134 research outputs found

    Problems and solutions in middle size robot soccer: a review

    Get PDF
    A review of current scientific and technological problems encountered in building and programming middle size soccer robots is made in this paper. Solutions and solution trends to the problems, as presented by different teams, are also examined. Perceptual systems of individual robots, in particular with respect to object location, communications between robot players, decision making with regard to game strategy and behaviour generation, and, finally, actuation, are the topics dealt with. This makes for a wide perspective on the actual state of the art of middle size soccer robots

    Omni-directional catadioptric vision for soccer robots

    Get PDF
    This paper describes the design of a multi-part mirror catadioptric vision system and its use for self-localization and detection of relevant objects in soccer robots. The mirror and associated algorithms have been used in robots participating in the middle-size league of RoboCup — The World Cup of Soccer Robots.This work was supported by grant PRAXIS XXI BM/21091/99 of the Portuguese Foundation for Science and Technolog

    Multirobot Systems: A Classification Focused on Coordination

    Full text link

    L'universo dei videogiochi

    Get PDF
    Prendendo atto di quanto siano variegate opinioni e valutazioni sul metamorfico universo dei videogiochi, si cerca di circoscrivere una sua tipologia in rapporto ad un presunto canone romanzesco. A questo viene contrapposto un “controcanone” visivo che prospetta un happy end e si fa carico delle forme contemporanee dell’intermedialità

    Towards Specifying And Evaluating The Trustworthiness Of An AI-Enabled System

    Get PDF
    Applied AI has shown promise in the data processing of key industries and government agencies to extract actionable information used to make important strategical decisions. One of the core features of AI-enabled systems is the trustworthiness of these systems which has an important implication for the robustness and full acceptance of these systems. In this paper, we explain what trustworthiness in AI-enabled systems means, and the key technical challenges of specifying, and verifying trustworthiness. Toward solving these technical challenges, we propose a method to specify and evaluate the trustworthiness of AI-based systems using quality-attribute scenarios and design tactics. Using our trustworthiness scenarios and design tactics, we can analyze the architectural design of AI-enabled systems to ensure that trustworthiness has been properly expressed and achieved.The contributions of the thesis include (i) the identification of the trustworthiness sub-attributes that affect the trustworthiness of AI systems (ii) the proposal of trustworthiness scenarios to specify trustworthiness in an AI system (iii) a design checklist to support the analysis of the trustworthiness of AI systems and (iv) the identification of design tactics that can be used to achieve trustworthiness in an AI system

    How Do UX Practitioners Communicate AI as a Design Material? Artifacts, Conceptions, and Propositions

    Full text link
    UX practitioners (UXPs) face novel challenges when working with and communicating artificial intelligence (AI) as a design material. We explore how UXPs communicate AI concepts when given hands-on experience training and experimenting with AI models. To do so, we conducted a task-based design study with 27 UXPs in which they prototyped and created a design presentation for a AI-enabled interface while having access to a simple AI model training tool. Through analyzing UXPs' design presentations and post-activity interviews, we found that although UXPs struggled to clearly communicate some AI concepts, tinkering with AI broadened common ground when communicating with technical stakeholders. UXPs also identified key risks and benefits of AI in their designs, and proposed concrete next steps for both UX and AI work. We conclude with a sensitizing concept and recommendations for design and AI tools to enhance multi-stakeholder communication and collaboration when crafting human-centered AI experiences

    Planning and estimation algorithms for human-like grasping

    Get PDF
    Mención Internacional en el título de doctorThe use of robots in human-like environments requires them to be able to sense and model unstructured scenarios. Thus, their success will depend on their versatility for interacting with the surroundings. This interaction often includes manipulation of objects for accomplishing common daily tasks. Therefore, robots need to sense, understand, plan and perform; and this has to be a continuous loop. This thesis presents a framework which covers most of the phases encountered in a common manipulation pipeline. First, it is shown how to use the Fast Marching Squared algorithm and a leader-followers strategy to control a formation of robots, simplifying a high dimensional path-planning problem. This approach is evaluated with simulations in complex environments in which the formation control technique is applied. Results are evaluated in terms of distance to obstacles (safety) and the needed deformation. Then, a framework to perform the grasping action is presented. The necessary techniques for environment modelling and grasp synthesis and path planning and control are presented. For the motion planning part, the formation concept from the previous chapter is recycled. This technique is applied to the planning and control of the movement of a complex hand-arm system. Tests using robot Manfred show the possibilities of the framework when performing in real scenarios. Finally, under the assumption that the grasping actions may not always result as it was previously planned, a Bayesian-based state-estimation process is introduced to estimate the final in-hand object pose after a grasping action is done, based on the measurements of proprioceptive and tactile sensors. This approach is evaluated in real experiments with Reex Takktile hand. Results show good performance in general terms, while suggest the need of a vision system for a more precise outcome.La investigación en robótica avanza con la intención de evolucionar hacia el uso de los robots en entornos humanos. A día de hoy, su uso está prácticamente limitado a las fábricas, donde trabajan en entornos controlados realizando tareas repetitivas. Sin embargo, estos robots son incapaces de reaccionar antes los más mínimos cambios en el entorno o en la tarea a realizar. En el grupo de investigación del Roboticslab se ha construido un manipulador móvil, llamado Manfred, en el transcurso de los últimos 15 años. Su objetivo es conseguir realizar tareas de navegación y manipulación en entornos diseñados para seres humanos. Para las tareas de manipulación y agarre, se ha adquirido recientemente una mano robótica diseñada en la universidad de Gifu, Japón. Sin embargo, al comienzo de esta tesis, no se había realzado ningún trabajo destinado a la manipulación o el agarre de objetos. Por lo tanto, existe una motivación clara para investigar en este campo y ampliar las capacidades del robot, aspectos tratados en esta tesis. La primera parte de la tesis muestra la aplicación de un sistema de control de formaciones de robots en 3 dimensiones. El sistema explicado utiliza un esquema de tipo líder-seguidores, y se basa en la utilización del algoritmo Fast Marching Square para el cálculo de la trayectoria del líder. Después, mientras el líder recorre el camino, la formación se va adaptando al entorno para evitar la colisión de los robots con los obstáculos. El esquema de deformación presentado se basa en la información sobre el entorno previamente calculada con Fast Marching Square. El algoritmo es probado a través de distintas simulaciones en escenarios complejos. Los resultados son analizados estudiando principalmente dos características: cantidad de deformación necesaria y seguridad de los caminos de los robots. Aunque los resultados son satisfactorios en ambos aspectos, es deseable que en un futuro se realicen simulaciones más realistas y, finalmente, se implemente el sistema en robots reales. El siguiente capítulo nace de la misma idea, el control de formaciones de robots. Este concepto es usado para modelar el sistema brazo-mano del robot Manfred. Al igual que en el caso de una formación de robots, el sistema al completo incluye un número muy elevado de grados de libertad que dificulta la planificación de trayectorias. Sin embargo, la adaptación del esquema de control de formaciones para el brazo-mano robótico nos permite reducir la complejidad a la hora de hacer la planificación de trayectorias. Al igual que antes, el sistema se basa en el uso de Fast Marching Square. Además, se ha construido un esquema completo que permite modelar el entorno, calcular posibles posiciones para el agarre, y planificar los movimientos para realizarlo. Todo ello ha sido implementado en el robot Manfred, realizando pruebas de agarre con objetos reales. Los resultados muestran el potencial del uso de este esquema de control, dejando lugar para mejoras, fundamentalmente en el apartado de la modelización de objetos y en el cálculo y elección de los posibles agarres. A continuación, se trata de cerrar el lazo de control en el agarre de objetos. Una vez un sistema robótico ha realizado los movimientos necesarios para obtener un agarre estable, la posición final del objeto dentro de la mano resulta, en la mayoría de las ocasiones, distinta de la que se había planificado. Este hecho es debido a la acumulación de fallos en los sistemas de percepción y modelado del entorno, y los de planificación y ejecución de movimientos. Por ello, se propone un sistema Bayesiano basado en un filtro de partículas que, teniendo en cuenta la posición de la palma y los dedos de la mano, los datos de sensores táctiles y la forma del objeto, estima la posición del objeto dentro de la mano. El sistema parte de una posición inicial conocida, y empieza a ejecutarse después del primer contacto entre los dedos y el objeto, de manera que sea capaz de detectar los movimientos que se producen al realizar la fuerza necesaria para estabilizar el agarre. Los resultados muestran la validez del método. Sin embargo, también queda claro que, usando únicamente la información táctil y de posición, hay grados de libertad que no se pueden determinar, por lo que, para el futuro, resultaría aconsejable la combinación de este sistema con otro basado en visión. Finalmente se incluyen 2 anexos que profundizan en la implementación de la solución del algoritmo de Fast Marching y la presentación de los sistemas robóticos reales que se han usado en las distintas pruebas de la tesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Raúl Suárez Feijoo.- Vocal: Pedro U. Lim

    Capable but Amoral? Comparing AI and Human Expert Collaboration in Ethical Decision Making

    Get PDF
    While artificial intelligence (AI) is increasingly applied for decision- making processes, ethical decisions pose challenges for AI applica- tions. Given that humans cannot always agree on the right thing to do, how would ethical decision-making by AI systems be perceived and how would responsibility be ascribed in human-AI collabora- tion? In this study, we investigate how the expert type (human vs. AI) and level of expert autonomy (adviser vs. decider) influence trust, perceived responsibility, and reliance. We find that partici- pants consider humans to be more morally trustworthy but less capable than their AI equivalent. This shows in participants’ re- liance on AI: AI recommendations and decisions are accepted more often than the human expert’s. However, AI team experts are per- ceived to be less responsible than humans, while programmers and sellers of AI systems are deemed partially responsible instead
    corecore