) ∈ Pri 010(t). By
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Lemma 3.7.11, the factor f4(v) is always preceded and followed by letter 0. Thus
we can write f4(w) = f4(v) · · · f4(v). If there was a third occurrence of f4(v) in
f4(w), then in w there would be at least three occurrences of v, which is not true.
Therefore f4(w) ∈ Pri 010(4n).

Let 0w0 ∈ Pri 010(4n). Again, by applying Corollary 3.7.13 and induction to
the longest privileged proper prefix of 0w0, we get that w ∈ Pri 101(4n− 2).

Corollary 3.7.19. We have A010(4n) = A010(n + 1) + A0110(n + 1) and A010(4n−
2) = A010(4n) for all n ≥ 2.

Proof. This follows directly from Lemmas 3.7.17 and 3.7.18 because A101(n) =
A010(n) and A1001(n) = A0110(n) for all n ≥ 0.

Lemma 3.7.20. Let n be an integer such that n ≥ 2. The function

θ : Pri 00(n) ∪ Pri 010(n)→ Pri 0110(4n)

is a bijection.

Proof. If n = 2, then Pri 00(2) = {00}, Pri 010(2) = ∅, and Pri 0110(8) = {γ1}. If
n = 3, then Pri 00(3) = ∅, Pri 010(3) = {010}, and Pri 0110(12) = {γ2}. Now if
Pri 0110(4n) 6= ∅, then Pri 00(n)∪Pri 010(n) 6= ∅ by the argument at the end of this
proof. As Pri 00(n) ∪ Pri 010(n) = ∅ when n = 4, we can assume that n > 4.

Let w ∈ Pri 00(n) ∪ Pri 010(n) and v be its longest privileged proper prefix.
Now |v| ≥ 2 because n > 4. Once again, θ(v) ∈ Pri 0110(t) by induction. By
Proposition 3.7.9, the word θ(w) must be a complete first return to θ(v), that is,
θ(w) ∈ Pri 0110(4n).

Let w ∈ Pri 0110(4n). By Lemma 3.7.12, there is a word u in Lt(n) such that
θ(u) = w. Again, by Corollary 3.7.13 and induction there exists a word s in
Pri 00(t) ∪ Pri 010(t) such that θ(s) = v, where v is the longest privileged proper
prefix of w. It follows that u must be a complete first return to s, so we have
u ∈ Pri 00(n) ∪ Pri 010(n).

Lemma 3.7.21. Let n be an integer such that n ≥ 2. The function

f4 : Pri 11(4n)→ Pri 0110(4n + 2), f4(w) = 0w0

is a bijection.

Proof. If n = 2, then Pri 11(8) = {E(α1), E(α2)} and Pri 0110(10) = {γ3, γ4}. If
n = 3, then Pri 11(12) = ∅ and Pri 0110(14) = ∅. The set Pri 0110(14) is empty
because if w ∈ Pri 0110(14), then w has as a prefix and a suffix a word u that is a
complete first return to 0110. Since |u| ≥ 8, these two occurrences of u in w must
overlap. This is contradictory.

The rest of the proof is done by induction along the lines of the proof of
Lemma 3.7.15.

Corollary 3.7.22. We have A0110(4n) = A00(n) + A010(n) and A0110(4n − 2) =
A00(4(n− 1)) for all n ≥ 2.
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Proof. The result follows from Lemmas 3.7.20 and 3.7.21 because A00(n) = A11(n)
for all n ≥ 0.

Proposition 3.7.6 and Corollaries 3.7.16, 3.7.19, and 3.7.22 together prove The-
orem 3.7.2. Before moving on to study the asymptotic behavior and the gaps of
zeros of the function At, we characterize the nonprimitive privileged factors of t.

Proposition 3.7.23. The only nonprimitive privileged factors of t beginning with the
letter 0 are 00, β3, γ1, and γ2

2.

Proof. Let w be a nonprimitive privileged factor of t beginning with the letter 0.
Since t is overlap-free, it cannot contain third powers. Thus by Proposition 3.2.5,
we have w = u2 for some privileged factor u. If |u| = 1, then w = 00. If |u| > 1,
then u cannot begin with 00 as otherwise w would have 04 as a central factor.
Hence u begins with 010 or 0110. If |u| ∈ {3, 4}, then w ∈ {β3, γ1}. We may
assume that |u| > 5. Then because |u| is even by Proposition 3.7.6, we have
4 | |w|, so 4 | |u| by Corollary 3.7.13.

If u begins with 010, then by Lemma 3.7.11, u begins with β1 or β2, and so w
has β2

1 or β2
2 as a central factor. This is, however, impossible because neither β2

1
nor β2

2 is a factor of t.
Thus u must have 0110 as a prefix, so by Lemma 3.7.12 the factor u must

begin with γ1 or γ2. If u begins with γ1, then w has γ2
1 as a central factor. This

is not possible as γ1 is nonprimitive. Therefore u has γ2 as a prefix, and w has
γ2

2 as a central factor. Since 4 | |u|, Lemma 3.7.20 implies that u = θ(v) for some
privileged factor v. Since u admits a unique interpretation by θ, it follows that
v2 is a privileged factor of t. Since v is shorter than w and begins with 010, we
conclude by the arguments in the beginning of this proof that v = 010. Therefore
u = θ(v) = γ2. This concludes the proof.

3.7.2 Growth and Gaps of At

In this subsection, we study the asymptotic behavior of the function At and study
its gaps of zeros. First we need a series of lemmas giving exact values for At(n)
for specific integers n.

Lemma 3.7.24. The following holds for all n ≥ 0:

(i) A00(2n) =

{
2

1
2 (n−1), if n is odd,

0, if n is even,

(ii) A010(2n) =

{
0, if n ≥ 3,
1, if n = 3,

(iii) A0110(2n) =


2

1
2 (n−3), if n 6= 1, 5 and n is odd,

0, if n = 1 or (n > 2 and n is even),
1, if n = 2,
3, if n = 5.
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Proof. Consider the value A00(2n). Now A00(2) = 1 = 2
1
2 (1−1) and A00(4) = 0.

By Corollary 3.7.16, we have A00(2n) = 2A00(2n−2) for all n ≥ 2, so (i) is proved.
Consider next the value A010(2n). By Corollary 3.7.19, for all n ≥ 2, we have

A010(2n) = A010(2n−2 + 1) + A0110(2n−2 + 1),

so as 2n−2 + 1 is odd, Proposition 3.7.6 implies that A010(2n) = 0 provided that
n > 3. It is easy to verify that A010(2n) = 0 for n = 0, 1, 2 and that A010(23) = 1.
Thus (ii) is proved.

Consider finally the value A0110(2n). First of all, it is straightforward to ver-
ify that A0110(20) = A0110(21) = 0 and A0110(22) = A0110(23) = 1. By Corol-
lary 3.7.22, we have

A0110(2n) = A00(2n−2) + A010(2n−2)

for all n ≥ 2. Using this formula and (i) and (ii), it can be verified that A0110(24) =
0 and A0110(25) = 3. Suppose that n > 5. Then by (ii), we see that A010(2n−2) = 0.
Thus A0110(2n) = A00(2n−2), and the conclusion follows from (i).

Lemma 3.7.25. The following holds for all n ≥ 0:

(i) A00(2n + 2) =

{
0, if n 6= 2, 3,
1, if n = 2, 3,

(ii) A010(2n + 2) =

{
2

1
2 (n−1) − 1, if n is odd,

1, if n is even,

(iii) A0110(2n + 2) =

{
2

1
2 (n−1), if n is odd,

0, if n is even.

Proof. Consider first the value A00(2n + 2). Corollaries 3.7.16 and 3.7.22 show that
for all n ≥ 2 we have

A00(2n + 2) = A00(2n−2 + 1) + A010(2n−2 + 1).

As the number 2n−2 + 1 is odd, we have A00(2n + 2) = 0 if n > 3. It is readily
verified that A00(20 + 2) = A00(21 + 2) = 0 and that A00(22 + 2) = A00(23 + 2) =
1. Thus (i) is proved.

The case (iii) is a direct consequence of Corollary 3.7.22 and the case (i) of
Lemma 3.7.24.

Consider then the value A010(2n + 2). Observe that A010(20 + 2) = 1 and
A010(21 + 2) = 0 = 2

1
2 (1−1) − 1. By Corollary 3.7.19, we have

A010(2n + 2) = A010(2n−2 + 2) + A0110(2n−2 + 2).

for all n ≥ 2. By applying (iii) and induction, we see that (ii) is proved.

We can now easily deduce the following result.
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Figure 3.1: A plot of values of 1
2 At. The colored curve is the function

√
2(n− 2)

(see Proposition 3.7.27).

Proposition 3.7.26. We have lim sup
n→∞

At(n) = ∞ and lim inf
n→∞

At(n) = 0.

Proof. The fact that the inferior limit is 0 already follows from Proposition 3.7.6.
Using Lemma 3.7.24, we see that

At(2n) =

{
3 · 2 1

2 (n−1), if n is odd,

0, if n is even

when n ≥ 6. This shows that the superior limit is infinite.

This result is very interesting. It can be proven that the palindromic complex-
ity function of a fixed point of a primitive morphism is bounded [3, 47]. As the
Thue-Morse word is a fixed point of a primitive morphism, Proposition 3.7.26
demonstrates that in general the palindromic complexity function and the privi-
leged complexity function of an infinite word can behave drastically differently.11

Next we begin to prove the following sharp upper bound on At; see Figure 3.1.

Proposition 3.7.27. The privileged complexity function At of the Thue-Morse word
satisfies At(n) ≤ 2(

√
2(n− 2) − 1) for all n > 25. Moreover, the bound is sharp:

At(n) = 2(
√

2(n− 2)− 1) for infinitely many integers n.

To establish the upper bound, we need an intermediate result. Let f be the
function defined by the formula f (n) =

√
2(n− 2)− 1. In the proof of the next

11It is easily deduced from Theorem 3.7.4 that the palindromic complexity function of the Thue-
Morse word is bounded by 4.
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lemma, we need the following elementary inequalities:

f (n) ≤ 1
2

f (4n),

f (n) ≤ 1
2

f (4n− 2),

f (n + 1) ≤ 1
2

f (4n− 2), and

f (n− 1) ≤ 1
2

f (4n− 2)

for all n ≥ 2. We leave it for the reader to verify their correctness.

Lemma 3.7.28. Let i be an integer such that i ≥ 1. The following holds:

(i) if 22i+1 < n < 22(i+1)+1, then A00(n) ≤ 1
2 f (n);

(ii) if n > 23, then A010(n) ≤ 1
2 f (n); and

(iii) if 22i+1 + 2 < n < 22(i+1)+1 + 2, then A0110(n) ≤ 1
2 f (n).

Proof. Using Theorem 3.7.3, it is straightforward to to show that the conclusion
holds if 23 < n < 25. We may thus let j to be an integer such that j > 1 and
assume that the conclusion has been proved for all integers i such that i < j. By
Proposition 3.7.6, we need to consider only the case where n is even.

Consider first the function A00. Let n be such that 22j+1 < n < 22(j+1)+1.
Suppose first that n = 4m for some integer m. By Corollary 3.7.16, we have

A00(4m) = 2A00(m).

As 22(j−1)+1 < m < 22j+1, we conclude from the induction hypothesis that
A00(m) ≤ 1

2 f (m). Therefore A00(4m) ≤ f (m) ≤ 1
2 f (4m). Suppose then that

n = 4m− 2 for some integer m. Using Corollary 3.7.16 and Corollary 3.7.22, we
obtain that

A00(4m− 2) = A0110(4m) = A00(m) + A010(m).

Now 22(j−1)+1 < m ≤ 22j+1 so, if m 6= 22j+1, then we obtain from our hypothesis
that A00(4m− 2) ≤ f (m) ≤ 1

2 f (4m− 2), that is, (i) holds. If m = 22j+1, then it fol-
lows from Lemma 3.7.24 that A00(m) = 2j and A010(m) = 0. It is straightforward
to verify that 2j ≤ 1

2 f (4m− 2). Thus we see that (i) holds also in this case.
Consider next the function A010. Observe first that by Lemma 3.7.24 we have

A010(2k) = 0 for all k such that k 6= 3, so it is sufficient to consider the case where
22j+1 < n < 22(j+1)+1. Let n = 4m for some integer m. By Corollary 3.7.19, we
have

A010(4m) = A010(m + 1) + A0110(m + 1).

Now 22(j−1)+1 < m + 1 ≤ 22j+1, so if m + 1 6= 22j+1, then the claim follows from
the hypothesis as f (m + 1) ≤ 1

2 f (4m). If m + 1 = 22j+1, then by Lemma 3.7.24
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we have A010(m + 1) = 0 and A0110(m + 1) = 2j−1 if j 6= 2. It is easy to see that
2j−1 ≤ 1

2 f (4m). If j = 2, then A010(4m) = A0110(25) = 3 ≤ 1
2 f (4m) ≈ 7.3. Let

then n = 4m− 2 for some integer m. By Corollary 3.7.19, we have

A010(4m− 2) = A010(4m) = A010(m + 1) + A0110(m + 1).

If m + 1 is odd, then (ii) holds. Otherwise, we have 22(j−1)+1 < m + 1 ≤ 22j+1.
If m + 1 6= 22j+1, then as f (m + 1) ≤ 1

2 f (4m − 2), we see that (ii) holds by the
hypothesis. If m + 1 = 22j+1, then, like above, we have A010(m + 1) = 0 and
A0110(m + 1) = 2j−1 if j 6= 2. Similar to above, we have 2j−1 ≤ 1

2 f (4m− 2), so (ii)
holds if j 6= 2. If j = 2, then A010(4m− 2) = A0110(25) = 3 ≤ 1

2 f (4m− 2) ≈ 7.2.
We still need to consider the function A0110. Let n be an integer such that

22j+1 + 2 < n < 22(j+1)+1 + 2. Suppose that n = 4m for some integer m. Again,
by Corollary 3.7.22, we have

A0110(4m) = A00(m) + A010(m).

We now have 22(j−1)+1 < m ≤ 22j+1, so if m 6= 22j+1, then we obtain from our
hypothesis that A0110(4m) ≤ f (m) ≤ 1

2 f (4m). If m = 22j+1, then it follows from
Lemma 3.7.24 that A00(m) = 2j and A010(m) = 0. It is again easy to show that
2j ≤ 1

2 f (4m). Thus (iii) holds. Assume then that n = 4m− 2 for some integer m.
Corollary 3.7.22 implies that

A0110(4m− 2) = 2A00(m− 1).

Now 22(j−1)+1 < m− 1 < 22j+1, so by applying the hypothesis, we obtain that
A0110(4m− 2) ≤ f (m− 1). As f (m− 1) ≤ 1

2 f (4m− 2), we see that (iii) holds.
The claim follows now from the induction principle.

Proof of Proposition 3.7.27. Simply because at least one of the numbers m − 1, m,
and m + 1 is odd, it follows from Theorem 3.7.3 that at least one of the quantities
A00(n), A010(n), or A0110(n) equals 0 provided that (n + 2)/4 − 1 > 3, that is,
n > 14. Thus if n does not equal 22i+1 or 22i+1 + 2 for any positive integer i, then
by Lemma 3.7.28 we obtain that

1
2

At(n) = A00(n) + A010(n) + A0110(n) ≤ f (n).

If n = 22i+1 with i > 2, then by Lemma 3.7.24, we obtain that

1
2

At(n) = 2i + 2i−1 ≤ f (n).

If n = 22i+1 + 2 with i > 1, then by Lemma 3.7.25, we see that

1
2

At(n) = 2i+1 − 1 = f (n).

Thus we have proved that 1
2 At(n) ≤ f (n) for all n > 25. Moreover, we have

1
2 At(22i+1 + 2) = f (22i+1 + 2) for all i > 1. The claim is proved.
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Notice that even though the bound of Proposition 3.7.27 is sharp, most of the
values of At are much smaller than the bound as is evident from the graph in
Figure 3.1.

It is evident from the graph in Figure 3.1 that there are large gaps of zeros in
the values of the function At. We conclude this subsection by identifying these
large gaps and by proving the following interesting result.

Theorem 3.7.29. There exists arbitrarily long (but not infinite) gaps of zeros in the
values of the privileged complexity function of the Thue-Morse word.

We begin by identifying certain special numbers related to the left endpoints
of the large gaps. Let us define an integer sequence (an) as follows: a1 = 14 and

an = 4(an−1 − 2) + 2(−1)n

for n > 1. The first few terms of the sequence are 14, 50, 190, 754, 3006, 12018,
and 48062 (see the left endpoints of the large gaps in Figure 3.1). Notice that an is
always even and not divisible by 4.

Lemma 3.7.30. Let n be an integer. If n is even, then A00(an − 2) = A010(an − 2) = 0
and A0110(an − 2) = 1. If n is odd and n > 1, then A00(an − 2) = A0110(an − 2) = 0
and A010(an − 2) = 1. In particular, if n > 1, then At(an − 2) = 2.

Proof. Using the formulas of Corollaries 3.7.16, 3.7.19, and 3.7.22, it is readily ver-
ified that the claim holds for n = 2.

Suppose that n is odd and n > 1. Then an = 4(an−1− 2)− 2. Using induction,
Proposition 3.7.6, and the formulas of Corollaries 3.7.16, 3.7.19, and 3.7.22, we get

A00(an − 2) = 2A00(an−1 − 3) = 0,

A010(an − 2) = A010(an−1 − 2) + A0110(an−1 − 2) = A0110(an−1 − 2) = 1,

A0110(an − 2) = A00(an−1 − 3) + A010(an−1 − 3) = 0.

Suppose that n be even, so an = 4(an−1− 2) + 2. Similar to above, we see that

A00(an − 2) = 2A00(an−1 − 2) = 0,

A010(an − 2) = A010(an−1 − 1) + A0110(an−1 − 1) = 0,

A0110(an − 2) = A00(an−1 − 2) + A010(an−1 − 2) = A010(an−1 − 2) = 1.

It clearly follows that At(an − 2) = 2 for all n > 1.

Using Lemma 3.7.7, it can be verified that At(12) = 4, so At(an − 2) 6= 0 for
all n ≥ 1.

Proposition 3.7.31. Suppose that n and k are integers such that n ≥ 1 and an − 1 ≤
k ≤ 22(n+1) + 1. Then At(k) = 0. Moreover, At(an − 2) 6= 0 and At(22(n+1) + 2) 6= 0
for all n ≥ 1.
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Proof. If a1 − 1 = 13 ≤ k ≤ 17 = 22(1+1) + 1, then it is routine to verify that
At(k) = 0. Let n > 1, and assume that an ≤ k ≤ 22(n+1). We may suppose that k is
even. Assume first that 4 divides k. Then an−1− 2 ≤ k/4 ≤ 22n. If k/4 ≥ an−1− 1,
then At(k/4) = 0 by the induction hypothesis. Thus by Theorem 3.7.2, we have

1
2

At(k) = 3A00(k/4) + A010(k/4) + A010(k/4 + 1) + A0110(k/4 + 1) = 0.

If k/4 = an−1 − 2, then n is odd, so At(k) = 0 by Lemma 3.7.30.
Assume then that 4 does not divide k. The numbers (k + 2)/4 and (k− 2)/4

lie between the numbers an−1− 2 and 22n. By using the already familiar formulas,
we get that

1
2

At(k) = A00(k− 2) + A010(k + 2) + A0110(k + 2)

= 2A00

(
k− 2

4

)
+ A010

(
k + 2

4
+ 1
)
+ A0110

(
k + 2

4
+ 1
)

+ A00

(
k + 2

4

)
+ A010

(
k + 2

4

)
= 2A00

(
k− 2

4

)
+ A00

(
k + 2

4

)
+ A010

(
k + 2

4

)
,

where the last equality follows from the induction hypothesis. The induction
hypothesis implies that At(k) = 0 if (k− 2)/4 ≥ an−1− 1. If (k− 2)/4 = an−1− 2,
then the conclusion follows from Lemma 3.7.30 using the induction hypothesis.

The claim now follows as an− 1 and 22(n+1) + 1 are odd. Earlier it was proved
that At(an − 2) 6= 0 and At(22(n+1) + 2) 6= 0.

The proof of Theorem 3.7.29 is now immediate.

Proof of Theorem 3.7.29. Let n be an integer such that n ≥ 3. Using induction, it
can be proved that an < 22n+1 + 22n < 22(n+1). In particular, if k is an integer such
that 22n+1 + 22n ≤ k ≤ 22(n+1), then At(k) = 0 by Proposition 3.7.31. Therefore
the gaps identified in Proposition 3.7.31 grow arbitrarily large.

Theorem 3.7.29 raises a natural question: If the privileged complexity function
of an infinite word w contains arbitrarily large gaps of zeros, does it follow that
lim supn→∞ Aw(n) = ∞? It is conceivable that the large gaps force large values
of Aw(n) between the gaps. On the other hand, the gaps could occur so sparsely
that Aw(n) is still bounded. I was unable to answer this question.

The privileged complexity function of the Thue-Morse word is complicated.
Even though the Thue-Morse morphism has really nice properties, finding the
recursive formula for the function is a long task. On the other hand, without
the nice properties of the morphism, the work may not have been possible at
all. Indeed, if the morphism were not uniform, then it would have been harder
to calculate the lengths of the privileged factors. Other crucial property of the
morphism is its circularity: every image of a letter is uniquely determined by its
first or last letter. I think that it could be possible to obtain results similar to the
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preceding ones on the privileged complexity of fixed points of primitive uniform
circular morphisms other than the Thue-Morse word.

3.7.3 Privileged Palindrome Complexity

In this subsection, we consider the privileged palindrome complexity function of
the Thue-Morse word. This function B t counts the number of factors of t of length
n that are both privileged and palindromic. The arguments given are similar to
those of Section 3.7 and Subsection 3.7.2.

Similar to Section 3.7, we write Mw(n) = Pri t(n) ∩ Pal t(n) ∩ w{0, 1}∗ and
B w(n) = |Mw(n)| = |Pri t(n) ∩ Pal t(n) ∩ w{0, 1}∗|. Again, it suffices to consider
only the factors beginning with the letter 0.

We begin by proving the following lemma, which is needed in a moment.

Lemma 3.7.32. Let w ∈ Pal (t). Then w ∈ Pal t(4n) with n ≥ 1 if and only if w is
µ-invertible (i.e., there exists a word u in L(t) such that µ(u) = w).

Proof. It is sufficient to consider palindromes starting with the letter 0. The claim
holds for all palindromes of length less than or equal to 4; they are: 0, 00, 010, and
0110. Suppose that n ≥ 2.

Let w ∈ Pal t(4n) be a shortest palindrome that is not µ-invertible. Suppose
first that w begins with 00, that is, w = 001w′100. Now 1w′1 ∈ Pal t(4(n − 1)),
so by the minimality of |w|, the word 1w′1 is µ-invertible. As w begins with 00,
the word 1w′1 must have two interpretations by µ. This is a contradiction with
Lemma 3.7.8. Suppose then that w begins with 01, so we can write w = 01w′10.
As w is not µ-invertible, neither is w′ (otherwise w would have two interpreta-
tions by µ), which is a contradiction with the minimality of |w|.

Suppose then that w is a shortest µ-invertible palindrome such that 4 - |w|. We
may write w = 01w′10, so w′ is a palindrome of length |w| − 4 that is µ-invertible.
This contradicts the choice of w.

Observe that the morphism θ preserves palindromes as the images of letters
are palindromes. Therefore the functions

f2 : w 7→ 1w1

f3 : w 7→ ∂2,2(θ(w))

f4 : w 7→ 0w0,

defined in the Lemmas 3.7.15, 3.7.17, and 3.7.18, also preserve palindromes. Thus
the Lemmas 3.7.15, 3.7.17, 3.7.18, 3.7.20, and 3.7.21 imply that the following func-
tions are bijections:

f2 : M00(4n− 2)→ M1001(4n), w 7→ 1w1,

f3 : M101(n + 1) ∪M1001(n + 1)→ M010(4n), w 7→ ∂2,2(θ(w)),

f4 : M101(4n− 2)→ M010(4n), w 7→ 0w0,

f4 : M11(4n)→ M0110(4n + 2), w 7→ 0w0,

θ : M00(n) ∪M010(n)→ M0110(4n), w 7→ θ(w).
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We have thus proved the following formulas:

B 00(4n− 2) = B 0110(4n),

B 010(4n− 2) = B 010(4n),

B 0110(4n− 2) = B 00(4(n− 1)),

B 010(4n) = B 010(n + 1) + B 0110(n + 1),

B 0110(4n) = B 00(n) + B 010(n),

for n ≥ 2. We are still missing a formula for B 00(4n). However, M00(4n) = ∅
by Lemma 3.7.32, so B 00(4n) = 0. By putting together these formulas, we get the
following theorem.12

Theorem 3.7.33. The privileged palindrome complexity function B t of the Thue-Morse
word satisfies

B t(0) = 1, B t(1) = B t(2) = B t(3) = B t(4) = 2,
1
2 B t(4n) = B 00(n) + B 010(n) + B 010(n + 1) + B 0110(n + 1) for n ≥ 2,

B t(4n− 2) = B t(4n) for n ≥ 2,

B t(2n + 1) = 0 for n ≥ 2.

As in the Subsection 3.7.2, we study next the asymptotic behavior and the
gaps of zeros of the function B t.

Let us define an integer sequence (bn) as follows: b1 = 6 and bn = 4bn−1 − 2
for n > 1. The first few terms of the sequence are 6, 22, 86, 342, and 1366. Notice
that bn is always even and not divisible by 4.

Lemma 3.7.34. We have B t(bn) = 4 for all n ≥ 1.

Proof. By a direct inspection, we see that B 00(6) = 1, B 010(6) = 1, and B 0110(6) =
0, so B t(6) = 4. We will prove that B 00(bn) = 2 and B 010(bn) = B 0110(bn) = 0
for all n > 1. The claim follows from this. Now

B 00(bn) = B 0110(bn + 2) = B 00(bn−1) + B 010(bn−1),

B 010(bn) = B 010(bn + 2) = B 010(bn−1 + 1) + B 0110(bn−1 + 1), and

B 0110(bn) = B 00(bn − 2) = 0,

so the claim is indeed true.

Proposition 3.7.35. The function B t takes values in {0, 1, 2, 4}, and the values 0, 2,
and 4 are attained infinitely often.

Proof. As B t(0) = 1 and B t(1) = B t(2) = B t(3) = B t(4) = 2, by Theorem 3.7.33,
we need only to consider the values B t(4n) for n ≥ 2. If n = 2, then B t(4n) = 4.
Suppose that n > 2 and that n is even. By applying Theorem 3.7.33, we see that

1
2

B t(4n) = B 00(n) + B 010(n) ≤
1
2

B t(n).

12Values of B t are recorded as the sequence A268243 in Sloane’s On-Line Encyclopedia of Integer
Sequences [134].

https://oeis.org/A268243


3.8. Automatic Words and Automatic Theorem-Proving 49

By hypothesis, we have B t(n) ≤ 4, so indeed 1
2 B t(4n) ∈ {0, 2, 4}.

If n = 3, then B t(4n) = 2. If n > 3 and n is odd then, similar to above, we
obtain that B t(4n) ≤ B t(n + 1).

By Lemma 3.7.34, the function B t takes the value 4 infinitely often. More-
over, the arguments of Lemma 3.7.30 work if the function At is replaced with the
function B t. Thus the value 2 is also attained infinitely often.

Let us now consider the gaps of zeros of B t. It is clear by Proposition 3.7.31
that if k is an integer such that an − 1 ≤ k ≤ 22(n+1) + 1, then B t(k) = 0. The
arguments of Lemmas 3.7.30 and 3.7.25 work if the function At is replaced with
the function B t (in the proof of the latter lemma we can now utilize the fact that
B 00(4n) = 0 for all n ≥ 1), so B t(an − 2) 6= 0 and B t(22(n+1) + 2) 6= 0 for all
n ≥ 1. Therefore the function B t has the same large gaps as the function At
described by Proposition 3.7.31; the gaps do not widen.

3.8 Automatic Words and Automatic Theorem-Proving

In this section, we define automatic words and demonstrate that privileged fac-
tors of automatic words can be studied using automata theory. We prove that
the privileged complexity function of an automatic word is k-regular. Moreover,
we explore the recent work of Jeffrey Shallit et al. in automatic theorem-proving,
and we prove a few results on the privileged factors of the Rudin-Shapiro word
with the help of a computer program. We do not delve into details here; rather,
we give an overview of this method of automatic theorem-proving, and carefully
examine only what is relevant to the main topic of this chapter.

3.8.1 Definitions

Throughout Section 3.8, we often need to represent integers in base k. We encode
integers in base k, as is usual, over the alphabet Σk = {0, 1, . . . , k − 1} the most
significant digit first. We allow representations with leading zeros. The base-k
representation of an integer n with no leading zeros is called the canonical repre-
sentation of n (in base k). Given a word w = a1 · · · an over the alphabet Σk, we
denote the number ∑1≤i≤n aikn−i by [w]k.

Next we define automatic words. Our presentation largely follows the book
Automatic Sequences [7]. We assume that the reader is familiar with the theory of
finite automata. Very basic knowledge of automata is needed; we refer the reader
to consult Chapter 4 of [7] or the Handbook of Formal Languages [124]. We abbre-
viate deterministic finite automaton as DFA and deterministic finite automaton
with output as DFAO. Recall that a DFAO is a 6-tuple (Q, A, δ, q0, ∆, τ) where Q
is the set of states, A is the input alphabet, δ is the transition function, q0 is the
initial state, ∆ is the output alphabet, and τ : Q→ ∆ is the output function.

Roughly speaking, an infinite word a0a1 · · · is k-automatic if there exists a
DFAO such that given a base-k representation of n as an input it outputs the
letter an. More formally:
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0/0

0

1/1

1

1

0

Figure 3.2: DFAO generating the Thue-Morse word.

Definition 3.8.1. Let w = a0a1 · · · be an infinite word. The word w is k-automatic
if there exists a DFAO (Q, Σk, δ, q0, ∆, τ) such that an = τ(δ(q0, u)) for all n ≥ 0
and all words u such that [u]k = n. We say that this DFAO generates w. An infinite
word is automatic if it is k-automatic for some k.

Notice that there are multiple words such that [u]k = n; the definition requires
that the automaton computes correctly even if extra leading zeros are present.
It can, however, be proven that for a word to be automatic it is sufficient that
the DFAO computes correctly only for the canonical representations of n; see [7,
Theorem 5.2.1]. If the input is processed in reverse the least significant digit first,
we get exactly the same class of words [7, Theorem 5.2.3].

Many interesting words turn out to be automatic. For more examples, see [7,
Chapter 5]. Next we introduce two automatic words, which we will study later.

Example 3.8.2 (The Thue-Morse Word). The Thue-Morse word t = a0a1 · · · has
an alternative definition: an = 0 if and only if the number of 1’s in the binary rep-
resentation of n is even [90, Proposition 2.2.2]. The function counting the parity
of the number of 1’s in a binary word is computed by the DFAO in Figure 3.2.
Thus the Thue-Morse word is a 2-automatic word.

Example 3.8.3 (The Rudin-Shapiro Word). Let e(n) be the number of (possibly
overlapping) occurrences of 11 in the binary representation of the integer n. We
define the Rudin-Shapiro word r = a0a1 · · · by the formula

an =

{
1, if e(n) is even,

0, if e(n) is odd.

The word r is 2-automatic because it is generated by the DFAO in Figure 3.3. For
more information about the Rudin-Shapiro word, see [7, Example 3.3.1] and the
appropriate references.

3.8.2 Automatic Theorem-Proving

Building on the results of [5], in [32], Charlier, Rampersad, and Shallit observed
that many important properties of automatic words are expressible in a certain
decidable first-order structure. More precisely, we have the following result.
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Figure 3.3: DFAO generating the Rudin-Shapiro word.

Theorem 3.8.4. If a property of a k-automatic word w can be expressed as a predicate
using quantifiers (∀, ∃); logical operations (¬, ∧, ∨,→,↔); integer variables; operations
of addition, subtraction, and indexing into w; and comparison of integers or letters of w,
then this property is decidable.

Even more precisely: Theorem 3.8.4 tells that if P(n1, . . . , ni) is a predicate
like above with free variables n1, . . . , ni, then there exists a computable DFA ac-
cepting the k-ary representations of exactly those integers n1, . . . , ni such that
P(n1, . . . , ni) is true.

If a predicate is constructed as in Theorem 3.8.4, then we say that this predi-
cate is expressible.

For an automaton to process multiple numbers n1, . . . , ni as an input, we need
to pad the base-k representations of the numbers with zeros to have equal lengths
and to encode the padded representations as words over the alphabet Σi

k. For
example, the pair of numbers 11 and 5 is represented in base-2 as

[1, 0][0, 1][1, 0][1, 1].

The first component reads 1011, and the second reads 0101, the base-2 represen-
tations of 11 and 5 respectively. Obviously, a list of numbers can have many
representations and, as before, we require the automata to compute correctly in
the presence of arbitrary padding.

Theorem 3.8.4 means that we can prove theorems on automatic words me-
chanically. If a property of automatic words can be written as an expressible
predicate, then we can program a computer to build the DFA for the predicate,
inspect the language accepted by the DFA, and draw logical conclusions about
the property.

Example 3.8.5. It can be decided if an automatic word w is ultimately periodic.
This was originally proven by Honkala [81], but Allouche, Rampersad, and Shal-
lit found a simpler proof [5], which we will briefly describe here.

The word w is ultimately periodic if and only if there exists integers p and n
such that p ≥ 1, n ≥ 0, and w[i] = w[i + p] for all i ≥ n. The following predicate,
denoted by P(p, n), is true only if the integers p and n satisfy these conditions:

p > 0 ∧ ∀i(i ≥ n→ (w[i] = w[i + p])).

By Theorem 3.8.4, it is decidable if the automatic word w is ultimately periodic:
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build the DFA for the predicate P(p, n) and check if it accepts some word (this can
be accomplished by a depth-first search). For in-depth details, see [5, Theorem 1].

We have not explained how the predicates are transformed into automata. We
omit the details here and refer the reader to the excellent thesis of Luke Schaeffer
[130] and to the research articles [5, 32, 71].

Walnut [105, 106] is a software package, authored by Hamoon Mousavi, that
can read descriptions of DFAOs from text files and takes as its input expressible
predicates and finds the minimal DFAs for them. With Walnut, it is very easy and
quick to verify properties of automatic words written as expressible predicates.
Walnut has recently been used in the series of papers [51, 52, 107, 108, 131] to ver-
ify mechanically old results and to obtain completely new results on well-known
words such as the Thue-Morse word, the Rudin-Shapiro word, the Fibonacci
word, and the Tribonacci word.13,14After we have established that certain pred-
icates on privileged factors of automatic words are expressible and considered
k-regular sequences, we prove a few example results on the privileged factors of
the Rudin-Shapiro word with the help of Walnut later in Subsection 3.8.4.

It might seem at first that it is impossible to express the property “the factor w
is privileged” as an expressible predicate due to the recursive definition of privi-
leged words; finite automata have finite memory, so they cannot handle recursion
of arbitrary depth. Luckily the nonrecursive characterization of Proposition 3.2.7
allows us to bypass this problem.

Theorem 3.8.6. Let w be a k-automatic word. Then the language consisting of the base-k
representations of the elements of the set

{(i, n) : the factor w[i, i + n− 1] is nonempty and privileged}

is regular.

Proof. Let M(i, j, `) be a predicate that is true if and only if the factors of w of
length ` starting at positions i and j are equal. We can express M(i, j, `) by

∀p(p < `→ w[i + p] = w[j + p]).

By Proposition 3.2.7, the factor w[i, i + n− 1] is nonempty and privileged if and
only if the predicate

n > 0 ∧ ∀j(0 < j ≤ n→ ∃`(0 < ` ≤ j ∧
M(i, i + n− `, `) ∧
∀p(0 < p ≤ j− `→ ¬M(i, i + p, `)) ∧
∀p(0 ≤ p < j− `→ ¬M(i, i + n− j + p, `))))

is true. The claim follows now from Theorem 3.8.4.
13Other provers were used as well as Walnut is sometimes inadequate.
14The Fibonacci and Tribonacci words are automatic in a certain other sense; see Subsection 4.8.8

for explanation.
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Giving the predicate of the proof of Theorem 3.8.6 in the particular case where
w is the Thue-Morse word as an input for Walnut gives the 31-state DFA in Fig-
ure 3.4. The transition function of the automaton is given in Appendix A. Com-
puting this particular automaton was reasonably fast, but as the input predicate
is somewhat complex, the computation can be very memory-intense in general.
However, given an automatic word w and a candidate automaton M for the lan-
guage of Theorem 3.8.6, we can verify the correctness of M with Walnut. Simply
give the following lighter predicate as an input for Walnut:

M(i, n)↔ (n = 1 ∨ ∃`(` < n ∧ M(i, `)∧
∀j(j < `→ (w[i + j] = w[i + n− `+ j]))∧
∀p(0 < p < n− `→ ∃j(j < ` ∧ w[i + j] 6= w[i + p + j]))).

The output automaton accepts all inputs if and only if M is correct.

3.8.3 k-regularity of the Privileged Complexity Function

The notion of k-regularity generalizes k-automatic words. Again, we refer the
reader to the book [7].

Definition 3.8.7. Let (an)n≥0 be a sequence of integers. The k-kernel of (an) is
defined to be the set {(akin+j)n≥0 : i ≥ 0 and 0 ≤ j < ki}. The sequence (an) is k-
regular if the (additive) Z-module generated by its k-kernel is finitely generated.

For example, automatic words are exactly the k-regular sequences taking only
finitely many values or, equivalently, the k-regular sequences that have finite k-
kernel. The complexity and palindromic complexity functions of a k-automatic
sequence are k-regular [32]. The complete system of recurrences given in Subsec-
tion 3.7.1 shows that the privileged complexity function of the Thue-Morse word
t is 2-regular. With a straightforward application of the results of [32], we can
show that the 2-regularity of At is immediate from the 2-automaticity of t. We
prove the following theorem, which was independently obtained in [131].

Theorem 3.8.8. The privileged complexity function of a k-automatic word is k-regular.

Proof Sketch. Let w be a k-automatic word. The result follows from the arguments
of the proof of [32, Theorem 27] provided that we can show that the set S of the
base-k representations of the elements of the set

{(i, n) : w[i, i + n− 1] is nonempty and privileged and

occurs for the first time in position i}

is a regular language.
The predicate

∀j(j < i ∧ ∃`(0 ≤ ` < n ∧ w[i + `] 6= w[j + `]))

expresses that the factor of length n occurring in position i of w occurs in this
position for the first time. Moreover, we saw in Theorem 3.8.6 that there exists
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Figure 3.4: A DFA accepting the binary representations of (i, n) such that the
Thue-Morse word has a privileged factor of length n at position i.
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a predicate for testing if the factor w[i, i + n− 1] is nonempty and privileged. It
follows from Theorem 3.8.4 that S is regular.

It is straightforward to see directly from the definition that the privileged com-
plexity function of the Thue-Morse word t is 2-regular: applying the recurrences
in Theorem 3.7.3 shows that the Z-module generated by the 2-kernel of At is fi-
nitely generated. On the other hand, Theorem 3.8.8 shows that for any automatic
word there exists a complete system of recurrences for its privileged complexity
function.

3.8.4 Application to the Rudin-Shapiro Word

In this subsection, we use the Walnut prover to obtain a few results about the
privileged factors in the Rudin-Shapiro word.

Giving the predicate of the proof of Theorem 3.8.6 for the Rudin-Shapiro word
r as an input for Walnut yields a 85-state DFA. I decided not to include here a
picture of the automaton; description of the transition function can be found in
Appendix A. For technical reasons explained later, the DFA processes its input
in reverse the least significant bit first. Having obtained this DFA, we prove the
following three results.

Proposition 3.8.9. There exist infinitely many odd and even length privileged factors in
the Rudin-Shapiro word.

Proof. Let us consider factors of odd length. Let O(n) be a DFA accepting the
binary representation of n if n is odd, and let P(i, n) be a predicate testing if there
exists a privileged factor of length n in position i of r. There exist infinitely many
odd length privileged factors in r if and only if for all lengths n there exists an
odd length m such that m > n and the factor r[i, i + m− 1] is privileged for some
position i. Hence the predicate we are after is

∀n(∃m(m > n ∧ O(m) ∧ ∃i(P(i, m)))).

Giving this predicate to Walnut produces a DFA that accepts all words. Thus
there are infinitely many privileged factors of odd length in r.

In the case of even length factors, a DFA accepting every input can be similarly
obtained.

In contrast to Proposition 3.7.23, we prove the following.

Proposition 3.8.10. There exist infinitely many nonprimitive privileged factors in the
Rudin-Shapiro word.

Proof. It is possible to write a predicate testing if the factor r[i, i + n− 1] is non-
primitive (this is attributed to Luke Schaeffer in [70]). By Lemma 2.1.2, a word is
nonprimitive if and only if it is equal to some of its proper conjugates. Thus the
following predicate Q(i, n) tests if the factor r[i, i + n− 1] is nonprimitive:

∃k(0 < k < n∧∀`(0 ≤ ` < k→ r[i + `] = r[i + n− k + `])∧
∀`(0 ≤ ` < n− k→ r[i + `] = r[i + k + `]))
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Hence we can write a predicate P(i, n) testing if the factor r[i, i + n − 1] is non-
primitive and privileged. Furthermore, we can test if there are infinitely many
lengths n such that P(i, n) holds for some position i:

∀n(∃m(m > n ∧ ∃i(P(i, m)))).

Giving the resulting predicate as an input to Walnut yields a DFA that accepts
every input. Hence the conclusion follows.

Proposition 3.8.11. There exist arbitrarily long (but not infinite) gaps of zeros in the
values of the privileged complexity function of the Rudin-Shapiro word.

Proof. Let P(i, n) be a predicate testing if there exists a privileged factor of length
n in position i of r. We say that there is a gap of exactly k zeros in Ar if for some
integer n we have Ar(n), Ar(n + k + 1) 6= 0 and

Ar(n + 1) = Ar(n + 2) = . . . = Ar(n + k) = 0.

We can write a predicate Q(k, n) for such pairs (k, n):

n > 0 ∧ k > 0∧∃i(P(i, n)) ∧ ∃i(P(i, n + k + 1))∧
∀`(1 ≤ ` ≤ k→ ∀i(¬P(i, n + `))).

Now we can test if there is a gap of exactly k zeros with the predicate ∃n(Q(k, n)).
We gave this predicate as an input to Walnut, and we obtained the DFA in

Figure 3.5. Its transition function can be found in Appendix A. Notice that this
DFA takes its input in reverse the least significant bit first. We had to make this
modification as the computations used too much resources (16 GiB of memory
was not enough). Luckily, reversing the input representation reduced memory
usage significantly, and we were able to finish the computations.

In Figure 3.5, we have indicated a cycle (in orange arrows) in the transitions
of the automaton: the input word 1111 takes the DFA to state 23, and the word
011101100100111 takes the DFA from state 23 back to state 23. Since there is at
least one accepting state on this cycle (e.g., state 44), we see that the DFA accepts
words with arbitrarily many letters 1. The claim follows.

In particular, Proposition 3.8.11 shows that

lim inf
n→∞

Ar(n) = 0.

I conjecture that the superior limit is infinite, but I do not know if it is so. Since the
function Ar is 2-regular, we could in principle find the generator of its 2-kernel
yielding recurrences for Ar and deduce the superior limit from the recurrences. I
did not attempt to do this. The whole procedure could be carried out somewhat
automatically as the authors of [72] did for the function counting the number of
unbordered factors of length n in the Thue-Morse word. Later the same technique
was used to find the complete system of recurrences given in Subsection 3.7.1 for
the privileged complexity function of the Thue-Morse word.
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Figure 3.5: A DFA accepting the reversed base-2 representations of the integers k
such that there is a gap of exactly k zeros in Ar. The orange edges indicate a cycle.
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The results obtained in this subsection depend on heavy computations and
do not satisfy the usual standards of mathematical rigor. According to [107], the
author of Walnut has put in a lot of effort to ensure that Walnut is bug-free. He
has tested the prover against many known facts from the literature, and the re-
sults agree. Remember also that the method applied here is based on the sound
principles of Theorem 3.8.4. The results obtained here are probably provable us-
ing traditional methods, but surely using a computer to find the large automata
is less error-prone than the pen and paper method.

3.9 Open Problems

Here we present some open problems and conjectures regarding B(n), the num-
ber of binary privileged words of length n.

First, it would be interesting to obtain a nontrivial upper bound on B(n). This
task seems extremely difficult.

Open Problem. Give a nontrivial upper bound for B(n).

Let us then consider the problem of improving the lower bound derived in
Section 3.6.

Let p be a fixed word, a pattern, such that |p| ≥ 2. Define x(p, n) to be the
number of binary words of length n that are complete first returns to the pattern
p. Experimentally it seems that when n is in a certain range with respect to |p|,
then x(p, n) ≥ x(0|p|, n). At least, this seems to be true when |p| = blog2 nc. Then
by imitating the arguments given in Section 3.6, we see that

B(n) ≥ ∑
p privileged
|p|=blog2 nc

x(p, n) ≥ cB(blog2 nc) · 2n

n2 ,

for some constant c. By iterating this log∗(n) times,15 we get that

B(n) = Ω

(
2nclog∗(n)

g(n)

)
,

where

g(n) =

{
n, if n ≤ 2,

ng(blog2 nc), otherwise.

This asymptotic lower bound is better than the bound

B(n) = Ω
(

2n

n(log2 n)2

)
proposed by Nicholson and Rampersad [109].

15log∗(n) is the number of times log2 needs to be applied to n to get a number below 1.
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p
n

8 9 10 11 12 13 14 15 . . . 33 34

0001 1 2 4 8 15 28 52 96 . . . 5600910 10301680
0010 1 2 3 6 11 21 39 73 . . . 5522960 10310043
0101 0 2 3 4 9 18 32 60 . . . 5392170 10154555
0000 0 1 1 2 4 8 15 29 . . . 3919944 7555935

Table 3.3: Certain numbers x(p, n) for binary patterns of length 4.

Next, we consider some conjectures concerning the growth rate of x(p, n) as
n → ∞ for different patterns p of the same length. These conjectures, if resolved,
would lead to the improvements sketched above.

Let us be now more general, and say that x(p, n) is the number of words of
length n over an alphabet of q letters that are complete first returns to the pattern
p. Suppose that |p| = k, and write p = a0 · · · ak−1 for letters ai. The autocorrelation
word of the pattern p is the binary word c0 · · · ck−1, denoted by C(p), such that
ci = 1 if and only if the word p has a border of length k − i. In other words,
the autocorrelation word encodes the periods of p into a binary word; in what
follows, only the information on periods is relevant. For example, if p = aabbaa,
then C(p) = 100011 since p has borders of length 1, 2, and 6.

In [74], Guibas and Odlyzko prove that for n ≥ k, the number x(p, n) is the
coefficient of zn in the power series expansion of

qz− 1
z|p| + (1− qz) fp(z)

, (3.2)

where fp is the autocorrelation polynomial ∑k−1
i=0 a0zi of the pattern p. See also [63,

p. 60]. Thus the powerful methods of analytic combinatorics can be used to study
the quantity x(p, n). Guibas and Odlyzko [74] prove that the polynomial in the
denominator of (3.2) has a unique dominant root ρp; see also [63, p. 272]. There-
fore if p and p′ are two patterns of length k and ρp > ρp′ , then x(p, n) < x(p′, n)
for sufficiently large n. Surprisingly, the ordering of the dominant roots associ-
ated with patterns of the same length is related to the lexicographic ordering of
their autocorrelation words. In [57], Eriksson proves the following result.

Proposition 3.9.1. Let p and p′ be two patterns of the same length. If C(p) < C(p′),
then x(p, n) < x(p′, n) for large enough n.

The pattern 0k has autocorrelation word 1k. Thus this pattern has the lexi-
cographically largest autocorrelation word, so for sufficiently large n, we have
x(0k, n) > x(p, n) for any other pattern p of length k. However, as we remarked
above, when n is small then, experimentally, x(0k, n) < x(p, n) for any other
pattern p of length k. For example, in Table 3.3, we give the number x(p, n) for
certain values n for patterns of length 4 (indeed, these patterns give all possible
autocorrelation words of length 4). In this particular case, first for 8 ≤ n ≤ 33, the
lexicographic order of the autocorrelation words orders the associated numbers
x(p, n) in the inverse order (compared to the ordering of Proposition 3.9.1), but
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already when n = 34, we see that x(0001, n) < x(0010, n). The number x(0000, n)
is larger than the other numbers x(p, n) when n ≥ 47. This sort of phenomenon
always seems to occur. Computer experiments suggest the following conjecture.

Conjecture. Let p and p′ be two patterns of length k. If C(p) < C(p′), then x(p, n) >
x(p′, n) for 3k ≤ n ≤ 2qk + q− 1. Moreover, these bounds are optimal.

Since 2qk + q− 1 is larger than 2k+1 for q = 2, resolving the conjecture in the
positive would imply the improved bound as described above.

The upper bound 2qk + q − 1 comes from the observation that the number
2qk + q seems to be the smallest number n such that x(0k−11, n) < x(0k−210, n),
that is, this number is the smallest length for which the number of complete first
returns to the minimally correlated pattern 0k−210 (having autocorrelation word
10k−21) is for the first time larger than the number of complete first returns to the
uncorrelated pattern 0k−11 (having autocorrelation word 10k−1). There certainly
seems to be something intriguing behind these observations because of the simple
and beautiful form of the conjectured bounds. At the time of writing this, I have
no idea how to approach this problem. In addition to [57], see [24, 94] for related
research.
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4Sturmian Words

4.1 Introduction

Sturmian words are among the first classes of infinite words studied systemati-
cally. The first systematic study is presented in the 1940 paper Symbolic Dynamics
II. Sturmian Trajectories by Hedlund and Morse [103], later complemented by the
works of Coven and Hedlund in the 1970’s [36, 37]. However, dating back to
the 18th and 19th centuries, specific questions were addressed by Bernoulli [13],
Markov [95] (see also [140, p. 65]), Christoffel [33, 34], and Smith [135]. Hedlund
and Morse named the Sturmian words after Jacques Charles François Sturm due
to a relation with Sturm’s comparison theorem; Sturm himself never worked on
the subject. For more on the early development of the subject, see Brown [23]
and the references of [7, Chapter 9]. Especially since the 1990’s, research on Stur-
mian words has seen enormous growth, making them one of the central topics
in combinatorics on words. For a survey of relatively new results, see Berstel
[15, 17] and the references therein. Lothaire’s book Algebraic Combinatorics on
Words [91] has become the standard reference for essentials on Sturmian words;
the books Automatic Sequences [7] and Substitutions in Dynamics, Arithmetics and
Combinatorics [120] are also entry-friendly. Besides the vast theoretical interest,
Sturmian words also have applications in computer graphics (see the references
in [91, Chapter 2]) and in modeling of quasicrystals (see the papers [41, 42, 43,
46] and the references therein). A prototypical example of a Sturmian word is
the Fibonacci word introduced in Chapter 2. Its definition is deceptively simple,
but it nevertheless has rich structure. The Fibonacci word is easier to handle than
other Sturmian words—we often specialize results to the particular case of the
Fibonacci word.

What is most remarkable about Sturmian words is the number of equivalent
characterizations they have. There are well over a dozen known, often very dif-
ferent, equivalent ways to define these words. It is a pity that there is no satis-
factory survey on the different characterizations. It suffices to say here that in
this dissertation we view Sturmian words equivalently as the infinite words hav-
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ing n + 1 factors of length n for all n and as irrational rotation words. These are
arguably the most important characterizations, and the details are found in [91,
Chapter 2].1 Characterization in terms of morphisms is given in [120, Chapter 6].
Furthermore, in Section 4.5, we will prove two quite different characterizations
based on palindromes and privileged words.

Viewing Sturmian words as the infinite words having n + 1 factors of length
n is often sufficient. However, viewing Sturmian words as rotation words gives
us a dynamical system to work with and access to deeper properties of Sturmian
words via continued fractions.2 Most of the proofs given in this chapter utilize
powerful tools from Diophantine approximation theory. These tools not only
make proving results possible, but they often provide a cleaner alternative to
other methods.

We begin in Section 4.2 by recalling and proving needed results on continued
fractions. We show how convergents and semiconvergents of an irrational relate
to its best rational approximations, and explain geometrically what this means in
terms of rotations on the torus [0, 1). We also derive well-known results involv-
ing the convergents for use throughout this chapter and give some without proof,
such as The Three Distance Theorem. Further, in Subsection 4.2.3, we discuss the
Lagrange constant of a number and the Lagrange spectrum. The relation between
certain properties of Sturmian words and the Lagrange spectrum is revealed later
in Subsection 4.7.2. We end Section 4.2 by Subsection 4.2.4, which gives special-
ized results on the golden ratio and the Fibonacci numbers needed for the study
of the Fibonacci word.

Sections 4.3 and 4.4 are devoted to defining Sturmian words and to deriving
basic results about them. We give in details the description of Sturmian words
as irrational rotation words and describe the relationship between factors of Stur-
mian words and intervals on the torus. We define the important standard and
semistandard words and present more details on the Fibonacci word. Then we
set out to give more information on factors of Sturmian words: we consider palin-
dromes in these languages and show the connection to balanced words. Finally,
we compare the languages of Sturmian and non-Sturmian words. We provide
arguments to several of the given results, but some proofs are omitted.

As we have stated several times, in Section 4.5, we return to privileged words
and prove that Sturmian words are characterized by their privileged complexity
function. After this, in Section 4.6, we prove the main results of Damanik and
Lenz from 2002 and 2003 [44, 45] concerning integer and fractional powers in
Sturmian words. The original proofs of Damanik and Lenz use slightly tricky
word-combinatorial arguments, but here we apply the dynamical method and
obtain a shorter proof, which is in my opinion easier to follow. We give a complete
description of the index of every factor of a Sturmian word. With this, we describe
the largest fractional powers occurring in a Sturmian word and give a formula
for computing the least upper bound of the fractional indices of the factors. The

1These two characterizations were already known to Coven, Hedlund, and Morse [36, 37, 103].
2Already Hedlund and Morse utilized continued fractions [103]; see also Mignosi’s 1989 paper

[96].
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results are applied to the particular cases of the Fibonacci word and morphic
Sturmian words. We show that the fractional index of the Fibonacci word is the
smallest possible among all Sturmian words and characterize all Sturmian words
having the same fractional index as the Fibonacci word.

In Section 4.7, we consider the previous work on powers in the abelian setting.
In other words, we do not consider ordinary powers but abelian powers, where
permuting the letters of the root w of wn is allowed. In general, abelian powers are
substantially more difficult than ordinary powers, but studying them in Sturmian
words is less complex. After defining carefully the notions of abelian equivalence
and abelian powers, we characterize the possible exponents of abelian powers
of given period occurring in Sturmian words. Here the dynamical point of view
is essential: I cannot think of a way to derive the results without the dynami-
cal system of rotations and continued fractions. In addition to abelian powers,
we study abelian repetitions, which are analogues of fractional powers. It turns
out that Sturmian words always contain abelian powers of arbitrarily large ex-
ponent, so instead of studying the maximum exponent, we consider the abelian
critical exponent of a Sturmian word defined as the maximum ratio between the
exponent and period of an abelian repetition. We show that the abelian critical
exponent of a Sturmian word equals the Lagrange constant of its rotation angle.
This is a new result connecting Sturmian words and number theory. Then we
apply the obtained results to the particular cases of morphic Sturmian words and
the Fibonacci word. We study the abelian powers and repetitions in the Fibonacci
word in detail: for example, we prove that the minimum abelian period of a fac-
tor of the Fibonacci word is a Fibonacci number and and derive a formula for the
minimal abelian period of the finite Fibonacci words.3

Finally, in Section 4.8, we propose a completely new research topic: the square
root map on Sturmian words. Every position in a Sturmian word begins with a
minimal square and, moreover, in the language of a Sturmian word there are ex-
actly six minimal squares [126]. Therefore every Sturmian word can be written
as a product of minimal squares. The square root

√
s of a Sturmian word s is

obtained by writing s as a product of minimal squares and by deleting the first
half of each of square. Juhani Karhumäki and Luca Zamboni conjectured that the
square root of the Fibonacci word has the same language as the Fibonacci word
(private communication). We prove this conjecture and much more. After the
necessary definitions, in Subsection 4.8.2, we show that the square root map pre-
serves the language of any Sturmian word. That is, we have L(s) = L(

√
s) for a

Sturmian word s. We also characterize the Sturmian words that are fixed points
of this square root map. Again, the proofs rely heavily on arguments based on
continued fractions, but this time we also give a word-combinatorial description.
The alternative description, derived in Subsections 4.8.3, 4.8.4, and 4.8.5, provides
us many additional intriguing results on the factors of Sturmian words. Interest-
ingly, we show a connection between the square root map and specific solutions
of the word equation X2

1X2
2 · · ·X2

n = (X1X2 · · ·Xn)2. After considering again the
particular case of the Fibonacci word in Subsection 4.8.6, we generalize the square

3Finite Fibonacci words are defined in Subsection 4.3.3.
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root map for optimal squareful words in Subsection 4.8.7. This generalization is
natural: an infinite word is optimal squareful if it is aperiodic, its every position
begins with a minimal square, and all minimal squares it contains occur in some
fixed Sturmian word. This class of optimal squareful words is larger than the
class of Sturmian words, and the square root map does not necessarily preserve
the language of a non-Sturmian optimal squareful word. However, we show that
such words exist by an explicit construction. Moreover, we show that a subshift
generated by such a constructed word has a curious property: for every word
in the subshift, the square root map either preserves its language or maps it to a
periodic word. This shows that it is possible that the square root of an aperiodic
word is periodic. This is unexpected: it would be plausible to suppose that this
is impossible. Section 4.8 ends with a brief consideration of alternative general-
izations. We show that the presented ideas fail, with perhaps the exception of
the abelian square root map. For example, the square root map (if it is even de-
fined) does not necessarily preserve the language of an Arnoux-Rauzy word or a
three-interval exchange word.

Chapter 4 is concluded by Section 3.9 on open problems.

4.2 Continued Fractions

In this section, we review results on continued fractions and best rational ap-
proximations of irrational numbers needed for the study of Sturmian words in
the subsequent sections. We also recall results on the Lagrange constants of the
irrationals and on the golden ratio and the related Fibonacci numbers. Good ref-
erences on these subjects are the books of Khinchin [86], Cassels [31], and Hardy
and Wright [76].

4.2.1 Convergents and Semiconvergents

Every irrational real number α has a unique infinite continued fraction expansion:

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(4.1)

with a0 ∈ Z and ak ∈ Z+ for k ≥ 1. The numbers ai are called the partial quotients
of α. By writing a bar over the partial quotients as in [a0; a1, . . . , a`, b1, . . . , bm], we
indicate that the sequence of partial quotients is ultimately periodic with period
b1, . . ., bm. We focus here only on irrational numbers, but we note that with small
tweaks much of what follows also holds for rational numbers, which have finite
continued fraction expansions.

The convergents ck = [a0; a1, . . . , ak] =
pk
qk

of α are defined by the recurrences

p0 = a0, p1 = a1a0 + 1, pk = ak pk−1 + pk−2, k ≥ 2,

q0 = 1, q1 = a1, qk = akqk−1 + qk−2, k ≥ 2.
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The sequence (ck)k≥0 converges to α. Moreover, the even convergents are less
than α and form an increasing sequence, while the odd convergents are greater
than α and form a decreasing sequence. Sometimes it is convenient to set p−1 = 1
and q−1 = 0 and p−2 = 0 and q−2 = 1. The numerators and denominators of the
convergents satisfy the following identity:

qk pk−1 − pkqk−1 = (−1)k (4.2)

for all k ≥ −1.
If k ≥ 2 and ak > 1, then between the convergents ck−2 and ck there are

semiconvergents4 that are of the form

[a0; a1, . . . , ak−1, `] =
pk,`

qk,`
=

`pk−1 + pk−2
`qk−1 + qk−2

with 1 ≤ ` < ak. When the semiconvergents (if any) between ck−2 and ck are
ordered by the size of their denominators, the sequence obtained is increasing if
k is even and decreasing if k is odd.

Notice that we make a clear distinction between convergents and semicon-
vergents, i.e., convergents are not a specific subtype of semiconvergents. Instead
of writing “convergent or semiconvergent”, we often write “(semi)convergent”.
We regularly refer to the denominators of (semi)convergents, so we let Qα to be
the set of the denominators of the convergents of α and Q+

α to be the set of the
denominators of the convergents or semiconvergents of α. To avoid confusion,
we emphasize that the integers q−1 and q−2 defined above are not elements of
the sets Qα and Q+

α , that is, Qα = {q0, q1, . . .} and Q+
α = {q0, q1, q2,1, . . . , q2, . . .}.

For the rest of this chapter, we make the convention that α always stands for an
irrational number with continued fraction expansion as in (4.1) with convergents
qk and semiconvergents qk,`.

Lemma 4.2.1. Let k be a positive integer and α and β be real numbers whose first k
partial quotients are equal. Then their first k convergents c0, . . ., ck−1 are equal and
|α− β| < 1/q2, where q is the denominator of ck−1.

Proof. Suppose that α 6= β; otherwise the claim is clear. Obviously the first k
convergents c0, . . ., ck−1 of α and β are equal. Suppose that both α and β have
infinitely many partial quotients, and let ak and bk be respectively the kth partial
quotients of α and β. We may suppose without loss of generality that ak ≤ bk. Set
P = ak pk−1 + pk−2 and Q = akqk−1 + qk−2. Depending on the parity of k, either
ck−1 < α, β < P/Q or P/Q < α, β < ck−1. Therefore by applying (4.2), we have

|α− β| ≤
∣∣∣∣ P
Q
− ck−1

∣∣∣∣ = 1
qk−1Q

<
1

q2
k−1

.

Clearly the conclusion is also valid if either of the numbers α and β has a finite
continued fraction expansion.

4Semiconvergents are called intermediate fractions in Khinchin’s book [86].
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We recall the following well-known mirror-formula:

qk
qk−1

= [ak; ak−1, . . . , a1], (4.3)

which can be easily proven using induction. Let us set αk = [ak; ak+1, ak+2, . . .].
Since α = [a0; a1, a2, . . . , ak, αk+1], we have

α =
αk+1 pk + pk−1
αk+1qk + qk−1

,

so by applying (4.2), we obtain the following often-used identity:

α− pk
qk

=
(−1)k

qk(αk+1qk + qk−1)
. (4.4)

4.2.2 Best Rational Approximations

A rational number a
b is a best approximation of the real number α if for every frac-

tion c
d such that c

d 6=
a
b and d ≤ b we have

|bα− a| < |dα− c|.

In other words, any other integer multiple of α with a coefficient at most b is
further away from the nearest integer than bα is. We have the following important
proposition; for a proof see Theorems 16 and 17 of Khinchin’s book [86].

Proposition 4.2.2. The best rational approximations of an irrational number are exactly
its convergents.

We identify the unit interval [0, 1) with the unit circle T. Let α ∈ (0, 1) be
irrational. The map

R : [0, 1)→ [0, 1), x 7→ {x + α},

where {x} stands for the fractional part of the number x, defines a rotation on T.
The circle partitions into the intervals (0, 1

2 ) and ( 1
2 , 1). Points in the same interval

of the partition are said to be on the same side of 0 and points in different intervals
are said to be on the opposite sides of 0. (We are not interested in the location of
the point 1

2 .) The points {qkα} and {qk−1α} are always on the opposite sides of
0. The points {qk,`α} with 0 < ` ≤ ak always lie between the points {qk−2α} and
{qkα}; see (4.6).

We measure the shortest distance to 0 on T by setting

‖x‖ = min{{x}, 1− {x}}.

We have the following facts for k ≥ 2 and all integers ` such that 0 < ` ≤ ak:

‖qk,`α‖ = (−1)k(qk,`α− pk,`), (4.5)

‖qk,`α‖ = ‖qk,`−1α‖ − ‖qk−1α‖. (4.6)
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We can now interpret Proposition 4.2.2 as

min
0<n<qk

‖nα‖ = ‖qk−1α‖ (4.7)

for integers n and k ≥ 1. Throughout this chapter, we only consider integer
multiples of the number α.

Rotating preserves distances: the distance between the points {nα} and {mα}
is ‖|n − m|α‖; we will often use this fact without explicit mention. Thus by
(4.7), the minimum distance between the distinct points {nα} and {mα} with
0 ≤ n, m < qk is at least ‖qk−1α‖. Formula (4.7) tells the point closest to 0 among
the points {nα} for n = 1, 2, . . . , qk − 1. We are also interested in knowing the
point closest to 0 on the side opposite to {qk−1α}. The next result concerning this
is very important.

Proposition 4.2.3. Let α be irrational and n be an integer such that 0 < n < qk,` with
k ≥ 2 and 0 < ` ≤ ak. If ‖nα‖ < ‖qk,`−1α‖, then n = mqk−1 for some integer m such
that 1 ≤ m ≤ min{`, ak − `+ 1}.

Proof. Suppose that ‖nα‖ < ‖qk,`−1α‖, and assume for a contradiction that the
point {nα} is on the same side of 0 as {qk−2α}. Since n < qk,`, we conclude that
n 6= qk,r for r ≥ `. By (4.6) and our assumption that ‖nα‖ < ‖qk,`−1‖, we see
that n 6= qk,r for 0 ≤ r ≤ ` − 1. As ‖nα‖ > ‖qkα‖, by (4.7), we infer that the
point {nα} must lie between the points {qk,`′α} and {qk,`′+1α} for some `′ such
that 0 ≤ `′ < ak. The distance between the points {nα} and {qk,`′} is less than
‖qk−1α‖. By (4.7), it must be that qk,`′ ≥ qk; a contradiction.

Suppose for a contradiction that n is not a multiple of qk−1. Then the point
{nα} lies between the points {tqk−1α} and {(t + 1)qk−1α} for some t such that
0 < t < b1/‖qk−1α‖c. Because {nα} is on the same side of 0 as the point {qk−1α},
it follows that ‖nα‖ > ‖tqk−1α‖ and ‖tqk−1α‖ = t‖qk−1α‖. The distance between
the points {nα} and {tqk−1α} is less than ‖qk−1α‖, so by (4.7), it must be that
tqk−1 ≥ qk = akqk−1 + qk−2. Hence t > ak. Using (4.6), we see that the distance
between the points {qkα} and {qk−2α} is ak‖qk−1α‖. Since ‖qkα‖ < ‖qk−1α‖, we
infer that

‖qk,`−1α‖ ≤ ‖qk−2α‖ = ak‖qk−1α‖+ ‖qkα‖ < (ak + 1)‖qk−1α‖. (4.8)

Therefore by our assumption,

(ak + 1)‖qk−1α‖ > ‖qk,`−1α‖ > ‖nα‖ > t‖qk−1α‖,

so ak ≥ t; a contradiction. We have thus concluded that n = mqk−1 with m ≥ 1.
Let us now analyze the upper bound on m. First of all, mqk−1 < qk,` exactly

when m ≤ ` ≤ ak. It follows that ‖mqk−1α‖ = m‖qk−1α‖. By (4.6), we have

m‖qk−1α‖ < ‖qk,`−1α‖ = (ak − (`− 1))‖qk−1α‖+ ‖qkα‖,

so m ≤ ak − `+ 1. We conclude that m ≤ min{`, ak − `+ 1}.
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Proposition 4.2.3 allows us to describe the points closest to 0 from either side.
Let k be an integer such that k ≥ 2. By (4.7), the point {qkα} is closest to 0 among
the points {nα} for n = 1, 2, . . . , qk. The points {qk,`α} with 0 ≤ ` < ak are on the
opposite side of 0. By Proposition 4.2.3, the only points closer to 0 than {qk,`α}
are the points {qk,`′α} for `′ > ` and points of the form {mqk−1α}. The points
{mqk−1α} are, however, on the same side of 0 as the point {qk−1α}, so the points
{qk,`} with 0 ≤ ` < ak are the points closest to 0 on the side opposite to {qk−1α}.

The inequalities (4.6) and (4.8) imply that

ak‖qk−1α‖ < ‖qk−2α‖ < (ak + 1)‖qk−1α‖.

We derive the following useful fact for k ≥ 2:

ak =

⌊
‖qk−2α‖
‖qk−1α‖

⌋
. (4.9)

Let n be a positive integer. The n + 1 points 0, {−α}, {−2α}, . . ., {−nα} parti-
tion the circle T into n + 1 half-open intervals (all of the intervals are taken to be
open from the left or from the right). We call these intervals the level n intervals.
The level n intervals later turn out to be very important as they are in one-to-one
correspondence with the factors of length n of the Sturmian words of slope α.
Next, we recall the famous Three Distance Theorem, which gives an explicit de-
scription of the lengths of the level n intervals. The Three Distance Theorem was
originally conjectured by Hugo Steinhaus and proven by Vera Sós [136]. Later
several proofs have been given; see, e.g., [1] and the references therein.

Theorem 4.2.4 (The Three Distance Theorem). Let α be an irrational number and n
be an integer such that n > a1. The integer n can be uniquely expressed in the form
n = `qk−1 + qk−2 + r with k ≥ 2, 0 < ` ≤ ak, and 0 ≤ r < qk−1. The points 0, {−α},
{−2α}, . . ., {−nα} partition the circle T into n + 1 intervals. There are exactly

• n + 1− qk−1 intervals of length ‖qk−1α‖,

• r + 1 intervals of length ‖qk,`α‖, and

• qk−1 − (r + 1) intervals of length ‖qk,`−1α‖.

By (4.6), the intervals of the last type (if they exist) are the longest, and their
length is the sum of the two other length types.

4.2.3 The Lagrange Constants

In this subsection, we briefly define the Lagrange constants of irrationals and
derive some elementary results coupled with some additional remarks and ref-
erences to literature. The results given here are used later in Section 4.7 to study
the abelian critical exponents of Sturmian words.

Definition 4.2.5. Let α be a real number. The Lagrange constant λ(α) of α is the
quantity

lim sup
q→∞

(q‖qα‖)−1 .
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Let us motivate the definition of the Lagrange constants. We saw earlier in
Proposition 4.2.2 that every irrational number has an infinite supply of good ra-
tional approximations. More precisely, given an irrational α and its convergent
pk/qk, we have∣∣∣∣α− pk

qk

∣∣∣∣ < 1
q2

k
.

The famous Hurwitz’s Theorem (see, e.g., [86, Theorem 20]) states that if the ex-
ponent 2 in the denominator is kept fixed, then the error can be reduced by only
a constant factor: there exists infinitely many rational numbers p/q such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

.

for any irrational α, and the coefficient
√

5 is the best possible. If the coefficient
is replaced by any larger number, then for some irrationals the inequality is sat-
isfied only for finitely many rationals p/q. In fact, these “badly approximable”
numbers are equivalent to the golden ratio—the simplest of all irrational numbers
[86] (see the definition of equivalent numbers below). If the numbers equivalent
to the golden ratio are removed from consideration, then the coefficient can be
improved to

√
8. By removing additional irrationals, the coefficient can be fur-

ther improved to
√

221/5, and so on indefinitely. The optimal coefficient for a
fixed irrational α is given by its Lagrange constant λ(α) if it is finite.

The set L of all finite Lagrange constants of irrational numbers is called the
Lagrange spectrum. The Lagrange spectrum is a very curious object. The se-
quence of improvements

√
5,
√

8,
√

221/5, . . . converges to 3 and coincides with
L ∩ (−∞, 3), the part of the spectrum below 3. Remarkably the whole spectrum
is not discrete: Hall proved that it contains a half-line [75]. Later Freiman [65]
determined the largest half-line contained in L: all numbers above the Freiman
constant

2221564096 + 283748
√

462
491993569

,

approximately 4.5278, belong to the Lagrange spectrum, and this constant is op-
timal. The Lagrange spectrum has been studied extensively, but much of it still
remains a mystery; see for instance [40].

Next we derive a formula for the Lagrange constant of an irrational number.
Let α be a fixed irrational with continued fraction expansion [a0; a1, a2, . . .]. By
(4.4), we have

qk‖qkα‖ =
(

αk+1 +
qk−1

qk

)−1
,

where αk = [ak; ak+1, ak+2, . . .]. By the mirror-formula (4.3), this transforms into

qk‖qkα‖ = ([ak+1; ak+2, . . .] + [0; ak, ak−1, . . . , a1])
−1 .
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Let q be an integer such that qk < q < qk+1 with k ≥ 0. By (4.7), we have
‖qkα‖ < ‖qα‖, so qk‖qkα‖ < q‖qα‖. Thus

λ(α) = lim sup
k→∞

(qk‖qkα‖)−1

= lim sup
k→∞

([ak+1; ak+2, . . .] + [0; ak, ak−1, . . . , a1]) . (4.10)

Definition 4.2.6. Let α and β be two real numbers having continued fraction ex-
pansions [a0; a1, a2, . . .] and [b0; b1, b2, . . .] respectively. If there exists integers N
and M such that aN+i = bM+i for all i ≥ 0, then we say that α and β are equivalent.
In other words, two numbers are equivalent if their continued fraction expan-
sions ultimately coincide.

The formula (4.10) and Lemma 4.2.1 imply that equivalent numbers have the
same Lagrange constants, but the converse is not true. Any two numbers with
unbounded partial quotients have infinite Lagrange constant, but obviously such
numbers are not necessarily equivalent.

4.2.4 The Golden Ratio and the Fibonacci Numbers

The golden ratio φ is defined to be the number (1 +
√

5)/2, and it is approxi-
mately 1.6180. The golden ratio is the number with the simple periodic continued
fraction [1; 1]; in this sense it is the simplest irrational number. Due to the simplic-
ity of its continued fraction expansion, it is often relatively easy to prove beauti-
ful formulas involving the golden ratio and the related Fibonacci numbers.5 The
purpose of this brief subsection is to introduce a few such formulas for later use
particularly in Subsection 4.7.3, where we study abelian powers and repetitions
in the Fibonacci word.

The convergents of the golden ratio are related to the sequence of Fibonacci
numbers (Fk)k≥0, defined by the recurrence Fk = Fk−1 + Fk−2 with F0 = 1 and
F1 = 1. That is, the sequence of the convergents of φ is the sequence (Fk+1/Fk)k≥0.
Following earlier conventions, we often set F−1 = 0. The sequence of convergents
of the related numbers φ− 1 and 2− φ having respectively the continued fraction
expansions [0; 1] and [0; 2, 1] are respectively (Fk−1/Fk)k≥0 and (Fk−1/Fk+1)k≥0. In
the particular case of the golden ratio, the identity (4.4) takes the form

φFk − Fk+1 = (φ− 1)Fk − Fk−1 =
(−1)k

φFk + Fk−1
. (4.11)

The following lemma is needed later in Subsection 4.7.3.

Lemma 4.2.7. We have

‖Fk−1(φ− 1)‖
‖Fk(φ− 1)‖ = φ and

‖Fk−2(φ− 1)‖
‖Fk(φ− 1)‖ = 1 + φ.

for all k > 2.
5For a nice introduction to Fibonacci numbers with historical remarks, see Knuth [87, p. 78]. There

is even a journal dedicated to the Fibonacci numbers called The Fibonacci Quarterly.
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Proof. It is straightforward to verify that ‖F1(φ − 1)‖/‖F2(φ − 1)‖ = φ. By ap-
plying induction and (4.11), we obtain that

‖Fk−1(φ− 1)‖
‖Fk(φ− 1)‖ =

φFk + Fk−1
φFk−1 + Fk−2

=
φFk−1 + φFk−2 + Fk−2 + Fk−3

φFk−1 + Fk−2

=
‖Fk−1(φ− 1)‖
‖Fk−2(φ− 1)‖ + 1

=
1
φ
+ 1

= φ.

Similarly, we have

‖Fk−2(φ− 1)‖
‖Fk(φ− 1)‖ = 1 +

‖Fk−2(φ− 1)‖
‖Fk−1(φ− 1)‖ = 1 + φ.

Using (4.10), it is easy to see that the Lagrange constant of φ is
√

5 and that the
golden ratio has the smallest Lagrange constant among the irrational numbers.

4.3 Definition of Sturmian Words

In this section, we give two equivalent definitions for Sturmian words and some
preliminary results. Moreover, we consider the related and important standard
words and the Fibonacci words. Most of what follows is found in [91, Chapter 2],
[120, Chapter 6], or [96].

4.3.1 Equivalent Definitions and Basic Properties

Sturmian words are a well-known class of infinite words, and they have numer-
ous equivalent definitions. The following definition is often given.

Definition 4.3.1. An infinite word is Sturmian if it has exactly n + 1 factors of
length n for all n ≥ 0.

Thus, in particular, Sturmian words are binary words. For the rest of this
chapter, we take the alphabet of Sturmian words to be {0, 1}. The Morse-Hedlund
Theorem justifies the definition of Sturmian words as the binary, aperiodic infinite
words with minimal factor complexity.

The preceding word-combinatorial definition is sufficient for many purposes
but, in order to understand deep properties of Sturmian words, a dynamical point
of view and arithmetical properties are needed. That is why it is advantageous to
view Sturmian words as rotation words.

Let α ∈ (0, 1) be irrational. Divide the circle T into two intervals defined by
the points 0 and 1− α, and define the coding function ν by setting

ν(x) =

{
0, if x ∈ I0,

1, if x ∈ I1,
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where I0 = [0, 1− α) and I1 = [1− α, 1). The lower coding word of the orbit of a
point ρ in T is the infinite word sρ,α obtained by settings its nth, n ≥ 0, letter to
equal ν(Rn(ρ)), where R is the rotation on T by the angle α (as in Section 4.2).
Similarly, if I0 = (0, 1− α] and I1 = (1− α, 1], then we obtain the upper coding
word denoted by sρ,α. Since α is irrational, there is a difference between the coding
words sρ,α and sρ,α only when ρ = {−rα} for some nonnegative integer r. If s is
an upper or a lower coding word of angle α, then we simply say that s is a rotation
word of angle α.

We have the following important characterization of Sturmian words.

Theorem 4.3.2. If s is a Sturmian word, then either s = sρ,α or s = sρ,α for some unique
irrational α and unique ρ in T. Conversely, if s is a rotation word of an irrational angle,
then s is Sturmian.

The numbers α and ρ associated with a fixed Sturmian word are respectively
called its slope and intercept. Actually, for a Sturmian word s of slope α, the num-
ber α is the frequency of the letter 1 in s. This is not surprising in view of Theo-
rem 4.3.2: the sequence ({nα})n≥0 is uniformly distributed in [0, 1].

In order to obtain the above equivalence between rotation words and Stur-
mian words, it is necessary to consider both lower and upper rotation words.
However, in what follows this subtlety is often unimportant: we make the con-
vention that the notation sρ,α always refers to the lower or upper rotation word
of slope α and intercept ρ. When we want to emphasize which choice of intervals
is used, we write sρ,α = sρ,α or sρ,α = sρ,α. Alternatively the choice for a fixed
Sturmian word is made explicit by telling if 0 ∈ I0 or 0 /∈ I0.

Proposition 4.3.3. Two Sturmian words have the same language if and only if they have
the same slope.

Proof. By the well-known Kronecker’s Theorem, the sequence ({nα})n≥0 is dense
in [0, 1] for irrational α, which means that every Sturmian word of slope α has the
same language. The converse result is proven in [91, Proposition 2.1.18].

By the above proposition, it makes sense to denote the language of Sturmian
words of slope α by L(α). The elements of L(α) are simply called the factors of
slope α. It is important to observe that depending on if α < 1/2 or α > 1/2, either
11 /∈ L(α) or 00 /∈ L(α). Observe also that Sturmian words are recurrent by
Kronecker’s Theorem; this fact also follows from The Morse-Hedlund Theorem.

We now focus on specific intervals on the circle, and the choice of the intervals
I0 and I1 affects the endpoints of these intervals. We let I(x, y) with x < y to
stand for the interval [x, y) on the circle if 0 ∈ I0 and for (x, y] if 0 /∈ I0. To avoid
cluttered notation, such as I({x}, {y}), we implicitly assume the endpoints to be
taken modulo 1, so we can always write cleanly I(x, y).

For every factor w of length n of a Sturmian word of slope α, there exists a
unique subinterval [w] of T such that sρ,α begins with w if and only if ρ ∈ [w]. If
w = a0a1 · · · an−1, then clearly

[w] = Ia0 ∩ R−1(Ia1) ∩ . . . ∩ R−(n−1)(Ian−1).
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We denote the (geometric) length of the interval [w] by |[w]|. The intervals of
the factors of length n are exactly the level n intervals defined earlier in Subsec-
tion 4.2.2 (this is why rotation words have factor complexity n + 1 for n ≥ 0).
Notice that we did not fix earlier if the level n intervals are open from the left or
from the right; this is now fixed by the choice of the intervals I0 and I1.

The level n interval containing the point {−(n + 1)α} is associated with the
right special factor of length n. In a Sturmian word, there exists a unique right
special and a unique left special factor of all lengths; this directly follows from
the fact that Sturmian words are recurrent and have n + 1 factors of length n.

The following elementary but useful result is needed later in Subsection 4.7.3.

Lemma 4.3.4. Let Ln be the length of the longest level n interval, and let ρ ∈ T. Then
there exists an integer i such that 0 ≤ i ≤ n and 0 ≤ R−i(ρ) < Ln.

Proof. Let J = I(0, Ln). The claim is essentially that the first n forward rotations
of the half-open interval J cover the whole circle. Place the n + 1 points 0, {α},
{2α}, . . ., {nα} on the circle. These points partition the circle into n + 1 half-open
intervals, and the longest of the intervals has length Ln. The interval R0(J) clearly
covers the first level n interval by the maximality of Ln, the interval R1(J), that is,
the interval I(α, Ln + α), covers the level n interval whose other endpoint is {α},
and so on. Thus the first n forward rotations of the half-open interval J cover the
whole circle. What remains is to consider the case when R−i(ρ) = Ln for some i
such that 0 ≤ i ≤ n. The preceding argument works irrespective of the choice of
the endpoints of the intervals: all that matters is that the level n intervals and the
interval J are all open from the left or from the right. Thus by changing this choice
of endpoints, we find that ρ ∈ Rj(J) for some j such that j 6= i and 0 ≤ j ≤ n.
Thus R−j(ρ) ∈ J, and as j 6= i, we must have R−j(ρ) < Ln.

Arranging the points 0, {−α}, {−2α}, . . ., {−nα} into increasing order gives
an ordering of the level n intervals: I0(n), I1(n), . . ., In(n). According to the next
result, this ordering of the intervals arranges the associated factors into lexico-
graphic order.

In the proof, we use the exchange operation for a letter a, defined by setting
â = 1 if a = 0 and â = 0 if a = 1. This notation is very convenient when working
with Sturmian words, and it is used several times in this chapter.

Proposition 4.3.5. Let n, i, and j be integers such that 0 ≤ i, j ≤ n. Let u, v ∈ L(α) be
the factors of length n such that [u] = Ii(n) and [v] = Ij(n). Then u < v if and only if
i < j.

Proof. If n = 0, then there is nothing to prove. If n = 1, then the factors of length
n are 0 and 1 and their intervals are respectively I0(1) and I1(1), so the conclusion
holds. Suppose that the conclusion holds when n = m and m ≥ 1. We show that
the conclusion holds when n = m + 1.

The sequence of intervals Ik(m), k = 0, . . . , m, is the same as the sequence of
intervals Ik(m + 1), k = 0, . . . , m + 1, except that the interval I`(m) is split into
two intervals I`(m + 1) and I`+1(m + 1) by the point {−(m + 1)α}. Let w be the
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right special factor of length m, that is, w is the factor such that [w] = I`(m).
Now [wa] = I`(m + 1) and [wâ] = I`+1(m + 1) for some letter a. Let x ∈ [wa]
and y ∈ [wâ]. By definition, Rm(x) ∈ [a] and Rm(y) ∈ [â]. Since x < y by our
ordering of the intervals and Rm({−(m + 1)α}) = 1− α, also Rm(x) < Rm(y),
so we conclude that a = 0. Hence the conclusion holds for the factors wa and
wâ of length m + 1. For the other factors, the conclusion holds by the induction
hypothesis. This ends the proof.

We remarked earlier that Sturmian words are recurrent. They are also uni-
formly recurrent [91, Proposition 2.1.25]. The dynamical explanation is that for
any factor w in L(α) we may pick suitable q, q′ ∈ Qα such that q, q′ > |w|, the
points {qα} and {q′α} are on the opposite sides of 0, and ‖qα‖ and ‖q′α‖ are
small enough compared to |[w]| so that for all x ∈ [w] either Rq(x) ∈ [w] or
Rq′(x) ∈ [w]. However, not all Sturmian words are linearly recurrent. A Stur-
mian word of slope α is linearly recurrent if and only if the sequence of partial
quotients of α are bounded [54]. Since Sturmian words are uniformly recurrent,
it follows that the Sturmian subshift Ωα of slope α, defined as

Ωα = {w ∈ {0, 1}ω : L(w) = L(α)},

is minimal.

4.3.2 Standard Words

Given the continued fraction expansion of an irrational α in (0, 1) as in (4.1), we
define the corresponding standard sequence (sk)k≥0 of words by

s−1 = 1, s0 = 0, s1 = sa1−1
0 s−1, sk = sak

k−1sk−2, k ≥ 2.

As sk is a prefix of sk+1 for k ≥ 1, the sequence (sk) converges to a unique infinite
word cα called the infinite standard Sturmian word of slope α, and it equals sα,α.
Inspired by the notion of semiconvergents, we define semistandard words for k ≥ 2
by setting

sk,` = s`k−1sk−2

with 1 ≤ ` < ak. Clearly |sk| = qk and |sk,`| = qk,`. Instead of writing “standard
or semistandard”, we often simply write “(semi)standard”. The set of standard
words of slope α is denoted by Stand(α), and the set of standard and semistandard
words of slope α is denoted by Stand+(α). We emphasize that the word s−1 is not
an element of either of these sets. (Semi)standard words are left special as prefixes
of the word cα. Every (semi)standard word is primitive [91, Proposition 2.2.3].
An important property of standard words is that the words sk and sk−1 almost
commute: sksk−1 = wab and sk−1sk = wba for some word w and distinct letters a
and b. In addition, for every k ≥ 1, there exists palindromes P2k and Q2k+1 such
that s2k = P2k10 and s2k+1 = Q2k+101. For more on standard words, see [16, 91].

The only difference between the words cα and cα, where α = [0; 1, a2, a3, . . .]
and α = [0; a2 + 1, a3, . . .], is that the roles of the letters 0 and 1 are reversed. We
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may thus assume without loss of generality that a1 ≥ 2. In addition to assuming
that α is an irrational number with convergents qk and semiconvergents qk,`, we
further assume for the remainder of this chapter that α is an irrational number in
(0, 1) having the continued fraction expansion as in (4.1) with a1 ≥ 2, that is, we
assume that 0 < α < 1

2 . This means in particular that 00 ∈ L(α) and 11 /∈ L(α).
The words sk and sk,` refer to the standard or semistandard words of slope α.

We conclude with the the following result on periods of (semi)standard words.

Lemma 4.3.6. Let u, v ∈ Stand+(α) with |u| > |v|. If u is a prefix of some word in v+,
then u = sk,` and v = sk−1 with k ≥ 2 and 0 < ` ≤ ak.

Proof. Suppose that the word u is a prefix of some word in v+. If u = s1 = 0a1−11,
then necessarily v = s0 = 0. Then obviously u is not a prefix of any word in
v+. Therefore u = sk,` with k ≥ 2 and 0 < ` ≤ ak. Suppose that k = 2. Then
u = (0a1−11)`0. It is straightforward to show that v must equal to s1; the word u
cannot be a prefix of a word in v+ if v = s0 = 0 or v = s2,`′ for some `′ such that
0 < `′ < `. Thus we may assume that k > 2.

Suppose first that |v| > |sk−1|. Then by the assumption |u| > |v|, it must be
that v = sk,`′ for some integer `′ such that 0 < `′ < `. Since u is a prefix of some
word in v+, it follows that the word s`−`

′
k−1 sk−2 is a prefix of some word in sk−2v+.

Since the word s`−`
′

k−1 sk−2 begins with sk−1sk−2, we obtain that sk−2v begins with
sk−1sk−2, so sk−1sk−2 = sk−2sk−1. This is a contradiction because these words do
not commute.

Assume then that |v| < |sk−1|. Now the prefix sk−1 of u is a prefix of some
word in v+, so by induction, we have v = sk−2. Now u = (sak−1

k−2 sk−3)
`sk−2, so as

u is a prefix of some word in v+, it follows that the word z, defined as the word
sk−3sk−2, is a prefix of some word in v+. This means that z ends with a prefix of
sk−2 of length |sk−3|. As the prefix of sk−2 of length |sk−3| is sk−3, the word z ends
with sk−3. Consequently sk−3sk−2 = sk−2sk−3; a contradiction.

The only remaining option is that v = sk−1. This is certainly possible.

4.3.3 The Fibonacci Word

The Fibonacci word f was introduced in Chapter 2 as the fixed point of the mor-
phism ϕ : 0 7→ 01, 1 7→ 0. The Fibonacci word is a prototypical Sturmian word.
It is not difficult to prove that it indeed is Sturmian; using just the properties of
the morphism ϕ, it is straightforward to prove that there exists exactly one right
special factor of each length in L(f) [91, Example 2.1.1]. The Fibonacci word is
strongly related to the Fibonacci numbers and the golden ratio (see below). As
the golden ratio is the simplest irrational, so is the Fibonacci word the simplest
Sturmian word. It is worth remarking that it is typically enough to try out con-
jectures in the particular case of the Fibonacci word: often, with little ingenuity, a
positive result generalizes for all Sturmian words. The word f often exhibits op-
timal or extremal behavior. This sort of behavior was already known to Hedlund
and Morse; they showed that among all Sturmian words, the so-called recurrence
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quotient attains its smallest value for the Fibonacci word [103].6 For more on ex-
tremal behavior, see Cassaigne [27]. It seems difficult to trace any origins for the
study of the Fibonacci word and its basic properties [14].

The slope of the Fibonacci word is easy to compute. Clearly the number of
letters 0 in the word ϕk(0) equals Fk−1. Therefore the frequency of the letter 1
in f equals the limit limk→∞ Fk−2/Fk, which is seen to equal 2 − φ; see Subsec-
tion 4.2.4.7 Thus the slope of f has continued fraction expansion [0; 2, 1]. The
sequence ( fk)k≥1 of finite Fibonacci words defined recursively by fk = fk−1 fk−2
with f0 = 0 and f1 = 01 is thus the sequence of standard words of slope 2− φ.
Notice that | fk| = Fk+1.

4.4 The Language of Sturmian Words

In this section, we give and prove several simple but important results about the
languages of Sturmian words. Most of the results can be found in [91].

Definition 4.4.1. A binary language L is balanced if ||u|1 − |v|1| ≤ 1 for all words
u, v ∈ L ∩ {0, 1}n for every integer n such that n ≥ 0. If a language is not bal-
anced, then we call it unbalanced. A finite or infinite word w is balanced if its
language L(w) is balanced.

We have the following important characterization of Sturmian words.

Theorem 4.4.2. An infinite binary word is Sturmian if and only if it is aperiodic and
balanced.

Next, in order to demonstrate the rotational point of view, we prove that Stur-
mian words (viewed as rotation words) are balanced. We stress that in order to
prove the characterization of Theorem 4.3.2, it is needed to know that Sturmian
words defined in the sense of Definition 4.3.1 are balanced. We need the following
word-combinatorial result proven in [91, Proposition 2.1.3].

Proposition 4.4.3. A binary and factor-closed language L is unbalanced if and only if
there exists a palindrome p such that 0p0, 1p1 ∈ L.

Proposition 4.4.4. Sturmian words are balanced.

Proof. Let w be a bispecial factor of slope α. The claim follows by Proposition 4.4.3
if we can show that either 0w0 /∈ L(α) or 1w1 /∈ L(α).

If w = ε, then clearly by our convention 1w1 /∈ L(α). Suppose that w is
nonempty, and let [w] = I(−iα,−jα) for some nonnegative integers i and j with
{−jα} > {−iα}. We have

[w] = [w0] ∪ [w1] = R([0w]) ∪ R([1w]).

6Hedlund and Morse did not explicitly mention the Fibonacci word; they only considered slopes
with the smallest possible partial quotients.

7It is indeed sufficient to consider only prefixes of f [91, Proposition 2.1.10].
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Since w is bispecial, all of the sets [w0], [w1], [0w], and [1w] are nonempty. Con-
sequently, the point {−(|w|+ 1)α} is the common endpoint of the intervals [w0]
and [w1], and the point α is the common endpoint of R([0w]) and R([1w]). Specif-
ically, we see that α, {−(|w| + 1)α} ∈ [w]. Furthermore, we have R([0w]) =
I(α,−jα) and R([1w]) = I(−iα, α), and we also have [w0] = I(−iα,−(|w|+ 1)α)
and [w1] = I(−(|w|+ 1)α,−jα). If α < {−(|w|+ 1)α}, then [w1] ⊆ R([0w]), so
1w1 /∈ L(α). In the case that α > {−(|w| + 1)α}, we have [w0] ⊆ R([1w]), so
0w0 /∈ L(α).

We also need the following result, which is essential for Theorem 4.4.2. It is
proved in [91, Proposition 2.1.2].

Proposition 4.4.5. Let L be a binary factor-closed language. If L is balanced, then
|L ∩ {0, 1}n| ≤ n + 1 for all n ≥ 0.

For convenience, we define the following properties for an infinite binary
word w:8

• Spew(n) : there is at most one right special factor of length n in L(w),

• Bal w(n) : ||u|1 − |v1|| ≤ 1 for all u, v ∈ Lw(n).

Lemma 4.4.6. Let w be an infinite binary word and n be a nonnegative integer. If
Bal w(m) holds for all integers m such that m ≤ n, then Spew(m) holds for all integers
m such that m < n.

Proof. Let m be an integer such that m < n, and suppose on the contrary that u
and v are distinct right special factors of length m in L(w). Let z be the longest
common suffix of u and v, that is, u = u′az and v = v′ âz for some letter a and
words u′ and v′. Now aza, âzâ ∈ L(w) since u and v are right special. Thus
||aza|1 − |âzâ|1| = 2, contradicting the hypothesis.

Lemma 4.4.7. Let w be an infinite binary word and n be a nonnegative integer. If
Bal w(m) holds for all integers m such that m ≤ n, then any right special factor u of w
such that |u| < n has at most two complete first returns in L(w).

Proof. Let u be a right special factor of w such that |u| < n. Suppose that v1 and v2
are two distinct complete first returns to u in L(w). Let z be the longest common
prefix of v1 and v2. Now v1 = zav′1 and v2 = zâv′2 for some letter a and words v′1
and v′2, and hence z is a right special factor. The suffix of z of length |u| is right
special, so by Lemma 4.4.6, the word z has u as a suffix. Since v1 and v2 contain
exactly two occurrences of u, the only option is that z = u. Now if there was a
third complete first return to u in L(w), then it would have a common prefix of
length |u|+ 1 with either v1 or v2 (since there are only two letters). This, however,
is impossible by the preceding.

Lemma 4.4.8. Bispecial factors of slope α are palindromes.
8This notation is borrowed from [50].
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Proof. Suppose that w is a bispecial factor of slope α that is not a palindrome.
Then w = uaw′ âũ for some letter a and words u and w′. As w is bispecial, all of
the words 0ua, 1ua, âũ0, and âũ1 are in L(α). Hence 0v0, 1ṽ1 ∈ L(α), where v is
either of the words u or ũ. Since v and ṽ have equally many letters 1, it follows
that the language L(α) is unbalanced; a contradiction with Theorem 4.4.2.

We often use the next result without explicit reference.

Corollary 4.4.9. The language L(α) is mirror-invariant.

Proof. It is sufficient to show that for any prefix w of cα, also w̃ occurs in cα. Since
both 0cα and 1cα are Sturmian words of slope α, every prefix of cα is left special.
Since cα is aperiodic, The Morse-Hedlund Theorem implies that it has arbitrarily
long right special prefixes. Consequently, the word cα has arbitrarily long bis-
pecial prefixes, so by Lemma 4.4.8, the word cα has arbitrarily long palindromic
prefixes. It follows that for every prefix w of cα, also w̃ is a factor of cα.

Since a Sturmian word has exactly one right special factor and exactly one left
special factor of each length, it follows from Corollary 4.4.9 that the right special
factor of length n is the reversal of the left special factor of length n.

Later we need to know accurately how much the language of a non-Sturmian
and aperiodic word has in common with a language of a Sturmian word. For this,
we need the following nontrivial result; see [91, Proposition 2.1.17].

Proposition 4.4.10. A finite word w is a factor of some Sturmian word if and only if w
is balanced.

The next proposition is well-known among researchers, but I was unable to
find a reference for it so, for the sake of completeness, we prove it here. The result
is best proven by looking at Rauzy graphs, but since I did not want to introduce
this concept only for a single proof, we present a proof without graph arguments.

Proposition 4.4.11. Let w be an aperiodic binary word that is not Sturmian. Then there
exists a palindrome p ∈ L(w) and Sturmian words s and s′ such that

• 0p0, 1p1 ∈ L(w),

• Lw(|p|+ 2) \ {0p0} = Ls(|p|+ 2),

• Lw(|p|+ 2) \ {1p1} = Ls′(|p|+ 2).

Proof. Since w is aperiodic and not Sturmian, by Theorem 4.4.2, it must be un-
balanced. Thus by Proposition 4.4.3, there exists a minimal length palindrome p
such that 0p0, 1p1 ∈ L(w). Now there are exactly n + 1 factors of length n in w
for each nonnegative integer n such that n < |p|+ 2. Otherwise an application
of The Morse-Hedlund Theorem and Propositions 4.4.5 and 4.4.3 shows that |p|
is not minimal. Thus it follows that the factor p must be the unique right special
factor of length |p| in L(w).

Consequently, the factor p has exactly two complete first returns; we denote
them by α and β. Moreover, every factor of w of length |p| is a factor of α or β.
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Otherwise some factor of length |p| occurs in w only finitely many times, which
means that some (infinite) suffix of w has at most |p| factors of length |p|, so w
would be ultimately periodic by The Morse-Hedlund Theorem. We claim next
that both α and β must be palindromes. Suppose on the contrary that, e.g., α is
not palindromic. Then we may write α = puavâũp for some letter a and words u
and v. Since no factor of length |p| except p occurs twice in α (otherwise w would
be ultimately periodic), the word α contains at least |α| − |p| ≥ |p|+ 2 factors of
length |p|. This is a contradiction. Similarly, the factor β is a palindrome.

Suppose now that α begins with p0. It follows that α ends with 0p and that
β begins with p1 and ends with 1p. Because w is aperiodic, there is an occur-
rence of the factor α1 in w. Since p1 uniquely extends to β in L(w), we see that
αp−1β occurs in w. This factor αp−1β is right special, so this particular occurrence
could be followed by the letter 1. However, since w is aperiodic, there exists an
integer i such that the factor α(p−1β)i0 has an occurrence in w. Thus overall
γ ∈ L(w), where γ = α(p−1β)i p−1. Since α and β contain all occurrences of fac-
tors of length |p|, it follows that γ contains all factors of length |p|+ 2 except the
factor 0p0, which it clearly cannot contain as there is no occurrence of αp−1α in
γ. It follows that the word γ is balanced, so it is a factor of some Sturmian word
s by Proposition 4.4.10. Since γ contains every other factor of w of length |p|+ 2,
it must be that Lw(|p|+ 2) \ {0p0} = Ls(|p|+ 2). In a similar manner, we find
a balanced factor β(p−1α)j p−1β in L(w) containing every other factor of length
|p|+ 2 except 1p1. This ends the proof.

4.5 Privileged Complexity Function of Sturmian Words

This section is devoted for proving the following characterization of Sturmian
words. I originally proved this characterization in [113]; here we give a somewhat
different proof.

Theorem 4.5.1. An infinite word s is Sturmian if and only if

As(n) =

{
1, if n is even,
2, if n is odd

for all n ≥ 0.

To simplify notation, we say that an infinite word w has the property AC (w)
if the privileged complexity function of w is as in Theorem 4.5.1.

Compare Theorem 4.5.1 and the following characterization of Sturmian words
proven by Droubay and Pirillo [50].

Theorem 4.5.2. An infinite word s is Sturmian if and only if

Ps(n) =

{
1, if n is even,
2, if n is odd

for all n ≥ 0.
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Since Sturmian words are rich (we will prove this in a moment), it is obvious
that the palindromic and privileged complexity functions of a Sturmian word
coincide, yet it is not clear from Theorem 4.5.2 if a word having the property
AC (w) must be Sturmian. Next we set out to establish both Theorem 4.5.1 and
Theorem 4.5.2, and we will do so with essentially one proof. The crucial links
between these two characterizations are Proposition 3.3.2 and the fact that every
position in a word introduces at most one new palindrome or privileged factor.

Again, to simplify notation, we say that an infinite word w has the property
PC (w) if its palindromic complexity function is as in Theorem 4.5.2. For com-
pleteness, we first show that Sturmian words have the property PC (w).

Proposition 4.5.3. A Sturmian word s has the property PC (s).

Proof 9. Clearly Pal s(1) = {0, 1} and Pal s(2) = {00} (recall our convention that 11
does not occur in a Sturmian word), so the conclusion holds for n = 1 and n = 2.
Let n > 2 and θn be the mapping from Pal s(n) to Pal s(n− 2) defined by setting
θn(u) = v if u = bvb for some letter b. We will show that θn is a bijection; this
proves the claim.

The mapping θn is injective since if θn(u) = θn(u′) with u 6= u′, then u = ava
and u′ = âvâ for some letter a. This is impossible as Sturmian words are balanced.

Let then v ∈ Ls(n− 2). As Sturmian words are recurrent, we have cvd ∈ L(s)
for some letters c and d. If c = d, then clearly θn(cvd) = v, so suppose that c 6= d.
Because L(s) is mirror-invariant, we also have dvc ∈ L(s). Consequently, the
word v is a bispecial factor of s. Thus either cvc ∈ L(s) or dvd ∈ L(s). In both
cases, there is a factor u ∈ Ls(n) such that θn(u) = v, so θn is surjective.

Next we prove that Sturmian words are rich. An alternative proof is given in
[49, Lemma 1].

Proposition 4.5.4. Let w be an infinite binary word and n be a nonnegative integer. If
Bal w(m) holds for all integers m such that m ≤ n, then Pal w(m) = Pri w(m) for all
integers m such that m ≤ n + 1. In particular, infinite balanced binary words are rich.

Proof. Suppose that Bal w(m) holds for all integers m such that m ≤ n. We prove
the claim by induction. Clearly Pal w(k + 1) = Pri w(k + 1) when k = 0, so we
assume that 1 ≤ k ≤ n.

Case A. Pri w(k + 1) ⊆ Pal w(k + 1). Let u ∈ Pri w(k + 1). The word u is a
complete first return to a shorter privileged word v. By the induction hypothesis,
the word v is a palindrome. If v overlaps with itself in u or u = v2, then u must
clearly be a palindrome. Assume that this is not the case, that is, suppose that
|v| < |u|/2.

If |v| = 1, then u is of the form 01|u|−20 or 10|u|−21, so u is a palindrome.
Suppose then that |v| = 2, so v = aa for some letter a. Consequently, we have u =
aaλaa for some nonempty word λ. Since â must be a factor of λ, it follows that
a has two complete first returns in L(w): aa and aâia for some positive integer
i. By Lemma 4.4.7, the factor a has at most two complete first returns in L(w),

9This proof is verbatim from [50, Proposition 6].
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v′ a . . . a v′ â . . . â v′ . . . v′ â . . . â v′ a . . . a v′

p

q q

p

Figure 4.1: Figure clarifying the proof of Proposition 4.5.4. Notice that some oc-
currences of v′ might overlap.

so it must be that aλa = (aâi)ja for some positive integer j. Therefore u is a
palindrome.

We may now assume that |v| ≥ 3. Write v = av′a for some nonempty word v′

and letter a. Notice that v′ is a palindrome and hence privileged by the hypoth-
esis. Now u = av′aλav′a with λ 6= ε. Consider z = v′aλav′, the center of u. We
will show that z is a palindrome; from this it follows that u is also palindromic.
If z is a complete first return to v′, then z is privileged and thus palindromic. As-
sume then that z contains at least three occurrences of v′, that is, the word z has a
proper prefix p that is a complete first return to v′ beginning with v′a. Since u is
a complete first return to v = av′a, the word z cannot have av′a as a factor. Hence
it must have the word av′ â as a factor. Therefore z contains a factor q that is a
complete first return to v′ beginning with v′ â. For a better understanding of the
situation, see Figure 4.1. Because v′ is right special, Lemma 4.4.7 implies that the
words p and q are the only complete first returns to v′ in L(w). Now âv′ â is not
a factor of w because the factor z is balanced. Neither is av′a a factor of z, so the
occurrences af p and q in z must alternate. Since both p and q are palindromes as
complete first returns to the privileged word v′ and since the word z begins and
ends with p, it follows that z is a palindrome.

Case B. Pal w(k + 1) ⊆ Pri w(k + 1). Let u ∈ Pal w(k + 1) and v be its longest
proper border. The word v must be a palindrome and, by the induction hypoth-
esis, a privileged word. The word u must be a complete first return to v, since
otherwise there would be a privileged proper prefix z longer than v. This would
be a contradiction with the maximality of |v| because z would be palindromic by
the induction hypothesis. Therefore u is privileged.

If w is balanced, then by the preceding we have Pri (w) = Pal (w), so w is rich
by Proposition 3.3.2.

Since Sturmian words are balanced, Propositions 3.3.2 and 4.5.3 now imply
the following.

Corollary 4.5.5. A Sturmian word s has the property AC (s).

Before proving Theorem 4.5.1, we need to know that if a word w has either
of the properties AC (w) or PC (w), then it must be aperiodic. We begin with the
following observation, which essentially follows from the pigeonhole principle.

Lemma 4.5.6. Let w be a periodic infinite word. Then either Aw(n) = 0 for infinitely
many n or there exists in integer k such that Aw(n) = 1 for all n ≥ k.
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Proof. Let w = uω. Suppose that Aw(n) = 0 for only finitely many n, and let m
be the largest integer such that Aw(m) = 0. Let r be the largest integer such that
r|u| ≤ m. If Aw(n) = 1 for all integers n such that n ≥ (r + 1)|u|, then claim is
clear. Suppose that Aw(i) > 1 for some integer i such that i ≥ (r + 1)|u|. It is
sufficient to show that Aw(n) = 1 for all n > i.

Let s be the integer such that s|u| ≤ i < (s+ 1)|u|. Concatenating u to us intro-
duces at most |u| new privileged factors.10 Further, if v is such a new privileged
factor, then s|u| ≤ |v| ≤ (s + 1)|u| because all shorter factors were already intro-
duced. Suppose for a contradiction that concatenating u to us introduced at least
one privileged factor of length (s + 1)|u|. Since Aw(n) > 0 for integers n such
that s|u| ≤ n ≤ (s + 1)|u|, it must then be that Aw(n) = 1 for integers n such that
s|u| < n < (s + 1)|u|. Hence i = s|u|. The word us contains exactly one factor
of length s|u|, so as Aw(i) > 1, it must be that concatenating u to us introduced
at least one privileged factor of length s|u|. However, then concatenating u to
us overall introduced at least |u|+ 1 new privileged factors, which is impossible.
This contradiction shows that us+1 is not privileged. Thus by Proposition 3.2.5, no
word of the form uj is privileged. Consequently, concatenating u to ut with t > s
introduces exactly |u| new privileged factors all having distinct lengths from the
set {t|u|, t|u|+ 1, . . . , t|u|+ |u| − 1}. Hence Aw(n) = 1 for all n > i (there is at
most one integer n such that s|u| ≤ n < (s + 1)|u| and Aw(n) > 1).

Corollary 4.5.7. Let w be an ultimately periodic infinite word. Then either Aw(n) = 0
for infinitely many n or there exists in integer k such that Aw(n) = 1 for all n ≥ k.

Proof. Prepending a letter to an infinite word produces exactly one new privi-
leged factor; see the proof of Lemma 3.3.3. Therefore prepending u to the periodic
word vω produces only finitely many new privileged factors. The claim therefore
follows from Lemma 4.5.6.

The following result is an immediate consequence of Corollary 4.5.7.

Corollary 4.5.8. If an infinite word w has the property AC (w), then w is aperiodic.

Observe that in the proofs of Lemma 4.5.6 and Corollary 4.5.7, we only used
Proposition 3.2.5 and the fact that every position in a word introduces at most
one privileged factor. Since palindromes have analogous properties, we deduce
the following corollary.

Corollary 4.5.9. If an infinite word w has the property PC (w), then w is aperiodic.

We now have sufficient tools to prove Theorem 4.5.1. In [113], I gave a proof
of this result by adapting the proof of [50, Proposition 7]. Here we give a slicker
proof whose main ideas are due to Luca Zamboni (private communication).

Proof of Theorem 4.5.1. By Corollary 4.5.5, it is sufficient to show that an infinite
word w having the property AC (w) must be Sturmian. Clearly such a word w is
binary. It is also aperiodic by Corollary 4.5.8. Assume on the contrary that w is not

10Actually, exactly |u| new privileged factors are introduced, but this is unimportant.
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Sturmian. Since w is aperiodic, by Proposition 4.4.11, there exists a palindrome
p such that 0p0, 1p1 ∈ Lw(n) for some positive integer n and a Sturmian word
s having exactly the same factors of length n as w has except either 0p0 or 1p1.
Assume that 0p0 ∈ L(s); the other case is symmetric. Since s is Sturmian, it has
the property AC (s). If n is odd, then s has two privileged factors of length n:
0p0 and u (the word 0p0 is privileged since Sturmian words are rich). The factor
1p1 is a factor of some other Sturmian word and must thus be also privileged.
Therefore Pri w(n) = {0p0, 1p1, u}; a contradiction. Similarly if n is even, then
Pri w(n) = {0p0, 1p1}, which is impossible.

Observe that the above proof directly yields a proof for Theorem 4.5.2: it is
now unimportant that the factors 0p0 and 1p1 are privileged and Corollary 4.5.9
ensures that a word w having property PC (w) is aperiodic.

We conclude this section by showing that the characterization of Sturmian
words given in Theorem 4.5.1 does not extend for Arnoux-Rauzy words or three-
interval exchange words, which are generalized Sturmian words. First we briefly
define these classes of words.

Sturmian words are the infinite words with one right special factor and one
left special factor of each length. Generalizing this, for an alphabet A with at least
two letters, we define an Arnoux-Rauzy word over the alphabet A to be an infinite
recurrent word w such that there is exactly one right special factor and exactly
one left special factor in Lw(n) for all n ≥ 0. One example of an Arnoux-Rauzy
word is the Tribonacci word studied briefly later in Subsection 4.8.8. The study
of Arnoux-Rauzy words originates from the work of Arnoux and Rauzy [8]. For
a survey on Arnoux-Rauzy words and related topics, see Glen and Justin [68].

The dynamical system of irrational rotations can be viewed as an interval ex-
change: R(x) = x + α if x ∈ I0 and R(x) = x + α − 1 if x ∈ I1. Geometrically
this mapping swaps the subintervals I0 and I1 of the interval [0, 1]. This interval
exchange can be generalized. There are multiple ways to do it, but we focus here
on three-interval exchange words studied, for instance, in the series of papers [59,
60, 61] by Ferenczi, Holton, and Zamboni. Let α, β ∈ (0, 1), and set Ia = [0, α),
Ib = [α, α + β), and Ic = [α + β, 1). Define a mapping I on [0, 1) by

I(x) =


x + 1− α, if x ∈ Ia,

x + 1− 2α− β, if x ∈ Ib,

x− α− β, if x ∈ Ic.

Like for Sturmian words, we define a coding function ν by setting ν(x) = d if
x ∈ Id for d ∈ {a, b, c}. A three-interval exchange word is an infinite word whose
nth, n ≥ 0, letter equals ν(In(x)) for some x ∈ [0, 1).

In [49, Corollary 2], it was proved that episturmian words, which include
Arnoux-Rauzy words, are rich. Therefore we may proceed as we did with Stur-
mian words: the palindromic complexity function of an Arnoux-Rauzy word
gives us its privileged complexity function by Proposition 3.3.2. The following
was proved in [83, Theorem 4.4].
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Proposition 4.5.10. Let w be an Arnoux-Rauzy word over the alphabet A. Then

Pw(n) =

{
1, if n is even,
|A|, if n is odd

for all n ≥ 0.

Thus we obtain the following.

Proposition 4.5.11. Let w be an Arnoux-Rauzy word over the alphabet A. Then

Aw(n) =

{
1, if n is even,
|A|, if n is odd

for all n ≥ 0.

The privileged complexity function cannot be used to characterize Arnoux-
Rauzy words when |A| > 2. Certain three-interval exchange words are rich and
have the same palindromic complexity function as Arnoux-Rauzy words over
an alphabet of size 3 [10, Theorem 4.1], so they also have the same privileged
complexity function as these Arnoux-Rauzy words. However, three-interval ex-
change words over at least three letters are not necessarily Arnoux-Rauzy words.
One example of a three-interval exchange word is the fixed point of the following
morphism [60].

σ :
a 7→ abcb
b 7→ ab
c 7→ a

The fixed point is not an Arnoux-Rauzy word since both letters a and b are right
special, yet by [10, Theorem 4.1], it has the complexity functions of Propositions
4.5.10 and 4.5.11.

Actually, not even both the factor complexity and the privileged complexity of
Arnoux-Rauzy words characterize them since the above fixed point has the same
factor complexity as a three-letter Arnoux-Rauzy word [10].

4.6 Powers in Sturmian Words

This section presents a complete description of integer powers occurring in a
Sturmian word of slope α. As a side-product, in Theorem 4.6.3, we obtain a
description of the conjugacy classes of length qk,` in L(α). Finally, as an easy
consequence of the established results, we obtain a formula for the fractional in-
dex of a Sturmian word (Theorem 4.6.7). We apply this result to computing the
fractional index of Sturmian words whose slope is a quadratic irrational (Theo-
rem 4.6.8). In particular, we show that the Fibonacci word has fractional index
2 + φ, the smallest possible fractional index among Sturmian words.

The following important proposition shows the utility of Proposition 4.2.3 in
the study of Sturmian words.
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Proposition 4.6.1. If w2 ∈ L(α) with w primitive, then |w| ∈ Q+
α .

Proof. Let n = |w|. If n < q1, then the factors of length n are readily seen to be 0n

and the conjugates of 0n−11. Because the minimum number of letters 0 between
two occurrences of letter 1 in a word in L(α) is a1 − 1 and the maximum number
is a1, the word w2 can be in L(α) only if w = 0 = s0. Suppose then that n ≥ q1
and [w] = I(−iα,−jα) for some integers i and j such that 0 ≤ i, j ≤ n. We may
assume without loss of generality that w is right special, so {−(n + 1)α} ∈ [w].
Further, since [w2] = [w] ∩ R−n([w]) 6= ∅, then necessarily (depending on n)
either [w2] = I(−iα,−(j + n)α) or [w2] = I(−jα,−(i + n)α). We assume that
[w2] = I(−iα,−(j + n)α); the other case is symmetric. We wish to prove that the
points {−(n+ 1)α and {−(j+ n)α} are actually the same point. This is equivalent
to saying that j = 1. Assume on the contrary that j 6= 1. Let a be the first
letter of w. Notice that [w2] ( [wa]. Now as w is right special, we have [wa] =
I(−jα,−(n+ 1)α) and [wâ] = I(−(n+ 1)α,−iα). Let x ∈ [w2] and y ∈ [wa] \ [w2],
and let u be the longest common prefix of sx,α and sy,α. Since [w2] 6= [wa], we have
|u| < 2|w|. Moreover, the factor u is right special, so w is a suffix of u. However,
the word w2 is a prefix of sx,α implying that u is a prefix of w2. Thus w2 contains
at least three occurrences of w contradicting the primitivity of w. From this, we
conclude that j = 1. There are no points {−mα} with m ≤ n in the interval
I(−(j + n)α,−jα), so the point {−nα} is the point closest 0 from either side. If
q1 ≤ n < q2,1, then it must be that n = q1. Otherwise, let k be an integer such that
k ≥ 2 and qk,` ≤ n < qk,`+1 with 0 < ` ≤ ak. By Proposition 4.2.3, either n = qk−1
or n = qk,`, proving the claim.

Indeed, for each q ∈ Q+
α there exists a word of length q occurring as a square

in L(α).

Lemma 4.6.2. We have s2 ∈ L(α) for all s ∈ Stand+(α).

Proof. As s2
0 = 02 and s2

1 = (0a1−11)2, clearly s2
0, s2

1 ∈ L(α). Let k be a positive
integer. Since the words sk+1sk and sksk+1 differ only by their last two letters, it
follows that s2

k is a prefix of sk+1sk if k ≥ 2. As sk is a prefix of sk+1 when k ≥ 0,
the word s`k−1sk−2 is both a prefix and a suffix of sak

k−1sk−2 for all k ≥ 2 and all
integers ` such that 0 < ` ≤ ak. Thus s2

k contains s2
k,`. The conclusion follows.

As was seen in the proof of Proposition 4.6.1, the index of a factor w of length
n depends only on the largest nonnegative integer r such that R−tn(x) ∈ [w] for
t = 0, 1, . . . , r, where x is either of the endpoints of [w]. That is, the index of a
factor depends only on the length of its interval but not on its position. To put it
more precisely: the index of a factor w in L(α) equals

γ +

⌊
|[w]|
‖|w|α‖

⌋
, (4.12)

where γ is 1 if |[w]| 6= ‖|w|α‖ and 0 otherwise. Next we will carefully characterize
the lengths of the intervals of factors of length qk,`. After this, it is easy to conclude
the main results of this section.
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Theorem 4.6.3. Let n = qk,` with k ≥ 2 and 0 < ` ≤ ak. Then Ci(s̃k,`) ∈ L(α)
for i = 0, 1, . . . , n− 1. The intervals of the first qk−1 − 1 conjugates of s̃k,` have length
‖qk,`−1α‖, and the intervals of the latter n + 1− qk−1 conjugates have length ‖qk−1α‖.
The interval of the remaining factor of length n has length ‖qk,`α‖.

Proof. The geometric ideas of this proof are illustrated in the example following
this proof. With the same effort, we prove here more than what is claimed above:
we give the exact positions of the intervals of the conjugates of s̃k,` on the circle.

Let J = I(−qk,`−1α, 0), K = I(−qk,`−1α,−nα), and L = I(−nα, 0). By Proposi-
tion 4.2.3, the interval J has exactly one point {−tα}with 0 < t ≤ n as an interior
point; namely the point {−nα}. That is, the point {−nα} split the level n − 1
interval J into the level n intervals K and L. Observe that ‖qk,`−1α‖ = |J| = |K|+
|L| = ‖qk−1α‖+ ‖qk,`α‖. The Three Distance Theorem tells that the level n inter-
vals have lengths ‖qk,`−1α‖, ‖qk,`α‖, and ‖qk−1α‖. In particular, the interval L is
the unique level n interval of length ‖qk,`α‖. Let i be the smallest positive integer
such that the interval R−i(J) is not any interval of level n. The interval R−i(J)
must be a union of two level n intervals: one having length |K| and the other hav-
ing length |L|. This is true as by (4.6), it can be deduced that |J| is never a multiple
of |K|; further, |K| is never a multiple of |L|. Since an interval of length ‖qk,`α‖ is
unique, we conclude that the other interval in the union is L. As α is irrational,
R−i(J) 6= J, so it must be that R−i(J) = M ∪ L, where M = I(−qk−1α, 0). There-
fore R−i maps the endpoint 0 of L to the endpoint {−qk−1α} of M, so i = qk−1.
As k > 1, also i > 1. We have shown that the level n intervals R−1(J), R−2(J), . . .,
R−(i−1)(J) have length ‖qk−1,`α‖. By The Three Distance Theorem, the remaining
n + 1− qk−1 intervals excluding L have length ‖qk−1α‖.

What remains is to analyze the connection between rotation and conjugation.
Let u and v be factors of length n such that [u] = M and [v] = L. Since the
intervals M and L are on the opposite sides of 0, we have u = au′ and v = âv′

for some letter a. Let x ∈ M and y ∈ L. Notice that R−(i−1)(J) = R(M ∪ L).
Since i > 1, the interval R−(i−1)(J) is the interval of some factor w of length n.
Therefore the Sturmian words sx+α,α and sy+α,α both have w as a prefix. Thus
sx,α begins with aw and sy,α begins with âw. Hence w must be left special, that
is, w = sk,`. We will show next that v is not conjugate to sk,`. Notice that k − 1
is odd if and only if {−qk−1α} ∈ I0. Hence the first letter of v is 0 if and only if
k − 1 is odd. On the other hand, the last letter of sk,` is 0 if and only if k − 1 is
even. Thus we conclude that the first letter of v is distinct from the last letter of
sk,`. However, as the suffix of v of length n− 1 is a prefix of sk,`, we see that there
are more letters b in v than there are in sk,`, so v and sk,` cannot be conjugate.

Let then z be the factor of length n such that [z] = R−1(J). Since {−nα} ∈ J, it
must be that {−(n + 1)α} ∈ R−1(J) = [z]. Thus z is right special, that is, z = s̃k,`.
By Lemma 4.6.2, we have s2

k,` ∈ L(α). Hence every conjugate of sk,` is a factor.
Further, by the mirror-invariance of L(α), we see that sk,` and s̃k,` are conjugates.
Moreover, every conjugate of s̃k,` is extended to the left by its last letter.

Suppose that λ is a factor of length n such that λ 6= v and R−1([λ]) is the
interval of some factor µ of length n. As the interval R−1([sk,`]) does not satisfy
this condition, it follows that λ 6= sk,`, so λ extends to the left uniquely. We will
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0

−α

{−nα}

v = 00100

00101

s = 01001

01010

s̃ = 10010

10100

J = R([ s̃ ])
R−1([s])

1

1

2

2

2

3

Figure 4.2: An example of the geometric ideas in the proof of Theorem 4.6.3.

prove that C(λ) = µ. Write λ = λ′b for some letter b. Then obviously µ = cλ′ for
some letter c. By definition, µ must be followed by the letter b, that is, µb = cλ′b =
cλ ∈ L(α). We have c = b because λ is uniquely extended to the left by its last
letter. Therefore we conclude that C(λ) = µ. In this way, we see that the factors
of length n having the intervals R−1(J), R−2(J), . . ., R−(i−1)(J) correspond (in
order) to the factors s̃k,`, C(s̃k,`), . . ., Cqk−1−2(s̃k,`) (recall that Cqk−1−2(s̃k,`) = sk,`).
We saw above that v is not conjugate to sk,`, so it must be that C(sk,`) = u. Thus
the factors of length n having the intervals L, R−1(L), R−2(L), . . ., R−(n−qk−1)(L)
correspond (in order) to the factors u, C(u), C2(u), . . ., Cn−qk−1(u). Because u =
C(sk,`) = Cqk−1−1(s̃k,`), we have a complete description of the positions of the
intervals of conjugates of s̃k,` using the backward orbit of J under R.

Example 4.6.4. Let α be the number with the continued fraction expansion [0; 2, 1],
that is, α = 1

2 (
√

3− 1). Consider the semiconvergent

p3,1

q3,1
=

1 + 1
3 + 2

=
2
5

of α and the factors 00100, 00101, 01001, 01010, 10010, and 10100 of slope α of
length 5. The intervals of these factors are depicted in Figure 4.2. There are in-
tervals of type 1, 2, and 3 depending on their length. Intervals of type 1 have
length ‖2α‖, intervals of type 2 have length ‖3α‖, and the unique interval of
type 3 has length ‖5α‖. Let J = I(0,−2α). As in the proof of Theorem 4.6.3,
the point {−5α} has split the type 1 interval J into intervals of type 2 and 3.
The interval R−1(J) corresponds to the right special factor s̃3,1, which we sim-
ply denote by s̃. The arrows in the figure indicate how conjugation acts on s̃.
The backward orbit of J corresponds to the conjugates of s̃ of type 1 until the
interval of the left special factor s is encountered. As seen in the proof of Theo-
rem 4.6.3, the interval R−1([s]) no longer coincides with any interval of level 5.
Here R−1([s]) = L ∪ M = I(0,−5α) ∪ I(0,−3α), just as the proof requires. The
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factor associated with the interval L is here seen to be not conjugate to s̃, in agree-
ment with the proof. The interval M must then be associated with a conjugate of
s. As in the proof, the intervals of the rest of the conjugates of s̃ are obtained by
rotating M backwards. The intervals obtained this way are of type 2.

We are now ready to prove the main result. The result was originally proven
by Damanik and Lenz [45]. We present it here phrased in a different way.

Theorem 4.6.5. Let n and k be integers such that n ≥ 1 and k ≥ 2. Consider the indices
of factors of length n in L(α).

(i) If n < q1, then the index of the conjugates of 0n−11 is 1, and the index of the
remaining factor 0n is ba1/nc.

(ii) If n = q1, then the index of the conjugates of s̃1 is a2 + 1, and the index of the
remaining factor 0a1 is 1.

(iii) If n = qk, then the index of any of the first qk−1− 1 conjugates of s̃k is ak+1 + 2, the
index of any of the remaining n + 1− qk−1 conjugates is ak+1 + 1, and the index
of the remaining factor is 1.

(iv) If n = qk,` with 0 < ` < ak, then the index of the first qk−1 − 1 conjugates of s̃k,`
is 2, and the index of the remaining factors is 1.

(v) If n = mq1 with 1 < m < a2 + 1, then the index of any of the first q1 conjugates of
s̃ m

1 is b(a2 + 1)/mc, and the index of any remaining factor is 1.

(vi) If n = mqk with 1 < m < ak+1 + 2, then the index of any of the first qk−1 − 1
conjugates of s̃ m

k is b(ak+1 + 2)/mc, the index of any of the next qk + 1− qk−1
conjugates is b(ak+1 + 1)/mc, and the index of any remaining factor is 1.

(vii) If n does not fall into any of the above cases (i)–(vi), then the index of every factor of
length n is 1.

Proof. First of all, observe that all the cases (i)–(vii) are mutually exclusive. Let us
first consider the cases (i) and (ii), so suppose that n ≤ q1. The factors of length
n are readily seen to be 0n and the conjugates of 0n−11. As the index of 0 is a1,
the index of the factor 0n is ba1/nc. The intervals of the conjugates of 0n−11 have
length α. If n = 1, then the index of the factor 0n−11 is 1. If n > 1, then the
number 1 + bα/‖nα‖c equals 1 unless n = q1, when it equals a2 + 1 by (4.9). The
claims of (i) and (ii) now follow from (4.12).

Suppose then that n = qk,` with k ≥ 2 and 0 < ` ≤ ak. By Theorem 4.6.3, the
intervals of the first qk−1− 1 conjugates of s̃k,` have length ‖qk,`−1α‖. Using (4.12)
and (4.6), we see that their index equals to

1 +
⌊‖qk,`−1α‖
‖qk,`α‖

⌋
= 1 +

⌊‖qk,`α‖+ ‖qk−1α‖
‖qk,`α‖

⌋
= 2 +

⌊
‖qk−1α‖
‖qk,`α‖

⌋
.

If ` 6= ak, then by (4.7), we have ‖qk,`α‖ > ‖qk−1α‖, so the index is 2. If ` = ak,
then by (4.9), the index equals to 2 + ak+1. This proves the first claims in (iii) and
(iv). The latter cases are analogous, so (iii) and (iv) are proved.
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Proposition 4.6.1 shows that the factors not covered by the cases (i)–(iv) having
index higher than 1 are not primitive. By (i) and (iv), they must have length mqk
for some integers k and m such that k ≥ 1 and m > 1, meaning that we are in
either of the cases (v) or (vi). It is a straightforward application of (ii) and (iii) to
deduce (v) and (vi). The theorem is proved.

In particular, every Sturmian word contains infinitely many cubes, but fourth
powers are avoidable.

In the next corollary, we collect some consequences of Theorem 4.6.5 and use-
ful results hidden in earlier arguments.

Corollary 4.6.6. Let w ∈ L(α). The following holds:

(i) If w is primitive and w2 ∈ L(α), then w is conjugate to some word in Stand+(α).

(ii) If w is primitive and w3 ∈ L(α), then either w = 0 and a1 > 2 or w is conjugate
to some word in Stand(α) \ {0}.

(iii) The factor w is conjugate to sk for some k ≥ 0 if and only if |w| = |sk| and
w2 ∈ L(α).

(iv) Let w be a conjugate of sk,` with k ≥ 2 and 0 < ` < ak. Then w2 ∈ L(α) if and
only if the intervals [w] and [sk,`] have the same length.

(v) Let n ∈ Q+
α and s be the (semi)standard word of length n. Then the factor w of

length n is conjugate to s if and only if |w|0 = |s|0.

Proof. The cases (i)-(iii) follow directly from Theorem 4.6.5. Consider then the
conjugates of sk,` with k ≥ 2 and 0 < ` < ak. By Theorem 4.6.5, only the first
qk−1 − 1 conjugates of s̃k,` have index at least 2, and by Theorem 4.6.3, the inter-
vals of these conjugates have length ‖qk,`−1α‖. Since |[sk,`]| = ‖qk,`−1α‖, the case
(iv) is proven. The case (v) was shown to be true in the proof of Theorem 4.6.3. A
simpler proof can be given: the idea is that there are n + 1 factors of length n in
L(α) and every factor of length n except one exceptional factor v is conjugate to s
since s2 occurs in L(α) by (iii) and (iv). As not every factor of length n may have
the same number of letters 0 (a right special factor always extends to two factors
having different number of letters 0), it must be that v has a different number of
letters 0 than any conjugate of s.

Cases (i) and (ii) were proved in the particular case of the Fibonacci word in
Patrice Séébold’s Ph.D. dissertation [133].

We obtain the result of [44], [26], and [82] on the fractional index of Sturmian
words as a direct consequence of the results obtained so far.

Theorem 4.6.7. The fractional index of a Sturmian word of slope α is

max

{
a1, 2 + sup

k≥2

{
ak +

qk−2 − 2
qk−1

}}
.
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Proof. The largest fractional power of a factor with length less than q1 is clearly
0a1 . Therefore according to Theorem 4.6.5, it is sufficient to analyze the largest
fractional power of a (primitive) factor of length qk for k ≥ 1. Theorem 4.6.5
implies that the factor 0a1−11 has the largest index of a2 + 1 among the factors of
length q1. The factor (0a1−11)a2+1 is necessarily followed by the factor 0a1 , so the
fractional index of the factor 0a1−11 is as large as possible and it equals

a2 + 1 + (a1 − 1)/a1 = 2 + a2 + (q0 − 2)/q1.

Suppose then that k > 1. By Theorem 4.6.5, the index ak+1 + 2 of the first qk−1− 1
conjugates of s̃k dominates the index of the rest of the factors of length qk. The
fractional part of the fractional index of a factor w is determined by the shortest
extension of w to a right special factor. Notice that from the proof of Theorem 4.6.3
it is evident that Cqk−1−2(s̃k) = sk. Thus among the first qk−1 − 1 conjugates of s̃k,
the factor sk has longest extension to a right special factor, and the length of the
extension is qk−1 − 2. Thus the fractional index of sk is ak+1 + 2 + (qk−1 − 2)/qk.
The claim follows.

In particular, Theorem 4.6.7 says that a Sturmian word has bounded fractional
index if and only if the partial quotients of its slope are bounded. This is a result
of Mignosi [96]. An alternative proof was given by Berstel [16]. Fractional powers
in the Fibonacci word were studied already in [118] by Pirillo.

Observe that for almost all slopes α, the fractional index of a Sturmian word
of slope α is unbounded since almost all real numbers in the interval (0, 1) have
unbounded partial quotients (see, e.g., [86, Theorem 29]).

For the sake of completeness, we apply Theorem 4.6.7 to compute the frac-
tional index of a Sturmian word whose slope is a quadratic irrational. We follow
the work of Carpi and de Luca [26].

Let α ∈ (0, 1) be a quadratic irrational. Then, by the well-known theorem
of Lagrange (see, e.g., [76, Chapter X]), its sequence of the partial quotients is
ultimately periodic, that is, the continued fraction expansion of α has one of the
following forms:

[0; a1, . . . , a`, b1, . . . , bm] or [0; b1, . . . , bm]. (4.13)

We consider the numbers having purely periodic continued fraction expansions
whose periods are obtained by “conjugating” the reversals of the period in (4.13).
For i = 1, 2, . . . , m, we set

ωi = [bi, bi−1, . . . , b1, bm, bm−1, . . . , b1],

and we define

Ω = max{ωi : i ∈ {1, . . . , m}}.

If the continued fraction expansion (4.13) is not purely periodic (that is, if ` ≥ 1),
then we let

Ξ = max
{

qk − 2
qk−1

: k ∈ {1, `+ m− 1}
}

,
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otherwise we set Ξ = 1.

Theorem 4.6.8. Let α be a quadratic irrational as in (4.13). Then, with the above nota-
tion, the fractional index of a Sturmian word of slope α is 2 + max{Ξ, Ω}.

Proof. By Theorem 4.6.7, the fractional index of a Sturmian word of slope α equals

2 + sup
k≥1

qk − 2
qk−1

.

If ` = 0, that is, the continued fraction expansion (4.13) is purely periodic, then
Ξ < Ω, and the fractional index is 2 + Ω, so the claim holds. We assume that
` ≥ 1. First of all, if k ≥ `, then we may write k = `+ rm + i for integers r and i
such that r ≥ −1 and 1 ≤ i ≤ m. Then by the mirror-formula (4.3), we have

qk
qk−1

= [bi, . . . , b1, bm, . . . , b1
r
, a`, . . . , a1]

if r ≥ 0 (the superscript r signifies that the period is repeated r times) and

qk
qk−1

= [a`, . . . , a1]

if r = −1. Hence by using Lemma 4.2.1, we see that

lim sup
k→∞

qk − 2
qk−1

= lim sup
k→∞

qk
qk−1

= Ω.

If the sequence(
qk − 2
qk−1

)
k≥1

(4.14)

does not attain its supremum, then its supremum equals

lim sup
k→∞

qk − 2
qk−1

= Ω,

so Ξ ≤ Ω, and the fractional index indeed equals 2 + max{Ξ, Ω} in this case.
Suppose then that the sequence (4.14) attains it supremum, and let k ≥ `.

Let the rational numbers P/Q and P′/Q′ respectively be the (k − ` − 2)th and
(k− `− 1)th convergents of the rational number qk/qk−1; these rationals are also
the (k − ` − 2)th and (k − ` − 1)th convergents of qk+m/qk+m−1. Recall that a
rational number is equal to its largest convergent. By applying the recurrence
formula for convergents repeatedly, we see that

qk = AP + BP′, qk+m = A′P + B′P′,

qk−1 = AQ + BQ′, qk−1+m = A′Q + B′Q′
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for some integers A, B, A′, and B′ that do not depend on k. With the help of the
identity (4.2), we derive

qk+mqk−1 − qkqk−1+m = (A′P + B′P′)(AQ− BQ′)

− (AP + BP′)(A′Q + B′Q′)

= (AB′ − A′B)(P′Q− PQ′)

= (−1)k−`+1(AB′ − A′B).

Therefore we obtain

qk+m − 2
qk−1+m

− qk − 2
qk−1

=
(−1)k−`+1(AB′ − A′B) + 2(qk−1+m − qk−1)

qk−1qk−1+m
. (4.15)

Suppose now that the sequence (4.14) attains its supremum for k = n. Assume
for a contradiction that n ≥ `+ m. Now

qn+m − 2
qn−1+m

− qn − 2
qn−1

≤ 0

and

qn − 2
qn−1

− qn−m − 2
qn−1−m

≥ 0.

Thus from (4.15), we derive for k = n and k = n−m that

(−1)n−`+1(AB′ − A′B) + 2(qn−1+m − qn−1) ≤ 0

and

(−1)n−m−`+1(AB′ − A′B) + 2(qn−1 − qn−1−m) ≥ 0.

Since m is even, subtracting these inequalities yields

qn−1+m + qn−1−m ≤ 2qn−1.

Since m ≥ 2, it follows that qn−1+m ≥ qn+1. However, a direct computation
shows that qn+1 > 2qn−1; a contradiction. Therefore n ≤ `+ m− 1. By the very
definition of the quantity Ξ, we see that the fractional index equals 2+max{Ξ, Ω}
in this case too.

Example 4.6.9. Consider Sturmian words of slope α, where α = [0; 2, 4, 1] =
[0; 2, 4, 1, 1]. Following the notation of (4.13), we thus have ` = 2 and m = 2.
Clearly Ω = φ. The sequence of convergents of α begins as follows:

0
1

,
1
2

,
4
9

,
5
11

,
9
20

.

Therefore Ξ = max{0, 7/2, 1} = 7/2, so the fractional index of a Sturmian word
of slope α is 2 + max{7/2, φ} = 11/2.
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Theorem 4.6.8 allows us to determine the fractional index of the Fibonacci
word; this was originally done by Mignosi and Pirillo [97].

Theorem 4.6.10. The Fibonacci word has the smallest fractional index among all Stur-
mian words, and it equals 2 + φ, where φ is the golden ratio.

Proof. It follows directly from Theorem 4.6.8 that the fractional index of the Fi-
bonacci word is 2 + [1; 1]. The claim follows as [1; 1] = φ. This fractional index
is smallest among all Sturmian words because the partial quotients of the slope
[0; 2, 1] are as small as possible.

Corollary 4.6.11. Up to renaming of letters, there are three distinct slopes α such that
the Sturmian words of slope α have fractional index 2 + φ. These slopes are [0; 2, 1],
[0; 2, 2, 1], and [0; 3, 1].

Proof. Let α = [0; a1, a2, . . .], and suppose that Sturmian words of slope α have
fractional index 2 + φ. By our convention, we have a1 ≥ 2. Let k ≥ 3, and
suppose that ak > 1. Now

2 + ak +
qk−2 − 2

qk−1
≥ 4 +

q1 − 2
qk−1

= 4 +
a1 − 2
qk−1

≥ 4 > 2 + φ,

which is impossible by Theorem 4.6.7. Therefore ak = 1 for all k ≥ 3, that is,
α = [0; a1, a2, 1]. By Theorem 4.6.7, we must have a1 < 4. Since

2 + a2 +
q0 − 2

q1
= 2 + a2 −

1
a1

< 2 + φ,

we see that if a1 = 3 then a2 = 1 and if a1 = 2 then a2 ≤ 2. Thus there are three
possibilities for α: [0; 2, 1], [0; 2, 2, 1], and [0; 3, 1]. Theorem 4.6.8 implies that in all
three cases the fractional index equals 2 + φ.

We conclude this section by considering the important special case where ` =
1 in the ultimately periodic continued fraction expansion (4.13).

Proposition 4.6.12. Let α be a quadratic irrational such that α = [0; a1, b1, . . . , bm].
If a1 ≤ 2 + min{(2b1 + 1)ωm, B}, where B = max{b1, . . . , bm}, then the fractional
index of a Sturmian word of slope α is 2 + Ω.

Proof. By doubling the length of the period m, we may assume without loss of
generality that m is even. By Theorem 4.6.8, it is sufficient to show that Ξ ≤ Ω. In
other words, we need to show that

qk − 2
qk−1

≤ Ω

for k = 1, 2, . . . , m. In fact, we show that this inequality is satisfied for all k ≥ 1.
In the case k = 1, we have

q1 − 2
q0

= a1 − 2 ≤ B < Ω,
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and in the case k = 2, we obtain

q2 − 2
q1

=
b1a1 + 1− 2

a1
< a1 < Ω.

Hence we may suppose that k ≥ 3.
Write k = 1 + rm + i for integers r and i such that r ≥ −1 and 1 ≤ i ≤ m.

Recall that by the mirror formula (4.3), we have

qk
qk−1

= [bi, . . . , b1, bm, . . . , b1
r
, a1].

Suppose that the rational numbers P/Q and P′/Q′ are respectively the (k− 2)th

and (k− 1)th convergents of the rational number qk/qk−1; these rationals are also
the (k− 2)th and (k− 1)th convergents of ωi. Since

ωi = [bi, . . . , b1, bm, . . . , b1
r
, ωm],

we see that

ωi =
ωmP′ + P
ωmQ′ + Q

.

Moreover, we have

qk = a1P′ + P and qk−1 = a1Q′ + Q,

so it follows that

qk−1(ωmP′ + P)− (qk − 2)(ωmQ′ + Q)

= (ωmP′ + P)(a1Q′ + Q)− (ωmQ′ + Q)(a1P′ + P− 2)

= (QP′ − PQ′)(ωm − a1) + 2(ωmQ′ + Q)

≥ 2b1ωm + 2− |a1 −ωm|

because Q′ ≥ b1, Q ≥ 1, and |QP′ − PQ′| = 1. Utilizing now the assumption
a1 ≤ 2+min{(2b1 + 1)ωm, B}, we see that a1−ωm ≤ 2b1ωm + 2, so consequently
|a1 −ωm| ≤ 2b1ωm + 2. It follows that

Ω− qk − 2
qk−1

≥ ωi −
qk − 2
qk−1

=
ωmP′ + P
ωmQ′ + Q

− qk − 2
qk−1

=
qk−1(ωmP′ + P)− (qk − 2)(ωmQ′ + Q)

qk−1(ωmQ′ + Q)

≥ 2b1ωm + 2− |a1 −ωm|
qk−1(ωmQ′ + Q)

≥ 0.

Therefore Ξ ≤ Ω, and the claim is proved.
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Proposition 4.6.12 allows us to compute the fractional indices of Sturmian
words that are fixed points of morphisms. The slope α of such a Sturmian word
must be a quadratic irrational such that its algebraic conjugate α′ satisfies α′ > 1,
i.e., its slope must be a so-called Sturm number. This is a reformulation of Al-
lauzen [2] of a result of Crisp et al. [38]; see also [20, 141]. The continued fraction
expansion of a Sturm number α takes either of the forms

[0; 1, a1, b1, . . . , bm] with bm ≥ a1 or

[0; 1 + a1, b1, . . . , bm] with bm ≥ a1 ≥ 1

depending on if α > 1/2 or α < 1/2; see [91, Theorem 2.3.26]. Moreover, given
a morphism fixing a Sturmian word, it is possible to determine the continued
fraction expansion of the slope based on it. Any morphism mapping a Sturmian
word to a Sturmian word must be a so-called Sturmian morphism; for more on
the subject see [91].

As a direct consequence of Proposition 4.6.12, we obtain the following result
of Vandeth [139].

Corollary 4.6.13. Let α be a Sturm number such that α < 1/2. Then then the fractional
index of a Sturmian word of slope α is 2 + Ω.

Proof. The number α has continued fractions expansion [0; a1, b1, . . . , bm] with
bm ≥ a1 − 1 ≥ 1. Hence a1 ≤ bm + 1 < 2 + min{(2b1 + 1)ωm, max{b1, . . . , bm}},
so the claim follows from Proposition 4.6.12.

The study of integer powers presented here was not concerned about the po-
sitions where the powers occur, that is, the intercept was irrelevant. Research
taking the intercept into account has been done. For instance, every Sturmian
word begins with arbitrarily long squares but cubes might not occur as prefixes
at all; see, e.g., [4, 53]. In [21], Berthé, Holton, and Zamboni consider the initial
critical exponent of a Sturmian word sx,α defined as the supremum of all ratio-
nals q such that wq is a prefix of sρ,α for some word w. They show, among other
results, that typically the initial critical exponent of a Sturmian word of slope α

equals 2+ lim supk→∞[ak; ak−1, . . . , a1] but there always exists ρ ∈ (0, 1) such that
the initial critical exponent of sρ,α is at most 1 + φ.

4.7 Abelian Powers and Repetitions in Sturmian Words

A natural way to generalize the notion of an integer power of a word is to relax
the requirement that two adjacent occurrences of a word of the same length must
be equal letter-by-letter and to require them to only have weaker similarity. One
such generalization is an abelian power: a word u1 · · · un is an abelian power if
all of the words u1, . . ., un are of the same length and are permutations of each
other. Abelian powers were already considered by Erdős in 1957 [56], and more
recently there has been much research on the subject; see, e.g., the papers [30, 85,
128] on avoidability.
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In this section, we study abelian powers and its generalizations called abelian
repetitions in Sturmian words refining the work of Richomme, Saari, and Zam-
boni [122] on Sturmian words.

4.7.1 Definitions

Let A = {a1, . . . , ak} be an ordered alphabet of k letters, and let w be a word over
A. The Parikh vector Pw of the word w is defined to be the vector (|w|a1 , . . . , |w|ak ),
that is, the Parikh vector merely counts the number of occurrences of the letters
of A in w (in a certain order).11 Thus two words have the same Parikh vector if
and only if one word can be obtained from the other by permuting letters. Hence
we give the following definition.

Definition 4.7.1. Two words u and v over A are abelian equivalent, denoted by
u ∼ab v, if Pu = Pv. If P and Q are two Parikh vectors and P is componentwise
less or equal to Q but is not equal to Q, then we write P < Q and say that P is
contained in Q.

Next we present a definition which generalizes fractional powers into the
abelian setting. This definition is given in [35], but it is not the only possible
one: three additional generalizations are considered in [128].

Definition 4.7.2. The abelian decomposition of a word w in A∗ is a factorization
w = u0u1 · · · un−1un such that n ≥ 2, the words u1, . . ., un−1 have the same
Parikh vector P (i.e., they are abelian equivalent), and the Parikh vectors of u0
and un are contained in P . The words u0 and un are called respectively the head
and the tail of the decomposition. The common length q of the words u1, . . ., un
is called an abelian period of w.

If a word w in A∗ has an abelian decomposition like above with n ≥ 3, then
we say that w is an abelian repetition of period q and exponent |w|/q. If we are
uninterested in the period and the exponent, then we simply say that w is an
abelian repetition.

An abelian power is a word w that has an abelian decomposition with empty
head and empty tail. Let q be the abelian period of w associated with such a
decomposition. Then we say that the word w is an abelian power of period q
and exponent |w|/q. If the exponent of w equals 1, then w is a degenerated abelian
power of period q.

Every word w clearly has minimum abelian period µw, and µw ≤ |w|. The
abelian decomposition of a word corresponding to the minimum abelian pe-
riod is not necessarily unique as the abelian decompositions a · aba · baa and
aab · aba · a of period 3 show. If a word w is an abelian power of maximum expo-
nent k, then k does not necessarily equal |w|/µw. For instance, if w = (baaba)2,
then w is an abelian power of period 5 and exponent 2, but |w|/µw = 10/3 as
w = b · aab · aba · aba · ε.

We have the following simple result, which is analogous to the case of ordi-
nary periods of words.

11Parikh vectors are named after Rohit Jivanlal Parikh for his famous work [112].
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Lemma 4.7.3. Let u be a factor of a word w. Then µw ≥ µu. On the other hand, if w
has an abelian period q such that q ≤ |u|, then q is also an abelian period of u.

4.7.2 Abelian Equivalent Factors of Sturmian Words

In general, abelian equivalence of words is much more complicated than equality
of words. However, it is somewhat simpler to consider abelian equivalence in
Sturmian languages since Sturmian words are binary and, more importantly, bal-
anced. Being balanced, the factors of a Sturmian word of length n fall into exactly
two abelian equivalence classes: words of one class contain one letter 1 less than
the words of the other class. If a factor is in the former class, then we call it light,
otherwise it is called heavy. Even more conveniently, the next result, also a part of
the proof of [123, Theorem 19], tells that the intervals of the light factors of length
n are below the point {−nα} on the circle, while all intervals of the heavy factors
are above it. Recall from Proposition 4.3.5 that the order of the level n intervals
on the circle corresponds to the lexicographic order of the associated factors.

Proposition 4.7.4. Let w ∈ L(α). Then w is light if and only if [w] ⊆ I(0,−|w|α).

Proof. We prove the claim by induction on |w|. The case |w| = 1 is true by defini-
tion. Suppose that the claim is proven for |w|, and let us prove it for |w|+ 1. We
have two cases: either {−(|w|+ 1)α} < {−|w|α} or {−(|w|+ 1)α} > {−|w|α}.

Suppose that {−(|w|+ 1)α} < {−|w|α}. By induction, the factors of length
|w| associated with the intervals above the point {−|w|α} are heavy and the other
factors of length |w| are light. The factors of length |w| associated with the points
between {−(|w|+ 1)α} and {−|w|α} are extended by the letter 1, while the other
factors are extended by the letter 0. Thus the factors of length |w|+ 1 associated
with the intervals above the point {−(|w|+ 1)α} are either heavy factors of length
|w| extended by the letter 0 or light factors of length |w| extended by the letter
1. The other factors of length |w| + 1 are light factors of length |w| extended
by the letter 0. Thus the factors associated with the intervals above the point
{−(|w| + 1)α} contain one more letter 1 than the other factors, that is, they are
heavy and the other factors are light.

Suppose finally that {−(|w|+ 1)α} > {−|w|α}. This case is similar: now the
factors associated with the intervals below {−(|w|+ 1)α} are either light factors
of length |w| extended by the letter 1 or heavy factors of length |w| extended by
the letter 0, while the other factors are heavy factors of length |w| extended by the
letter 1. The conclusion follows.

Let sρ,α = a0a1 . . . be a Sturmian word of slope α. An abelian power is a
concatenation of abelian equivalent factors of the same length, which must all be
either heavy or light. By Proposition 4.7.4, the factor an · · · an+q−1 · · · an+kq−1 is
an abelian power of period q and exponent k with k ≥ 2 if and only if the k points

{ρ + (n + iq)α} for i = 0, 1, . . . , k− 1 (4.16)

all lie either in the interval I(0,−qα) or in the interval I(−qα, 1). Actually, we
give the following more precise result.
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Proposition 4.7.5. Let sρ,α = a0a1 . . . be a Sturmian word of slope α. The factor
an · · · an+q−1 · · · an+kq−1 is an abelian power of period q and exponent k with k ≥ 2
if and only if the k points of (4.16) all lie either in the interval I(0,−qα) or in the inter-
val I(−qα, 1). Moreover, the points of (4.16) are naturally ordered:

• if {qα} < 1/2, then they all lie in the interval I(0,−qα) and

{ρ + nα} < {ρ + (n + q)α} < . . . < {ρ + (n + (k− 1)q)α};

• if {qα} > 1/2, then they all lie in the interval I(−qα, 1) and

{ρ + nα} > {ρ + (n + q)α} > . . . > {ρ + (n + (k− 1)q)α}.

Proof. It is sufficient to show that the points of (4.16) are naturally ordered.
Assume that {qα} < 1/2; the other case is similar. Recall that k ≥ 2. If

{ρ + nα} ∈ I(−qα, 1), then {ρ + (n + q)α} ∈ I(0,−qα) because {qα} < 1/2.
Thus by Proposition 4.7.4, we conclude that {ρ + nα} ∈ I(0,−qα). Further, by
Proposition 4.7.4, the points of (4.16) lie in the interval I(0,−qα). Let i be an
integer such that i < k− 1. Since {ρ + (n + iq)α} < {−qα}, it follows that

{ρ + (n + iq)α}+ {qα} < 1,

so we have

{ρ + (n + (i + 1)q)α} = {ρ + (n + iq)α}+ {qα} > {ρ + (n + iq)α}.

The conclusion follows.

We are now ready to describe the starting positions of abelian powers having
given period and exponent. For most positions, the case (i) of the next theorem
applies, but due to the choice involved in coding the points 0 and 1− α, the special
points of the form {−rqα} require specific attention.

Theorem 4.7.6. Let sρ,α = a0a1 · · · be a Sturmian word of slope α, and let q, k, and r be
positive integers. Consider the factor w = an · · · an+q−1 · · · an+kq−1 starting at position
n of sρ,α.

(i) If {ρ + nα} /∈ {{−rqα} : r ≥ 0}, then the factor w is an abelian power of period q
and exponent k with k ≥ 2 if and only if {ρ + nα} < 1− k{qα} (if {qα} < 1/2)
or {ρ + nα} > k{−qα} (if {qα} > 1/2).

(ii) If {ρ + nα} = 0, then the factor w is an abelian power of period q and exponent k
with k ≥ 2 if and only if 0 ∈ I0 and k{qα} < 1 (if {qα} < 1/2) or 0 /∈ I0 and
k{−qα} < 1 (if {qα} > 1/2).

(iii) If {ρ + nα} = {−rqα}, then the factor w is an abelian power of period q and
exponent k with 2 ≤ k < r if and only if {ρ + nα} < 1− k{qα} (if {qα} < 1/2)
or {ρ + nα} > k{−qα} (if {qα} > 1/2).
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(iv) If {ρ + nα} = {−rqα}, then the factor w is an abelian power of period q and
exponent k with 2 ≤ r ≤ k if and only if 0 /∈ I0 and {ρ + nα} < 1− k{qα} (if
{qα} < 1/2) or 0 ∈ I0 and {ρ + nα} > k{−qα} (if {qα} > 1/2).

Proof. We only handle the case {qα} < 1/2; the case {qα} > 1/2 is very similar.
(i) Suppose that {ρ + nα} /∈ {{−rqα} : r ≥ 0}. Say the factor w is an abelian

power of period q and exponent k with k ≥ 2. Since k ≥ 2, all of the points of
(4.16) are by Proposition 4.7.5 naturally ordered in the interval I(0,−qα). More-
over, these points are all interior points of the interval I(0,−qα), so the coding
is unambiguous. The distance between any two consecutive such points is {qα}.
Therefore {ρ + nα} + (k − 1){qα} must be smaller than the length of the inter-
val I(0,−qα), which is equal to {−qα} = 1− {qα}. From this, we derive that
{ρ + nα} < 1− k{qα}.

Conversely, if {ρ + nα} < 1 − k{qα} with k ≥ 2, then surely the points of
(4.16) all are interior points of the interval I(0,−qα), so w is indeed an abelian
power of period q and exponent k by Proposition 4.7.5.

(ii) Assume that {ρ + nα} = 0. Suppose that the factor w is an abelian power
of period q and exponent k with k ≥ 2. Like above in the case (i), all of the
points of (4.16) are naturally ordered in the interval I(0,−qα). Therefore 0 ∈ I0.
Proceeding as above, we see that (k− 1){qα} < {−qα}, that is, k{qα} < 1. The
converse is easily seen to hold.

(iii) This case reduces directly to the case (i) as none of the points of (4.16)
equal neither of the two problematic points 0 and 1− α, whose codings depend
on the choice of the intervals I0 and I1.

(iv) Assume that {ρ + nα} = {−rqα}. Assume that the factor w is an abelian
power of period q and exponent k with 2 ≤ r ≤ k. Again, the points of (4.16)
are naturally ordered in the interval I(0,−qα). Thus {ρ + (n + (r − 1)q)α} =
{−qα} ∈ I(0,−mα), that is to say, 0 /∈ I0. Proceeding exactly as in the case (i), we
see that {ρ + nα} < 1− k{qα}.

Conversely if 0 /∈ I0 and {ρ + nα} < 1− k{qα} with k ≥ r ≥ 2, then again w
is an abelian power of period q and exponent k by Proposition 4.7.5.

Theorem 4.7.6 allows us to effortlessly characterize the maximum exponent of
an abelian power of period q in L(α); we denote this quantity by Aeα(q).

Theorem 4.7.7. Let s be a Sturmian word of slope α and q be a positive integer. Then s
contains an abelian power of period q and exponent k if and only if ‖qα‖ < 1/k. In other
words, we have

Aeα(q) =
⌊

1
‖qα‖

⌋
.

Proof. Keeping the period q fixed, it is evident from Theorem 4.7.6 that in order to
maximize the exponent, we can consider the prefixes of the Sturmian words s0,α
and s0,α. If {qα} < 1/2, then the word s0,α = 0cα has an abelian power of period
q and maximum exponent b1/‖qα‖c as a prefix, while if {qα} > 1/2, then the
word s0,α = 1cα starts with an abelian power of period q and maximum exponent
b1/‖qα‖c.
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Next we consider the maximum exponent of an abelian power of given period
and position. Again, save for the exceptional points of the form {−rqα}, the
first formula of the next theorem suffices. The maximum exponent of an abelian
power of period q starting at position n of the Sturmian word sρ,α is denoted by
Aeρ,α(q, n).

Theorem 4.7.8. Let sρ,α be a Sturmian word of slope α and q and n be integers such that
q > 0 and n ≥ 0. Define

A =

⌊
{−ρ− nα}
{qα}

⌋
and B =

⌊
{ρ + nα}
{−qα}

⌋
.

(i) If {ρ + nα} /∈ {{−rqα} : r ≥ 0}, then

Aeρ,α(q, n) = max {A, B} .

(ii) If {ρ + nα} = 0, then

Aeρ,α(q, n) =

{
b1/{qα}c , if 0 ∈ I0,
b1/{−qα}c , if 0 /∈ I0.

(iii) If {ρ + nα} = {−rqα} with r > 0 and r > max{A, B}, then

Aeρ,α(q, n) = max {A, B} .

(iv) If {ρ + nα} = {−rqα} with 0 < r ≤ max{A, B}, then

Aeρ,α(q, n) = max {A− γ, B + γ− 1} ,

where

γ =

{
1, if 0 ∈ I0,
0, if 0 /∈ I0.

Proof. The formulas follow directly from Theorem 4.7.6. We show here how the
case (iv) is handled. Observe that if {ρ + nα} 6= 0 and {ρ + nα} 6= {−qα}, then
A ≥ 1 if and only if B = 0.

Suppose that {ρ + nα} = {−rqα} with 0 < r ≤ max{A, B}. Assume that
{qα} < 1/2. Suppose first that A > 1. By Theorem 4.7.6 (iv), there is an abelian
power of period q and maximum exponent A starting at position n of sρ,α pro-
vided that 0 /∈ I0. If 0 ∈ I0, then there is an abelian power of period q and
maximum exponent A − 1 starting at position n because the change of coding
affects the Parikh vector of the factor of length q starting at position n + (A− 1)q.
Therefore, Aeρ,α(q, n) = A− γ if A > 1. Notice that in this case B + 1− γ ≤ 1.
If A = 1, then r = 1 by assumption, so B = 1. Since A = 1, the Parikh vec-
tors of the factors of length q starting at positions n and n + q are different when
0 /∈ I0. Since {ρ + (n + q)α} = 0, the Parikh vectors of the factors of length
q starting at positions n and n + q are also different when 0 ∈ I0. Therefore,
Aeρ,α(q, n) = 1 = max {A− γ, B + γ− 1}. The case {qα} > 1/2 is similar.
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Theorem 4.7.8 implies the following remarkable result of Richomme, Saari,
and Zamboni [122].

Proposition 4.7.9. Let s be a Sturmian word of slope α. For all n ≥ 0 and k ≥ 1, there
is an abelian power of exponent k starting at position n of s.

Proof. Since the sequence ({qα})q≥1 is dense in [0, 1], we can make the quantity
‖qα‖ arbitrarily small. The claim follows thus from Theorem 4.7.8.

Next we begin considering abelian repetitions in Sturmian words. Recall that
Aeα(q) stands for the maximum exponent of an abelian power of period q inL(α).
Similarly we denote the maximum exponent of an abelian repetition of period q
in L(α) by Ae+α(q).

Notice that when the period q is a denominator of a convergent, then both
Aeα(q) and Ae+α(q) are large. Since convergents are best approximations, it fol-
lows from Theorem 4.7.7 that the subsequences (Aeα(qk))k≥0 and (Ae+α(qk))k≥0
are strictly increasing. We turn our attention to periods that are denominators of
(semi)convergents.

Proposition 4.7.10. Let w be an abelian power of period q with q ∈ Q+
α starting at

position n such that n ≥ q− 1 in a Sturmian word s = a0a1 · · · of slope α. Then this
occurrence of w can be extended to an abelian repetition of period q with maximum head
and tail length.

Proof. Let w = an · · · an+qk−1 be an abelian power of period q and exponent k in
s. We may assume that q > 1. We claim that the Parikh vectors of the factors
u = an−q+1 · · · an−1 and v = an+qk · · · an+(k+1)q−2 of length q− 1 preceding and
following this particular occurrence of w are contained in the Parikh vector P of
the factor an · · · an+q−1. This implies that the abelian repetition uwv of period q
starting at position n− q+ 1 has maximum head length and maximum tail length,
and the conclusion follows.

In order to prove the claim, let Q be the Parikh vector of the factors of length
q that do not have Parikh vector P . Say {qα} < 1/2; the other case is analogous.
Now P is the Parikh vector of the light factors, so Q is the Parikh vector of the
heavy factors. Since q ∈ Q+

α and {qα} < 1/2, the point {−qα} is the point closest
to 0 such that {−qα} > 1− α. Thus if x is a point such that x > {−qα}, then
Rq−1(x) ∈ I1. Therefore the factors of length q having Parikh vector Q begin and
end with the letter 1.12 Thus removing the first or the last letter of a (heavy) factor
of length q having Parikh vector Q yields a factor of length q− 1 whose Parikh
vector is contained in P . Since the same conclusion holds for factors of length q
having Parikh vector P , it follows that the Parikh vectors of u and v are contained
in P .

Corollary 4.7.11. If q ∈ Q+
α , then

Ae+α(q) = Aeα(q) + 2− 2
q

.

12In fact, since the point {−qα} is closest to 0 from either side, there is a unique factor of length q
with Parikh vector Q.
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In the context of ordinary powers, it is interesting to study the largest power
occurring in a word. However, when considering abelian powers in Sturmian
words, the analogous quantity does not make sense since any Sturmian word
contains abelian powers of arbitrarily large exponent. Instead, we propose the
following notion of abelian critical exponent, which measures the maximum ratio
between the exponent and the period of an abelian repetition.

Definition 4.7.12. Let s be a Sturmian word of slope α. The abelian critical exponent
of s is defined as

Ac(s) = lim sup
q→∞

Aeα(q)
q

= lim sup
q→∞

Ae+α(q)
q

.

(Indeed, the two superior limits coincide by Corollary 4.7.11.)

Theorem 4.7.7 now implies that Ac(s) equals the Lagrange constant of the
slope of s (see Subsection 4.2.3). Hence by (4.10), we obtain the following result.

Proposition 4.7.13. Let s be a Sturmian word of slope α. Then

Ac(s) = lim sup
k→∞

([ak+1; ak+2, . . .] + [0; ak, ak−1, . . . , a1]) .

We have thus obtained a formula for the abelian critical exponent of a Stur-
mian word in terms of the partial quotients of its slope. Compare this with Theo-
rem 4.6.7 (on page 89).

Proposition 4.7.13 enables us to study the abelian critical exponents of Stur-
mian words. The first application is the following result.

Theorem 4.7.14. Let s be a Sturmian word of slope α. The following are equivalent:

(i) Ac(s) is finite,

(ii) s has bounded fractional index,

(iii) α has bounded partial quotients.

Proof. It is evident from Proposition 4.7.13 that Ac(s) is finite if and only if α has
bounded partial quotients. The rest of the claim follows from Theorem 4.6.7.

Notice that for almost all slopes α, the abelian critical exponent Ac(s) of a
Sturmian word s of slope α is infinite since almost all real numbers in the interval
(0, 1) have unbounded partial quotients (see, e.g., [86, Theorem 29]).

Next we prove an optimal lower bound for the abelian critical exponent of
Sturmian words. Recall that two numbers are equivalent if their continued frac-
tion expansions ultimately coincide.

Theorem 4.7.15. For every Sturmian word s of slope α, we have Ac(s) ≥
√

5. Moreover,
Ac(s) =

√
5 if and only if α is equivalent to 2− φ. In particular, the abelian critical

exponent of the Fibonacci word is
√

5.
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Proof. It is clear from Proposition 4.7.13 that Ac(s) is as small as possible when α

is equivalent to φ = [1; 1]. It is straightforward to compute that λ(φ) =
√

5, so
Ac(s) ≥ Ac(f) =

√
5 for all slopes α.

What is left is to prove is that if Ac(s) =
√

5, then α is equivalent to φ. Suppose
that α = [0; a1, a2, . . .] and Ac(s) =

√
5. If ak ≥ 3 for infinitely many k, then clearly

Ac(s) ≥ 3 >
√

5. Thus, there exists a positive integer M such that ak < 3 for all
k ≥ M. We are left with two cases: either ak = 1 for only finitely many k or the
sequence (ak) takes values 1 and 2 infinitely often; otherwise we are done.

Suppose first that ak = 1 for finitely many k. It follows that (ak) eventually
takes only the value 2, so α is equivalent to

√
2 = [2; 2]. Therefore λ(α) = λ(

√
2).

It is routine computation to show that λ(
√

2) =
√

8, so Ac(s) =
√

8 >
√

5; a
contradiction.

Assume finally that the sequence (ak) takes values 1 and 2 infinitely often.
It follows that the sequence (ak) contains either of the patterns 2, 1, 1 or 2, 1, 2
infinitely often. Since an odd convergent of a number β is always strictly less
than β, it follows that

[2, 1, 1, ai, ai+1, . . .] > [2, 1, 1] =
5
2

and

[2, 1, 2, ai, ai+1, . . .] > [2, 1, 2] =
8
3

.

Thus Ac(s) ≥ 5/2 >
√

5, which is impossible.

Corollary 4.7.16. For every slope α and for every positive real number δ there exists
an increasing sequence (mk) of integers such that for every k there is an abelian power
of period mk and length greater than (

√
5− δ)m2

k (that is, with exponent greater than
(
√

5− δ)mk) in L(α).

Notice that the previous corollary about abelian powers is in sharp contrast
with the analogous situation for ordinary powers. Indeed, there are Sturmian
words with bounded fractional index, so with respect to both the length and the
exponent the difference with the abelian setting is of one order of magnitude.

Let us conclude this section by computing the abelian critical exponents of the
slopes that are quadratic irrationals. Recall from (4.13) that the continued fraction
expansion of a quadratic irrational α has one of the following forms:

[0; a1, . . . , a`, b1, . . . , bm] or [0; b1, . . . , bm].

In view of Proposition 4.7.13, for i = 1, 2, . . . , m, we set

ωi = [bi, . . . , bm, b1, . . . , bm] and

ω̃i = [0; bi, . . . , b1, bm, . . . , b1].

If i < m, then we set Ωi = ωi+1 + ω̃i. In the case i = m, we let Ωi = ω1 + ω̃m.
Proposition 4.7.13 and Lemma 4.2.1 immediately imply the following theorem.

Theorem 4.7.17. Let α be a quadratic irrational as in (4.13). Then, with the above
notation, we have Ac(s) = max{Ωi : i ∈ {1, . . . , m}} for Sturmian words s of slope α.
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4.7.3 Abelian Powers and Repetitions in the Fibonacci Word

We conclude the study of abelian powers and repetitions in Sturmian words by
applying the results of the previous subsection to the particular case of the Fi-
bonacci word. For convenience, we assume during this subsection that the slope
of the Fibonacci word is φ− 1; remember, this only changes the roles of the letters
0 and 1. Recall that Fk denotes the kth Fibonacci number and that the convergents
of φ − 1 are given by the sequence (Fk−1/Fk)k≥0. We begin with the following
straightforward observation.

Proposition 4.7.18. Let k be a positive integer. The maximum exponent of an abelian
power of period Fk in the Fibonacci word is equal to bφFkc+ Fk−1.

Proof. It is an immediate consequence of (4.11) that

‖Fk(φ− 1)‖ = 1
φFk + Fk−1

.

The claim follows now from Theorem 4.7.7.

Next we turn our attention to the prefixes of the Fibonacci word that are
abelian repetitions. The head of the abelian decomposition of a prefix that is an
abelian repetition of period q has length at most q− 1. Thus, in order to find the
longest abelian repetition of period q that is a prefix, we have to check the maxi-
mum length of a compatible head of all the abelian powers that start at position
n for n = 0, 1, . . . , q− 1.

Proposition 4.7.19. Let k be a positive integer. The longest abelian power of period Fk
starting at a position n such that n < Fk in the Fibonacci word starts at position Fk − 1
and has exponent

bφFkc+ Fk−1 − 1 =

{
Fk+1 + Fk−1 − 1, if k is even,
Fk+1 + Fk−1 − 2, if k is odd.

Proof. By Theorem 4.7.6, an abelian power of period Fk starting at position Fk − 1
in the Fibonacci word has exponent ` if and only if (`+ 1)‖Fk(φ− 1)‖ < 1. We
derive from (4.11) that

‖Fk(φ− 1)‖ = 1
φFk + Fk−1

,

so the abelian power of period Fk starting at position Fk − 1 in the Fibonacci word
has exponent bφFkc+ Fk−1 − 1. By (4.7), any abelian power starting at a position
n such that n < Fk − 1 has a smaller exponent, so the proof is complete if we
derive the formula of the claim. By (4.11), we have

φFk − Fk+1 =
(−1)k

φFk + Fk−1
,
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so we obtain that

bφFkc = Fk+1 +

{
0, if k is even,

−1, if k is odd.

This gives the desired formula.

The following theorem provides a formula for computing the length of the
longest abelian repetition of period Fk that is a prefix of the Fibonacci word.

Theorem 4.7.20. The longest prefix of the Fibonacci word that is an abelian repetition of
period Fk has length

lp(Fk) =

{
Fk(Fk+1 + Fk−1 + 1)− 2, if k is even,
Fk(Fk+1 + Fk−1)− 2, if k is odd.

Proof. Let w be the abelian power of period Fk in f having maximum exponent
starting at position Fk − 1 described in Proposition 4.7.19. By Proposition 4.7.10,
this occurrence of w can be extended to an abelian repetition with maximum head
and tail length. The claim thus follows from the formula of Proposition 4.7.19.

Next we extend the following result by Currie and Saari on the periods of the
factors of the Fibonacci to the abelian setting [39].

Proposition 4.7.21. The minimum period of any factor of the Fibonacci word is a Fi-
bonacci number.

Indeed, we prove the following theorem.

Theorem 4.7.22. The minimum abelian period of any factor of the Fibonacci word is a
Fibonacci number.

For the proof, we need to introduce the notion of guaranteed exponent with
anticipation i.

Definition 4.7.23. We define for integers q and i such that q > 0 and 0 ≤ i ≤ q the
guaranteed exponent with anticipation i, denoted by Geα(q, i), as the largest integer k
such that for all Sturmian words s of slope α and for every nonnegative integer n
there exists an integer j such that 0 ≤ j ≤ i and there is a (possibly degenerated)
abelian power of period q and exponent k starting at position n− j of s.

In other words, Geα(q, i) is the largest number guaranteed to appear in every
list of i + 1 consecutive terms of the sequence (Aeρ,α(q, n))n≥0 for all ρ ∈ [0, 1).
We require that i ≤ q because we want to make sure that the guaranteed abelian
power starting at position n− j does not end before the position n.

Theorem 4.7.24. For all integers q and i such that q > 0 and 0 ≤ i ≤ q, we have

Geα(q, i) = max
{

1,
⌊

1− Li
‖qα‖

⌋}
,

where Li is the length of the longest level i interval.
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Proof. Let q be a fixed positive integer, and let us first consider the case i = 0.
Since L0 = 1, we need to prove that Geα(q, 0) = 1. It is equivalent to say that in a
Sturmian word sρ,α, there always exists a position n such that no proper abelian
power of period q starts at this position. This is clear: if {qα} < 1/2, then by
Proposition 4.7.5, we need to find a point {ρ + nα} such that {ρ + nα} > {−qα},
while if {qα} > 1/2, then we need to have {ρ+ nα} < {−qα}. Since the sequence
({mα})m≥1 is dense in [0, 1], such points can always be found.

Let us consider the general case i > 0. We know from Proposition 4.7.5 that the
factor an · · · an+q−1 · · · an+kq−1 of sρ,α of length kq is an abelian power of period q
and exponent k starting at position n if and only if the k points {ρ+ (n+ tq)α} for
t = 0, 1, . . . , k− 1 are all either in the interval I(0,−qα) or in the interval I(−qα, 1).

Let us assume that {qα} < 1/2; the case {qα} > 1/2 is analogous. The long-
est abelian power of period q starting at position n is a factor that depends on the
point {ρ + nα}. Since we want the largest abelian power of period q with antic-
ipation i, we have to consider all the points {ρ + (n − j)α} with 0 ≤ j ≤ i. By
Lemma 4.3.4, there exists an integer J such that 0 ≤ J ≤ i and {ρ+(n− J)α} < Li.
Since the sequence ({mα})m≥1 is dense in [0, 1], this point {ρ + (n − J)α} can
be arbitrarily close to the point Li. Therefore the largest integer k such that for
any nonnegative integer n there exists an integer j such that 0 ≤ j ≤ i and
{ρ + (n − j + tq)α} ≤ {−qα} for every integer t such that 0 ≤ t ≤ k − 1, is
either 1 (in the case when no proper abelian power is guaranteed to start in any
of i + 1 consecutive positions) or the largest integer k such that

(k− 1)‖qα‖ ≤ |I(0,−qα)| − Li = 1− ‖qα‖ − Li,

that is,

k =

⌊
1− Li
‖qα‖

⌋
.

Consequently, by Proposition 4.7.5, we have

Geα(q, i) = max
{

1,
⌊

1− Li
‖qα‖

⌋}
in this case.

Indeed, the case {qα} > 1/2 is analogous. We can find an integer J′ with
0 ≤ J′ ≤ i such that {ρ+(n− J′)α} > 1− Li. Again such a point can be arbitrarily
close to the point 1 − Li. Thus we need to find the largest integer k such that
1− Li − (k− 1)‖qα‖ ≥ ‖qα‖. The conclusion follows.

We apply Theorem 4.7.24 to the Fibonacci word.

Corollary 4.7.25. We have Geφ−1(Fk, Fk − 1) = Fk+1 + Fk−1 − 3 for all k > 1.

Proof. By The Three Distance Theorem and (4.7), the length of the longest interval
of level Fk− 1 is ‖Fk−2(φ− 1)‖. Therefore Theorem 4.7.24, Lemma 4.2.7, and (4.11)
imply that

Geφ−1(Fk, Fk − 1) = max {1, bφFk + Fk−1 − 1− φc} .
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Further, by (4.11), we have

φFk = Fk+1 +
(−1)k

φFk + Fk−1
.

Since 1/(φFk + Fk−1) is at most 2− φ, it follows that

Fk+1 − 2 ≤ φFk − φ ≤ Fk+1 + 2− 2φ.

Because 3 < 2φ < 4, we have bφFk − φc = Fk+1 − 2. The claim follows.

We are now ready to prove Theorem 4.7.22.

Proof of Theorem 4.7.22. Let w be a factor of the Fibonacci word, and suppose that
w has an abelian period q. We will show that w has also period Fk, where Fk is
the largest Fibonacci number such that Fk ≤ q. If q = Fk, then there is nothing to
prove, so we can suppose that Fk < q < Fk+1. In particular, we have k ≥ 3. We
will show that given a suitable occurrence of w in f, there is an earlier occurrence
of an abelian repetition w′ of period Fk such that w is a factor of w′. The conclusion
follows then from Lemma 4.7.3.

Suppose that w occurs in f at position n. By Theorem 4.7.24, there is an abelian
power of period Fk of length Fk · Geφ−1(Fk, Fk − 1) starting at position n + j for
some j such that 0 ≤ j ≤ Fk − 1. By Proposition 4.7.10, this abelian power can be
extended to an abelian repetition with maximum head and tail length Fk − 1, so
we only need to ensure that this extension is long enough to have w as a factor.
Since w has length at most q(Aeφ−1(q) + 2)− 2, we thus need to establish that

q(Aeφ−1(q) + 2)− 2 ≤ Fk(Geφ−1(Fk, Fk − 1) + 1)− 1.

By Corollary 4.7.25, this inequality holds if and only if the inequality

q(Aeφ−1(q) + 2) ≤ Fk(Fk+1 + Fk−1 − 2) + 1 (4.17)

is satisfied. The rest of the proof consists of showing that (4.17) holds.
First we derive the following upper bound on q(Aeφ−1(q) + 2):

q(Aeφ−1(q) + 2) < Fk+1(Fk−1 + Fk−3 + 2). (4.18)

For this, let us first show that ‖q(φ − 1)‖ > ‖Fk−2(φ − 1)‖. Suppose first that
{q(φ− 1)} < 1/2. Now either {Fk(φ− 1)} < 1/2 and {Fk+1(φ− 1)} > 1/2 or
{Fk(φ− 1)} > 1/2 and {Fk+1(φ− 1)} < 1/2. If {Fk(φ− 1)} < 1/2, then we have

‖q(φ− 1)‖ = ‖q(φ− 1)‖ − ‖Fk(φ− 1)‖+ ‖Fk(φ− 1)‖
= ‖(q− Fk)(φ− 1)‖+ ‖Fk(φ− 1)‖
≥ ‖Fk−2(φ− 1)‖+ ‖Fk(φ− 1)‖
> ‖Fk−2(φ− 1)‖,

where the first inequality follows from (4.7) as q − Fk < Fk+1 − Fk = Fk−1. If
instead {Fk(φ− 1)} > 1/2, then we can apply the same manipulation with Fk+1
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in place of Fk. Indeed, in this case Fk+1 − q < Fk−1, so we can still apply (4.7) to
derive that ‖(Fk+1 − q)(φ− 1)‖ ≥ ‖Fk−2(φ− 1)‖. The case {q(φ− 1)} > 1/2 is
symmetric. Thus we have shown that ‖q(φ− 1)‖ > ‖Fk−2(φ− 1)‖. Therefore by
Theorem 4.7.7 and Proposition 4.7.18, we have Aeφ−1(q) < φFk−2 + Fk−3. Again,
by applying (4.11), we obtain that Ae1−α(q) ≤ Fk−1 + Fk−3. As q < Fk+1, the
inequality (4.18) follows.

By the inequality (4.18), in order to establish the inequality (4.17), it is suffi-
cient to show that

Fk+1(Fk−1 + Fk−3 + 2) ≤ Fk(Fk+1 + Fk−1 − 2).

This inequality is easily seen to be true whenever Fk−1 + Fk−3 + 2 ≤ Fk, that is,
when k ≥ 6. By a direct computation, it can be seen that the above inequality
holds also for k = 5. Suppose then that k = 4. Now Aeφ−1(q) ≤ Fk−1 + Fk−3 = 4
by the above. Plugging the estimates Aeφ−1(q) ≤ 4 and q ≤ 7 into (4.17) shows
that the conclusion holds also in this case. Suppose finally that k = 3, that is,
q = 4. Now Aeφ−1(q) = 2, and a direct substitution to the inequality (4.17) shows
that the conclusion holds. This ends the proof.

One immediately has an idea of generalizing Theorem 4.7.22: the minimum
abelian period of a factor of a Sturmian word of slope α should be a denomi-
nator of a convergent or a semiconvergent of α. This idea analogously general-
izes Proposition 4.7.21 [39], but unfortunately it does not work in the abelian set-
ting. Consider for instance Sturmian words of slope α, where α = (

√
3− 1)/2 =

[0; 2, 1]. It can be verified that the factor

00101 · 001001001010010010010100100100 · 10100,

starting at position 35 of cα, is an abelian repetition of minimum period 6 with
maximum head and tail length. However, the number 6 is not a denominator of
a (semi)convergent of α since the sequence of convergents and semiconvergents
starts as follows: 0, 1

2 , 1
3 , 2

5 , 3
8 .

From Theorem 4.7.22, we know that every finite Fibonacci word has an abelian
period that is a Fibonacci number. The following theorem provides an explicit
formula for the minimum abelian periods of the finite Fibonacci words.

Theorem 4.7.26. Let k be an integer such that k ≥ 3. The minimum abelian period of
the finite Fibonacci word fk is the nth Fibonacci number Fn, where

n =

{
bk/2c, if k ≡ 0, 1, 2 (mod 4),
bk/2c+ 1, if k ≡ 3 (mod 4).

Proof. By Theorems 4.7.22 and 4.7.20, it is sufficient to find the smallest integer n
such that lp(Fn) is greater than or equal to Fk. In other words, we need to find the
smallest integer n such that

Fn (Fn+1 + Fn−1 + γ)− 2 ≥ Fk,
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where γ equals 1 if n is even and 0 if n is odd.
We need the following well-known identity:

Fi(Fi+1 + Fi−1) = F2i+1. (4.19)

It follows easily from the matrix identity(
1 1
1 0

)i

=

(
Fi Fi−1

Fi−1 Fi−2

)
and the fact that Ai Aj = Ai+j for a matrix A.

It is straightforward to verify the claim using (4.19). We will prove the claim in
the case k ≡ 2 (mod 4); the other cases are similar. Choose n = bk/2c. Now n is
odd and 2n + 1 = k + 1, so by (4.19), we need to verify that Fk+1 − 2 ≥ Fk, which
is clearly true. Choose then n = bk/2c − 1. Then n is even and 2n + 1 = k− 1,
so F2n+1 + Fn − 2 ≥ Fk if and only if Fbk/2c−1 − 2 ≥ Fk−2. This latter inequality,
however, cannot hold as F4j ≥ F2j for all j ≥ 0. This shows that the value bk/2c is
minimal in this case.

4.8 A Square Root Map on Sturmian Words

In this section, we define and study the square root map on Sturmian words.
First we prove that the square root map preserves the language of a Sturmian
word and develop both dynamical and word-combinatorial view of the subject.
We apply the obtained results to the Fibonacci word. Then we generalize the
square root map for optimal squareful words and show the existence of non-
Sturmian words whose language is preserved by the square root map. Moreover,
we show that the square root of an aperiodic word can be periodic. We conclude
by considering possible generalizations of the square root map.

4.8.1 α-repetitions and Optimal Squareful Words

In the paper [126], Kalle Saari introduces α-repetitive words. If a finite nonempty
word w has period p and |w|/p ≥ α for some real α such that α ≥ 1, then we
say that w is an α-repetition. An α-repetition is minimal if it does not have an α-
repetition as a proper prefix. An infinite word is α-repetitive if every position in
the word starts an α-repetition and the number of distinct minimal α-repetitions
occurring in the word is finite. If α = 2, then we call the α-repetitive infinite
words squareful. This means that every position of a squareful word begins with
a minimal square and that there are finitely many minimal squares in its lan-
guage. Saari proves that if the number of distinct minimal squares occurring in
a squareful word is at most 5, then the word must be ultimately periodic [126,
Theorem 11]. On the other hand, if a squareful word contains at least 6 distinct
minimal squares, then aperiodicity is possible. We call the aperiodic squareful
words containing exactly 6 minimal squares optimal squareful words. The next re-
sult shows that optimal squareful words must always be binary and that the six
minimal squares must take a very specific form [126, Theorem 16].
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Proposition 4.8.1. Let w be an optimal squareful word. If 10i1 occurs in w with i > 1,
then the square roots of the six minimal squares in L(w) are

S1 = 0, S4 = 10a,

S2 = 010a−1, S5 = 10a+1(10a)b, (4.20)

S3 = 010a, S6 = 10a+1(10a)b+1,

for some integers a and b such that a ≥ 1 and b ≥ 0.

We call the optimal squareful words containing the minimal square roots of
(4.20) the optimal squareful words with parameters a and b. For the rest of this chapter,
we reserve this meaning for the fraktur letters a and b. Furthermore, we agree that
the symbols Si always refer to the minimal square roots of (4.20).

Optimal squareful words can be characterized as follows [126, Theorem 17].

Proposition 4.8.2. An aperiodic infinite word w is optimal squareful if and only if (up
to renaming of letters) there exists integers a and b such that a ≥ 1 and b ≥ 0 and w is
an element of the language

0∗(10a)∗(10a+1(10a)b + 10a+1(10a)b+1)ω = S∗1S∗4(S5 + S6)
ω.

Here the notation (S5 + S6)
ω stands for the set of all infinite words that are

products of the words S5 and S6.
The notion of α-repetitivity is very interesting also if α 6= 2. We do not explore

this topic further here. However, let us remark that if 1 < α ≤ 3/2, then an α-
repetitive word can be aperiodic only if there are at least 4 minimal α-repetitions
in its language. For α such that 3/2 < α < 2, the optimal value is 5 minimal
α-repetitions. For these results, additional optimal values, and open problems,
see [126]. See also Proposition 4.8.48 on page 148.

4.8.2 The Square Root Map

It is immediate from Proposition 4.8.2 that every Sturmian word of slope α =
[0; a1, a2, . . .] is an optimal squareful word with parameters a = a1 − 1 and b =
a2 − 1. Evidently, not all optimal squareful words are Sturmian. Our convention
0 < α < 1

2 implies that 02 ∈ L(α), so the six minimal squares in L(α) are the
same as given in (4.20). In particular, we see that every Sturmian word can be
(uniquely) factorized as a product of the six minimal squares of slope α of (4.20).
Thus the square root map introduced next is well-defined.

Definition 4.8.3. Let s be a Sturmian word of slope α, and factorize it as a product
of minimal squares: s = X2

1X2
2X2

3 · · · . The square root of s is then defined to be the
infinite word X1X2X3 · · · , which we denote by

√
s.

Let us consider as an example the Fibonacci word f. The slope of the Fibonacci
word is [0; 2, 1], so it has parameters a = 1 and b = 0. We have

f = (010)2(100)2(10)2(01)202(10010)2(01)2 · · · and
√

f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · · · .
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Notice that a square root map can be defined for any optimal squareful word.
For now, we only focus on Sturmian words; we study the square roots of other
optimal squareful words later in Subsection 4.8.7.

We aim to prove the surprising result that given a Sturmian word s the word√
s is also a Sturmian word having the same slope as s has. Moreover, knowing

the intercept of s, we can compute the intercept of
√

s.
In the proof we need a special function ψ : T → T defined as follows. For

x ∈ (0, 1), we set

ψ(x) =
1
2
(x + 1− α),

and we set

ψ(0) =

{
1
2 (1− α), if 0 ∈ I0,

1− α
2 , if 0 /∈ I0.

The mapping ψ moves the point x on the circle T towards the point 1 − α by
halving the distance between the points x and 1 − α. The distance to 1 − α is
measured in the interval I0 or I1 depending on which of these intervals the point
x belongs to.

We can now state the result.

Theorem 4.8.4. Let sρ,α be a Sturmian word of slope α. Then √sρ,α = sψ(ρ),α. Specifi-
cally, the word √sρ,α is a Sturmian word of slope α.

For a combinatorial version of the above theorem, see Theorem 4.8.24 in Sub-
section 4.8.5.

The main idea of the proof of Theorem 4.8.4 is to demonstrate that the square
root map is actually the symbolic counterpart of the function ψ. We begin with a
definition.

Definition 4.8.5. We say that a square w2 in L(α) satisfies the square root condition
if ψ([w2]) ⊆ [w].

Notice that if the interval [w] in the above definition has 1− α as an endpoint,
then w automatically satisfies the square root condition. This is because ψ moves
points towards the point 1− α but does not map them over this point. Actually,
if w2 satisfies the square root condition, then necessarily the interval [w] has 1− α

as an endpoint; see Corollary 4.8.10.
We will only sketch the proof of the following lemma.

Lemma 4.8.6. For i = 1, 2, . . . , 6, the minimal square S2
i of slope α satisfies the square

root condition and ψ({x + 2|Si|α}) = {ψ(x) + |Si|α} for all x ∈ [S2
i ].

Proof Sketch. It is straightforward to verify that

[S1] = I(0, 1− α), [S4] = I(1− α, 1),

[S2] = I(−2α, 1− α), [S5] = I(1− α,−q2,1α),

[S3] = I(−2α, 1− α), [S6] = I(1− α,−q2,1α)
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0

1− α

[S2
1]

[S2
3]

[S2
2]

[S2
5] [S2

6]

[S2
4]

[S2]

[S5]

Figure 4.3: The positions of the intervals on the circle in the proof sketch of
Lemma 4.8.6.

and

[S2
1] = I(0,−2α), [S2

4] = I(−q2,1α, 1),

[S2
2] = I(−(q2,1 + 1)α, 1− α), [S2

5] = I(1− α,−(q3,1 + 1)α),

[S2
3] = I(−2α,−(q2,1 + 1)α), [S2

6] = I(−(q3,1 + 1)α,−q2,1α);

see Figure 4.3. Since ψ does not map points over the point 1− α, it is evident that
every minimal square root satisfies the square root condition.

Consider then the latter claim. Let i ∈ {1, . . . , 6}. Suppose that x ∈ [S2
i ] \ {0},

{x + 2|Si|α} 6= 0, and bx + 2|Si|αc = 2r for some nonnegative integer r. Then

ψ({x + 2|Si|α}) =
1
2
(x + 2|Si|α− 2r + 1− α)

= ψ(x) + |Si|α− r = {ψ(x) + |Si|α} (4.21)

since ψ is a function from T to T. We consider next the cases i = 1 and i = 5; the
other cases are similar.

Suppose that Si = S1. Now x + 2α ≥ 2α > 0 = 2p0 and

x + 2α ≤ 1− 2α + 2α = 1 = 2p0 + 1,

so x + 2α ∈ (2p0, 2p0 + 1]. The claim is thus clear as in (4.21) if x 6= 0 and
x 6= 1− 2α. If x = 0, then 0 ∈ I0 and

{ψ(x) + α} = {1
2
(1− α) + α} = 1

2
(1 + α) = ψ({x + 2α}).

If x = 1− 2α, then 0 /∈ I0 and

ψ({x + 2α}) = 1− α

2
= {ψ(x) + α}.

Assume then that Si = S5. Notice that |S5| = q2. Using (4.6), we obtain that

x + 2q2α ≤ ‖(q3,1 + 1)α‖+ 2q2α

= 1− α + ‖q3,1α‖+ 2p2 + 2‖q2α‖
= 1− α + ‖q1α‖ − ‖q2α‖+ 2p2 + 2‖q2α‖
= 1− α + ‖q1α‖+ ‖q2α‖+ 2p2

≤ 2p2 + 1,
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where equality holds only if x = ‖(q3,1 + 1)α‖ and a2 = 1. The length of the
interval [S2

5] is ‖q3,1α‖. Since 1− α ≥ α + ‖q1α‖ and α > ‖q1α‖ > ‖q2α‖, the
preceding inequalities imply that x + 2q2α > 2p2. Thus x + 2q2α ∈ (2p2, 2p2 + 1].
If a2 > 1 or x 6= ‖(q3,1 + 1)α‖, then the conclusion follows as in (4.21). Suppose
finally that a2 = 1 and x = ‖(q3,1 + 1)α‖. Now 0 /∈ I0, so ψ({x + 2q2α}) = ψ(0) =
1− α

2 . On the other hand, we have

ψ(x) + q2α =
1
2
(1− α + ‖q3,1α‖+ 1− α) + p2 + ‖q2α‖

=
1
2
(1− α + ‖q1α‖ − ‖q2α‖+ 1− α + 2‖q2α‖) + p2

= 1− α

2
+ p2,

so the conclusion holds also in this case.

Proof of Theorem 4.8.4. Write sρ,α = X2
1X2

2X2
3 · · · as a product of minimal squares.

Since the minimal square X2
1 satisfies the square root condition by Lemma 4.8.6,

we have ψ(ρ) ∈ [X1]. Hence both √sρ,α and sψ(ρ),α begin with X1. Lemma 4.8.6
implies that ψ({x + 2|X1|α}) = {ψ(x) + |X1|α} for all x ∈ [X2

1 ]. Thus by shifting
sρ,α the amount 2|X1| and by applying the preceding reasoning, we conclude that
sψ(ρ),α shifted by the amount |X1| begins with X2. Therefore the words √sρ,α
and sψ(ρ),α agree on their first |X1|+ |X2| letters. By repeating this procedure, we
conclude that √sρ,α = sψ(ρ),α.

Theorem 4.8.4 allows us to effortlessly characterize the Sturmian words that
are fixed points of the square root map.

Corollary 4.8.7. The only Sturmian words of slope α that are fixed by the square root
map are the two words 01cα and 10cα, both having intercept 1− α.

Proof. The only fixed point of the map ψ is the point 1− α. With this point as
an intercept, we obtain two Sturmian words: either 01cα or 10cα, depending on
which of the intervals I0 and I1 the point 1− α belongs to.

The set {01cα, 10cα} is not only the set of fixed points but also the unique
attractor of the square root map in the set of Sturmian words of slope α. When
iterating the square root map on a fixed Sturmian word sρ,α, the obtained word
has longer and longer prefixes in common with either of the words 01cα and 10cα

because ψn(ρ) tends to 1− α as n increases.

4.8.3 Words Satisfying the Square Root Condition

In the previous subsection, we saw that the minimal squares, which satisfy the
square root condition, were crucial in proving that the square root of a Sturmian
word is again Sturmian with the same slope. The minimal squares of slope α are
not the only squares in L(α) satisfying the square root condition; in this subsec-
tion, we will characterize combinatorially such squares. To be able to state the
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characterization, we need to define

RStand(α) = {w̃ : w ∈ Stand(α)},

the set of reversed standard words of slope α. Similarly we set

RStand+(α) = {w̃ : w ∈ Stand+(α)}.

We also need the operation L that exchanges the first two letters of a word (we do
not apply this operation to too short words).

Next we state the main result of this subsection.

Theorem 4.8.8. A square w2 inL(α) with w primitive satisfies the square root condition
if and only if w ∈ RStand+(α) ∪ L(RStand(α)).

As we remarked in Subsection 4.8.2, a square w2 in L(α) trivially satisfies the
square root condition if the interval [w] has 1− α as an endpoint. Our aim is to
prove that the converse is also true. We begin with a technical lemma.

Lemma 4.8.9. Let n ∈ Q+
α \ {1}, and let i be an integer such that 1 < i ≤ n.

(i) If {−iα} ∈ I0 and {−(i + n)α} < {−iα}, then ψ(−(i + n)α) > {−iα}.

(ii) If {−iα} ∈ I1 and {−(i + n)α} > {−iα}, then ψ(−(i + n)α) < {−iα}.

Proof. We prove (i), the second assertion is symmetric. Suppose {−iα} ∈ I0 and
{−(i + n)α} < {−iα}. Notice that the distance between the points {−iα} and
{−(i + n)α} is less than α. It follows that {−nα} ∈ I1. Assume on the contrary
that ψ(−(i + n)α) ≤ {−iα}, that is,

{−(i + n)α}+ 1
2
({1− α} − {−(i + n)α}) ≤ {−iα}.

Since 0 < {−(i+ n)α} < {−iα}, the distance between the points {−(i+ n)α} and
{−iα} is the same as the distance between 1 and {−nα}. Thus by substituting
{−(i + n)α} = {−iα} − (1− {−nα}) to the above and rearranging, we have

{1− α} − {−iα} ≤ 1− {−nα}.

Since {−nα} ∈ I1, we obtain that

‖−(i− 1)α‖ ≤ ‖−nα‖. (4.22)

Suppose first that n = qk,` with k ≥ 2 and 0 < ` ≤ ak. Since i − 1 < n, Propo-
sition 4.2.3 and (4.22) imply that i − 1 = mqk−1 for some integer m such that
1 ≤ m ≤ min{`, ak − `+ 1}. As {−nα} ∈ I1, the point {−qk−1α} must lie on the
opposite side of 0 in the interval I0. Therefore {−(i− 1)α} ∈ I0. Then by (4.22),
the point {−iα} must lie in I1. This is a contradiction. Suppose then that n = q1.
It is easy to see that (4.22) cannot hold for i > 1. This concludes the proof.

Corollary 4.8.10. If a square w2 in L(α) with w primitive satisfies the square root
condition, then the interval [w] has 1− α as an endpoint.
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Proof. Let n = |w|. Proposition 4.6.1 implies that n ∈ Q+
α . Say n = q0 = 1. As

the only factor of length 1 occurring as a square is 0, the claim holds as [0] = I0 =
I(0, 1− α). Suppose then that n > 1.

Let [w] = I(−iα,−jα). Then either [w2] = I(−iα,−(j + |w|)α) or [w2] =
I(−(i + |w|)α,−jα). Suppose first that [w] ⊆ I0. By symmetry, we may assume
that {−jα} > {−iα}. Now [w2] = [−(i + |w|)α,−jα) if and only if j = 1. Namely,
if j 6= 1, then it is clear that it is possible to find a point x ∈ I(−iα,−jα) close
to {−jα} such that ψ(x) > {−jα}, so the condition ψ([w2]) ⊆ [w] cannot be
satisfied. If [w2] = [−iα,−(j + |w|)α) and j 6= 1, then by Lemma 4.8.9, we have
ψ(−(j + |w|)α) > {−jα}, so the condition ψ([w2]) ⊆ [w] cannot be satisfied.
Thus also in this case necessarily j = 1. The case where [w] ⊆ I1 is proven
symmetrically using the latter symmetric assertion of Lemma 4.8.9.

Next we study in more detail the properties of squares w2 in L(α) such that
the interval [w] has 1− α as an endpoint.

Proposition 4.8.11. Let n be an integer such that n ∈ Q+
α \ {1}, and let u and v be

the two distinct factors of slope α of length n whose associated intervals have 1− α as an
endpoint. Then the following holds:

(i) There exists a word w such that u = abw and v = baw = L(u) for distinct letters
a and b.

(ii) Either u or v is right special.

(iii) If µ is the right special word among the words u and v, then µ2 ∈ L(α).

(iv) If λ is the word among the words u and v that is not right special, then λ2 ∈ L(α)
if and only if n ∈ Qα

Proof. Suppose first that n = q1. Then it is straightforward to see that the factors
u and v of length n whose associated intervals have 1− α as an endpoint are S2
and S4, where S2 = 010a1−2 and S4 = 10a1−1. Clearly S4 is right special and
L(S4) = S2. Moreover, S2

2, S2
4 ∈ L(α).

Assume that n = qk,` with k ≥ 2 and 0 < ` ≤ ak. By Proposition 4.2.3, the
point {−nα} is the point closest to 0 on the side opposite to the point {−qk−1α}.
Thus either {−(n + 1)α} ∈ [u] or {−(n + 1)α} ∈ [v]. Assume by symmetry
that {−(n + 1)α} ∈ [u]. This means that the word u is right special, proving
(ii). Further, the endpoint of [u] that does not equal 1− α must be after a rotation
the next closest point to 0 on the side opposite to the point {−qk−1α}. Thus by
Proposition 4.2.3, we have [u] = I(−(qk,`−1 + 1)α, 1− α), and consequently [v] =
I(1− α,−(qk−1 + 1)α).

Let x = {(−(qk,`−1 + 1)α} and y = {−(qk−1 + 1)α}. Since the points x and y
are on the opposite sides of the point 1− α and the points {x + α} and {y+ α} are
on the opposite sides of the point 0, it follows that u begins with ab and v begins
with ba for distinct letters a and b. Assume on the contrary that u = abzcu′ and
v = bazĉv′ for some letter c. In particular, |z| ≤ n− 3. This means that the point
x′ = {x + (|z|+ 2)α} is in [c] and the point y′ = {y + (|z|+ 2)α} is in [ĉ]. It must
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be that c = a and ĉ = b as otherwise the point x′− α would be in [a] and the point
y′ − α would be in [b] contradicting the choice of z. Since α is irrational, either x′

is closer to 1− α than x or y′ is closer to 1− α than y.
Suppose that the point x′ is closer to 1− α than the point x. Since x′ is on the

same side of the point 1− α as x, it follows that

‖x′ + α‖ = ‖(qk,`−1 − |z| − 2)α‖ < ‖qk,`−1α‖ = ‖x + α‖.

Because qk,`−1 − |z| − 2 < qk,`−1, we must have qk,`−1 − |z| − 2 ≤ 0 by Propo-
sition 4.2.3. However, since ‖qk,`−1α‖ = ‖−qk,`−1α‖, it follows from Proposi-
tion 4.2.3 that |z| + 2 − qk,`−1 = mqk−1 for some integer m such that m ≥ 1.
Therefore |z| + 2 ≥ qk,`−1 + qk−1 = qk,` = n. This is, however, a contradiction
since |z| ≤ n− 3.

Suppose then that the point y′ is closer to 1− α than the point y. Similar to
above, it follows that

‖y′ + α‖ = ‖(qk−1 − |z| − 2)α‖ < ‖qk−1α‖ = ‖y + α‖.

Again, it must be that qk−1 − |z| − 2 ≤ 0. Since ‖qk−1α‖ = ‖−qk−1α‖, it follows
from (4.7) that |z| + 2− qk−1 ≥ qk. Therefore |z| + 2 ≥ qk + qk−1 > n. This is
again a contradiction with the fact that |z| ≤ n− 3.

Thus we conclude that u = abw and v = baw for some word w proving (i).
As n = qk,`, it must be that the right special word of length n equals s̃k,`. Since
u and v are conjugate by Corollary 4.6.6 (v), Corollary 4.6.6 (iii) implies that if
` = ak, then u2, v2 ∈ L(α). Suppose that ` 6= ak. By Corollary 4.6.6 (iv), the word
sk,` occurs as a square in L(α). Since L(α) is mirror-invariant, also u2 ∈ L(α).
Therefore from Corollary 4.6.6 (iv), it follows that |[u]| = ‖qk,`−1α‖ = |[sk,`]|. Now
[v] = I(1− α,−(qk−1 + 1)α), so |[v]| = ‖qk−1α‖ 6= |[u]|. Thus Corollary 4.6.6 (iv)
implies that v2 /∈ L(α). Hence (iii) and (iv) are proved.

Proof of Theorem 4.8.8. If |w| = 1, then clearly w = 0 = s̃0, so the claim holds. We
may thus focus on the case |w| > 1.

Suppose that a square w2 in L(α) with w primitive satisfies the square root
condition. By Corollary 4.8.10, the interval [w] has 1− α as an endpoint. More-
over, Proposition 4.6.1 implies that |w| ∈ Q+

α . Thus from Proposition 4.8.11, it
follows that w = s̃ or w = L(s̃ ) and s̃ 2 ∈ L(α), where s is the (semi)standard
word of length |w|. Moreover, by Proposition 4.8.11, L(s̃ )2 ∈ L(α) if and only if
|w| ∈ Qα. Hence w ∈ RStand+(α) ∪ L(RStand(α)).

Suppose then that w ∈ RStand+(α)∪ L(RStand(α)). Notice first that L(w) has
the same number of letters 0 as w, so w is conjugate to L(w) by Corollary 4.6.6
(v). Therefore it follows from Corollary 4.6.6 that w2 ∈ L(α). Let u and v be
the factors of length |w| whose associated intervals have 1− α as an endpoint.
By Proposition 4.8.11, the word u must be right special and v = L(u). Since the
right special factor of length |w| is unique, either w = u or L(w) = u. Hence the
interval [w] has 1− α as an endpoint. Then w2 clearly satisfies the square root
condition.
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4.8.4 Characterization by a Word Equation

It turns out that the squares of slope α satisfying the square root condition have
also a different characterization in terms of specific solutions of the word equation

X2
1X2

2 · · ·X2
n = (X1X2 · · ·Xn)

2 (4.23)

in the language L(α). We are interested only in the solutions of (4.23) where all
words Xi are minimal square roots (4.20), i.e., roots of minimal squares. Thus we
give the following definition.

Definition 4.8.12. A nonempty word w is a solution to (4.23) if w can be factorized
as a product of minimal square roots, w = X1X2 · · ·Xn, that satisfy the word
equation (4.23). The solution is trivial if X1 = X2 = . . . = Xn and primitive if w
is primitive. The word w is a solution to (4.23) in a language L if w is a solution to
(4.23) and w2 ∈ L.

All minimal square roots of slope α are trivial solutions to (4.23). One example
of a nontrivial solution w is S2S1S4 in the language of the Fibonacci word since

w2 = (01010)2 = (01)2 · 02 · (10)2 = S2
2S2

1S2
4.

Notice that in the language of any Sturmian word there are only finitely many
trivial solutions as the index of every factor is finite.

Observe that the factorization of a word as product of minimal squares is
unique. Indeed, if X2

1 · · ·X2
n = Y2

1 · · ·Y2
m, where the squares X2

i and Y2
i are min-

imal, then either X2
1 is a prefix of Y2

1 or vice versa. Therefore by minimality
X2

1 = Y2
1 , that is, X1 = Y1. The uniqueness of the factorization follows.

Our aim is to complete the characterization of Theorem 4.8.8 as follows.

Theorem 4.8.13. Let w ∈ L(α) with w primitive. The following are equivalent:

(i) w is a primitive solution to (4.23) in L(α),

(ii) w2 satisfies the square root condition,

(iii) w ∈ RStand+(α) ∪ L(RStand(α)).

For later use in Subsection 4.8.7, we define the language L(a, b).

Definition 4.8.14. The language L(a, b) consists of all factors of the infinite words
in the language

(10a+1(10a)b + 10a+1(10a)b+1)ω = (S5 + S6)
ω.

Observe that by Proposition 4.8.2, every word in L(a, b) is a factor of some
optimal squareful word with parameters a and b. Moreover, if we define α =
[0; a+ 1, b+ 1, . . .], then L(α) ⊆ L(a, b).

Definition 4.8.15. The language Π(a, b) consists of all nonempty words in L(a, b)
that can be factorized as products of the minimal squares (4.20).



118 Sturmian Words

Let w ∈ Π(a, b), that is, w = X2
1 · · ·X2

n for minimal square roots Xi. Then we
can define the square root

√
w of w by setting

√
w = X1 · · ·Xn.

We need two technical lemmas. Their proofs are straightforward case-by-case
analysis. The statement of Lemma 4.8.16 has a technical condition for later use in
Subsection 4.8.7, which is perhaps better understood if the reader first reads the
proof of Lemma 4.8.17 up to the point where Lemma 4.8.16 is invoked.

Lemma 4.8.16. Let u and v be words such that

• u is a nonempty suffix of S6,

• |v| ≥ |S5S6|,

• v begins with xy for distinct letters x and y,

• uv ∈ L(a, b) and L(v) ∈ L(a, b).

Suppose there exists a minimal square X2 such that |X2| > |u| and X2 is a prefix of uv
or uL(v). Then there exist minimal squares Y2

1 , . . ., Y2
n such that X2 and Y2

1 · · ·Y2
n are

prefixes of uv and uL(v) of the same length and X = Y1 · · ·Yn.

Proof. Let Z2 be a minimal square such that |Z2| > |u| and Z2 is a prefix of uv
or uL(v). It is not obvious at this point that Z exists but its existence becomes
evident as this proof progresses. By symmetry, we may assume that Z2 is a prefix
of uv. To prove the claim, we consider different cases depending on the word Z.

Case A. Z = S1 = 0. Since u is a nonempty suffix of S6 and |Z2| > |u|, it
must be that u = 0. As v begins with 0, we see that v begins with 01 by assump-
tion. Since v ∈ L(a, b) and |v| ≥ |S6|, the word v begins with either 010a10a or
010a+110a. In the latter case, the word L(v) would begin with 10a+21 contradict-
ing the assumption L(v) ∈ L(a, b). Hence v begins with 010a10a. Therefore uv
has 0010a10a as a prefix, that is, uv begins with S2

1S2
4. Moreover, the word uL(v)

has the word S2
3 = 010a+110a as a prefix. Since S3 = S1S4, the conclusion follows.

Case B. Z = S2 = 010a−1. If u = 0, then the word v has 10a10a as a prefix
and, consequently, L(v) has 10a−110a as a prefix contradicting the assumption
L(v) ∈ L(a, b). Therefore by the assumptions that u is a nonempty suffix of S6
and |Z2| > |u|, it follows that u = 010a. Thus v has 10a as a prefix. Using the fact
that L(v) ∈ L(a, b), we see that v begins with 10a+1 and L(v) begins with 010a.
Hence uv has S2

2S2
1 as a prefix, and uL(v) has S2

3 as a prefix. Since S2S1 = S3, we
conclude, as in the previous case, that the conclusion holds.

Case C. Z = S3 = 010a. Using again the fact that u is a suffix of S6 and
|Z2| > |u|, we see that either u = 0 or u = 010a. In the first case, the word v
begins with 10a+110a and L(v) begins with 010a10a. Hence the word uL(v) has
S2

1S2
4 as a prefix. As S1S4 = S3, the conclusion follows. Let us then consider the

other case. Now L(v) begins with 10a+1, so the word uL(v) has S2
2S2

1 as a prefix.
Again, the conclusion follows since S2S1 = S3.

Case D. Z = S4 = 10a. Now the only option is that u = 10a. Using the
fact that v ∈ L(a, b), we see that v cannot begin with 10a1, so v must have 10a+1

as a prefix. Further, since |v| ≥ |S6|, it must be that S6 is a prefix of v. If S61
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would be a prefix of v, then the word L(v) would have the word (10a)b+21 as a
factor contradicting the fact that L(v) ∈ L(a, b). Thus S60 is a prefix of v. Since
v ∈ L(a, b) and |v| ≥ |S5S6|, we see that S60(10a)b+1 = S2

510a is a prefix of v.
Consequently, the word L(v) begins with 0(10a)b+110a+1(10a)b+1, so uL(v) has
S2

6 as a prefix. Assume first that b is odd. It is straightforward to see that now

0(10a)b10a+1(10a)b+1 = (S2
2)

(b+1)/2S2
1(S

2
4)

(b+1)/2.

Thus for the prefix 10aS510a of uv, we have

10aS2
510a = S2

4(S
2
2)

(b+1)/2S2
1(S

2
4)

(b+1)/2.

As S6 = S4S(b+1)/2
2 S1S(b+1)/2

4 , the conclusion follows as before. Assume then
that b is even. It is now easy to show that

0(10a)b10a+1(10a)b+1 = (S2
2)

b/2S2
3(S

2
4)

b/2.

Therefore, we have

10aS2
510a = S2

4(S
2
2)

b/2S2
3(S

2
4)

b/2.

Since S6 = S4Sb/2
2 S3Sb/2

4 , the conclusion again follows.
Case E. Z = S5 = 10a+1(10a)b. Now either u = 10a or u = 10a+1(10a)b+1.

In the first case, the word v must begin with 0(10a)b10a+1(10a)b. However, this
implies that L(v) begins with 10a+1(10a)b−110a+1(10a)b contradicting the fact
that L(v) ∈ L(a, b). Consider then the latter case, where v begins with 0(10a)b.
As L(v) ∈ L(a, b) and |v| ≥ |S6|, it must be that L(v) begins with 10a+1(10a)b+1.
Hence the word uL(v) has S2

6 as a prefix. Since the word v begins with 0(10a)b+2,
the word uv has S2

5S2
4 as a prefix. The conclusion follows as S5S4 = S6.

Case F. Z = S6 = 10a+1(10a)b+1. There are two possibilities: either u = 10a

or u = 10a+1(10a)b+1. In the first case v begins with 0(10a)b+110a+1(10a)b+1,
so L(v) begins with 10a+1(10a)b10a+1(10a)b+1. The word uL(v) has the word
S2

40(10a)b10a+1(10a)b+1 as a prefix. Proceeding as in the Case D, depending on
the parity of b, we see that the conclusion holds. Consider then the latter case,
where u = 10a+1(10a)b+1. The word v must begin with u, so L(v) has 0(10a)b+2

as a prefix. Clearly the word uL(v) has S2
5S2

4 as a prefix. As S6 = S5S4, the
conclusion follows.

A more intuitive way of stating Lemma 4.8.16 is that under the assumptions
of the lemma swapping two adjacent and distinct letters that do not occur as a
prefix of a minimal square affects a product of minimal square only locally and
does not change its square root.

Lemma 4.8.17. Let w be a primitive solution to (4.23) having the word 10a+1(10a)b+1

as a suffix such that w2, L(w) ∈ L(a, b). Then wL(w) ∈ Π(a, b) and
√

wL(w) = w.

Proof. Recall that S6 = 10a+1(10a)b+1. If w = S6, then it is easy to see that
wL(w) = S2

5S2
4 and w = S5S4, so the claim holds. We may thus suppose that S6 is

a proper suffix of w.
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Since w is a solution to (4.23), we have w2 = X2
1 · · ·X2

n and w = X1 · · ·Xn for
some minimal square roots Xi. It must be that n > 1 as if n = 1 then w = X1,
and it is impossible for S6 to be a proper suffix of w. Assume for a contradiction
that X1 = S1. Since X1X2 is a prefix of w2, it follows that X2 begins with the
letter 0. If X2 6= S1, then X1X2 begins with 001 but X2

1X2
2 begins with 000, which

is impossible. Hence X2 = S1, and by repeating the argument, it follows that
Xk = S1 for all k such that 1 ≤ k ≤ n. Thus w cannot have S6 as a suffix, so we
conclude that X1 6= S1. Hence w always begins with 01 or 10.

We show that |X2
1 | < |w|. Assume on the contrary that |X2

1 | ≥ |w|. Since w has
the word S6 as a suffix, it follows that S6 is a factor of X2

1 . Hence X1 is one of the
words S5, S6 or S3 (if b = 0). If X1 = S5, then as X2

1 = 10a+1(10a)b10a+1(10a)b, the
word S6 occurs in X2

1 only as a prefix. Thus w = S6 contradicting the fact that S6
is a proper suffix of w. If X1 = S6, then since X2

1 = 10a+1(10a)b+110a+1(10a)b+1,
the word S6 occurs in X2

1 both as a prefix and as a suffix. Since w 6= S6, it must
be that w = X2

1 contradicting the primitivity of w. Let finally b = 0 and X1 = S3.
Now X2

1 = 010a+110a, so S6 occurs in X2
1 as a suffix. Hence w = X2

1 contradicting
again the primitivity of w.

Now there exists a maximal r such that 1 ≤ r < n and X2
1 · · ·X2

r is a prefix of
w. Actually X2

1 · · ·X2
r is a proper prefix of w, as otherwise w2 = (X2

1 · · ·X2
r )

2 =
(X1 · · ·XrX1 · · ·Xr)2, so w = (X1 · · ·Xr)2, contradicting the primitivity of w.
Thus when factorizing wL(w) and w2 as products of minimal squares, the first
r squares are equal. Let u be the nonempty word such that w = X2

1 · · ·X2
r u. By

the definition of the number r, we see that u is a proper prefix of X2
r+1. Suppose

for a contradiction that |u| > |S6|. It follows that u has S6 as a proper suffix. This
leaves only the possibilities that Xr+1 is either of the words S5 or S6. However, if
Xr+1 = S5, then S6 cannot be a proper suffix of u, and if Xr+1 = S6, then r is not
maximal. We conclude that |u| ≤ |S6|.

Next we show that w must satisfy |w| ≥ |S5S6|. Suppose first that w begins
with the letter 0. Then as S6 is a proper suffix of w and w2 ∈ L(a, b), it must be
that w begins with 0(10a)b+1. Suppose that this prefix overlaps with the suffix
S6. Then clearly w = 0(10a)b10a+1(10a)b+1 = (0(10a)b+1)2 contradicting the
primitivity of w. If the prefix 0(10a)b+1 does not overlap with the suffix S6, then
|w| ≥ |S5S6|. Assume then that w begins with the letter 1. Similar to above, the
word w must begin with 10a+1(10a)b+1. In this case necessarily |w| ≥ |S5S6|.

Finally, we can apply Lemma 4.8.16 to the words u and w with X = Xr+1. We
obtain minimal squares Y2

1 , . . ., Y2
m such that Y2

1 · · ·Y2
m is a prefix of uL(w) and

and Y1 · · ·Ym = Xr+1 · · ·Xr+t for some positive integer t. Thus

wL(w) = X2
1 · · ·X2

r Y2
1 · · ·Y2

mX2
r+t+1 · · ·X2

n and

w = X1 · · ·Xn = X1 · · ·XrY1 · · ·YmXr+t+1 · · ·Xn.

The claim is proved.

Proposition 4.8.18. Let w ∈ RStand+(α) ∪ L(RStand(α)). Then the word w is a
primitive solution to (4.23) in L(α).
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Proof. Notice that w2 ∈ L(α) by Corollary 4.6.6. Suppose first that |w| < |S6|,
where S6 = s̃3,1 = 10a+1(10a)b+1. Clearly the minimal square roots S1, . . ., S5
are solutions to (4.23), so we are left with the case where w = s̃2,` = 0(10a)` with
1 < ` ≤ b+ 1. It is straightforward to see that if ` is even, then

w2 = (S2
2)

`/2S2
1(S

2
4)

`/2 and w = S`/2
2 S1S`/2

4 .

If ` is odd, then

w2 = (S2
2)

(`+1)/2S2
3(S

2
4)

(`+1)/2 and w = S(`+1)/2
2 S3S(`+1)/2

4 .

Hence w is a solution to (4.23).
We may thus suppose that |w| ≥ |S6|, so w has S6 as a suffix. We proceed by

induction. Now either w = s̃k,` with k ≥ 3 and 0 < ` ≤ ak or L(w) = s̃k with
k ≥ 3. We assume that the claim holds for every word satisfying the hypotheses
that are shorter than w. Consider first the case w = s̃k,` with k ≥ 3 and 0 < ` ≤ ak.
By the fact that s̃k−1 s̃k−2 = L(s̃k−2)s̃k−1, we obtain that

w2 = s̃k−2 s̃ `k−1 s̃k−2 s̃ `k−1 = s̃k−2 s̃ `−1
k−1 L(s̃k−2)s̃ `−1

k−1 · s̃
2
k−1 = s̃k,`−1L(s̃k,`−1) · s̃ 2

k−1.

Now if k = 3 and ` = 1, then the conclusion holds as s̃3,1 = S6 is a minimal
square root. Hence we may assume that either k > 3 or k = 3 and ` > 1. Since
s̃k−1 is a solution to (4.23), we have s̃ 2

k−1 = X2
1 · · ·X2

n and s̃k−1 = X1 · · ·Xn for
some minimal square roots Xi. In other words,

s̃ 2
k−1 ∈ Π(a, b) and

√
s̃ 2

k−1 = s̃k−1.

Since |s̃k,`−1| ≥ |S6|, with an application of Lemma 4.8.17, we obtain that

s̃k,`−1L(s̃k,`−1) ∈ Π(a, b) and
√

s̃k,`−1L(s̃k,`−1) = s̃k,`−1.

Thus w2 ∈ Π(a, b) and

√
w2 =

√
s̃k,`−1L(s̃k,`−1)

√
s̃ 2

k−1 = s̃k,`−1 s̃k−1 = w,

so w is a solution to (4.23).
Consider next the case where w = L(s̃k) for some integer k such that k ≥ 3.

Similar to above,

w2 = L(s̃k−2)s̃
ak
k−1L(s̃k−2)s̃

ak
k−1

= L(s̃k−2)s̃
ak+1
k−1 s̃k−2 s̃ ak−1

k−1

= L(s̃k−2)s̃k−1 s̃k−3 s̃ ak−1
k−2 s̃ ak−1

k−1 s̃k−2 s̃ ak−1
k−1

= L(s̃k−2)s̃k−1 s̃k−3 s̃ ak−1−1
k−2 · s̃ 2

k,ak−1

= s̃k−1 s̃k−2 s̃k−3 s̃ ak−1−1
k−2 · s̃ 2

k,ak−1

= s̃k−1L(s̃k−1) · s̃ 2
k,ak−1.
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If k > 3, then the claim follows using the induction hypothesis and Lemma 4.8.17
as above. In the case k = 3, we have

s̃k−1L(s̃k−1) ∈ Π(a, b) and
√

s̃k−1L(s̃k−1) = s̃k−1.

Namely, it is not difficult to see that if b is even, then

s̃k−1L(s̃k−1) = (S2
2)

1+b/2S2
1(S

2
4)

b/2 and s̃k−1 = S1+b/2
2 S1Sb/2

4 ,

and if b is odd, then

s̃k−1L(s̃k−1) = (S2
2)

(b+1)/2S2
3(S

2
4)

(b−1)/2 and s̃k−1 = S(b+1)/2
2 S3S(b−1)/2

4 .

Thus w is a solution to (4.23) also in the case k = 3.

Notice that a word w in the set L(RStand+(α)) \ L(RStand(α)) is a solution to
(4.23) but not in the languageL(α). Rather, w is a solution to (4.23) inL(β), where
β is a suitable irrational such that L(w) is a reversed standard word of slope β.

From Proposition 4.8.18, we conclude the following interesting fact.

Corollary 4.8.19. There exist arbitrarily long primitive solutions of (4.23) in L(α).

It was known earlier that the word equation (X2
1 · · ·X2

n) = X2
1 · · ·X2

n has non-
periodic solutions (in the most general sense of the word solution) [79], but ac-
cording to my knowledge, no large families of nonperiodic solutions have been
identified until now. Word equations of the type Xk

1 · · ·Xk
n = (X1 · · ·Xn)k have

been considered by Štěpán Holub [78, 79, 80].
We can now prove Theorem 4.8.13.

Proof of Theorem 4.8.13. By Proposition 4.8.18 and Theorem 4.8.8, it is sufficient to
prove that (i) implies (ii).

Suppose that w is a solution to (4.23) in L(α). Write w2 as a product of min-
imal squares: w2 = X2

1X2
2 · · ·X2

n, and let ρ ∈ [w2]. Then the word sρ,α begins
with X2

1X2
2 · · ·X2

n, so by Theorem 4.8.4, the word √sρ,α = sψ(ρ),α begins with
X1X2 · · ·Xn. Therefore ψ(ρ) ∈ [X1X2 · · ·Xn] = [w]. Thus w2 satisfies the square
root condition.

4.8.5 Detailed Combinatorial Description of the Square Root Map

Recall from Subsection 4.8.2 that the square root
√

s of a Sturmian word s has the
same factors as s. The proof of this result was dynamical; we used the special
mapping ψ on the circle. In this section, we describe combinatorially why the
language is preserved; we give a location for any prefix of

√
s in s. As a side

product, we are able to describe when a Sturmian word is uniquely factorizable
as a product of squares of reversed (semi)standard words.

Let us begin with an introductory example. Recall from Subsection 4.8.2 the
square root of the Fibonacci word f:

f = (010)2(100)2(10)2(01)202(10010)2(01)2 · · · ,
√

f = 010 · 100 · 10 · 01 · 0 · 10010 · 01 · · · .



4.8. A Square Root Map on Sturmian Words 123

Let X1 = 010 and X2 = 100 · 10 · 01 · 0 · 10010 · 01; we have |X1| = 3 and |X2| = 13.
Obviously the square root X1 of (010)2 occurs as a prefix of f. Equally clearly, the
word 010 · 100, the square root of (010)2(100)2, occurs, not as a prefix, but after
the prefix X1 of f. Thus the position of the first occurrence of 010 · 100 shifted
|X1| positions from the position of the first occurrence of X1. However, when
comparing the position of the first occurrence of

√
(010)2(100)2(10)2 with the

first occurrence of 010 · 100, we see that there is no further shift. By further in-
spection, the word

√
(010)2(100)2(10)2(01)202(10010)2 occurs for the first time

at position |X1| of f. This is no longer true for the first seven minimal squares:
the first occurrence of X1X2 is at position |X1X2| of f. The amount of shift from
the previous position |X1| is |X2|; observe that both of the numbers |X1| and |X2|
are Fibonacci numbers. Thus the amount of shift was exactly the length of the
square roots added after observing the previous shift. As an observant reader
might have noticed, both of the words X1 and X2 are reversed standard words,
or equivalently, primitive solutions to (4.23). Repeating similar inspections on
other Sturmian words suggests that there is a certain pattern to these shifts and
that knowing the pattern would make it possible to locate prefixes of

√
s in the

Sturmian word s. Thus it makes very much sense to “accelerate” the square root
map by considering squares of solutions to (4.23) instead of just minimal squares.
Next we make these somewhat vague observations more precise.

Every Sturmian word has a solution of (4.23) as a square prefix. Next we
aim to characterize Sturmian words having infinitely many solutions of (4.23) as
square prefixes. The next two lemmas are key results towards such a characteri-
zation.

Lemma 4.8.20. Consider the reversed (semi)standard word s̃k,` of slope α with k ≥ 2
and 0 < ` ≤ ak. The set [s̃k,`] \ {1− α} equals the disjoint union ∞⋃

i=0

ak+2i⋃
j=1

[s̃ 2
k+2i,j]

 \ `−1⋃
i=1

[s̃ 2
k,i].

Analogous representations exist for the sets [s̃0] \ {1− α} and [s̃1] \ {1− α}.

To put it more simply: for each intercept ρ such that ρ 6= 1− α, there exists
a unique reversed (semi)standard word w such that ρ ∈ [w2]. To illustrate the
proof, we begin by giving a proof sketch.

Proof Sketch. Consider as an example the interval [0]. It is easy to see that [02] =
I(0,−2α) = I(0,−(q0 + 1)α), so [0] = [02] ∪ I(−(q0 + 1)α, 1− α). The interval
I(−(q0 + 1)α, 1− α) is the interval of the factor s̃2,1. Therefore [0] = [s̃ 2

0 ] ∪ [s̃2,1].
Since s̃ 2

2,1 ∈ L(α), the interval [s̃ 2
2,1] splits into two parts: [s̃2,1] = [s̃ 2

2,1] ∪ J. It is
straightforward to show that J = I(−(q2,1 + 1)α, 1− α). Again, the interval J is
the interval of the factor w that equals either s̃2,2 or s̃4,1, depending on the partial
quotient a2. Therefore [0] = [s̃ 2

0 ] ∪ [s̃ 2
2,1] ∪ [w]. This process can be repeated for

the interval [w] and indefinitely after that. The very same idea can be applied to
any interval [s̃k,`].
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Proof of Lemma 4.8.20. Consider the lengths of the reversed (semi)standard words
beginning with the same letter as s̃k,`. Out of these lengths, we can form the
unique increasing sequence (bn) such that b1 = qk,`−1. If we set s1 = s̃k,` and J1 =
I(−(b1 + 1)α, 1− α), then based on the observations made the proof of Proposi-
tion 4.8.11, we see that J1 = [s1]. The interval J1 is split by the point {−(b2 + 1)α},
where b2 = qk,`. It must be that [s2

1] = I(−(b1 + 1)α,−(b2 + 1)α). Otherwise
[s2

1] = [s1] ∩ R−b2([s1]) = I(−(b2 + 1)α, 1− α), so the points {−(b1 + b2)α} and
{−b1α} are on the opposite sides of 0. Furthermore, ‖(b1 + b2)α‖ equals the
distance between the points {−b1α} and {−b2α}, so ‖(b1 + b2)α‖ = ‖qk−1α‖.
Since the point {−qk−1α} is also on the side opposite to {−b1α}, it follows that
qk−1 = b1 + b2, which is obviously false. Hence the interval of s2, the unique
reversed (semi)standard word of length b3 beginning with the same letter as s1,
is J2, where J2 = J1 \ [s2

1] = I(−(b2 + 1)α, 1− α). By repeating these observa-
tions when n > 1, we see that the interval Jn is split by the point {−(bn+1 + 1)α}
and that [s2

n] = I(−(bn + 1)α,−(bn+1 + 1)α). Then there is a unique reversed
(semi)standard word sn+1 such that [sn+1] = I(−(bn+1 + 1)α, 1− α) = Jn \ [s2

n];
we set Jn+1 = [sn+1]. By the definition of the sequence (bn), the words sn+1 and
s1 begin with the same letter. This yields a well-defined sequence (Jn) of nested
subintervals of J1. It is clear that |Jn| → 0 as n→ ∞. It follows that

[s̃k,`] ∪ {1− α} = J1 ∪ {1− α} =
∞⋃

n=1

[s2
n] ∪ {1− α}.

The sets [s2
n] are by definition disjoint. The conclusion follows since the indexing

in the claim is just another way to express the reversed (semi)standard words
having lengths from the sequence (bn).

The above proof works as it is for the cases s̃0 and s̃1; only minor adjustments
in notation are needed.

Lemma 4.8.21. Let u ∈ RStand+(α) and v ∈ RStand+(α) ∪ L(RStand+(α)). Then
u2 is never a proper prefix of v2.

Proof. If v ∈ RStand+(α) and |u| 6= |v|, then by Lemma 4.8.20 the intervals [u2]
and [v2] are disjoint. Hence the word u2 can never be a proper prefix of v2. As-
sume then that v ∈ L(RStand+(α)). If |v| ≤ |s̃1|, then v2 is a minimal square,
so it is impossible for u2 to be a proper prefix of v2. Suppose that |v| = |s̃k,`|
with k ≥ 2 and 0 < ` ≤ ak. As in the proof of Proposition 4.8.11, we have
[v] = I(−(qk−1 + 1)α, 1− α). If u begins with the same letter as v and |u| < |v|,
then |u| ≤ |s̃k−1|. It follows, as in the proof of Lemma 4.8.20, that the distance
between 1 − α and either of the endpoints of the interval [u2] must be at least
‖qk−1α‖. Hence the intervals [v] and [u2] are disjoint, so the word u2 is not a
proper prefix of v2.

Let s be a fixed Sturmian word of slope α. Since the index of a factor of a
Sturmian word is finite, Lemma 4.8.21 and Theorem 4.8.13 imply that if s has
infinitely many solutions of (4.23) as square prefixes then no word in RStand+(α)
is a square prefix of s. We have now the proper tools to prove the following result.
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Proposition 4.8.22. Let sρ,α be a Sturmian word of slope α. Then sρ,α begins with a
square of a word in RStand+(α) if and only if ρ 6= 1− α.

Proof. If ρ 6= 1− α, then ρ ∈ [s̃0] \ {1− α} or ρ ∈ [s̃1] \ {1− α}. Thus by applying
Lemma 4.8.20 to [s̃0] \ {1− α} or [s̃1] \ {1− α}, we see that the word sρ,α begins
with a square of a word in RStand+(α).

Suppose then that ρ = 1− α. Then sρ,α ∈ {01cα, 10cα}. Recall that s2k = P2k10
and s2k+1 = Q2k+101 for some palindromes P2k and Q2k+1 for every k ≥ 1. As
cα = limk→∞ sk, it follows that 01cα = limk→∞ s̃2k and 10cα = limk→∞ s̃2k+1.
Hence by Lemma 4.8.21, the word sρ,α cannot have as a prefix a square of a word
in RStand+(α).

It follows that if s has infinitely many solutions of (4.23) as square prefixes,
then s ∈ {01cα, 10cα}.

Next we take one extra step and characterize when s can be factorized as a
product of squares of words in RStand+(α).

Theorem 4.8.23. A Sturmian word s of slope α can be factorized as a product of squares
of words in RStand+(α) if and only if s is not of the form X2

1X2
2 · · ·X2

nc, where Xi ∈
RStand+(α) and c ∈ {01cα, 10cα}. If s is a product of squares in RStand+(α), then this
product is unique.

Proof. This is a direct consequence of Proposition 4.8.22 and Lemma 4.8.21.

Suppose that s /∈ {01cα, 10cα}. Then the Sturmian word s has only finitely
many solutions of (4.23) as square prefixes. We call the longest solution maximal.
Observe that the maximal solution is not necessarily primitive since any power of
a solution to (4.23) is also a solution. Sturmian words of slope α can be classified
into two types.

Type A. Sturmian words s of slope α that can be factorized as products of
maximal solutions to (4.23). In other words, it can be written that s = X2

1X2
2 · · · ,

where Xi is the maximal solution occurring as a square prefix of the word Thi (s),
where hi = |X2

1X2
2 · · ·X2

i−1|.
Type B. Sturmian words s of slope α which are of the form s = X2

1X2
2 · · ·X2

nc,
where c ∈ {01cα, 10cα} and the words Xi are maximal solutions as above.

Proposition 4.8.22 and Lemma 4.8.21 imply that the words Xi in the above
definitions are uniquely determined and that the primitive root of a maximal
solution is in RStand+(α). Consequently, a maximal solution is always right spe-
cial. When finding the factorization of a Sturmian word as a product of squares of
maximal solutions, it is sufficient to detect at each position the shortest square of
a word in RStand+(α) and take its largest even power occurring in that position.

Keeping the Sturmian word s of slope α fixed, we define two sequences (µk)
and (λk) associated to s. We set µ0 = λ0 = ε. Following the notation above, we
define, depending on the type of s, as follows.
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(A) If s is of type A, then we set for all k ≥ 1:

µk = X2
1X2

2 · · ·X2
k and

λk = X1X2 · · ·Xk.

(B) If s is of type B, then we set for 1 ≤ k ≤ n:

µk = X2
1X2

2 · · ·X2
k and

λk = X1X2 · · ·Xk,

and we let

µn+1 = X2
1X2

2 · · ·X2
nc and

λn+1 = X1X2 · · ·Xnc.

Compare these definitions with the example in the beginning of this section:
the words X1 and X2 are maximal solutions occurring in the Fibonacci word
(which is of type A).

We are finally in a position to formulate precisely the observations made in
the beginning of this section and state the main result of this section.

Theorem 4.8.24. Let s be a Sturmian word of slope α.
(A) If s is of type A, then
√

s = lim
k→∞

T|λk |(s).

Moreover, the first occurrence of the prefix λk+1 of
√

s is at position |λk| of s for all k ≥ 0.
(B) If s is of type B, then
√

s = T|λn |(s).

Moreover, the first occurrence of the prefix λk+1 with 0 ≤ k ≤ n− 1 is at position |λk|
of s, and the first occurrence of any prefix of

√
s having length greater than |λn| is at

position |λn| of s.
In particular, the word

√
s is a Sturmian word of slope α.

The theorem only states where the prefixes λk of
√

s occur for the first time in
s. For the first occurrence of other prefixes of

√
s, we do not have a guaranteed

location.
To illustrate the theorem, consider next f′, the eighth shift of the Fibonacci

word. If we write under the word f′ each of the corresponding words λk at the
position of their first occurrence, we get the picture in Figure 4.4. Theorem 4.8.24
shows that the nice pattern where the words λk overlap continues indefinitely
and, moreover, that if we replace f′ with any other Sturmian word (of type A), we
obtain a similar picture. Most of the results in this section were motivated by the
discovery of this pattern.

Before proving the theorem we need one more result.
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X2
1 X2

2 X2
3 X2

4 X2
5

f′ : 01001010010100100101001001010010100100101001010010010100100101001010010010100100 · · ·
λ1 : 010
λ2 : 01010010
λ3 : 0101001001010010
λ4 : 01010010010100101001001010010
λ5 : 01010010010100101001001010010010100101001001010010

Figure 4.4: The first occurrences of the words λk in f′. The eighth shift of the
Fibonacci word was chosen since for the Fibonacci word the lengths |λk| grow
very rapidly.

Proposition 4.8.25. Suppose that s is a Sturmian word of type A. Then the word λk is
right special and a suffix of the word µk for all k ≥ 0.

Proof. This proof might be tricky to follow. I advise the reader to keep Figure 4.5
in mind while reading the proof. This picture depicts only the Case A below but
is surely helpful.

The assertion is evident when k = 0. Suppose that k > 0, and assume that
λk is right special and that λk is a suffix of the word µk. It is equivalent to say
that {−(|λk|+ 1)α} ∈ [λk] and [µk] ⊆ R−|λk |([λk]) (evidently 2|λk| = |µk|). We
write simply λ = λk, µ = µk, and X = Xk+1. This proof utilizes only the facts
that µX2 ∈ L(α) and that λ is right special and a suffix of the word µ, not the
structure of the words λ and µ implied by their definitions. Thus without loss of
generality, we may assume that X is primitive. Consequently, X ∈ RStand+(α).
It follows that

[X] = I(−(q + 1)α, 1− α) and

[X2] = [X] ∩ R−|X|([X]) = I(−(q + 1)α,−(|X|+ 1)α) (4.24)

for some nonnegative integer q. Let x = {−(|µ| + 1)α}. It follows from the
hypothesis {−(|λ|+ 1)α} ∈ [λ] that x ∈ R−|λ|([λ]). By (4.24), the point x is an
endpoint of the interval R−|µ|([X]).

Let then y = {−(|µX| + 1)α}. By (4.24), the point y is an endpoint of the
interval R−|µX|([X]) and an interior point of the interval R−|µ|([X]). Suppose
for a contradiction that y /∈ R−|λ|([λ]). Because x /∈ R−|µX|([X]) (otherwise it
would follow that 1− α ∈ R−|X|([X]), which contradicts (4.24)), it follows that
R−|λ|([λ]) ∩ R−|µX|([X]) = ∅. Since

[µk+1] = [µ] ∩ R−|µ|([X]) ∩ R−|µX|([X]),

we have [µk+1] ⊆ R−|µX|([X]). By assumption [µk+1] ⊆ [µ] ⊆ R−|λ|([λ]). Thus
[µk+1] ⊆ R−|λ|([λ]) ∩ R−|µX|([X]), so by the above we are forced to conclude
that [µk+1] = ∅. This is a contradiction since X is chosen in such a way that
[µk+1] = [µX2] 6= ∅. We conclude that y ∈ R−|λ|([λ]).

Now R−|λ|([λX]) = R−|λ|([λ]) ∩ R−|µ|([X]). Since y ∈ R−|λ|([λ]), R−|µ|([X]),
it follows that y ∈ R−|λ|([λX]). Thus R|λ|(y) = {−(|λX| + 1)α} ∈ [λX], so



128 Sturmian Words

x y z
R−|λ|([λ])

R−|µ|([X])

R−|µX|([X])

R−|λ|([λX])

R−|λX|([λX])

R−|µ|([X2])

[µ]

Figure 4.5: A possible arrangement for the intervals in the Case A of the proof of
Proposition 4.8.25. The green color marks the interval [µX] and blue marks the
interval [µX2] = [µk+1].

the word λX is right special. We have two cases depending on the length of the
interval R−|µ|([X]) compared to the length of the interval R−|λ|([λ]).

Case A. R−|µ|([X]) * R−|λ|([λ]). In this case R−|λ|([λX]) = I(x, z), where z is
an endpoint of the interval R−|λ|([λ]). Since y is an interior point of R−|λ|([λX]),
R−|X|(x) = y, and x /∈ R−|λX|([λX]), we obtain that I(y, z) ⊆ R−|λX|([λX]).
Since y is also an interior point of R−|λ|([λ]), we obtain in a similar fashion that
R−|λ|([λ]) ∩ R−|µ|([X2]) = I(y, z). Thus

[µk+1] = [µ] ∩ R−|µ|([X2])

⊆ R−|λ|([λ]) ∩ R−|µ|([X2])

= I(y, z)

⊆ R−|λX|([λX]).

This proves that λX = λk+1 is a suffix of µk+1.
Case B. R−|µ|([X]) ⊆ R−|λ|([λ]). It follows that R−|λ|([λX]) = R−|µ|([X]), so

R−|λX|([λX]) = R−|µX|([X]). Since R−|µ|([X2]) ⊆ R−|µX|([X]), we get that

[µk+1] = [µ] ∩ R−|µ|([X2]) ⊆ [µ] ∩ R−|µX|([X]) ⊆ [µ] ∩ R−|λX|([λX])

proving that also in this case λX = λk+1 is a suffix of µk+1.

Notice that even though λk is right special and always a suffix of µk, it is not
necessary for µk to be right special.

Proof of Theorem 4.8.24. As Sturmian words of type B differ from Sturmian words
of type A essentially only by the fact that the sequence of maximal solutions is
finite, it is in this proof enough to consider the case that s is of type A.

Proposition 4.8.25 says that λk is always a suffix of µk for all k ≥ 0. Since |µk| =
2|λk|, it follows that the word T|λk |(s) has the word λk as a prefix. Therefore√

s = limk→∞ T|λk |(s).
It remains to prove that the first occurrence of λk+1 in s is at position |λk|

of s for all k ≥ 0. It is clear that the first occurrence of λ1 = X1 is at position
|λ0| = 0. Assume that k > 0, and suppose for a contradiction that λk+1 occurs



4.8. A Square Root Map on Sturmian Words 129

µk−1 Xk Xk Xk+1 Xk+1

w w w w

λk−1

λk−1 Xk Xk+1

Figure 4.6: Possible locations for factors in the proof of Theorem 4.8.24.

before the position |λk|. Since λk is a prefix of λk+1, by induction, we see that
λk+1 cannot occur before the position |λk−1|. This means that an occurrence of
XkXk+1 begins in s at position ν such that |µk−1| ≤ ν < |µk−1Xk|; see Figure 4.6.
Observe that s has at position |µk−1| an occurrence of X2

k . Write now Xk = wt

with w ∈ RStand+(α). Since w is primitive, we must have ν = |µk−1|+ r|w| with
0 ≤ r < t. Thus Xk+1 occurs in s at position ν + |Xk| = |µk−1|+ (r + t)|w|. Since
r < t, it follows that either w is a prefix of Xk+1 or Xk+1 is a prefix of w.

Suppose first that w is a prefix of Xk+1; this is the case depicted in Figure 4.6.
If w = Xk+1, then the prefix µk−1X2

k of s is followed by w2. Now w2t+2 is a
solution to (4.23) implying that Xk is not a maximal solution to (4.23). Since this is
contradictory, we infer that |w| < |Xk+1|. Since Xk+1 occurs at position |µk−1|+
(r + t)|w| < |µk| and Xk+1 has w as a prefix, it must be that Xk+1 begins with wa
where a is the first letter of w. Since w is right special and w2 ∈ L(α), it follows
that X2

k+1 begins with w2. Like above, this implies that Xk is not maximal. This is
a contradiction.

Suppose then that Xk+1 is a proper prefix of w. First of all, the word Xk+1
must be primitive as otherwise Xk+1, and consequently also w, would have as
a prefix a square of some word in RStand+(α) contradicting Lemma 4.8.21. The
assumption that Xk+1 is a prefix of w implies that Xk+1 and w begin with the same
letter. Like above, since w is right special and w2 ∈ L(α), it must be that w occurs
after the prefix µk of s. Since also X2

k+1 occurs after the prefix µk, by Lemma 4.8.21,
we conclude that the word w must be a proper prefix of X2

k+1. Observe now that
the assumption that Xk+1 is a proper prefix of w excludes the possibilities that
w = s̃0 = 0 or w = s̃1 = 10a. Therefore w = s̃h,` with h ≥ 2 and 0 < ` ≤ ah.
Because |w| < 2|Xk+1|, we must have |Xk+1| > |s̃h−2|. On the other hand, since
|Xk+1| < |w| and Xk+1 and w begin with the same letter, the only option is that
Xk+1 = s̃h,`′ with 0 < `′ < `. Now

X2
k+1 = (s̃h−2 s̃ `

′
h−1)

2 = s̃h−2 s̃ `
′

h−1L(s̃h−1)s̃h−2 s̃ `
′−1

h−1 ,

so as w is a prefix of X2
k+1, it must be that s̃h−1 = L(s̃h−1). This is a contradiction.

This final contradiction ends the proof.

As a conclusion of this subsection, we study the lengths of the maximal solu-
tions of (4.23). Namely, let s = X2

1X2
2 · · · be a Sturmian word of type A factor-

ized as a product of maximal solutions Xi. Computer experiments suggest that
typically the sequence (|Xi|) is strictly increasing. However, there are examples
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where |Xi| > |Xi+1| for some i. It is natural to ask if the lengths can decrease
significantly or if oscillation is possible. The next proposition describes precisely
under which conditions it is possible that |Xi| > |Xi+1|. Moreover, it rules out
the possibility that the lengths decrease significantly or oscillate.

Proposition 4.8.26. Let s = X2
1X2

2X2
3 · · · be a Sturmian word of type A of slope α

factorized as a product of maximal solutions Xi. If |X1| > |X2|, then X1 = s̃k,` with
k ≥ 2 and 0 < ` ≤ ak − 1, the primitive root of X2 is s̃k−1, and |X3| > |X1|.

Proof. Assume that |X1| > |X2|. Let us first make the additional assumption that
X1 is primitive. In particular, X1 ∈ RStand+(α). Let u be the primitive root of X2.
Then u ∈ RStand+(α) and, moreover, by the assumption |X1| > |X2|, we have
|u| < |X1|. By Proposition 4.8.25, the word λ2 = X1X2 is a suffix of the word
µ2 = X2

1X2
2 . Therefore X1 is a proper suffix of X1X2, so X1X2 = ZX1 for some

nonempty word Z. A standard argument shows that X1 is a suffix of some word
in X+

2 (see, e.g., [90, Proposition 1.3.4]). Consequently, X̃1 is a prefix of a word in
ũ+. As |u| < |X1|, Lemma 4.3.6 implies that X1 = s̃k,` and u = s̃k−1 with k ≥ 2
and 0 < ` ≤ ak.

Suppose now that ` = ak. Then the word X2
1X2

2 contains s̃k−1 s̃k−2 s̃ ak+2
k−1 as a

factor. Thus sak+2
k−1 sk−2sk−1 ∈ L(α). As sk−1 is a prefix of sk−2sk−1, it follows that

sak+3
k−1 ∈ L(α) contradicting Theorem 4.6.5. Therefore ` ≤ ak − 1.

Let us then relax the assumption that X1 is primitive. Let v be the primitive
root of X1, so that X1 = vi for some positive integer i. Consider now the Sturmian
word T(2i−2)|v|(s) = v2X2

2 · · · . By the above arguments, we have v = s̃k,` with
k ≥ 2 and 0 < ` ≤ ak − 1 and the primitive root of X2 is s̃k−1. Further, as ` 6= ak,
it follows from Theorem 4.6.5 that v3 /∈ L(α). Thus i = 1, that is, X1 = s̃k,`.

It remains to show that |X3| > |X1|. Assume on the contrary that |X3| ≤ |X1|.
It is impossible that |X3| < |X2| as the preceding arguments show that then X2
must be reversed semistandard word; however, X2 is a power of the reversed
standard word s̃k−1. Hence by the maximality of X2, we have |X3| > |X2|. Let
X3 = wj with w ∈ RStand+(α) and j ≥ 1. As |X2| < |X3| ≤ |X1|, we see that
|sk−1| < j|w| ≤ |sk,`|.

Assume for a contradiction that |w| < |sk−1|. If w is a reversed semistandard
word, then Theorem 4.6.5 implies that j = 1, so j|w| > |sk−1| cannot hold. Thus
w is a reversed standard word. If w = s̃0 = 0, then clearly j|w| > |sk−1| ≥ |s1|
cannot hold as the index of the factor 0 in L(α) is a1 + 1. Thus w 6= s̃0. Suppose
first that w = s̃k−2. Now

j|w| > |sk−1| = ak−1|sk−2|+ |sk−3|,

so j > ak−1. Since X2
3 ∈ L(α), Theorem 4.6.5 implies that 2j ≤ ak−1 + 2. Therefore

ak−1 + 2 ≥ 2j > 2ak−1

implying that ak−1 = 1. However, if ak−1 = 1, then ak−1 + 2 is odd, so actually
2j < ak−1 + 2. Then ak−1 + 2 > 2j > 2ak−1, so ak−1 < 1; a contradiction. Suppose
then that w = s̃k−3. Now

j|w| > |sk−1| ≥ |sk−2sk−3| = |s
ak−2
k−3 sk−4sk−3| > (ak−2 + 1)|sk−3|,
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so j > ak−2 + 1. Like previously, because X2
3 ∈ L(α), we have 2j ≤ ak−2 + 2 by

Theorem 4.6.5. Like above, we obtain that ak−2 < 0; a contradiction. Similar to
above, we have

|sk−1| ≥ (ak−2 + 1)|sk−3|+ |sk−4| ≥ 2|sk−3|+ |sk−4| > (2ak−3 + 1)|sk−4|.

As 2ak−3 + 1 ≥ ak−3 + 2, we conclude that |sak−3+2
k−4 | < |sk−1|. Therefore by The-

orem 4.6.5, it is impossible that |w| ≤ |sk−4|. In conclusion, it is not possible that
j|w| > |sk−1|. This is a contradiction.

Now |w| > |s̃k−1| (by the maximality of X2 it must be that w 6= s̃k−1). Because
|w| ≤ |s̃k,`|, we have w = s̃k,`′ with 0 < `′ ≤ `. Since ` 6= ak, the word w is
a reversed semistandard word, so by Theorem 4.6.5 we have j = 1. By Proposi-
tion 4.8.25, the word λ3 = X1X2X3 is a suffix of the word µ3 = X2

1X2
2X2

3 . It follows
that s̃k−2 s̃ `+r

k−1 = s̃ `+r−`′
k−1 s̃k−2 s̃ `

′
k−1, where r is an integer such that X2 = s̃ r

k−1. There-
fore the words s̃k−2 and s̃k−1 commute; a contradiction. This final contradiction
proves that |X3| > |X1|.

Corollary 4.8.27. Let s = X2
1X2

2 · · · be a Sturmian word of slope α of type A factorized
as a product of maximal solutions Xi. Then lim infi→∞|Xi| = ∞.

Proof. This follows from Proposition 4.8.26: if |Xi+1| < |Xi| for some i ≥ 1, then
|Xi+2| > |Xi|.

4.8.6 The Square Root of the Fibonacci Word

Here we prove a formula for the square root of the Fibonacci word. To obtain
the formula, we factorize the Fibonacci word as a product of maximal solutions
to (4.23). Moreover, we argue that it seems that no general formula exists for the
square root of a standard Sturmian word.

Recall that the slope of the Fibonacci word is 2− φ, which has continued frac-
tion expansion [0; 2, 1]. The standard words sk of this slope are the finite Fibonacci
words fk. We set

tk =

{
01, if k is even,

10, if k is odd.

We need two lemmas specific to the slope 2− φ.

Lemma 4.8.28. For the Fibonacci words fk, we have

tk fk fk+1 fk+2 = f̃ 2
k+2tk+1

for all k ≥ 0.

Proof. The case k = 0 is verified directly: t0 f0 f1 f2 = 01 · 0 · 01 · 010 = (010)2 · 10 =
f̃ 2
2 t1. Let then k ≥ 1. Recall that there exists a palindrome Pk such that fk = Pk t̃k
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for all k ≥ 1. Now

tk fk fk+1 fk+2 = tkPk t̃k fk+1 fk+2

= f̃k t̃kPk+1 t̃k+1 fk+2

= f̃ktk+1Pk+1 t̃k+1 fk+2

= f̃k f̃k+1tk+1Pk+2 t̃k+2

= f̃k f̃k+1 f̃k+2 t̃k+2

= f̃ 2
k+2tk+1,

which proves the claim.

Lemma 4.8.29. For the Fibonacci words fk, we have

f3k+4 =
k

∏
i=0

f̃ 2
3i+2 · tk+1

for all k ≥ 0.

Proof. If k = 0, then f4 = 01001010 = f̃ 2
2 t1. Let then k ≥ 1. Now

f3k+4 = f3k+3 f3k+2

= f3k+2 f3k+1 f3k+2

= f3k+1 f3k f3k+1 f3k+2

= f3(k−1)+4 f3k f3k+1 f3k+2

=
k−1

∏
i=0

f̃ 2
3i+2 · tk f3k f3k+1 f3k+2,

where the last equality follows by induction. By Lemma 4.8.28, we have

f3k+4 =
k−1

∏
i=0

f̃ 2
3i+2 · f̃ 2

3k+2tk+1 =
k

∏
i=0

f̃ 2
3i+2 · tk+1,

which proves the claim.

As an immediate corollary to Lemma 4.8.29, we obtain the following formula
for the square root of the Fibonacci word.

Theorem 4.8.30. For the Fibonacci word f, we have

f =
∞

∏
i=0

f̃ 2
3i+2 and

√
f = s 1

2 ,2−φ =
∞

∏
i=0

f̃3i+2.

The preceding arguments are very specific to the Fibonacci word. The reader
might wonder if formulas for the square roots of other standard Sturmian words
exist. Surely, for some specific words such formulas can be derived, but I believe
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a4

a3 1 2 3

1 2, 5, 8 2, 4, 7 2, 5, 8
2 2, 3, 6 2, 4, 7 2, 3, 6
3 2, 3, 5 2, 4, 7 2, 3, 5

Table 4.1: How X1, X2, and X3 are affected when a3 and a4 vary in the case that
a1 = 2 and a2 = 1.

a4

a3 1 2 3

1 1 0 1
2 1 0 1
3 0 0 0

Table 4.2: How the first letter of X4 varies when a3 and a4 vary in the case that
a1 = 2 and a2 = 1.

that in general no factorization formula for the square roots of standard Sturmian
words can be given. Let us review some arguments supporting my belief.

Let c = X2
1X2

2 · · · be a standard Sturmian word of slope α factorized as a
product of maximal solutions to (4.23). The word c begins with the word 0a1.
Therefore if a > 1, then X1 = 0ba/2c. Thus if a > 1, then X2 begins with 0 if and
only if a is odd. Because of the asymmetry of the letters 0 and 1 in the minimal
squares of slope α (4.20), the parity of the parameter a greatly influences the re-
maining words Xi. Moreover, it is not just the partial quotient a1 that influences
the factorization. Suppose for instance that a1 = 2 and a2 = 1. Table 4.1 shows
how the values of the partial quotients a3 and a4 affect the words Xi. The cell of
the table tells which squares of reversed standard words the words X1, X2, and
X3 correspond to. For example, if a3 = 2 and a4 = 1, then the standard Sturmian
word of slope [0; 2, 1, 2, 1, . . .] begins with s̃ 2

2 s̃ 2
4 s̃ 2

7 . Table 4.2 tells the first letter of
the corresponding word X2

4 . As can be observed from Table 4.2, the first letter
of X2

4 varies when a3 and a4 vary. Because of the asymmetry, it is thus expected
that slight variation in partial quotients drastically changes the factorization as a
product of maximal solutions to (4.23). Since similar behavior is expected from
the rest of the partial quotients, it seems to me that no nice formula (like, e.g.,
the formula of Theorem 4.8.30) can be given for the square root of a standard
Sturmian word in terms of reversed standard words.

De Luca and Fici proved a nice formula for a certain shift of a standard Stur-
mian word [48, Theorem 18].

Proposition 4.8.31. Let cα be the standard Sturmian word of slope α, where α = [0; a+
1, b+ 1, . . .]. Then

cα = 0a10a−1
∞

∏
k=1

s̃ 2
k .
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As a corollary, we see that the word
√

T2a(cα) = ∏∞
k=1 s̃k is a Sturmian word

of slope α with intercept ψ({(2a+ 1)α}) = aα. We have thus shown that

cα = 0a−1
∞

∏
k=1

s̃k.

In particular, we obtain the well-known result that the infinite Fibonacci word is
a product of the reversed Fibonacci words.

We conclude this subsection by considering another related phenomenon.
Since a Sturmian word of slope α is a product of the six minimal squares of slope
α, we can decode any Sturmian word over an alphabet of six letters. More pre-
cisely, let s be an infinite word that is a product of minimal squares: s = S2

i1
S2

i2
· · ·

with ik ∈ {1, 2, 3, 4, 5, 6}. From s, we obtain the infinite word i1i2 · · · called the
derived word of s. We have the following result conjectured by Gabriele Fici in
the WORDS 2015 conference.

Proposition 4.8.32. The derived word of the Fibonacci word is square-free, that is, it
does not contain squares as factors.

Proof. Assume for a contradiction that the derived word of the Fibonacci word
contains a square. This means that there exists a factor w of f such that w2 ∈
L(f) and w = X2

1 · · ·X2
n for some minimal squares X2

i . Theorem 4.6.5 implies
that |w| is a Fibonacci number. Now, as w2 is a product of minimal squares, we
see that

√
w2 ∈ L(f) because the square root map preserves the language of f.

Therefore (X1 · · ·Xn)2 ∈ L(f). Thus also |X1 · · ·Xn| is a Fibonacci number. Since
|w| = 2|X1 · · ·Xn|, the only possibility is that |w| = 2.13 Since w is a product
of minimal squares, the only option is that w = 00. Thus 04 ∈ L(f), which is a
contradiction.

Obviously the preceding proposition is true for any word in the subshift gen-
erated by the Fibonacci word. Observe that this result does not generalize for
other Sturmian words. It is not difficult to see that if the partial quotients of a
slope α are greater than 1 infinitely often, then it is possible to find a Sturmian
word of slope α such that the corresponding derived word contains infinitely
many squares. Nevertheless, the derived words could have other interesting
properties; I have not studied them further.

4.8.7 A Curious Family of Subshifts

In this subsection, we construct a family of optimal squareful words that are not
Sturmian but are fixed points of the (more general) square root map. Moreover,
we show that a subshift Ω generated by any of the constructed words has a curi-
ous property: for every w ∈ Ω, either

√
w ∈ Ω or

√
w is periodic.

It is evident from Proposition 4.8.2 that Sturmian words are a proper subclass
of optimal squareful words. As Sturmian words have the exceptional property

13The number 2 is the only Fibonacci number that equals a Fibonacci number when divided by two.
This follows from (4.11).



4.8. A Square Root Map on Sturmian Words 135

that their language is preserved under the square root map, it is natural to ask
if other optimal squareful words can have this property. We show that, indeed,
such words exist by an explicit construction. The idea behind the construction is
to mimic the structure of the Sturmian words 01cα and 10cα of slope α. The simple
reason why these words are fixed points of the square root map (thus preserving
the language) is that they have arbitrarily long squares of solutions to (4.23) as
prefixes. Thus to obtain a fixed point of the square root map, it is sufficient to
find a sequence (uk) of solutions to (4.23) with the property that u2

k is a proper
prefix of u2

k+1 for all k ≥ 1. Let us show how such a sequence can be obtained.
Let S be a fixed primitive solution to (4.23) in the language of some Sturmian

word of slope [0; a+ 1, b+ 1, . . .] such that |S| > |S6|. In particular, S has the word
S6 = 10a+1(10a)b+1 as a proper suffix. Recall from the proof of Lemma 4.8.17 that
|S| ≥ |S5S6|. We denote the word L(S) simply by L. Using the word S as a seed
solution, we produce a sequence (γk) of primitive solutions to (4.23) defined by
the recurrence

γ1 = S, γk+1 = L(γk)γ
2
k for k ≥ 2. (4.25)

We need to prove that the sequence (γk) really is a sequence of primitive solutions
to (4.23). Before showing this, let us define

Γ1 = lim
k→∞

γ2k and Γ2 = lim
k→∞

γ2k+1. (4.26)

The limits exist as γ2
k is always a prefix of γk+2. Hence both Γ1 and Γ2 have

arbitrarily long squares of words in the sequence (γk) as prefixes. Observe also
that L(Γ1) = L(Γ2). As there is not much difference between Γ1 and Γ2 in terms
of structure, we let Γ to stand for either of these words.

Taking for granted that the sequence (γk) is a sequence of solutions to (4.23),
we see that

√
Γ = Γ. Notice that we also need to ensure that the word Γ is optimal

squareful for the square root map to make sense.
Next we aim to prove the following proposition.

Proposition 4.8.33. The word γk is a primitive solution to (4.23) in L(a, b) for all
k ≥ 1.

Recall from Subsection 4.8.4 that the language L(a, b) consists of all factors of
the infinite words in the language

(10a+1(10a)b + 10a+1(10a)b+1)ω = (S5 + S6)
ω.

Before we can prove Proposition 4.8.33, we need to know that the words γk
are primitive and that they are factors of some optimal squareful word with pa-
rameters a and b.

Lemma 4.8.34. The word γk is primitive for all k ≥ 1.

Proof. We proceed by induction. By definition γ1 is primitive. Say k ≥ 1, and
suppose for a contradiction that the word γk+1 is not primitive; that is, γk+1 =
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L(γk)γ
2
k = zn for some primitive word z and integer n such that n > 1. If n = 2,

then obviously |γk| must be even, and the suffix of γk of length |γk|/2 must be
a prefix of γk. This contradicts the primitivity of γk. If n = 3, then clearly γk =
L(γk), which is absurd. Hence n > 3, and further |z| < |γk|. As γ2

k is a suffix of
some word in z+, it follows that z = uv, where u is a suffix of γk such that γku−1

is a suffix of some word in z+ and v is a prefix of γk such that v−1γk is in z+. It
follows that vu is a suffix of γk. On the other hand, the word z is a suffix of γk,
so uv = vu. Since z is primitive, the only option is that u is empty. Therefore
γk ∈ z+; a contradiction with the primitivity of γk.

Lemma 4.8.35. We have γk, L(γk) ∈ L(a, b) for all k ≥ 1.

Proof. For a suitable slope α = [0; a+ 1, b+ 1, . . .], either of the words S and L is
a reversed standard word of slope α. Thus by Theorem 4.8.13, both S2 and L2 are
in L(α), so S2, L2 ∈ L(a, b).

First of all, clearly γ1 ∈ L(a, b). Let s = S6, and recall that s = 10a+1(10a)b+1.
Notice that by the assumption |S| > |S6|, both of the words S and L have the word
s as a proper suffix, so we may write S = us for some nonempty word u. Since
s begins with 10a+1 and S2 has sus as a suffix, it follows that us ∈ (S5 + S6)

+.
Now γ2 = LSS = L(u)s(us)2, so using the fact that L ∈ L(a, b), we see that
γ2 ∈ L(a, b). Because L(γ2) = S3 = (us)3 ∈ L(a, b), clearly L(γ2) ∈ L(a, b).
Proceeding by induction, we may assume that k ≥ 2 and γk, L(γk) ∈ L(a, b).
Since γk has either S or L as a prefix, we may write γk = vszs for some words v
and z such that |vs| = |S|. It follows that sz ∈ (S5 + S6)

+. As svs is a suffix of
either S2 or L2, we have sv ∈ (S5 + S6)

+. Therefore svsz ∈ (S5 + S6)
+. Because

L(γk) ∈ L(a, b) and L(γk) = L(vsz)s, we see that L(vsz) is a suffix of some word
in (S5 + S6)

+. As γk+1 = L(vsz)(svsz)2s, we thus see that γk+1 ∈ L(a, b). Then
must the word L(γk+1) also be in L(a, b) as L(γk+1) = (vszs)3 = vsz(svsz)2s.

Notice that without the assumption |S| > |S6|, the conclusion of the preceding
lemma fails to hold. If S = S6 = 10a+1(10a)b+1, then L = 0(10a)b+2 and LS =
0(10a)b+210a+1(10a)b+1. Therefore LS /∈ L(a, b), and consequently γ2 /∈ L(a, b)
because γ2 = LS2.

Proof of Proposition 4.8.33. We proceed by induction. By Lemma 4.8.34, the word
γk is primitive for all k ≥ 1. Lemma 4.8.35 tells that both of the words γk and
L(γk) are in L(a, b) for all k ≥ 1. By definition, both γ1 and L(γ1) are solutions
to (4.23) in L(a, b). We may thus assume that k ≥ 1 and both γk and L(γk) are
solutions to (4.23) in L(a, b). It follows from Lemma 4.8.17 that

γkL(γk) ∈ Π(a, b) and
√

γkL(γk) = γk.

Since L(γk) is a solution to (4.23) in L(a, b), Lemma 4.8.17 also implies that

L(γk)γk ∈ Π(a, b) and
√

L(γk)γk = L(γk).

Because

γ2
k+1 = L(γk)γk · γkL(γk) · γ2

k ,
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we obtain that

γ2
k+1 ∈ Π(a, b) and

√
γ2

k+1 =
√

L(γk)γk

√
γkL(γk)

√
γ2

k = L(γk)γkγk = γk+1.

This proves that γk+1 is a solution to (4.23) in L(a, b). Consider next the word
L(γk+1) = γ3

k . Because (L(γk+1))
2 = (γ2

k)
3, it is evident that

(L(γk+1))
2 ∈ Π(a, b) and

√
(L(γk+1))2 = γ3

k = L(γk+1).

Therefore also L(γk+1) is a solution to (4.23) in L(a, b). The conclusion follows.

As we remarked earlier, we have now proved that Γ is a fixed point of the
square root map. Next we show that the word Γ is aperiodic, linearly recurrent,
and not Sturmian.

Lemma 4.8.36. The word γ2
2 is not a factor of any Sturmian word.

Proof. By definition γ2 = LS2. Write S = abw and L = baw for some word w
and distinct letters a and b. Now γ2

2 = baw(abw)2baw(abw)2, so the word γ2
2 has

the factors awa and bwb. Hence γ2
2 is not balanced, so it cannot be a factor of any

Sturmian word.

Lemma 4.8.37. The word Γ is aperiodic and linearly recurrent.

Proof. The recurrence (4.25) and the definition (4.26) of Γ show that for any k ≥ 1
the word Γ is a product of the words γk+1 = L(γk)γ

2
k and L(γk+1) = γ3

k such that
between two occurrences of L(γk+1) there is always either of the words γ2

k or γ5
k .

From this, it follows that the return time of a factor of Γ of length |γk| is at most
the return time of the factor L(γk), which is at most 6|γk|. Let then w be a factor
of Γ such that |γk| < |w| ≤ |γk+1| for some k ≥ 1. Since w is a factor of some
factor of Γ of length |γk+1|, we see that the return time of w is at most 6|γk+1|.
Now 6|γk+1| = 18|γk| < 18|w|, proving that Γ is linearly recurrent.

By the preceding, the factor γk is followed in L(Γ) by both γk and L(γk). As
the first letters of γk and L(γk) are distinct, the factor γk is right special. Thus
L(Γ) contains arbitrarily long right special factors, so Γ must be aperiodic.

Since linearly recurrent words have linear factor complexity function [55, The-
orem 24], Lemma 4.8.37 implies that the factor complexity function of Γ is linear.

We observed in the previous proof that the word Γ is a product of the words
S and L such that between two occurrences of L in this product there is always
S2 or S5. Since S and L are primitive, any word w in L(Γ) that is a product of the
words S and L such that |w| ≥ 6|S| must synchronize to the factorization of Γ as
a product of the words S and L. That is, in any factorization Γ = uwΓ′, it must be
that |u| is a multiple of |S|.

Theorem 4.8.38. The word Γ is a non-Sturmian, linearly recurrent optimal squareful
word, which is a fixed point of the square root map.
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Proof. The fact that Γ is optimal squareful and linearly recurrent follows from
Lemmas 4.8.35 and 4.8.37. The argument outlined in the beginning of this sub-
section shows that Γ is a fixed point of the square root map: the word Γ has arbi-
trarily long squares of the words of the sequence (γk) as prefixes and the words
γk are solutions to (4.23). Finally, the word Γ contains the factor γ2

2, so Γ cannot
be Sturmian by Lemma 4.8.36.

Denote by Ω the subshift consisting of the infinite words having the language
L(Γ). As Γ is linearly recurrent, it is uniformly recurrent, so the subshift Ω is min-
imal. The rest of this subsection is devoted to proving the next result, mentioned
in the beginning of this section.

Theorem 4.8.39. For all w ∈ Ω, either
√

w ∈ Ω or
√

w is (purely) periodic with
minimum period conjugate to S. Moreover, there exists words u, v ∈ Ω such that

√
u ∈

Ω and
√

v is periodic.

This result is very surprising since it is contrary to the plausible hypothesis
that the square root map maps aperiodic words to aperiodic words.

It is not difficult to prove Theorem 4.8.39 for words in Ω that are products
of the words S and L. We prove this special case next in Lemma 4.8.40. How-
ever, difficulties arise since a word in Ω can start in an arbitrary position of an
infinite product of S and L. There are certain well-behaved positions in S and L,
which are easier to handle. Theorem 4.8.39 is proved for these special positions
in Lemma 4.8.42. The rest of the effort is in demonstrating that all the other cases
can be reduced to these well-behaved cases. We begin by proving the easier cases,
and we conclude with the reductions.

Lemma 4.8.40. If a word w ∈ Ω is a product of the words S and L, then
√

w ∈ Ω.

Proof. Any word u that is a product of the words S and L can be naturally written
as a binary word u over the alphabet {S, L}. If such a word u has even length,
then it is a word over the alphabet A = {SS, SL, LS, LL}. Using the fact that√

SS = S,
√

SL = S,
√

LS = L, and
√

LL = L (see Lemma 4.8.17), we can define
a square root for a word over A.

Without loss of generality, we may assume that Γ = Γ1, i.e., Γ = limk→∞ γ2k.
The word γ2

2k is a prefix of Γ for all k ≥ 1. Thus γ2k occurs at positions 0 and |γ2k|
of Γ. Clearly |γk| = 3k−1|S|, so the factor γ2k occurs in Γ in an even and in an odd
position for all k ≥ 1.

Let w ∈ Ω, and let v be a prefix of w of length 2n|S| with n ≥ 1, so v is a
word over A. The word v is a factor of γ2j for some integer j. Since γ2j occurs in
Γ in an even and in an odd position, the word v occurs in an even position in Γ.
Hence Γ can be factored as Γ = zvΓ′, where z and Γ′ are words over A. Since Γ is
a fixed point of the square root map, we have Γ =

√
z
√

v
√

Γ′. Hence
√

v ∈ L(Γ).
It follows that L(

√
w) ⊆ L(Γ), so

√
w ∈ Ω.

Definition 4.8.41. Let w be a word and ` be an integer such that 0 < ` < |w|. If
the factor of w3 of length |w2| starting at position ` can be factorized as a product
of minimal squares X2

1 , . . ., X2
n, then we say that the position ` of w is repetitive.
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If in addition |X2
1 · · ·X2

m| 6= |w| − `, |w2| − ` for m = 1, 2, . . . , n, then we say that
the position ` is nicely repetitive.

For example if a = 1, b = 0, and S = 1001001010010, then the position 1 of S
is repetitive as the factor 00100101001010010010100101 of S3 of length |S2| = 26
starting at position 1 is in Π(a, b). This position is not nicely repetitive because
|02 · (10010)2| = 12 = |S| − 1. The position 2 of S, however, can be checked
to be nicely repetitive. The position 4 of S is not repetitive because the factor
00101001010010010100101001 of length 26 starting at position 4 is not in Π(a, b).

In the upcoming proof of Theorem 4.8.39, we will show that if w ∈ Ω is a
product of the words S and L and ` is a nicely repetitive position of S, then the
word

√
T`(w) is always periodic. On the other hand, we show that if ` is not a

nicely repetitive position then
√

T`(w) is always in Ω.
Next we identify some good positions in the suffix S6 of S. As we observed in

the proof of Lemma 4.8.17, the suffix S6 of S restricts locally how a factorization
of a word as a product of minimal squares continues after an occurrence of S6.
Consider a product X2

1 · · ·X2
n of minimal squares that has an occurrence of S6

at position `. Then X2
m begins at some of the positions `, `+ 1, . . ., `+ |S6| − 1

for some m ∈ {1, . . . , n}. Otherwise some minimal square would have S6 as an
interior factor; yet no such minimal square exists. Among the positions `, `+ 1,
. . ., `+ |S6| − 1, we are interested in the largest position where a minimal square
may begin. Let B be the set of positions ` ∈ {0, . . . , |S6| − 1} such that no square
of length at most |S6| − ` begins at position ` of S6. It is straightforward to see
that

B = {|S6| − |S6|, |S6| − |S4|, |S6| − |S3|, |S6| − |S1|}.

We are interested in those positions of the suffix S6 of S where no minimal square
begins. Hence we define BS = {` : `− |S|+ |S6| ∈ B}, so

BS = {|S| − |S6|, |S| − |S4|, |S| − |S3|, |S| − |S1|}.

A consequence of the definitions is that if ` is a position of S such that ` /∈ BS,
then there exists `′ ∈ BS ∪ {|S|} such that S[`, `′ − 1] ∈ Π(a, b). This fact is used
later several times.

To illustrate the proof of the next lemma, we begin by giving a proof sketch.

Lemma 4.8.42. Suppose that w ∈ Ω is a product of the words S and L, and assume
that the position ` ∈ BS is nicely repetitive. Let the prefix of T`(w) of length |S2| be
factorized as a product of minimal squares X2

1 · · ·X2
n. Then the word

√
T`(w) is periodic

with minimum period X1 · · ·Xn. Moreover, the word X1 · · ·Xn is conjugate to S.

Proof Sketch. As the position ` is repetitive, the factor u of length |S2| of S3 starting
at position ` is in Π(a, b). If we substitute the middle S in S3 with L, then an
application of Lemma 4.8.16 shows that the factor of length |S2| of SLS starting at
position ` is still in Π(a, b) and that the square root of this factor coincides with
the square root of u (here we need that ` ∈ BS). Further analysis shows that if
we substitute the words S in S3 in any way then the square root of the factor of
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length |S2| beginning at position ` is unaffected. Since ` is repetitive, the prefix of
T`+|S2|(w) of length |S2| is again in Π(a, b) and has the same square root, and so
on. Thus

√
T`(w) is periodic. Since both the square of the period and S2 occur

in a suitable Sturmian word; having equals lengths, they must be conjugate by
Corollary 4.6.6 (iii).

Proof of Lemma 4.8.42. Now |S| ≥ |S5S6|, so ` > 1. Let u be the suffix of S of
length |S| − `. Since ` is repetitive, the factor v of S3 of length |S2| starting at
position ` can be factorized as a product of minimal squares Y2

1 · · ·Y2
m. We have

|Y2
1 | > |u| because ` ∈ BS.

Next we consider how the situation changes if any of the words S in S3 is
substituted with L. Substituting the first S with L does not affect the product
Y2

1 · · ·Y2
m as ` > 1. Suppose then that the second word S is substituted with L.

By applying Lemma 4.8.16 to the words u and S with X = Y1, we see that the
factor of length |S2| of SLS starting at position ` is still factorizable as a product
of minimal squares and that the square root of this factor equals the square root
of v. Consider next what happens if the third word S is substituted with L. Let

r = max{i ∈ {1, . . . , m} : |Y2
1 · · ·Y2

i | ≤ |S2| − `},

and set `′ = `+ |Y2
1 · · ·Y2

r | − |S|. Since ` is nicely repetitive, we have `′ < |S|. By
the maximality of r and the definition of the set BS, it must be that `′ ∈ BS. By
applying Lemma 4.8.16 to the suffix of S of length |S| − `′ and S with X = Yr+1,
we obtain, like above, that the product of minimal squares is affected but the
square root is not. Substituting the second and third words S with L gives the
same result: first we proceed as above and substitute the second word S, and
then we make the second substitution like above but apply Lemma 4.8.16 for the
word L instead of S.

We have concluded that no matter how we substitute the words S in S3 the
square root of the factor of length |S2| beginning at position ` never changes. The
word w is obtained from the word Sω by substituting some of the words S with
L. By the preceding, the prefix of T`(w) of length |S2| can be factorized as a prod-
uct of minimal squares X2

1 · · ·X2
n. As ` is repetitive, the prefix of T`+|S2|(w) of

length |S2| can also be factorized as a product of some minimal squares (perhaps
different) but the square root still equals X1 · · ·Xn. By repeating this observation,
we see that√

T`(w) = (X1 · · ·Xn)
ω.

By our choice of S, we have S ∈ {s̃k, L(s̃k)}, where s̃k is a reversed standard
word of some slope α = [0; a+ 1, b+ 1, . . .]. Let β = [0; b1, b2, . . .] be a number
such that ai = bi for i = 1, 2, . . . , k and bk+1 ≥ 5. Then by the definition of
standard words, we have S5 ∈ L(β). By the preceding, the prefix of T`(S5) of
length |S4| can be factorized as a product of minimal squares, and the square root
of these minimal squares equals (X1 · · ·Xn)2. Since the square root of a Sturmian
word of slope β is a Sturmian word of slope β, we have (X1 · · ·Xn)2 ∈ L(β). As
|X1 · · ·Xn| = |S|, it follows from Corollary 4.6.6 (iii) that X1 · · ·Xn is conjugate to
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S. Since S is primitive, so is X1 · · ·Xn, and hence the period X1 · · ·Xn is minimum.

Lemma 4.8.43. Every seed solution S has a nicely repetitive position ` such that ` ∈ BS.

Proof. Suppose that S = s̃k,i with k ≥ 3 and 0 < i ≤ ak, and let r = |s̃k,i−1|.
It is sufficient to show that r is a nicely repetitive position of S: if r /∈ BS, then
there exists r′ ∈ BS such that S[r, r′ − 1] ∈ Π(a, b). Since the position r is nicely
repetitive, so must the position r′ be.

Observe that the word s̃k,i−1 is both a prefix and a suffix of S. Using the fact
that s̃k−2 s̃k−3 = L(s̃k−3 s̃k−2), we obtain that

S3 = s̃k,i−1 s̃k−1 s̃k−2 s̃ i
k−1 s̃k,i

= s̃k,i−1 · s̃k−1 s̃k−2 s̃k−3 s̃ ak−1−1
k−2 · s̃k,i−1 s̃k,i

= s̃k,i−1 · s̃k−1L(s̃k−1) · s̃ 2
k,i−1 s̃k−1.

By Lemma 4.8.17, the word s̃k−1L(s̃k−1) is in Π(a, b). Since s̃k,i−1 is a solution
to (4.23), we have s̃ 2

k,i−1 ∈ Π(a, b). Overall, the factor s̃k−1L(s̃k−1)s̃ 2
k,i−1 of S3 of

length |S2| starting at position r is in Π(a, b). Thus the position r of S is repetitive.
Suppose for a contradiction that the suffix of S of length |S| − r is in Π(a, b),

that is, S = s̃k,i−1X2
1 · · ·X2

n for some minimal square roots X1, . . ., Xn. Thus sk−1 =
X2

1 · · ·X2
n. Since sk−1 is a solution to (4.23), it follows that sk−1 = (X1 · · ·Xn)2.

This contradicts the primitivity of sk−1. Similarly, if the suffix of S2 of length
|S2| − r is in Π(a, b), then s̃k,i−1 ∈ Π(a, b) contradicting the primitivity of s̃k,i−1.
We conclude that the position r of S is nicely repetitive.

Finally, if S = L(s̃k,i), then as r > 1, an application of Lemma 4.8.16 shows
that the conclusion holds also in this case.

Lemma 4.8.42 and Lemma 4.8.43 now imply the following result.

Corollary 4.8.44. There exist uncountably many linearly recurrent optimal squareful
words having (purely) periodic square root.

Proof. We only need to show that there are uncountably many such words. Con-
sider the words in Ω that can be factorized as a product of the words S and L.
Viewed over the binary alphabet {S, L}, these words form an infinite subshift Ω.
Let us show that Ω is minimal. Then the conclusion follows by well-known ar-
guments from topology: a minimal subshift is always finite or uncountable and
an aperiodic subshift cannot be finite (use the fact that a perfect set is always
uncountable).

Let w ∈ Ω (we use the notation of the proof of Lemma 4.8.40) and u ∈ L(w)
be a factor such that |u| ≥ 6. As |u| ≥ 6|S|, every occurrence of u in Γ must
synchronize to the factorization of Γ as a product of S and L (see the discussion
after Lemma 4.8.37). It follows that every return to u in Γ is a product of S and L.
Since the return time of the factor u is finite in Γ, the return time of the factor u in
w is also finite. Hence Ω is minimal.

We also prove the following weaker result, which we need later.
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Lemma 4.8.45. The position |S| − |S6| of S is repetitive.

Proof. First we prove by induction that the prefix of the word S6 s̃ 2
k,` of length

2|s̃k,`| − |S6| is a product of minimal squares for every (semi)standard word s̃k,`
with k ≥ 3 and 0 < ` ≤ ak. Let us first establish the base cases.

Recall that s̃2 = 0(10a)b+1 and s̃3,1 = S6. Now

S6 s̃ 2
2 = 10a+1(10a)b+1(0(10a)b+1)2 = S2

510a+1(10a)b+1 = S2
5S6,

so the claim holds for the word s̃2. In addition, for 0 < ` ≤ a3, we have

S6 s̃ 2
3,` = S6 s̃3,1 s̃ `−1

2 s̃3,` = S2
6 s̃ `−1

2 s̃3,` = S2
6 s̃ `−1

2 s̃1 s̃ `2 .

The case ` = 1 is clear, so let us assume that ` > 1. We have

S6 s̃ 2
3,` = S2

6 s̃ `−1
2 s̃1 s̃ `−2

2 s̃0 s̃b1 S6,

so it is sufficient to show that the word s̃ `−1
2 s̃1 s̃ `−2

2 s̃0 s̃b1 is in Π(a, b).
Suppose first that `− 1 is even. Then as s̃2 is a solution to (4.23), it is enough

to show that s̃1 s̃ `−2
2 s̃0 s̃b1 ∈ Π(a, b). Since s̃1 s̃2 = L(s̃2)s̃1, we have

s̃1 s̃ `−2
2 s̃0 s̃b1 = L(s̃2)

`−2 s̃1 s̃0 s̃b1 .

Now s̃1 s̃0 s̃b1 = L(s̃2). The word L(s̃2) is a solution to (4.23), so the conclusion
follows as `− 1 is even.

Suppose next that `− 1 is odd. We need to show that s̃2 s̃1 s̃ `−2
2 s̃0 s̃b1 ∈ Π(a, b).

Using the facts s̃1 s̃2 = L(s̃2)s̃1 and s̃1 s̃0 s̃b1 = L(s̃2), we obtain that

s̃2 s̃1 s̃ `−2
2 s̃0 s̃b1 = s̃2L(s̃2)

`−1.

By Lemma 4.8.17, the word s̃2L(s̃2) is a product of minimal squares. Since `− 1
is odd and L(s̃2) is a solution to (4.23), the conclusion follows.

We have thus established the base cases. Let then k ≥ 4. Now

S6 s̃ 2
k,` = S6(s̃k−2 s̃ `k−1)

2.

By induction S6 s̃k−2 = X2
1 · · ·X2

nS6 and S6 s̃k−1 = Y2
1 · · ·Y2

mS6 for some minimal
square roots X1, . . ., Xn, Y1, . . ., Ym. Therefore

S6 s̃ 2
k,` = (X2

1 · · ·X2
n(Y

2
1 · · ·Y2

m)
`)2S6.

We have thus proved that the prefix of the word S6 s̃ 2
k,` of length 2|s̃k,`| − |S6| is a

product of minimal squares.
Now if S = s̃k,` with k ≥ 3 and 0 < ` ≤ ak, then the claim is clear by the

above. Suppose that S = L(s̃k,`). Now if S6 s̃k,` /∈ Π(a, b), then two applications
of Lemma 4.8.16 show that the claim holds. Assume that S6 s̃k,` ∈ Π(a, b). Since
the prefix of S6 s̃ 2

k,` of length 2|s̃k,`| − |S6| is in Π(a, b), this means that the prefix
of s̃k,` of length |s̃k,`| − |S6| is in Π(a, b). It is sufficient to show that the prefixes
of s̃k,` and L(s̃k,`) of length 2|s̃2| are in Π(a, b). Since s̃1 s̃2 = L(s̃2)s̃1, the word
s̃4,1 = s̃2 s̃3 has s̃2L(s̃2) as a prefix. If a3 > 1, then the word s̃3 = s̃1 s̃ a3

2 has L(s̃2)s̃2
as a prefix. Finally if a3 = 1, then the word s̃5,1 = s̃3 s̃4 = s̃1 s̃2 s̃4 has L(s̃2)

2 as
a prefix. Lemma 4.8.17 shows that s̃2L(s̃2), L(s̃2)s̃2, and L(s̃2)

2 are all in Π(a, b).
The conclusion follows.
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There is no clear pattern for other positions in BS; it depends on the word S
if a position in BS is repetitive or not. The position |S| − |S6| is not always nicely
repetitive. Suppose that a = 1, b = 0, and S = s̃3,3 = 10(010)3, so |S| − |S6| = 6.
The factor beginning at position 6 of S3 of length |S2| is a product of minimal
squares: (10010)2 · (010)2 · (100)2. As |(10010)2 · (010)2| = 16 = |S2| − 6, the
position 6 is not nicely repetitive.

Since none of the minimal squares can be a proper prefix of another minimal
square, it is easy to factorize words as products of minimal squares from left
to right. Next we consider what happens if we start to backtrack from a given
position to the left.

Lemma 4.8.46 (Backtracking Lemma). Let X, Y1, . . ., Yn be minimal square roots as
in (4.20). Let w be a word having both of the words X2 and Y2

1 · · ·Y2
n as suffixes. If

|X| > |Yn|, then |X| > |Y1 · · ·Yn| and the word Y1 · · ·Yn is a suffix of X.

Proof. Suppose that |X| > |Yn|. We may assume that n is as large as possible. We
prove the lemma by considering different options for the word X.

Clearly we cannot have X = S1. Let X = S4. Now X2 can have a proper
minimal square suffix only if a > 1. If a is even, then we must have

X2 = 10a1(S2
1)

a/2 and Yn−a/2+1 = . . . = Yn = S1.

The suffix (S2
1)

a/2 of w cannot be preceded by S2
2 as otherwise w would have

S2Sa
1 = 0102a−1 as a suffix; this is impossible as 2a− 1 > a. Therefore there is no

choice for Yn−a/2. Thus |Y2
1 · · ·Y2

n | < |X2|, and Y1 · · ·Yn is a suffix of X. If a is
odd, then similarly

X2 = 10a10(S2
1)

(a−1)/2 and Yn−(a−1)/2+1 = . . . = Yn = S1.

Again there is no choice for Yn−(a−1)/2, and the conclusion holds. Similar consid-
erations show that the conclusion holds if X ∈ {S2, S3}.

Let then X = S5. It is obvious that now Yn ∈ {S1, S3, S4}. If Yn = S1 or
b = 0, then, like above, Y1 = . . . = Yn = S1 and Y1 · · ·Yn is a suffix of X. We
may thus suppose that b > 0. Say Yn = S3. Then we must have b = 1 and
X2 = 10a+110a−1Y2

n . Like above, the remaining minimal square roots Yi with
i < n must equal to S1 and there must be b(a − 1)/2c of them. Since there is
no further choice, the conclusion holds as then clearly Y1 · · ·Yn is a suffix of X.
Suppose then that b > 1. The next case is Yn = S4. Assume first that b is even.
Then it is straightforward to see that necessarily

Yn−b/2+1 = . . . = Yn = S4 and X2 = 10a+1(10a)b10a+1(S2
4)

b/2.

Thus Yn−b/2 = S1 and, further, it must be that

Yn−b = . . . = Yn−b/2−1 = S2 and X2 = 10a+110a−1(S2
2)

b/2S2
1(S

2
4)

b/2.

Like before, the remaining minimal squares Yi with i < n − b must equal to S1
and there must be b(a− 1)/2c of them. Therefore

Y1 · · ·Yn = Sb(a−1)/2c
1 Sb/2

2 S1Sb/2
4 = 0b(a−1)/2c+1(10a)b,
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so Y1 · · ·Yn is a suffix of X, and the conclusion holds. If b is odd, then in a similar
fashion

X2 = 10a+110a−1(S2
2)

(b−1)/2S2
3(S4)

(b−1)/2,

so Yn−(b−1)/2 = S3 and

Yn−(b−1)/2+1 = . . . = Yn = S4 and Yn−b+1 = . . . = Yn−(b−1)/2−1 = S2.

Again, the final b(a− 1)/2cminimal square roots must equal S1. Since

Y1 · · ·Yn = Sb(a−1)/2c
1 S(b−1)/2

2 S3S(b−1)/2
4 = 0b(a−1)/2c+1(10a)b,

the word Y1 · · ·Yn is a suffix of X, and the conclusion holds.
If X = S6, then it is clear that Yn 6= S5. The conclusion follows as in the case

X = S5.

The next lemma is useful in the proof of Theorem 4.8.39.

Lemma 4.8.47. Let w be an infinite product of the words S and L and `1, `2, `3 be
positions of w such that `1 < `2 < `3. Let r be the largest integer such that `1 ≥ r|S|. If

• w[`1, `3 − 1], w[`2, `3 − 1] ∈ Π(a, b),

• `1 − r|S| ∈ BS, and

• `2 ≤ (r + 1)|S|,

then for all z ∈ Π(a, b) such that zw[`2, `3 − 1] is a suffix of w[0, l3 − 1], we have
|zw[`2, `3 − 1]| < |w[`1, `3 − 1]|.

Proof. Let u = w[`1, `3 − 1] and v = w[`2, `3 − 1]. Because u, v ∈ Π(a, b), we
may write u = X2

1 · · ·X2
n and v = Y2

1 · · ·Y2
m for some minimal square roots X1,

. . ., Xn, Y1, . . ., Ym. Suppose that n ≥ m. If Xn−m+i = Yi for i = 1, 2, . . . , m,
then since |u| > |v|, it must be that n > m. This means that the prefix X2

1 of u
ends before the position `2, that is, `1 + |X2

1 | < `2 ≤ (r + 1)|S|. This contradicts
the assumption `1 − r|S| ∈ BS. Therefore as |u| > |v|, we conclude that there
exists maximal j ∈ {1, . . . , m} such that Xn−m+j 6= Yj. If |Yj| > |Xn−m+j|, then by
the Backtracking Lemma, we have |X2

1 · · ·X2
n−m+j| < |Y2

j |. This is impossible as
|u| > |v|. Thus |Yj| < |Xn−m+j|. Let z ∈ Π(a, b) be such that zv is a suffix of the
word w[0, `3 − 1]. Write z = Z2

1 · · · Z2
t for some minimal square roots Z1, . . ., Zt.

Applying the Backtracking Lemma to the words X2
n−m+j and Z2

1 · · · Z2
t Y2

1 · · ·Y2
j

yields |Z2
1 · · · Z2

t Y2
1 · · ·Y2

j | < |X2
n−m+j|. It follows that |zv| < |u|, so the conclusion

holds if n ≥ m. If n < m, then as |u| > |v|, there exists a maximal j′ ∈ {1, . . . , n}
such that Ym−n+j′ 6= Xj′ . Proceeding as above, we see that the conclusion holds
also in this case.

Finally we can give a proof of Theorem 4.8.39.
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Proof of Theorem 4.8.39. Let w ∈ Ω. Since Γ is uniformly recurrent and a product
of the words S and L, there exists a word w′ in Ω such that w′ is a product of
S and L and w = T`(w′) for some integer ` such that 0 ≤ ` < |S| (recall that a
product of S and L occurring in Γ having length at least 6|S|must synchronize to
the factorization of Γ as a product of S and L). If ` = 0, then the conclusion holds
by Lemma 4.8.40, so we can assume that ` > 0. Write w as a product of minimal
squares: w = X2

1X2
2 · · · . Let

r1 = max{{0} ∪ {i ∈ {1, 2, . . .} : |X2
1 · · ·X2

i | ≤ |S| − `}}.

If r1 > 0, then we set `1 = `+ |X2
1 · · ·X2

r1
|. If r1 = 0, then we let `1 = `. By the

maximality of r1 and by the definition of the set BS, it follows that `1 ∈ BS ∪ {|S|}
(indeed, the word L also has S6 as a suffix). See Figure 4.7.

To aid comprehension, different parts of the proof are separated as distinct
claims with their own proofs. Any new definitions and assumptions given in one
of the subproofs are valid only up to the end of the subproof.

Claim 4.8.47.1. If `1 = |S|, then
√

w ∈ Ω.

Proof. Suppose that `1 = |S|. By the definition of the number r1, we have r1 > 0,
and the word T|S|−`(w) = T|S|(w′) = X2

r1+1X2
r2+2 · · · is a product of the words

S and L. Now zw′ ∈ Ω for some z ∈ {S, L}. As zw′ is a product of S and L,
we have

√
zw′ ∈ Ω by Lemma 4.8.40. By the choice of S as a solution to (4.23)

and by Lemma 4.8.17, the first |S2| letters of zw′ can be factorized as a product of
minimal squares. Hence zw′ = Y2

1 · · ·Y2
n X2

r1+1X2
r1+2 · · · for some minimal square

roots Y1, . . ., Yn. By the Backtracking Lemma, the word X1 · · ·Xr1 is a suffix of
Y1 · · ·Yn. Now

√
w = X1 · · ·Xr1 Xr1+1 · · · and

√
zw′ = Y1 · · ·YnXr1 Xr1+1 · · ·, so√

w is a suffix of
√

zw′. Thus L(
√

w) ⊆ L(
√

zw′) = L(Γ), so
√

w ∈ Ω.

We may assume that `1 ∈ BS. Now either the position `1 of S is nicely repeti-
tive or it is not.

Claim 4.8.47.2. If `1 is a nicely repetitive position of S, then
√

w is periodic with mini-
mum period conjugate to S.

Proof. By Lemma 4.8.42, the word
√

T`1(w′) is periodic with minimum period z
conjugate to S. If `1 = `, then there is nothing to prove, so assume that `1 6= `.
There exists u, v ∈ {S, L} such that uvw′ ∈ Ω. Since `1 is a nicely repetitive
position of S, the prefix of T`1(uvw′) of length |S2| is a product of minimal squares
and its square root equals z by Lemma 4.8.42. Since the factor w′[`, `1− 1] is also a
product of minimal squares, the Backtracking Lemma implies that

√
w′[`, `1 − 1]

is a suffix of z. Now
√

w =
√

w′[`, `1 − 1]
√

T`1(w′), so
√

w is periodic with
minimum period conjugate to S.

If the position `1 of S is not nicely repetitive, then either it is not repetitive or
it is repetitive but not nicely repetitive.

Claim 4.8.47.3. If `1 is repetitive but not nicely repetitive position of S, then
√

w ∈ Ω.
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Proof. Suppose that `1 is a repetitive but not a nicely repetitive position of S. This
means that either of the words S3[`1, |S| − 1] and S3[`1, |S2| − 1] is in Π(a, b),
so either w′[`1, |S| − 1] ∈ Π(a, b) or w′[`1, |S2| − 1] ∈ Π(a, b) (in the latter case
Lemma 4.8.16 ensures that w′[`1, |S2| − 1] ∈ Π(a, b)). However, only the latter
option is possible as the other option contradicts the maximality of r1. As w′ is
a product of the words S and L, the prefix w′[0, |S2| − 1] of w′ is a product of
minimal squares. Since w′[`, `1 − 1], w′[`1, |S2| − 1] ∈ Π(a, b), the Backtracking
Lemma implies that

√
w′[`, |S2| − 1] is a suffix of

√
w′[0, |S2| − 1]. Thus

√
w is a

suffix of
√

w′. As
√

w′ ∈ Ω by Lemma 4.8.40, we conclude that
√

w ∈ Ω.

Now we may suppose that `1 is not a repetitive position of S. We let

r2 = max{i ∈ {r1 + 1, r1 + 2, . . .} : |X2
1 · · ·X2

i | ≤ |S2| − `},
r3 = max{i ∈ {r2 + 1, r2 + 2, . . .} : |X2

1 · · ·X2
i | ≤ |S3| − `}, and

r4 = max{i ∈ {r3 + 1, r3 + 2, . . .} : |X2
1 · · ·X2

i | ≤ |S4| − `}.

The numbers r2, r3, and r4 are well-defined because the words S and L are not
minimal squares. We set

`2 = `1 + |X2
r1+1 · · ·X2

r2
|,

`3 = `2 + |X2
r2+1 · · ·X2

r3
|, and

`4 = `3 + |X2
r3+1 · · ·X2

r4
|.

Intuitively, the positions `1, `2, `3, and `4 are the successive positions of w that are
closest from the left to the boundaries of the words S and L in the factorization
of w′ as a product of the words S and L such that the prefix up to the position
is a product of minimal squares; see Figure 4.7. Let g1 = `1, g2 = `2 − |S|,
g3 = `3− |S2|, and g4 = `4− |S3|. It is clear by the definitions that gi ∈ BS ∪ {|S|}
for i = 1, 2, 3, 4.

Claim 4.8.47.4. We have g1, g3 6= |S|. If g2 or g4 equals |S|, then
√

w ∈ Ω.

Proof. By our assumption that `1 ∈ BS, we have g1 6= |S|. If g2 = |S|, then
the factor w′[`1, |S2| − 1] would be a product of minimal squares. This case was
already considered in Claim 4.8.47.3, where we concluded that

√
w ∈ Ω.

Suppose that g3 = |S|. Consider the positions `1 and |S| of w′, and let u =
w′[`1, `3− 1] and v = w′[|S|, `3− 1] = w′[`3− |S2|, `3− 1], so u, v ∈ Π(a, b). Now
zw′ ∈ Ω for some z ∈ {S, L}, and the prefix of zw′ of length |S2| is in Π(a, b).
Lemma 4.8.47 applied to the word (zw′)[0, |S|+ `3 − 1] implies that

|(zw′)[0, |S|+ `3 − 1]| < |u| < |S3|,

which is nonsense. Therefore g3 6= |S|.
Assume then that g4 = |S|. Suppose for a contradiction that g2 6= g4. Both

of the factors u′ = w′[`2, `4 − 1] and v′ = w′[|S|2, `4 − 1] = w′[`4 − |S2|, `4 − 1]
are in Π(a, b). Since g2 6= g4, also `2 6= |S2|. Thus by the definition of `2, we
have `2 < |S2|. An application of Lemma 4.8.47 to the word w′[0, `4 − 1] shows
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that |w′[0, `4 − 1]| < |u′| < |S3|, which is absurd. This contradiction shows that
g2 = g4 = |S|, so

√
w ∈ Ω.

We may now assume that gi ∈ BS for all i = 1, 2, 3, 4.

Claim 4.8.47.5. The position g2 of S is nicely repetitive.

Proof. Assume on the contrary that neither of the positions g2 and g3 is a repeti-
tive position of S. First notice that as g1 is not repetitive, we have g3 6= g1. Sim-
ilarly g2 6= g4. If g1 = g2, then it follows from Lemma 4.8.16 and the definitions
of the positions `2 and `3 that g2 = g3; a contradiction. Hence g1 6= g2. Similarly
g2 6= g3 as otherwise the position g2 would be repetitive. Finally, g3 6= g4 because
g3 is not repetitive. Thus we have two cases: either g1 = g4 or g1 6= g4.

Assume that g4 6= g1. By Lemma 4.8.45, the position |S| − |S6| of S is repeti-
tive, so g1, g2, g3 ∈ BS \ {|S| − |S6|} = {|S| − |S1|, |S| − |S3|, |S| − |S4|}. Since all
of the positions g1, g2, and g3 are distinct, the only option is that g4 = |S| − |S6|.
Let u = w′[`4 − |S2|, `4 − 1] and v = w′[`2, `4 − 1]. As the position |S| − |S6| is
repetitive, by Lemma 4.8.16, the factor u is in Π(a, b). By the definition of the
positions `2, `3, and `4 also v ∈ Π(a, b). Since g2 6= g4, also `2 6= `4 − |S2|. Be-
cause |S| − |S6| is the smallest element of the set BS, we have `2 > `4 − |S2|. As
w[`1, `2 − 1] ∈ Π(a, b), we have |w[`1, `4 − 1]| < |u| = |S2| by Lemma 4.8.47.
This is a contradiction.

Hence g1 = g4. Since the factor w[`1, `2 − 1] is a product of minimal squares,
the number c1 = `2− `1 is even. Similarly the numbers c2 = `3− `2 and c3 = `4−
`3 are even. Thus the number c1 + c2 + c3 = 3|S| is even, so |S| is even. It follows
that the numbers d1 = g2 − g1, d2 = g3 − g2, and d3 = g4 − g3 = g1 − g3 are all
even. However, exactly two of the numbers |S1|, |S3|, and |S4| have odd length.
Hence exactly two of the numbers g1, g2, and g3 are odd. Thus it is impossible
that all of the numbers d1, d2, and d3 are even. This is a contradiction.

The previous contradiction shows that either of the positions g2 and g3 is a
repetitive position of S. Suppose for a contradiction that g3 is repetitive. We have
w′[`1, `3 − 1] ∈ Π(a, b) and w′[`3 − |S2|, `3 − 1] ∈ Π(a, b). Similar to the sec-
ond paragraph of this subproof, using Lemma 4.8.47, we obtain a contradiction
unless g1 = g3. Even this conclusion is contradictory as the position g1 is not
repetitive. Therefore g3 cannot be repetitive, so g2 is a repetitive position of S.
Now if g2 would not be nicely repetitive, then by the maximality of r2, we would
have w′[`2, |S3| − 1] ∈ Π(a, b), that is, g3 = |S|. However, we have g3 ∈ BS, so g2
must be a nicely repetitive position of S.

We are now in the final stage of the proof. We will show that
√

w is periodic
with minimum period conjugate to S.

We can now argue as in the proof of Claim 4.8.47.2. Since g2 is a nicely repet-
itive position of S, by Lemma 4.8.42, the word

√
T`2(w′) is periodic with mini-

mum period z conjugate to S. We have uw′ ∈ Ω for some u ∈ {S, L}. Because
g2 is a nicely repetitive position of S, the prefix of Tg2(uw′) of length |S2| is a
product of minimal squares, and its square root equals z by Lemma 4.8.42. Since
w′[`, `2 − 1] ∈ Π(a, b), the Backtracking Lemma implies that

√
w′[`, `2 − 1] is a
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w′
` `1 `2 `3 `4

X2
1 · · ·X2

r1
X2

r1+1 · · ·X2
r2

X2
r2+1 · · ·X2

r3
X2

r3+1 · · ·X2
r4

S/L S/L S/L S/L

Figure 4.7: The positions `, `1, `2, `3, and `4 of w′ and the minimal squares be-
tween the positions.

suffix of z. Now
√

w =
√

w′[`, `2 − 1]
√

T`2(w′), so the word
√

w is periodic with
minimum period conjugate to S.

By Lemma 4.8.43, the word S always has at least one nicely repetitive position.
It therefore follows that there exists a word in Ω having periodic square root. This
ends the proof.

4.8.8 Remarks on Generalizations

It is natural to wonder if the square root map could be generalized to obtain a
cube root map and, further, a kth root map. Furthermore, it is natural to think that
some of the results on the square root map might extend to hold for generalized
Sturmian words. In this section, we address these questions by showing that
several ideas for generalization totally fail.

In [125, Theorem 5.3], Saari proves the following reformulation of a result of
Mignosi, Restivo, and Salemi [98].

Proposition 4.8.48. If w is an α-repetitive word with α ≥ φ + 1, where φ is the golden
ratio, then w is ultimately periodic.

Generalizing the square root map to a cube root map requires everywhere 3-
repetitive words. By the preceding proposition, such words must be ultimately
periodic, so I expect that this direction of research would not be fruitful.

Another way to generalize the square root map is to use abelian powers in-
stead of ordinary powers. For abelian powers, a result like Proposition 4.8.48 does
not exist: we proved in Proposition 4.7.9 that every position in a Sturmian word
begins with an abelian kth power for all k ≥ 2. Abelian square root can be defined
for, e.g., optimal squareful words as we will see shortly. However, abelian cube
root for Sturmian words does not work. Consider again the Fibonacci word f. The
shortest prefix of T(f) that is a minimal abelian cube is 10 · 01 · 01. This abelian
cube is followed by the factor 00, so the root of the next abelian cube must be-
gin with 00. Hence if we define the abelian cube root of T(f) to be the product
of the roots of the abelian cubes, the resulting word begins with 1000, which is
not a factor of f. Thus by defining an abelian cube root map in this way, we lose
the main property that the mapping preserves the languages of Sturmian words.
Notice that there are other options in defining the cube root of an abelian cube:
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the cube root of a minimal abelian cube X1X2X3 could also be defined to be X2 or
X3. However, this approach runs into the very same difficulties.

In [126], Saari also considers optimal abelian squareful words. Optimal abelian
squareful words are defined by replacing minimal squares with minimal abelian
squares in the definition of optimal squareful words. Let w = X1X′1X2X′2 · · · be
a product of minimal abelian squares XiX

′
i . We define its abelian square root ab

√
w

as the infinite word X1X2 · · · . It follows from [126, Theorem 18] that the six min-
imal squares of (4.20) are products of exactly five minimal abelian squares (this is
straightforward to verify directly). Thus if w is an optimal squareful word, then√

w = ab
√

w. Thus by Theorem 4.8.4, the abelian square root of a Sturmian word
sρ,α is the Sturmian word sψ(ρ),α. Also, by Theorem 4.8.39, there exists a minimal
subshift Ω of optimal abelian squareful words such that for all w ∈ Ω, either
ab
√

w ∈ Ω or ab
√

w is periodic. Saari proves in [126, Theorem 19] that an optimal
abelian squareful word must have at least five distinct minimal abelian squares,
but he leaves the characterization of these sets of minimal abelian squares open.
Thus it is possible that there exist optimal abelian squareful words that contain
other minimal abelian squares than those given by the minimal squares of (4.20).
For such words, the abelian square root map could exhibit different behavior
than the square root map (if the square root map is even defined for such words).
I have not extended my research to this direction.

We could also generalize the special function ψ. Divide the distance D be-
tween the points x and 1− α on the circle into k parts and choose the image of x
to be x + t

k D among the points

x +
1
k

D, x +
2
k

D, . . . , x +
k− 1

k
D

to obtain the function

ψk,t : T→ T, x 7→ 1
k
(tx + (k− t)(1− α)).

The map ψk,t is a perfectly nice function on the circle T, but to make things inter-
esting we would need to find a symbolic interpretation for it. I have not figured
out any such interpretation for these generalized functions.

Another natural research direction is to see if our results generalize to some
classes of generalized Sturmian words. In the remainder of this subsection, we
consider examples of Arnoux-Rauzy words and three-interval exchange words
(defined at the end of Section 4.5) and show that our results do not extend to hold
for these words. I chose to consider these two generalizations since the words
of both classes have an associated dynamical system; the study of the dynamical
system of irrational rotations was crucial for our results. Arnoux-Rauzy words
are realizable as exchanges of six intervals on a circle [8]; some of them are also
realizable as codings of rotations in the n-dimensional torus [28, 92, 121].

The Tribonacci word

T = abacabaabacababacabaabacabacabaabacababacabaabacabaabacab · · ·
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is the most well-known instance of an Arnoux-Rauzy word. It is defined as the
fixed point of the following morphism.

θ :
a 7→ ab
b 7→ ac
c 7→ a

We will prove the following proposition, which states that the case of a 3-letter
Arnoux-Rauzy words is already very different from the case of Sturmian words.

Proposition 4.8.49. There exist infinitely many minimal squares in the Tribonacci word.

Lemma 4.8.50. Let w ∈ {a, b, c}∗ be arbitrary. If w2 is a minimal square and does not
begin with the letter c, then the word a−1θ(w)2a is a minimal square.

Proof. Notice that a−1θ(w)2a indeed is a square as θ(w) begins with the letter a.
Suppose that the word a−1θ(w)2a has a square u2 as a prefix. Since w does not
begin with the letter c, the word u begins with b or c. Consequently u ends with
the letter a. Because none of the images of letters has the letter a as a proper suffix,
it follows that the square auua−1 is an image of some square v2: θ(v)2 = auua−1.
This square v2 is thus a prefix of w2, so by minimality v = w. Thus a−1θ(w)2a =
u2, so u = aθ(w)a−1. Hence the square a−1θ(w)2a is minimal.

Lemma 4.8.51. Let w ∈ L(T) be arbitrary. If w2 is a minimal square beginning with
the letter b, then the word θ(w)2 is a minimal square.

Proof. Assume on the contrary that the word θ(w)2 has a minimal square u2 as a
proper prefix. If the prefix u2 of θ(w)2 is followed by the letter a, then the word
w2 has a proper prefix v2 such that θ(v2) = u2. This is, however, impossible as w2

is a minimal square. Thus the prefix u2 of θ(w)2 is followed by b or c, so u must
end with a. Since w begins with the letter b, the prefix u of θ(w)2 is followed by
ac. Thus the suffix a of u must be an image of the letter c. It follows that w2 has cb
as a factor. This is a contradiction as cb /∈ L(T).

Proof of Proposition 4.8.49. Pick any any minimal square w2 ∈ L(T) beginning
with the letter a (for instance aa will do). If its image θ(w2) is a minimal square,
then we have obtained a longer minimal square beginning with the letter a. If it is
not, then by Lemma 4.8.50, the word a−1θ(w2)a is a minimal square (and it must
be in the language L(T)). By Lemma 4.8.51, the word θ(a−1θ(w2)a) is a longer
minimal square beginning with the letter a. This shows that there are arbitrarily
long minimal squares in T.

Computer experiments suggest that the Tribonacci word and its first few shifts
are factorizable as products of minimal squares. I have not attempted to prove
this. Even if this were true, the square root map would not preserve the lan-
guage of the Tribonacci word. The factorization of T3(T) as a product of minimal
squares begins as follows:

T3(T) = (cabaabacababacabaabacaba)2 · (abacab)2·
a2 · (baca)2 · (baabacababaca)2 · · · .
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However, then the square root of T3(T) (if it exists) would contain the factor

aabacaba · abacab · a · baca · baabacabab,

which is not in L(T).
Before considering three-interval exchange words, we discuss an improve-

ment of Proposition 4.8.49.

Definition 4.8.52. The Tribonacci numbers are defined by the linear recurrence
Tn = Tn−1 + Tn−2 + Tn−3 with T0 = 0, T1 = T2 = 1. The first few Tribonacci
numbers are 0, 1, 1, 2, 4, 7, 13, 24, 47, 81, and 149.

The following result was proved by Amy Glen in her Ph.D. dissertation [67].

Proposition 4.8.53. Let w2 ∈ L(T) with w primitive. Then |w| = Tn or |w| = Tn +
Tn−1 for some positive integer n.

Therefore the lengths of the minimal squares in the Tribonacci word take only
the values 2Tn and 2(Tn + Tn−1). Jeffrey Shallit has proven the following im-
provement of Proposition 4.8.49 (private communication).

Proposition 4.8.54. In the Tribonacci word, there are exactly 6 minimal squares of length
2Tn for n ≥ 6 and exactly 5 minimal squares of length 2(Tn + Tn−1) for n ≥ 5.

Shallit proved this result using the techniques of the papers [51, 52, 107, 108],
where he and his coauthors showed that the automatic theorem proving tech-
nique introduced in Section 3.8 can be generalized to more exotic numeration
systems. For instance, it is known that every nonnegative integer can be uniquely
expressed as a sum of Tribonacci numbers and that the expression is unique if no
three consecutive Tribonacci numbers are used [25]. Thus a Tribonacci numer-
ation system and Tribonacci-automatic words can be defined.14 The Tribonacci
word turns out to be Tribonacci-automatic, so its properties that are expressible
as predicates like in Section 3.8 can be studied automatically; for details see [108].
The Walnut prover supports Tribonacci-automatic words, but questions concern-
ing minimal squares turn out to be computationally too hard. That is why I opted
for proving the weaker Proposition 4.8.49 with traditional methods. Shallit estab-
lished Proposition 4.8.54 with an alternative prover.

Next we turn our attention to three-interval exchange words and prove the
following negative result.

Proposition 4.8.55. There exists an infinite uniformly recurrent aperiodic word w hav-
ing the following properties: w is a three-interval exchange word, L(w) contains infin-
itely many minimal squares, and w does not have a square as a prefix.

Proof. The fixed point σω(a) of the morphism

σ :
a 7→ abcb
b 7→ ab
c 7→ a

14Fibonacci-automatic words can be defined analogously based on the Fibonacci numeration sys-
tem [107].
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is a three-interval exchange word [60]. The morphism is clearly primitive, so the
fixed point w is uniformly recurrent. The letter a is extendable with the letters a
and b. The longest common prefix abcbab of σ(aa) = abcbabcb and σ(ab) = abcbab
is extendable with both letters c and a. Again, the longest common prefix of
σ(abcbabc) and σ(abcbaba) is right special, and so on. There are thus arbitrarily
long right special factors in L(w), so the word w is aperiodic.

Let us show first that the language L(w) contains infinitely many minimal
squares. The word w contains the minimal square aa. We will show that (σn(a))2

is a minimal square for all n ≥ 1.
Suppose that (σn(a))2 has a proper square prefix u2 for some positive integer

n. The word u must have the word abcb as a prefix. Now uabcb is a factor of w
so, because no image of a letter begins with b or c, we have u = σ(v) for some v
in L(w). Since a factorization of a word over {abcb, ab, a} is essentially unique,
that is, there is ambiguity only at the very end of the word, we see that (σn−1(a))2

begins with v′xv′y for some letters x and y such that v′x = v.
Suppose first that x = y. Now (σn−1(a))2 begins with the square v2. Since

(σn−1(a))2 is a minimal square by hypothesis, we have v = σn−1(a), so u = σn(a),
and the claim is proved.

Assume then that x 6= y. If x = a, then there is no ambiguity and x = y.
Therefore either x = b or x = c. Say x = c. Since u has abcb as a prefix, the word
v begins with the letter a. It follows that the word v′xv′y contains ca as a factor.
This, however, is easily seen impossible: the letter c is always followed by the
letter b. Therefore x = b and y = a. Moreover, the word v′ must be nonempty, so
the factor v′ is right special. It is clear that the only letter extendable with both a
and b is the letter a, so v′ has a as a suffix. Now v′xv′y has aa as a suffix. The prefix
a of this suffix aa must be an image of the letter c. Because the letter c is always
preceded by the letter b, it follows that v′ has aba as a suffix. Consequently, the
word v′xa has ababa as a suffix. However, ababa /∈ L(w) because bb /∈ L(w).
This contradiction shows that (σn(a))2 is a minimal square.

We are left to show that w does not have square prefixes. Suppose that w
has a minimal square u2 as a prefix. Since the prefix abcbab of w does not have
a square prefix, the word u must have abcb as a prefix. Like above, we conclude
that u = σ(v) for some factor v and that w begins with v′xv′y for some letters x
and y such that v′x = v. The arguments in the preceding paragraph go through,
so we are forced to conclude that x = y. This contradicts the minimality of u.
Therefore w does not have square prefixes.

After this result there is not much sense in considering an analogue the square
root map for three-interval exchange words. I am not sure if any of the words
in the subshift generated by the word w in the proof of Proposition 4.8.55 are
factorizable as products of minimal squares. Using a computer program, I have
verified that the prefix of the word T3(w) of length 313679504 can be factorized
as a product of minimal squares. The factorization of this shift begins as follows:

baba · abab · cbababcbabcbababcbab · · · .

However, its square root is not in the language L(w) as baabcb /∈ L(w).
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The moral of this subsection is that many natural generalizations of the square
root map of Sturmian words totally fail with, perhaps, the exception of abelian
square roots.

4.9 Open Problems

In Subsection 4.7.3, we saw that a natural idea for generalizing Theorem 4.7.22,
stating that the minimum abelian period of a factor of the Fibonacci word is a Fi-
bonacci number, does not work. It would be interesting to know if any alternative
idea works.

Open Problem. Characterize the minimum abelian periods of factors of all Sturmian
words.

As this problem might be very difficult, it would be natural to search for par-
tial answers for special factors such as the standard words. Thus we propose the
following open problem.

Open Problem. Characterize the minimum abelian periods of standard words.

In Subsection 4.8.7, we saw that there are non-Sturmian words whose lan-
guage is preserved under the square root map. However, Sturmian words sat-
isfy an even stronger property: for the Sturmian subshift Ωα of slope α, we have√

Ωα ⊆ Ωα. This property is not satisfied by the aperiodic and minimal sub-
shift ΩΓ generated by the word Γ constructed in Subsection 4.8.7 since by Theo-
rem 4.8.39, there is a word in ΩΓ having periodic square root; since ΩΓ is aperi-
odic and minimal, it cannot contain such a word. We are thus led to formulate
the following conjecture I believe to be true.

Conjecture. If Ω is a subshift consisting of optimal squareful words that satisfies the
property

√
Ω ⊆ Ω, then the subshift Ω only contains Sturmian words.

Let us briefly see that if we do not require all words in Ω to be aperiodic, then
the above conjecture does not hold.

Proposition 4.9.1. There exists a non-aperiodic, non-Sturmian subshift Ω containing
squareful words such that

√
Ω ⊆ Ω.

Proof Sketch. Let S be a seed solution as in Subsection 4.8.7, and let Γ be a corre-
sponding fixed point of the square root map generated by the seed S as in Sub-
section 4.8.7. Further, set ∆ = Sω, let Ω∆ be the subshift generated by ∆, and
let ΩΓ be the subshift generated by Γ. If w ∈ ΩΓ, then by Theorem 4.8.39 either√

w ∈ ΩΓ or
√

w ∈ Ω∆. Hence if we are able to show that
√

Ω∆ ⊆ Ω∆, then the
non-aperiodic and non-Sturmian subshift ΩΓ ∪Ω∆ has the desired properties.

Let w ∈ Ω∆, so w = T`(∆) with 0 ≤ ` < |S|. Write w as a product of minimal
squares: w = X2

1X2
2 · · · . We can now argue as in the proof of Theorem 4.8.39. If

|X2
1 · · ·X2

n| = |S| − ` or |X2
1 · · ·X2

m| = |S2| − ` for some positive integers n and
m, then using the fact that

√
∆ = ∆, it is straightforward to see that

√
w ∈ Ω∆.
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Otherwise, either ` is a nicely repetitive position of S or `+ |X2
1 · · ·X2

i | − |S| is a
nicely repetitive position of S, where

i = max{j ∈ {1, 2, . . .} : |X2
1 · · ·X2

j | ≤ |S2| − `}.

In both cases, we deduce with the help of Lemma 4.8.42 that
√

w ∈ Ω∆.

There are other interesting related questions. Consider the limit set

Ω ∩
√

Ω ∩
√√

Ω ∩ . . . .

We know very little about the limit set except in the Sturmian case when it con-
tains the two fixed points 01cα and 10cα. For the subshift generated by the word Γ

of Subsection 4.8.7, we proved that the limit set contains at least two fixed points.
We ask the following questions about the limit set.

Open Problem. When is the limit set nonempty? If it is nonempty, does it always
contain fixed points? Can it contain points that are not fixed points?

It is a genuine possibility that the limit set is empty. Consider for instance
the word ζ defined as the morphic image τ(σω(6)) of the fixed point of the mor-
phism σ : 6 7→ 656556, 5 7→ 5 under the morphism τ : 6 7→ S2

6, 5 7→ S2
5, where

S5 = 100 and S6 = 10010 are minimal square roots of slope [0; 2, 1, . . .]. It is
straightforward to verify that ζ is optimal squareful and uniformly recurrent and
that the returns to the factor 101 in L(ζ) are 10100, 101(001)200 and 101(001)400.
Let u = τ(56565); notice that u ∈ L(ζ). By considering all possible occurrences
of the factor u in any product of the minimal squares of slope [0; 2, 1, . . .], it can
be shown that the square root of a product containing u always contains a return
to the factor 101 that is not in L(ζ). Since the factor u occurs in every word in the
subshift Ωζ generated by ζ, we conclude that Ωζ ∩

√
Ωζ = ∅.

In Subsection 4.8.7, we constructed infinite families of primitive solutions
to (4.23) using the recurrence γk+1 = L(γk)γ

2
k . Why this construction worked

was because the seed solution S and the word L satisfy
√

SS = S,
√

SL = S,√
LS = L, and

√
LL = L, that is,

√
(LSS)2 =

√
LS · SL · SS = LSS. Similarly√

(SLLLL)2 = SLLLL, so substituting for example S = 01010010 we obtain the
primitive solution

0101001010010010100100101001001010010010

to (4.23) in L(1, 0). More solutions can be obtained with analogous constructions.
Restricting to the languages of optimal squareful words, we ask the following
question.

Open Problem. What are the primitive solutions w of (4.23) in L(a, b) such that w or
w2 is not Sturmian and w is not obtainable by the above construction?
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AAutomata Descriptions

We list here the transition functions of three automata from Section 3.8.
The tables are read as follows. Each line describes transitions of one state.

The first column gives the name of the state, second column tells if the state is
accepting (1) or not (0), and the remaining columns give the names of the states
where the automaton will move after reading the letter indicated in the column
header. Blanks in transitions indicate that there is a transition to a nonaccepting
sink state. The initial states of the automata are the states named 0.

S O [0, 0] [0, 1] [1, 0] [1, 1]
0 0 0 2 1 3
1 0 0 4 0 4
2 1 5 7 6
3 1 8 10 9 11
4 1 5 13 12 14
5 0 15 17 16 14
6 1 17 18 17
7 0 20 19 21
8 0 22 23 19 21
9 0 22 18 19

10 1 5 13 6
11 1 17 20 21
12 1 17 24 9
13 0 19
14 0 25 27 26
15 1 28 13 6

S O [0, 0] [0, 1] [1, 0] [1, 1]
16 0 25 27
17 0 29
18 0 28 13 6
19 0 26
20 0 30
21 0 30 18 30
22 1 20 21
23 0 28 7 6
24 0 28 13 12 14
25 0 16 14
26 1 17
27 0 30 18 19
28 0 18 17 16 14
29 1
30 0 20 21

Table A.1: The automaton depicted in Figure 3.2. This automaton accepts binary
representations of those (i, n) such that the Thue-Morse word has a privileged
factor of length n at position i.
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S O [0, 0] [0, 1] [1, 0] [1, 1]
0 0 1 3 2 4
1 0 5 6
2 0 7 9 8 10
3 1 11 13 12 14
4 1 15 17 16 18
5 1 19 21 20 22
6 0 23 25 24 26
7 0 27 29 28 30
8 0 31 25 32 26
9 1 33

10 0 34 35
11 1 33 36 37
12 1 33 38 33
13 1 39
14 1 9 40 41
15 1 39 42 33
16 1 33 33 43
17 0 36
18 0 44 45 35
19 1 33 25 33
20 1 46 33 47
21 0 49 48
22 0 50
23 0 51 52
24 0 48
25 1 53
26 1 13 54 18 55
27 0 56 25
28 0 47
29 0 48
30 0 57 50 50
31 0 58
32 0 48 58
33 1 33 33
34 0 33
35 1 9 10
36 1 33 49 59
37 1 9 60 10
38 0 61
39 1 33 62 26
40 0 34 45 35
41 0 26
42 1 63

S O [0, 0] [0, 1] [1, 0] [1, 1]
43 0 34 45 64 65
44 0 59
45 0 47
46 1 39 25 33
47 0 66 68 67 69
48 0 26
49 0 70
50 1 25
51 0 25 58
52 0 45
53 1 39 71 36 72
54 0 21 50
55 0 22 26
56 0 73 26
57 0 49
58 0 25
59 1 33 33 47
60 0 29
61 1 33 49 33 47
62 1 33 49 33
63 1 33 33 22
64 1 9 10 41
65 0 74
66 0 75
67 1 76 10 41
68 0 47 77
69 0 78 74
70 1 79 80 75 81
71 1 53 48
72 1 13 54 18 82
73 0 49 28
74 0 49
75 1 19 33 47
76 1 83
77 0 74
78 0 28 25
79 1 83 25 33
80 0 28 70
81 0 66 84 67 69
82 1 25 22 26
83 1 33 33 26
84 0 49 47 77

Table A.2: An automaton accepting binary representations (least significant bit
first) of those (i, n) such that the Rudin-Shapiro word has a privileged factor of
length n at position i.
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S O 0 1
0 0 1 2
1 0 3 4
2 1 5 6
3 0 7 8
4 1 9 9
5 1 10 11
6 1 12 13
7 0 14 15
8 0 16 17
9 1 9
10 1 18 19
11 1 20 21
12 1 9 22
13 0 23
14 0 24 25
15 0 26
16 0 27
17 1 28 29
18 1 30 31
19 0 32
20 1 33 34
21 0 35 36
22 1 37
23 0 38
24 0 39
25 1 40 41
26 1 42 43
27 0 44
28 1 45 46
29 0 47
30 1 9 48
31 1 49
32 0 38 50
33 1 51 52
34 0 53
35 0 54
36 0 55 56
37 1 57
38 0 58
39 0 59
40 1 57 22
41 0 60
42 1 9 34

S O 0 1
43 0 61 56
44 1 9 23
45 1 62
46 0 63
47 0 64 46
48 0 41
49 1 65
50 0 66 67
51 1 68 69
52 1 37 44
53 0 70
54 1 71 53
55 0 72 73
56 0 74
57 1 9 27
58 0 75
59 0 72
60 0 66
61 0 64 58
62 1 68
63 0 76
64 0 22
65 1 62 48
66 0 77
67 0 59 78
68 1 9 79
69 0 80
70 0 81
71 1 45 34
72 0 82
73 1 71
74 0 46
75 0 56
76 0 64
77 1 83
78 0 59
79 0 84
80 0 85 60
81 0 78
82 0 48
83 1 45
84 0 85
85 0 34

Table A.3: The automaton depicted in Figure 3.3. This automaton accepts the
binary representations (least significant bit first) of those integers k such that there
is a gap of exactly k zeros in the privileged complexity function of the Rudin-
Shapiro word.
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BExplicit Enumeration of Privileged Words

Below we give a table containing the exact values of B(n), the number of privi-
leged binary words of length n, for 0 ≤ n ≤ 45. The values 0 ≤ n ≤ 38 were
computed by Michael Forsyth. I verified Forsyth’s computations and found the
additional values. The values listed below are recorded as the sequence A231208
in Sloane’s On-Line Encyclopedia of Integer Sequences [134].

n B(n) n B(n) n B(n)
1 2 16 1848 31 21198388
2 2 17 3388 32 40329428
3 4 18 6132 33 76865388
4 4 19 11332 34 146720792
5 8 20 20788 35 280498456
6 8 21 38576 36 536986772
7 16 22 71444 37 1029413396
8 20 23 133256 38 1975848400
9 40 24 248676 39 3797016444
10 60 25 466264 40 7304942256
11 108 26 875408 41 14068883556
12 176 27 1649236 42 27123215268
13 328 28 3112220 43 52341185672
14 568 29 5888548 44 101098109768
15 1040 30 11160548 45 195444063640

https://oeis.org/A231208


160



161

Bibliography

[1] P. Alessandri and V. Berthé. Three distance theorems and combinatorics
on words. L’Enseignement Mathématique 44 (1998), 103–132.

[2] C. Allauzen. Une caractérisation simple des nombres de Sturm. Journal de
Théorie des Nombres de Bordeaux 10.2 (1998), 237–241.
DOI: 10.5802/jtnb.226.

[3] J.-P. Allouche, M. Baake, J. Cassaigne, and D. Damanik. Palindrome com-
plexity. Theoretical Computer Science 292 (2003), 9–31.
DOI: 10.1016/S0304-3975(01)00212-2.

[4] J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni. Transcen-
dence of Sturmian or morphic continued fractions. Journal of Number The-
ory 91 (2001), 39–66.
DOI: 10.1006/jnth.2001.2669.

[5] J.-P. Allouche, N. Rampersad, and J. Shallit. Periodicity, repetitions, and
orbits of an automatic sequence. Theoretical Computer Science 410 (2009),
2795–2803.
DOI: 10.1016/j.tcs.2009.02.006.

[6] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence.
Sequences and Their Applications: Proceedings of SETA ’98. Springer-Verlag,
1999, pp. 1–16.

[7] J.-P. Allouche and J. Shallit. Automatic Sequences. Theory, Applications, Gen-
eralizations. Cambridge University Press, 2003.

[8] P. Arnoux and G. Rauzy. Représentation géométrique de suites de com-
plexité 2n + 1. Bulletin de la Société Mathématique de France 119.2 (1991),
199–215.

[9] G. Badkobeh, G. Fici, and Z. Lipták. On the number of closed factors in
a word. Language and Automata Theory and Applications. 9th International
Conference, LATA 2015. Lecture Notes in Computer Science 8977. Springer,
2015, pp. 381–390.
DOI: 10.1007/978-3-319-15579-1.

[10] P. Baláži, Z. Masáková, and E. Pelantová. Factor versus palindromic com-
plexity of uniformly recurrent infinite words. Theoretical Computer Science
380 (2007), 266–275.
DOI: http://dx.doi.org/10.1016/j.tcs.2007.03.019.

[11] L. Balková, E. Pelantová, and Š. Starosta. Infinite words with finite defect.
Advances in Applied Mathematics 47 (2011), 526–574.
DOI: 10.1016/j.aam.2010.11.006.

http://dx.doi.org/10.5802/jtnb.226
http://dx.doi.org/10.1016/S0304-3975(01)00212-2
http://dx.doi.org/10.1006/jnth.2001.2669
http://dx.doi.org/10.1016/j.tcs.2009.02.006
http://dx.doi.org/10.1007/978-3-319-15579-1
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2007.03.019
http://dx.doi.org/10.1016/j.aam.2010.11.006


162 Bibliography

[12] L. Balková, E. Pelantová, and W. Steiner. Return words in fixed points of
substitutions. Preprint (2007).
arXiv: math/0608603v3 [math.CO].

[13] J. Bernoulli III. Sur une nouvelle espece de calcul. In: Recueil pour les As-
tronomes, Vol. I. Berlin, 1772, pp. 255–284.

[14] J. Berstel. Mots de Fibonacci. Séminaire d’Informatique Théorique. Paris, 1980,
pp. 57–78.

[15] J. Berstel. Recent results on Sturmian words. Developments in Language The-
ory II. At the Crossroads of Mathematics, Computer Science and Biology. World
Scientific Publishing, 1996, pp. 13–24.

[16] J. Berstel. On the index of Sturmian words. In: Jewels Are Forever. Springer-
Verlag, 1999, pp. 287–294.

[17] J. Berstel. Sturmian and episturmian words. A survey of some recent re-
sults. Algebraic Informatics. Second International Conference, CAI 2007. Lec-
ture Notes in Computer Science 4728. Springer, 2007, pp. 23–47.
DOI: 10.1007/978-3-540-75414-5_2.

[18] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Infinite words without
palindrome. Preprint (2009).
arXiv: 0903.2382 [cs.DM].

[19] J. Berstel and D. Perrin. The origins of combinatorics on words. European
Journal of Combinatorics 28.3 (2007), 996–1022.
DOI: 10.1016/j.ejc.2005.07.019.

[20] V. Berthé, H. Ei, S. Ito, and H. Rao. On substitution invariant Sturmian
words: An application of Rauzy fractals. RAIRO - Theoretical Informatics
and Applications 41.3 (2007), 329–349.
DOI: 10.1051/ita:2007026.

[21] V. Berthé, C. Holton, and L. Q. Zamboni. Initial powers of Sturmian se-
quences. Acta Arithmetica 122.4 (2006), 315–347.
DOI: 10.4064/aa122-4-1.

[22] A. Blondin-Massé, S. Brlek, and S. Labbé. Palindromic lacunas of the Thue-
Morse word. GASCom 2008. 6th International Conference on Random Genera-
tion of Combinatorial Structures. 2008, pp. 53–67.

[23] T. C. Brown. Descriptions of the characteristic sequence of an irrational.
Canadian Mathematical Bulletin 36.1 (1993), 15–21.

[24] I. Cakir, O. Chryssaphinou, and M. Månsson. On a conjecture by Eriksson
concerning overlap in strings. Combinatorics, Probability and Computing 8.5
(1999), 429–440.

[25] L. Carlitz, R. Scoville, and V. E. Hogart, Jr. Fibonacci representations of
higher order. The Fibonacci Quarterly 10.1 (1972), 43–69.

[26] A. Carpi and A. de Luca. Special factors, periodicity, and an application to
Sturmian words. Acta Informatica 36 (2000), 983–1006.
DOI: 10.1007/PL00013299.

http://arxiv.org/abs/math/0608603v3
http://dx.doi.org/10.1007/978-3-540-75414-5_2
http://arxiv.org/abs/0903.2382
http://dx.doi.org/10.1016/j.ejc.2005.07.019
http://dx.doi.org/10.1051/ita:2007026
http://dx.doi.org/10.4064/aa122-4-1
http://dx.doi.org/10.1007/PL00013299


163

[27] J. Cassaigne. On extremal properties of the Fibonacci word. RAIRO - The-
oretical Informatics and Applications 42.4 (2008), 701–715.
DOI: 10.1051/ita:2008003.

[28] J. Cassaigne, S. Ferenczi, and L. Q. Zamboni. Imbalances in Arnoux-Rauzy
sequences. Annales de l’institut Fourier 50.4 (2000), 1265–1276.
DOI: 10.5802/aif.1792.

[29] J. Cassaigne, G. Fici, M. Sciortino, and L. Q. Zamboni. Cyclic complexity
of words. Journal of Combinatorial Theory, Series A (2016). To appear.

[30] J. Cassaigne, G. Richomme, K. Saari, and L. Q. Zamboni. Avoiding abelian
powers in binary words with bounded abelian complexity. International
Journal of Foundations of Computer Science 22.4 (2011), 905–920.
DOI: 10.1142/S0129054111008489.

[31] J. W. S. Cassels. An Introduction to Diophantine Approximation. Cambridge
Tracts in Mathematics and Mathematical Physics 45. Cambridge Univer-
sity Press, 1957.

[32] É. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable prop-
erties of automatic sequences. International Journal of Foundations of Com-
puter Science 23.5 (2012), 1035–1066.
DOI: 10.1142/S0129054112400448.

[33] E. B. Christoffel. Observatio arithmetica. Annali di Matematica Pura ed Ap-
plicata 6.1 (1873), 148–152.
DOI: 10.1007/BF02420125.

[34] E. B. Christoffel. Lehrsätze über arithmetische Eigenschaften der Irratio-
nalzahlen. Annali di Matematica Pura ed Applicata 15.1 (1888), 253–276.
DOI: 10.1007/BF02420241.

[35] S. Constantinescu and L. Ilie. Fine and Wilf’s Theorem for abelian periods.
Bulletin of the European Association for Theoretical Computer Science 89 (2006),
167–170.

[36] E. M. Coven. Sequences with minimal block growth II. Mathematical Sys-
tems Theory 8.4 (1974), 376–382.
DOI: 10.1007/BF01780584.

[37] E. M. Coven and G. A. Hedlund. Sequences with minimal block growth.
Mathematical Systems Theory 7.2 (1973), 138–153.
DOI: 10.1007/BF01762232.

[38] D. Crisp, W. Moran, A. Pollington, and P. Shiue. Substitution invariant
cutting sequences. Journal de Théorie des Nombres de Bordeaux 5.1 (1993),
123–137.
DOI: 10.5802/jtnb.83.

[39] J. D. Currie and K. Saari. Least periods of factors of infinite words. RAIRO
- Theoretical Informatics and Applications 43.1 (2009), 168–178.
DOI: 10.1051/ita:2008006.

http://dx.doi.org/10.1051/ita:2008003
http://dx.doi.org/10.5802/aif.1792
http://dx.doi.org/10.1142/S0129054111008489
http://dx.doi.org/10.1142/S0129054112400448
http://dx.doi.org/10.1007/BF02420125
http://dx.doi.org/10.1007/BF02420241
http://dx.doi.org/10.1007/BF01780584
http://dx.doi.org/10.1007/BF01762232
http://dx.doi.org/10.5802/jtnb.83
http://dx.doi.org/10.1051/ita:2008006


164 Bibliography

[40] T. W. Cusick and M. E. Flahive. The Markoff and Lagrange Spectra. Math-
ematical Surveys and Monographs 30. American Mathematical Society,
Providence, Rhode Island, 1989.

[41] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional
quasicrystals, I. Absence of eigenvalues. Communications in Mathematical
Physics 207.3 (1999), 687–696.
DOI: 10.1007/s002200050742.

[42] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional
quasicrystals, II. The Lyapunov exponent. Letters in Mathematical Physics
50.4 (1999), 245–257.
DOI: 10.1023/A:1007614218486.

[43] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional
quasicrystals, III. α-continuity. Communications in Mathematical Physics 212.1
(2000), 191–204.
DOI: 10.1007/s002200000203.

[44] D. Damanik and D. Lenz. The index of Sturmian sequences. European Jour-
nal of Combinatorics 23 (2002), 23–29.
DOI: 10.1006/eujc.2000.0496.

[45] D. Damanik and D. Lenz. Powers in Sturmian sequences. European Journal
of Combinatorics 24 (2003), 377–390.
DOI: 10.1016/S0195-6698(03)00026-X.

[46] D. Damanik and D. Lenz. Uniform spectral properties of one-dimensional
quasicrystals, IV. Quasi-Sturmian potentials. Journal d’Analyse Mathéma-
tique 90.1 (2003), 115–139.
DOI: 10.1007/BF02786553.

[47] D. Damanik and D. Zare. Palindrome complexity bounds for primitive
substitution sequences. Discrete Mathematics 222 (2000), 259–261.
DOI: 10.1016/S0012-365X(00)00054-6.

[48] A. De Luca and G. Fici. Open and closed prefixes of Sturmian words.
Combinatorics on Words. 9th International Conference, WORDS 2013. Lecture
Notes in Computer Science 8079. Springer, 2013, pp. 132–142.
DOI: 10.1007/978-3-642-40579-2.

[49] X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some con-
structions of de Luca and Rauzy. Theoretical Computer Science 225 (2001),
539–553.
DOI: 10.1016/S0304-3975(99)00320-5.

[50] X. Droubay and G. Pirillo. Palindromes and Sturmian words. Theoretical
Computer Science 223 (1999), 73–85.
DOI: 10.1016/S0304-3975(97)00188-6.

[51] C. F. Du, H. Mousavi, E. Rowland, L. Schaeffer, and J. Shallit. Decision al-
gorithms for Fibonacci-automatic Words, II: Related sequences and avoid-
ability. Preprint (2015).
URL: https://cs.uwaterloo.ca/~shallit/Papers/part2e.pdf.

http://dx.doi.org/10.1007/s002200050742
http://dx.doi.org/10.1023/A:1007614218486
http://dx.doi.org/10.1007/s002200000203
http://dx.doi.org/10.1006/eujc.2000.0496
http://dx.doi.org/10.1016/S0195-6698(03)00026-X
http://dx.doi.org/10.1007/BF02786553
http://dx.doi.org/10.1016/S0012-365X(00)00054-6
http://dx.doi.org/10.1007/978-3-642-40579-2
http://dx.doi.org/10.1016/S0304-3975(99)00320-5
http://dx.doi.org/10.1016/S0304-3975(97)00188-6
https://cs.uwaterloo.ca/~shallit/Papers/part2e.pdf


165

[52] C. F. Du, H. Mousavi, L. Schaeffer, and J. Shallit. Decision algorithms for
Fibonacci-automatic words, III: Enumeration and abelian properties. In-
ternational Journal of Foundations of Computer Science (2016). To appear.
URL: https://cs.uwaterloo.ca/~shallit/Papers/part3b.pdf.

[53] A. Dubickas. Squares and cubes in Sturmian sequences. RAIRO - Theoreti-
cal Informatics and Applications 43.3 (2009), 615–624.
DOI: 10.1051/ita/2009005.

[54] F. Durand. Corrigendum and addendum to ‘Linearly recurrent subshifts
have a finite number of non-periodic factors’. Ergodic Theory and Dynamical
Systems 23.2 (2003), 663–669.
DOI: 10.1017/S0143385702001293.

[55] F. Durand, B. Host, and C. Skau. Substitution dynamical systems, Brat-
teli diagrams and dimension groups. Ergodic Theory and Dynamical Systems
19.4 (1999), 953–993.
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