
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Communication and Collaboration in
Heterogeneous Teams of Soccer Robots

Philipp A. Baer and Roland Reichle
University of Kassel

Germany

1. Introduction

The RoboCup tournaments foster research in the area of autonomous robotics and
cooperative behaviour. Recently, modifications to the rules were adopted promoting further
developments towards a typical human playing ground. Some simplifications such as
constant lighting were dropped and further modifications will follow in the next years.
Regarding team cooperation and coordination, the most important change in 2007 is the
enlargement of the playing field. The maximum number of players in a team has been
increased to 6; for the long time goal the number of players will approach 11.
For research groups it may be difficult to keep up with the enlargement of team sizes, for
newcomers it even constitutes a virtually infeasible financial effort. This is why so-called
mixed teams gain a lot of popularity. Here, two or more research groups pool their
resources together to provide a joint, more powerful team (Nardi et al., 1999; Castelpietra et
al., 2000). This implies that different hardware and software systems have to communicate
and collaborate. A number of problems have to be faced which arise from the heterogeneity
of the systems involved. Among other things, the interpretation of different representations,
the fusion of information to a consistent world view, and the realization of team-play
strategies on the different platforms are predominant questions.
In order to cope with these challenges, we have adopted a model-driven software
development approach. Below we introduce our development environment for
communication infrastructures. Afterwards, we summarize our research activities towards a
model-driven development approach for modelling cooperative behaviour in teams of
autonomous soccer robots. A detailed example describes the creation of a software
infrastructure for a mixed-team of soccer robots. It illustrates the benefits of our
development environment and highlights our contribution. We conclude with a
presentation of our vision for further developments.

2. Problem Description

When RoboCup was announced in 1995, it was a research challenge to build autonomous
mobile robots (AMRs) that were able to find the ball and the goals, to avoid collisions with
other players, to estimate their position on the field, and to score goals. Nowadays, a large

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

 Robotic Soccer 2

number of approaches are available for solving these problems. The research focus therefore
shifted towards creating teams of robots that cooperatively play soccer.
To realize a team-play, robots must be able to exchange information with their team-mates,
interpret the exchanged data, and fuse the information to a consistent world view, as
already outlined in the introduction. This is the basis for coming to an agreement about the
current situation on the field and coordinating the cooperative behaviour of the team.
Nowadays, almost every team in the RoboCup middle-size league implements some kind of
team-play, which in most cases is tailored to the capabilities and the needs of the underlying
robotic software framework. Due to the lack of standard software and because of the variety
of different software frameworks, heterogeneity issues play a decisive role when forming a
mixed-team.

Fig. 1. Carpe Noctem fighting against another team

During the RoboCup World Championships 2006 in Bremen, Germany, the teams Carpe
Noctem from Kassel University – shown in Fig. 1 – and the Ulm Sparrows from Ulm
University formed a mixed-team. The Ulm Sparrows use Miro (Utz et al., 2002), a
middleware framework that is implemented in C++ and heavily relies on CORBA. Greater
parts of the Carpe Noctem software framework are realized in C# using the Mono
(http://www.mono-project.org/) framework. To set up team cooperation a suitable
communication infrastructure had to be established first. The Ulm Sparrows relied on an IP
multicast-based group communication scheme over which the SharedBelief (Utz et al., 2004;
Isik et al., 2007) data structure was exchanged. In order to talk to the other team, Carpe
Noctem thus needed to provide a corresponding implementation along with suitable data
conversion techniques. The implementation as such was a quite time consuming task.
For real interoperability it is not sufficient to only communicate data, they also have to be
interpreted with regard to their semantics and representations. Teams have to either agree
on a standard representation which includes common measurement units and coordinate
systems or provide appropriate data conversion routines. However, recent discussions in
the RoboCup community show that it is quite difficult to reach an agreement on a standard

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 3

representation, as almost any team provides a self-defined representation scheme.
Fortunately, the measurements units and the coordinate systems used by the Ulm Sparrows
and Carpe Noctem were quite similar.
To be able to agree on the current situation on the field and to realize dynamic role
assignment, Carpe Noctem provided a cooperative world model named SharedWorld. It
fused the exchanged information to a consistent world view and provided realizations of
different team-play strategies which were used as a basis for the role assignment.
SharedWorld was also capable of calculating the ball position by taking into account the
trustworthiness and impreciseness of observations, gathered from the different robots. For
the Ulm Sparrows a module with nearly the same functionality was created because
decisions had to be taken consistently among all players. A re-implementation of
SharedWorld was necessary because of the incompatible software frameworks of the two
teams.
This example makes it quite obvious that the realization of cooperative behaviour in
heterogeneous teams of robots is a challenging and time consuming task. This problem has
even more effect in groups consisting of more than two teams. Therefore, methods and
development support is needed to ease the realization of communication and collaboration
in heterogeneous teams of soccer robots.

3. Our Contribution

The previous section showed that the realization of team-play strategies in heterogeneous
teams of soccer robots is a quite time consuming task. In order to reduce the development
effort we present SPICA, a development framework for communication and collaboration
infrastructures in teams of AMRs. SPICA assists in integrating software systems realized in
different programming languages and developed for different platforms in heterogeneous
distributed environments. It further provides patterns for data and sensor fusion and
facilitates the development of cooperative behaviour in groups of AMRs.
To be able to cope with heterogeneity issues, we have adopted a model-driven development
approach for SPICA. It supports the specification of communication and collaboration
infrastructures of AMRs at an abstract and platform-independent level. Models are then
automatically transformed to platform-specific source code which can easily be integrated
into existing software frameworks. The modelling support is based on the SPICA modelling
language which consists of several domain-specific sublanguages tailored to the different
aspects of communication and collaboration infrastructures. The total of all sublanguages
form the SPICA modelling language, also referred to as the Abstract Architecture Specification
(AAS) language.
With the Message Description Language (MDL) a developer may specify the structure of
network messages in an efficient and platform-independent manner, similar to ASN.1.
Communication among AMRs is mostly event-based, so we decided to apply concepts of
message-oriented middleware (MOM) architectures as they turned out to be most appropriate.
The Data flow Description Language (DFDL) supports the specification of communication
infrastructures in terms of modules and the data flow between them. Module stubs are
created from the specifications which are basically adapters to the underlying
communication infrastructure. The DFDL also facilitates the specification of the data
management behaviour. For this purpose, it provides so-called Data Management Containers

 Robotic Soccer 4

(DMCs) which are data structures used for managing incoming and outgoing data. DMCs
further build the foundation of the general purpose Data-Analysis Description Language
(DADL). It provides modelling support for filters that operate directly on the contents of the
DMCs. DADL comprises a Matlab-like syntax allowing calculations on the exchanged data
to be specified in a platform-independent manner. Examples are the calculation of a robot’s
role or the agreed ball position. In addition, the DADL also provides some predefined filter
patterns to fuse the exchanged data to a consistent world view. The integration of other
services such as data encryption or authentication is possible as well. Apart from these
sublanguages we employ the concept of ontologies. They allow us to establish a common
understanding of the involved semantic concepts and different representations and
therefore help to realize automatic conversion of data representations.
With the help of the tools provided by the SPICA development environment, the resulting
platform-independent models (PIMs) of the communication and collaboration infrastructure
can be transformed into platform-specific implementations in C#, C++, and Java. Our
template-based approach allows for easy integration of further programming languages.
The model-driven development approach proved to significantly reduce the development
effort for the realization of communication and collaboration infrastructures for
heterogeneous teams of AMRs. A suitable communication and collaboration infrastructure
has to be developed only once by specifying the desired functionality in a platform-
independent manner. The corresponding platform-specific implementations are generated
automatically and can be integrated into new or existing software frameworks very easily.
In addition, the SPICA development framework also completely relieves the developers
from the burden of dealing with encoding and decoding issues, heterogeneous data
representations, and synchronization issues. In this aspect, the SPICA-based
implementations are comparable to Remote Procedure Call-based (RPC) solutions. The main
difference here is that generated implementations are tailored to the characteristics of event-
driven AMR group communication. Using SPICA, the developers furthermore do not have
to deal with the time-consuming implementation of data fusion and analysis schemes for
each of the involved platforms.
In the following, we will introduce the SPICA development environment in more detail
along with its modelling language and associated capabilities. Afterwards, an elaborate
example will outline the steps required to specify a communication and collaboration
infrastructure between two different groups of AMRs.

4. The Spica Approach

The concept of the SPICA development environment was first published in 2007 (Baer et al.,
2007). The first generation of SPICA was capable of generating message structures, the
second generation added support for modelling data flow. The third generation we outline
here, brings major language cleanups, enhancements, and new features such as dynamic
module binding, semantic annotation, and automatic data conversion.
Dynamic module binding relies on a service discovery engine embedded into the generated
implementation. The creation of channels is based on the availability of resources. It is also
possible to create static channels which do not require the service discovery engine.
Automatic data conversion relies on the semantic annotation of the specified data structures.
Here, a common understanding of the semantics of data structures and the relations

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 5

between them may be established using an ontology specification. Our framework also
foresees the integration of ontologies provided by third parties.
For several reasons we decided to develop a textual domain-specific modelling language
instead of using existing general purpose ones. First of all, the development of a novel
domain-specific language (DSL) enables us to provide a very compact modelling notation,
reduced to the needs and tailored to the semantics of our modelling domain. The SPICA
sublanguages cover these areas where more specific modelling support is required. They are
designed in such a way that they combine to the overall SPICA modelling language in a
consistent fashion. This is not only advantageous for the model transformation process but
also for the developer, who does not have to deal with different semantics of different
description languages. A textual notation is furthermore sufficient for most modelling tasks.
If designed with simplicity in mind, it is often even more convenient to use than graphical
notations and it may allow for rapid prototyping.

Parse AAS

Process AIR

Generate Code

MDL DFDL DADL

C
o

d
e Code

Language and/or

platform dependent

P
S
M AIR

AASTra Intermediate

Representation

P
IM

AAS
Abstract Architecture

Specification

AASTra
AASTranslator

Model

Transformation

Code

Templates

Fig. 2. Internal workflow of the SPICA development environment

DSLs, of course, require us to create tools that interpret and transform models into concrete
implementations. The corresponding tool developed for SPICA is the AAS Transformator
(AASTra), covering the whole process from interpreting a model down to generating
concrete source code. It follows a three-layered approach as shown in Fig. 2, representing
the reduction of abstraction from the topmost down to the lowest level of modelling. The
SPICA modelling language resides on the topmost layer named AAS; it represents the PIM
in the context of Model-driven Development (MDD). On the second layer, an in-memory
intermediate representation of the AAS models is generated which is referred to as the
AASTra Intermediate Representation (AIR). Processing is carried out in two steps: First, the
model is parsed and references are resolved. Afterwards, the model is processed and
transformed into a representation more suitable for the final code transformation. Here, the
consistency of the model is checked and the required non-trivial transformations are
performed. Language compilers follow a very similar approach when transforming a
language specification to assembler or executable binaries.

 Robotic Soccer 6

The actual code transformation is performed on the third layer. Here, a template engine
keeps the transformation process very flexible and customizable. Templates can access to
the AIR directly. Reoccurring patterns are encapsulated in smaller sub-templates. To reduce
redundancy in the code, frequently used functionality is relocated to libraries.
We will now introduce the SPICA modelling language along with all its sublanguages,
starting with a description of common language features.

4.1 Common Model Semantics

4.1.1 Blocks

Related statements are grouped together in logical blocks. Each such block has a type and a
name. The body of the block is enclosed in curly braces. The example below outlines the
general structure.

<type> <name> [<inheritance spec>] [<annotations>] {
 <body>
}

The type of such a block is given by one of the predefined keywords header, message,

container, coord, or module. The first four keywords are belonging to MDL while the
remaining one is part of DFDL. A type is followed by a name, an inheritance specification,
and additional annotations. The optional inheritance specification is available in the MDL
only. Annotations are lists of key-value pairs enclosed in square brackets; values may be
omitted. They parameterize the respective elements and thus influence the code generation
process. Annotations are supported in every sublanguage but are optional as well.

4.1.2 Semantic Model

In a heterogeneous distributed environment, where a-priori unknown systems have to
communicate and interpret the exchanged data, it is essential to establish a common
understanding of their semantics and representations. Therefore, the SPICA AAS language
supports semantic annotation of data structures. The semantic model provides two types of
classes: concepts and representations. A concept defines the conceptual appearance of an
element while a representation defines its concrete representation. A base ontology defines
fundamental concepts like ball or player, but also coordinate systems and representations
such as physical units. It thus builds the foundation for an automatic conversion of
representations, a conversion from mm to m, for instance. Due to the availability of
coordinate system specifications defined with regard to a reference system also non-trivial
operations like converting the representation from one coordinate system to another can be
provided automatically. For even more complex tasks we also allow the definition of custom
conversion methods in a way similar to (Strang et al., 2003).
Semantic descriptions provided by third-parties may be used as well. The base ontology and
third-party additions are managed by a simple, distributed storage system which supports
retrieval or insertion of ontology classes in a lightweight manner.
Two semantic annotations are created for all blocks in a SPICA model automatically if not

specified explicitly: concept specifies the ontology class name while rep specifies the
representation of the element. To reference a block type, its concept, or representation, the

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 7

reftype, refconcept, and refrep annotations are provided. The type reference replaces
the other two. References to coordinate system are modelled using the refcoord
annotation.
Ontology classes such as concepts or representations are referenced using URNs. Unique
URNs are assigned to elements implicitly, providing a reference name to their concept and
representation. In order to allow for a compact specification the developer can use
abbreviations to URN in terms of prefixes. The default prefix # references the SPICA URN

namespace urn:spica.

4.1.3 Variants

Block variant identifiers have been introduced because several blocks with the same name
may be defined. Variant identifiers are arbitrary strings representing the target AMR
platform. They are appended to the block name, wrapped into angle brackets. If there is
more than one target platform, it is possible to specify multiple variant identifiers delimited
by colons.
The existence of variant identifiers changes the automatic generation of concept and
representation URNs for blocks. The following concept and representation URNs are
created by default if no variant names are given:

urn:spica:<type>:concept:<name>
urn:spica:<type>:rep:<name>

If a variant name is provided, the URNs read as follows:

urn:spica:<variant name>:<type>:concept:<name>
urn:spica:<variant name>:<type>:rep:<name>

4.2 Message Specification

As already outlined above, the concept of message-oriented communication is well suited
for AMRs. This has several reasons: The network infrastructure of mobile autonomous
system resembles the characteristics of mobile ad-hoc networks, so communication links are
likely to exist only for a limited period of time. This is why a message-oriented and
connection-less communication scheme has clear advantages over a connection-oriented
one. Another reason stems from the communication behaviour of AMRs. As environmental
monitoring and sensing are known to be mostly event-driven, message-oriented
communication here directly reflects their characteristics. Messages may further get lost
during transmission where a dependency to previous messages may average the usefulness
of information.
Based on these observations we created the MDL as a sublanguage of the SPICA modelling
language. It is used to specify messages and containers for the SPICA communication
infrastructure. The modelling concept is closely related to structure definitions in
programming languages such as C, but offers more advanced features like single
inheritance, dynamic arrays, and strings. It provides a set of commonly used primitive
types. Complex types are containers in the SPICA context, which are made up of primitive
types or other containers again. A customizable serialization and de-serialization interface
allows arbitrary message encodings to be used. Support for automatic conversion of

 Robotic Soccer 8

message values is supported by augmenting the model with references to semantic concepts
and representations.
The objectives of ASN.1 and MDL are quite similar. However, ASN.1 lacks support for some
fundamental techniques required by SPICA: It does not provide, for example, the
mandatory concept of semantic annotations. In contrast, a custom modelling language like
MDL may be designed in such a way that all required functionality is covered in a lean
fashion. The specification support of MDL is sufficient for SPICA and we can easily extend it
to our specific requirements.
We will now describe the modelling entities of MDL in more detail, covering the definition
of message headers and containers. Messages, as they represent a specialization and
aggregation of these concepts respectively, are introduced afterwards.

4.2.1 Headers

A header specification represents a special form of container used only for structuring the
fields of the message header. These fields are used to control the way a message is handled
and processed. There is only one mandatory field in SPICA: A special field holds the type
identifier of the message as messages are strongly typed. A unique identifier is generated
automatically using a suitable hash function. Other, mostly optional control fields in the
header include the endian flag or the message identifier. Message headers may have
different variants and be derived from each other. Headers may not be instantiated. Every
message must be derived from exactly one header. From this point of view, a header
represents an abstract class in the context of object-oriented programming.
The example below depicts the layout of a header specification using a minimal header with
only one field identifying the type. A reference to the corresponding concept is required
here to establish the meaning of the field.

header MessageBase {
uint16 type [refconcept=#message:concept:type];

}

As outlined above, default context and representation URNs are assigned automatically. For

this example they read urn:spica:header:concept:MessageBase and
urn:spica:header:rep:MessageBase respectively.

4.2.2 Containers

Container specifications create composite types consisting of zero or more primitive or
composite types. Containers may be derived through single inheritance from other
containers. Compared to ordinary structures in C, instances of containers have the
additional capability of being able to serialize and de-serialize themselves. Besides, they are
not bound to the SPICA communication infrastructure only, but can be used as general
purpose data structures as well.
A container is similar to a header but differs in one point: headers are only used as
supertypes for messages while containers may only be used as a part of the message body.

The example below shows a simple container. It defines the field double d referencing a
semantic concept as well as a representation. A unique type identifier based on the

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 9

representation URN is assigned to each container implicitly. The example further defines the
container as being a variant of type cn.

container Distance<cn> {
double d [refconcept=#coord:distance, refrep=#rep:units:mm];

}

The concept URN reads urn:spica:cn:container:concept:MessageBase; its
representation counterpart urn:spica:cn:container:rep:MessageBase. Considering
the referenced concept and the representation, the value of d is a distance measured in mm.

4.2.3 Messages

One header and zero or more containers make up a message. The specification of a message
differs from that of headers or containers in two ways. First, the topmost message in the
inheritance hierarchy must be derived from exactly one header definition, providing all the
required header fields. A container contains an implicitly defined type identifier which,
however, is not represented as a field. A header is thus not required for a container. The
second point in which a message differs from a container is that no primitive types may be
added to the payload of a message; only containers are allowed. The example below outlines
the definition of a message.

message DistanceMessage : MessageBase {
 Distance<cn> dist;
}

4.2.4 Coordinate Systems

In the area of AMRs, many containers are most likely to be used to store the position of
some objects or observations in terms of their coordinates. In order to facilitate a correct
interpretation of the fields of the corresponding container, the MDL also includes
specification means to define coordinate systems. We include this modelling support into
the MDL as it can be seen as additional semantic description of the containers – a container
can reference a certain coordinate system. The specification of coordinate systems with
regard to reference systems retains the freedom of choosing your own coordinate system
and allow for automatic conversion between different ones.
In our modelling approach we currently support three basic types of coordinate systems –

Cartesian2D, Cartesian3D, and Polar2D – and two different views – ego and allo.
Egocentric coordinates resemble the egocentric view of the robot, whereas allocentric
coordinates resemble the view of an external observer of the field. For the different types of
coordinate systems we have some predefined concepts like an x-coordinate
(#coord:xcoord) or a distance (#coord:distance) indicating the distance of the object
from the pole of an polar coordinate systems. For a correct interpretation of container fields
they have to refer to such a predefined concept.
In order to define a new coordinate system, the new origin, the axes (or a zero-ray for polar
systems), and the view have to be specified. Some example specifications are shown in
section 5.

 Robotic Soccer 10

4.3 Data flow Specification

One intention of the SPICA modelling language is to describe the communication behaviour
in groups of AMRs in an abstract and platform-independent fashion. AMRs are basically
hardware agents that are asked to accomplish a job or mission, similar to software agents.
Just as software agents, AMRs can be regarded as modules which are mostly independent
from each other. They further initiate mutual communication to exchange information and
to collaborate. This is why the Data flow Definition Language (DFDL) follows an inherently
modularized approach. Each AMR may be made up of several modules that communicate
with each other or other AMRs. Such a scenario can easily be modelled given a modular
software architecture where modules are connected via network links. There is, in fact, no
difference between local and remote modules. For local communication, however, more
suitable communication schemes might be chosen whereas communication between robots
should be based on proven network communication schemes.
SPICA now introduces specification means for modelling data exchange between modules
in an abstract manner. Modules are the main modelling entity here. For each module the
requested as well as the offered message types have to be specified. At least one of the two
options must be present; the module otherwise exhibits no functionality. For each
communication direction – i.e. incoming and outgoing –DMCs are responsible for the
management of messages and containers. They are used by the communication engine and
by filters for passing data. Finally, the message transmission schemes have to be specified.
They represent specific communication techniques tailored to the communication behaviour
of AMRs. The block layout below outlines the basic structure of a module specification.

module Communication {
offer { ... }
request { ... }
export { ... }

}

The offer, request, and export blocks will be introduced below in more detail. We will first
start with the offer and request blocks that describe the basic communication structure of a
module. The DMCs and transmission schemes are outlined thereafter. This section closes
with the presentation of the description of filters incorporating the DADL sublanguage.

4.3.1 Message offers and requests

Let us now have a look at the specification of the most important parts of the module model.
Offering and requesting messages is a fundamental functionality of MOM-based
communication systems. In the DFDL model, offer blocks provide the information about
offered, i.e. outgoing messages whereas request blocks deal with the reception of messages.
Every message that is provided by a module has to be listed in an offer block using the

message directive. Along with the name of the message the specification of a transmission
scheme is mandatory as it determines in which way the given message is handled. Apart
from that, DMCs are required as input buffers and as temporary data storage for filters. The
example below outlines the structure of an offer block.

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 11

offer {
message DistanceMessage scheme ...;
dmc ...;

}

It has to be noted here that arbitrarily many message and dmc statements may be listed.
The scheme keyword defines the transmission scheme to be applied here. A request block is
specified in exactly the same way except that it is not mandatory to specify a transmission
scheme.
The relations between messages and DMCs are not explicitly modelled in the above
example. It is, however, established automatically during model transformation. The next
subsection will show how this can be accomplished.

4.3.2 Data Management Containers

Data Management Containers (DMCs) have been mentioned earlier already. They resemble
data management structures for messages or containers in SPICA. They also perform basic
synchronization tasks. The most important characteristic of the DMCs is the fact that each
DMC is responsible for a specific semantic concept and a respective realization. This is
where the relations between messages and DMCs are identified automatically.
In request blocks the identification of relations even goes one step beyond: For each
incoming message not only the message type but also the types of the enclosed containers
are checked. If the semantic type of a message container conforms to the referenced semantic
type of a DMC, it is added to this DMC automatically. The representation of the container is
further adapted to the DMC’s representation if required. This way, further processing on the
incoming data is possible in a very efficient manner. Irrelevant information is further
discarded without manual intervention.
DMCs are implemented as linear lists with characteristics specific to the application domain:
message passing. Queues and ringbuffers are more elaborate instances of linear lists and
well-known examples of data structures in this context. All DMCs exhibit a consistent
interface through which elements can be added, accessed, or retrieved. The semantic of
these operations depends on the actual parameterisation, though. The retrieval operation,
for example, may change the number of elements in the DMC, i.e. remove the element in
question, or leave it alone.
The following DMCs with the stated characteristics are available in SPICA so far. More may
be added if required. The size (size) and the management scheme (scheme) of a DMC may
be changed using the appropriate annotations.
list: A list implements the semantics of an ordered list using a fixed-size buffer space. If the

buffer is full, no new elements may be added. Elements have to be removed explicitly.
The management scheme defaults to FIFO.

queue: A queue implements the semantics of an ordered list using a fixed-size buffer space.
If the buffer is full, no new elements may be added. Elements are removed on retrieval
except when using indexers. The management scheme defaults to FIFO.

ringbuffer: A ringbuffer implements the semantics of an ordered, circular list using a fixed-
size buffer space as if it were connected end-to-end. If the buffer is full, the oldest
element is overwritten if a new one is added. The management scheme defaults to LIFO.

The generic annotations refconcept, refrep, and reftype as introduced earlier are
supported by every DMC. They are required to specify the element type.

 Robotic Soccer 12

Arrays of DMCs are supported as well. The array semantic is, however, not quite as
expected: A DMC array is managed in such a way that each array element is uniquely
assigned to one specific system that attends the communication. Every array thus has the
same number of elements in the array, each of which corresponds to the same system. The
DMC of the local system is also contained in the DMC array and can be retrieved using a
dedicated operation on the DMC.
In order to complete the dmc statement in the example above, we will present a possible
parameterization below. We will assume that a ringbuffer with only one element is used

which accepts elements of the type DistanceMessage:

dmc ringbuffer dist [type=DistanceMessage, size=1];

DMCs have been defined only in the context of the model so far. It is very likely that more
than one DMC is used and only a subset of these need to be accessible from userspace. The
DFDL provides the export block for this purpose. DMCs that have to be visible from
userspace only have to be added to the export block. The example below illustrates this.

export { dist; }

4.3.3 Transmission Schemes

Transmission schemes fulfil another very important task especially for offering messages.
Data transmission in groups of AMRs is assumed to be very dynamic. Locations of modules
local to a system are normally not subject to change but the location of modules on remote
systems: Robots may join or leave a group spontaneously; other types of systems may
appear and disappear in the same way.
This is why SPICA introduces the concept of transmission schemes for establishing
communication links. In contrast to ordinary socket-based communication establishment,
these schemes exhibit a special behaviour which is tailored to the dynamic communication
behaviour of AMRs. For local modules, a static scheme that does not change its endpoints is
sufficient as it can do without the overhead for dynamic binding. For ad-hoc communication
with remote systems, however, heartbeat techniques are tried and tested. This is especially
true for unreliable environments. Three schemes are outlined below which implement the
requested characteristics of static and dynamic binding. It has to be noted here that only
messages may be sent. Containers have to be wrapped in messages for this purpose.
static: The static transmission scheme is a one-to-one communication scheme which

supports local communication characteristics. Basically, two modules are bound together
statically. The location of communication partner must not be subject to change. It is not

possible to change the communication endpoints during runtime. The module
annotation is used by the sender to reference a destination module.

announce: The announce transmission scheme is a one-to-many communication scheme.
The sender announces the availability of a data source to which one or more interested
receivers can listen to. This scheme implements the heartbeat technique: The sender
provides an alive-signal which contains the respective endpoints of the data source. This

information is used by interested receivers to listen to the data source. The heartbeat
annotation is used by the sender to specify the interval for the alive-signal.

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 13

request: The request transmission scheme is a one-to-many communication scheme. It is
similar to announce but implements a variant of a publish-subscribe protocol. The
sender again announces the availability of a data source but without immediately
starting the transmission: It is triggered once at least one receiver is available. Receivers
have to emit subscription heartbeats that inform the sender of the availability of an
interested party. It depends on the endpoints provided by the receivers and on the
number of receivers where and how the sender directs the data to. The heartbeat
annotation is used to specify the interval for the alive signal for the sender as well as the
receiver.

There are some annotations that are available for every transmission scheme. They basically
resemble event processing capabilities: Transmission schemes must be either able to send
messages periodically or after some events occurred. These annotations may be used both at
the same time. The interval annotation is used to specify if a transmission should be
triggered periodically. With the on annotation, the transmission scheme reacts on the events
given in the annotation value.
In order to complete the scheme statement in the example above, we will present a possible
parameterization below. We will assume that the announce scheme is used which sends
messages with 30 Hz:

message DistanceMessage scheme announce [interval=33ms];

4.3.4 Filters

In the previous sections we introduced the MDL and the DFDL which allow us to realize
communication infrastructures for heterogeneous groups of AMRs. The modules defined in
DFDL exchange messages, adjust the representation of received data if required, and store
the information into appropriate DMCs automatically. However, in order to also facilitate
the development of a collaboration infrastructure in terms of a cooperative world model, we
have to go beyond this: it must be possible to interpret the exchanged data and perform
arbitrary calculations on them. For this purpose, we introduce the Data-Analysis Description
Language (DADL). The design of the language and its modelling elements is based on the
following observations.
The realization of a cooperative world model first requires data to be collected from the
different robots in the group, which must then be combined to a consistent world view.
Here, the impreciseness of the observations – which is mainly due to the physical limitations
of the sensors used – has to be taken into account. For this purpose approaches for
probabilistic state estimation are commonly applied, such as e.g. Bayesian Filtering (Aström,
1965; Fox et al., 1999; Thrun et al., 2000) and derivates like Kalman-Filtering (Kalman, 1960)
or Particle Filters (Handshin & Mayne, 1969; Akashi & Kumamoto, 1977). In order to deal
with uncertainty a number of different approaches are available: Dempster-Shafer theory
(Dempster, 1968; Shafer, 1967), Bayesian Inference (Pearl & Kaufmann, 1988), and Fuzzy sets
(Zadeh, 1978), to mention only some. In most cases, however, the implementation of these
approaches is non-trivial and time-consuming. Therefore, we tried to identify frequently
used patterns for which appropriate predefined filters are included in the DADL.
Especially in the area of Computer Vision but also in robotics, Matlab
(http://www.mathworks.com/) is widely used for rapid prototyping. Matlab is a numerical
computing environment and programming language, designed to efficiently deal with

 Robotic Soccer 14

matrices and operations on them. When dealing with arrays or lists it provides a very
compact syntax and elaborate indexing methods. Therefore, we decided to adopt a Matlab-
like syntax for specifying the algorithms needed to perform calculations on the exchanged
data.
The main modelling element in DADL is a filter block because all calculations on exchanged
data are considered as a form of filtering operation in SPICA. The basic structure of a filter
block depends on whether a predefined filter pattern or a custom filter is required. We will
first discuss the predefined filter patterns. Afterwards the custom filters are introduced.
The structure of a predefined filter patterns is given below.

filter <name> {
 <spec for the result DMCs>

predefined <filter type> <annotations> {
 <additional input specs>
 }
}

A filter specification starts with a list of DMCs that store the results of the calculations. They
are defined in exactly the same way as the DMCs for offer or request blocks in a module.
They are furthermore globally accessible, can be referenced throughout the module and in
other filters. So, it is possible to specify whole filter chains.
The actual specification for predefined patterns only includes the filter type and associated
annotations. The annotations contain basic parameters for the filter and specify when the
filter is triggered, similar to the annotations of the transmission schemes described above.
The input for the predefined filter is specified in its body. It has to be noted here that it
depends on the type of predefined filter which DMCs have to be provided for input and
output. However, the SPICA framework is able to investigate the container for fields that
correspond with the expected concepts and to associate them to the inputs and outputs of
the filter.
Currently three predefined patterns are available to be used for data-fusion: Kalman-Filter
(KF) (Kalman, 1960), Multi-Hypothesis-Kalman-Filter (MHKF) (Reid, 1979), and Simple-Multi-
Hypothesis-Estimation (SMHE).
A KF is an approach for probabilistic state estimation that can be used to fuse data that
represent observations on the field in terms of their Cartesian coordinates. It can also be
utilized for object tracking and velocity estimation. However, it should be guaranteed that
all the data to be fused correspond to the same object, i.e. the KF is not able to deal with false
positives. The KF pattern can be parameterized in several ways. For example, it can be
configured to realize a linear or a non-linear KF. In addition, it can be specified if the
velocity of the observed objects should be taken into account and estimated and if the
filtering should be iterative or non-iterative.
MHKF is an extension of the KF that is able to deal with false positives, i.e. not all
observations must belong to the same object. For this purpose, the observations are forming
a set of hypothesis for the object state and for each hypothesis a separate KF is applied. The
pattern can be configured in the same way as the KF pattern.
SMHE is a simplification of the MHKF used in the Carpe Noctem software framework. It
focuses on the multi-hypotheses tracking and avoids the complexity of MHKF through
applying some heuristics. The pattern can be parameterized for an iterative or a non-
iterative filtering.

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 15

We also intend to provide some predefined patterns to estimate situations based on the
evidence for hypotheses. Here, Bayesian Inference and Dempster-Shafer theory will be
applied. However, work on this is in a very preliminary state and therefore detailed
descriptions are omitted here.
Custom filters are specified in a filter block as shown below:

filter <name> {
 <spec for the result DMCs>

call <annotations> {
 <filter body>
 }
}

As with the predefined filters, the block for a custom filter starts with the specification of the
result DMCs. In contrast to predefined filters, no special rules have to be followed here; the
most appropriate DMCs can be chosen to store the results of the calculations. Annotations
are used here as well to specify the way a filter is triggered. The filter body is a collection of
statements in the Matlab-like DADL syntax, supporting arbitrary calculations on the DMCs.
From the Matlab programming language we have adopted – among other things – the
following concepts:

implicit typing
control statements like for-loops, while-loops and if-conditions
basic arithmetic and logical operations
definition of matrices and vectors
matrix operations
array and matrix indexing methods
a basic set of functions like min, max, cos, sin, tan, atan, atan2, sqrt, that
accept also matrices as input values, perform the calculations per element, and may
return matrices as well.

In addition to these concepts, MDL containers and DMCs are seamlessly integrated into the
DADL language. DMCs can be indexed just like arrays in Matlab. We also allow calling
methods on DMCs as, for example, to create or delete an element. The containers are
accessed in the same way as structures in Matlab or in other common programming
languages. Due to space limitations, we do not present the whole specification support
provided by the DADL for the definition of custom filters here. In section 5, however, two
custom filters are presented.

5. Evaluation and Results

In this section, we demonstrate the applicability of our approach. We show how the SPICA
development environment was used to realize communication and collaboration in a mixed-
team of soccer robots involving two heterogeneous platforms. For this purpose, we return to
the scenario that was already outlined in section 2: A mixed-team formed by the Ulm
Sparrows (referred to as US) – and Carpe Noctem (referred to as CN).
In our example, SPICA is used to establish a communication infrastructure bridging the gap
between the two software frameworks. Afterwards, we show how SPICA facilitates the

 Robotic Soccer 16

development of a cooperative world model which is used to agree on a common ball
position within the team and to realize a basic role assignment of the robots.
The cooperative world model can be realized either in a centralized or decentralized way. In
a centralized scenario, the robots would share information with only one leading robot
acting as hub or data sink. In the decentralized approach, AMR exchange information
directly with all their team-mates in a peer-to-peer fashion. There is no designated data sink
to which all data is sent to, but all systems process the provided information on their own.
Each robot can so decide which piece of information is important and should be further
processed.
We decided to go for the decentralized approach, as during the last RoboCup tournaments it
has shown to be better suited and less error-prone. This is mostly because robot systems are
likely to crash once or several times during a match due to hardware or software failures.
Therefore, a team with one leading robot that coordinates the cooperative behaviour should
be avoided. Besides, according to our experiences the network infrastructure at RoboCup
tournaments is quite unreliable, bandwidth is scarce and the network is sometimes not
available at all. For these reasons, we base our communication infrastructure on IP
multicast, as it facilitates our decentralized approach and, as a connection less
communication scheme, it is also not affected by an unreliable network with regard to
blocking issues.

Fig. 3. System architecture of the mixed team “Ulm Sparrows and Carpe Noctem”

Fig. 3 provides a basic overview of the system architecture. Each of the robots of the Ulm
Sparrows, depicted by a circle, and of Carpe Noctem, depicted by a triangle, runs an
instance of the corresponding software framework which integrates two SPICA-generated

modules, namely Communication and SharedWorld. The Communication module of
the Ulm Sparrows is responsible for sending a SharedWorld message to the multicast
group, containing the detected ball position and the robot’s position on the field. In contrast,
the Communication module of Carpe Noctem provides a separate BallMessage for the
ball position and a RobotPosMessage for the robot’s position on the field. Here, it is
assumed that it fits more into the existing framework to send one combined message or two

separated messages, respectively. The SharedWorld modules of the Ulm Sparrows and

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 17

Carpe Noctem have identical functionality: receiving the messages from all the team-mates,
fusing the ball information to an agreed ball position and calculating a basic role
assignment. Therefore, this module has to be specified only once and is generated for the
two different target platforms: C++ for the Ulm Sparrows and C# for Carpe Noctem.
In the following paragraphs, we show how this architecture can be specified and realized
with the help of the SPICA development environment. First, we start with the definition of
messages, containers and the coordinate systems used by these two teams.

Listing 1. Definition of the containers

Listing 1 shows the specification of the containers that have to be defined for our
communication and collaboration infrastructure. The listing includes two variants of the
BallPosition container, one for Carpe Noctem and one for the Ulm Sparrows. Both
containers refer to the concept #concept:BallPosition, but different representations
corresponding to different coordinate systems are used. Carpe Noctem represents the
position of the ball in an egocentric Cartesian coordinate system
(#cn:coord:Cartesian2D), whereas the Ulm Sparrows use an egocentric polar
coordinate system (#us:coord:Polar). For both containers the covariance matrices,
representing the uncertainty of the observations with regard to the corresponding

coordinate systems, are defined. In addition, the BallPosition container of Carpe Noctem
also includes a field indicating the probability of the observation to be correct. The
AlloBallPosition container of Carpe Noctem has the same fields as the Carpe Noctem

BallPosition container, however refers to an allocentric coordinate system
(#coord:cn:AlloCartesian2D). Besides, the RobotPosition container definition is
identical to Carpe Noctem and the Ulm Sparrows. It is noteworthy here that the semantic
annotation of containers can be considered as just a way of commenting, but of course with
some guidelines.

container BallPosition<cn> [refconcept=#concept:BallPosition,
refcoord=#cn:coord:Cartesian2D] {

 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm];
 double y [concept=#coord:ycoord, refrep=#rep:units:mm];
 double probability [refconcept=#refconcept:propability,

refrep=#rep:units:pct01];
 cov(x, y) cov;
}
container AlloBallPosition<cn> : BallPosition<cn>

[refcoord=#cn:coord:AlloCartesian2D];
container BallPosition<us> [refconcept=#concept:BallPosition,

refcoord=#us:coord:Polar] {
 double d [refconcept=#coord:distance, refrep=#rep:units:mm];
 double alpha [refconcept=#coord:angle, refrep=#rep:units:deg];
 cov(d, alpha) cov;
}
container RobotPosition<cn,us> [refconcept=#concept:RobotPosition,

refcoord=#coord:Cartesian2D] {
 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm];
 double y [refconcept=#coord:ycoord, refrep=#rep:units:mm];
 double heading [refconcept=#coord:heading, refrep=#rep:units:deg];
 cov(x,y,heading) cov;
}

 Robotic Soccer 18

Listing 2. Definition of the coordinate systems

Listing 2 shows the specification of the coordinate systems used by Carpe Noctem and the
Ulm Sparrows. As already mentioned above, the coordinate systems are described by
providing values for predefined concepts like the view, the axis and the origin (pole) of the
coordinate system with regard to the reference systems.

Listing 3. Definition of the messages

With the help of these specifications the framework is able to provide the appropriate
transformations between the representations in different coordinate systems automatically.
Here, the development environment also deals with automatic conversions between the
measurement units as well as with automatic transformation of the covariance matrices. As
now the specification of all needed containers and of the coordinate systems are available,
the corresponding messages can be defined as shown in Listing 3.
As depicted in the overview of the architecture, we have to define a SharedWorldMessage

for the Ulm Sparrows that includes a BallPosition and a RobotPosition. The
communication module of Carpe Noctem provides the same kind of information but in two
separate messages: BallMessage and RobotPosMessage.

message SharedWorldMessage<us> : MessageBase {
 BallPosition<us> ballPos;
 RobotPosition<us> robotPos;
}
message BallMessage<cn> : MessageBase {
 BallPosition<cn> ballPos;
}
message RobotPosMessage<cn> : MessageBase {
 RobotPosition<cn> robotPos;
}

coord Cartesian2D<cn> [refconcept=#coord:Cartesian2D] {
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm];
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none];
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none];
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView];
}
coord AlloCartesian2D<cn> [refconcept=#coord:Cartesian2D] {
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm];
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none];
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none];
 view = allo [refconcept=#coord:coordView, rep=#rep:coord:coordView];
}
coord Polar<us> [refconcept=#coord:Polar2D] {
 pole = (0.0, 0.0) [refconcept=#coord:pole, rep=#rep:units:mm];
 zero_ray = (1.0, 0.0) [refconcept=#coord:zero_ray, rep=#rep:none];
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView];
}

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 19

Listing 4. Definition of the Communication modules

Now we can start with the definition of the modules of our architecture. The specifications
of the Communication modules for the two teams are shown in Listing 4. The
Communication module of the Ulm Sparrows offers a SharedWorldMessage using the
announce scheme, when a new message is placed into the ringbuffer. In contrast, the
Communication module of Carpe Noctem is defined to offer the two messages,
BallMessage and RobotPosMessage, each of which is sent with 10Hz. In order to allow
other parts of the software framework to access the message DMCs, they are included into
the export block in both modules.

Listing 5. Definition of the SharedWorld module

As the SharedWorld module provides a more complex functionality – receiving messages,
fusing the exchanged data and calculating a role assignment – we show the corresponding

module SharedWorld<cn,us> {
 request {
 message SharedWorldMessage<us>;
 message RobotPosMessage<cn>;
 message BallMessage<cn>;
 dmc ringbuffer[] balls [concept=#concept:BallPosition,

rep=#cn:container:rep:BallPosition, size=10, ttl=5s];
 dmc ringbuffer[] robots [concept=#concept:RobotPosition,

rep=#cn:container:rep:RobotPosition, size=10, ttl=5s];
 }
 filter ego2Allo { ... }
 filter calculateSharedBall { ... }
 filter calculateRoleAssignment { ... }
 export { ... }
}

module Communication<us> {
 offer {
 dmc ringbuffer sharedWorld [type=SharedWorldMessage<us>, size=1];
 message SharedWorldMessage<us> scheme announce

[on=sharedWorld.new"];
 }
 export { sharedWorld; }
}
module Communication<cn> {
 offer {
 dmc ringbuffer ballMessage [type=BallMessage<cn>, size=1];
 dmc ringbuffer robotPosMessage [type=RobotPosMessage<cn>, size=1];
 message BallMessage<cn> scheme announce [period=100ms];
 message RobotPosMessage<cn> scheme announce [period=100ms];
 }
 export {
 ballMessage;
 robotPosMessage;
 }
}

 Robotic Soccer 20

specification in several steps. Listing 5 provides a general overview of the description and
focuses on the request block for receiving messages.
The module is defined to receive the messages SharedWorldMessage from Ulm Sparrows

robots, and the RobotPosMessage and the BallMessage from Carpe Noctem robots.
DMC arrays are specified to be filled with the BallPosition
(#concept:BallPosition) and RobotPositions (#concept:RobotPosition)
containers for each of the robots in the team. The corresponding information is
automatically extracted from the messages named above.
In order to realize the functionality of calculating the agreed ball position and a basic role
assignment, we have to define filters that are able to process the data collected in the DMCs

or more precisely DMC arrays. The BallPosition containers are represented with regard
to an egocentric coordinate system, so we first have to transform the data into an allocentric
representation. A common allocentric view is a prerequisite to fuse data about observations
collected by a group of robots. This is the purpose of the filter ego2Allo. The
corresponding specification is shown in Listing 6.

Listing 6. A filter performing the transformation from egocentric to allocentric view

First, the filter defines a ringbuffer array named alloBalls that stores the allocentric ball
positions (#concept:BallPosition) in the representation AlloBallPosition
(#cn:container:rep:AlloBallPosition) for each of the robots in the team.
Afterwards, the body of the filter is defined. It is called every time a new ball position is
available. The filter fetches the index of the corresponding ball DMC in the array which
represents the number of the respective player in the team. Then variables are declared and
initialized with the robot’s last position on the field. To this position the egocentric ball
position rotated by the heading of the player on the field is added. Now a new container is
added to the array and initialized with the coordinates of the allocentric ball position
calculated above. At the end of the filter body, the field for the covariance matrix is

filter ego2Allo {
 dmc ringbuffer[] alloBalls [concept=#concept:BallPosition,

rep=#cn:container:rep:AlloBallPosition,
size=10];

 call [on=balls.new]{
 index = balls.changedIndex();
 heading = robots(index).last.heading;
 alloX = robots(index).last.x;
 alloY = robots(index).last.y;

 alloX = alloX + cos(heading)*balls(index).last.x –
sin(heading)*balls(index).last.y;

 alloY = alloY + sin(heading)*balls(index).last.x +
cos(heading)*balls(index).last.y;

 alloBalls(index).new;
 alloBalls(index).last.x = alloX;
 alloBalls(index).last.y = alloY;

 //Calculate and assign transformed covariance matrix
 alloBalls(index).last.cov = ... ;
 }
}

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 21

assigned. Due to space limitation the corresponding transformation was left out. However,
as just a rotation of the matrix is required, the transformation can be specified in basically
the same way as the rotation of the egocentric ball coordinates.

Listing 7. An MHKF for the agreed ball position

All ball positions are now available in a common allocentric view, thus we can apply a
Multi-Hypothesis-Kalman-Filtering (MHKF) to fuse the information and keep track of
different hypothesis of the ball position on the field. In our case, the agreed position can be
determined as the position hypothesis with the highest probability. Listing 7 illustrates how
the corresponding MHKF can be included into the specification.

Listing 8. A filter for calculating the role assignment

filter calculateSharedBall {
 dmc list sharedBall [concept=#concept:BallPosition,

rep=#cn:container:rep:BallPosition];
 predefined MHKF [period=100ms, iterative, linear, staticObject] {
 input = alloBalls(:).last;
 }
}

filter calculateRoleAssignment {
 dmc ringbuffer[] roles [concept=#concept:Role, rep=#rep:string,

size=1, init="None"];
 call calculateRoleAssignment [period=100ms]{
 [maxProb, maxIndex] = max(sharedBall.probability);
 teamBall = sharedBall(maxIndex);
 ballDistances = sqrt((robots(:).last.x - teamBall.x).^2 +

(robots(:).last.y - teamBall.x).^2);
 [minBallDist, AttackerIndex] = min(ballDistances);
 roles(AttackerIndex) = "Attacker";

 minXPos = 20000.0;
 minIndex = -1;

 for i = 1:teamsize()
 if(roles(i) == "None" && robots(i).last.x < minXPos)
 minXPos = robots(i).last.x;
 minIndex = i;
 end;
 end;

 roles(minIndex) = "Defender";

 for i = 1:teamsize()
 if(roles(i) == "None")
 roles(i) = "Supporter";
 end;
 end;
 }
}

 Robotic Soccer 22

The filter calculateSharedBall uses a list named sharedBall to store the hypothesis
for the ball positions returned by the MHKF. The probability of the hypothesis is
automatically assigned to the corresponding field in the container which is determined by

the associated concept #concept:probability. The MHKF is iteratively applied with
10Hz. The options linear and staticObject indicate that a linear Kalman-Filter is used
and that no velocity of the object should be estimated and the velocity is not considered
when applying the motion model. Of course, the MHKF also has to know which data it has
to work on. The input of the Kalman-Filter is given as the last observed allocentric ball
positions of all the robots in the team.
Listing 8 shows the specification of the filter calculateRoleAssignment. As for all
filters, the definition starts with creating a DMC or DMC array to store the results of the
filtering. Here a ringbuffer array named roles is defined to store the roles of all the robots
(#concept:Role). Each array element is a ringbuffer that contains exactly one element of
type string that is initialized with the string “None”. At the beginning of the filter body the
index of the shared ball hypothesis with the highest probability is calculated using the max-
function. This index is used to store the corresponding shared ball hypothesis in teamBall.
Afterwards, the distances of the robots to the team ball are calculated and the index of the
player nearest to the ball is determined. The following line associates the role “Attacker”
with it. Next, we determine the player which is nearest to the own base line – indicated by
the minimal x-coordinate of the corresponding robot position – and has no role associated
yet. This is achieved by using a for-loop and an appropriate if-condition. Afterwards, the
resulting player gets the role “Defender”. All remaining players are associated with the role
“Supporter”, which is also done using a for-loop.

Now the specification of the SharedWorld module is nearly complete. Only the DMCs
sharedBall and roles have to be exported, in order to make them available for access
from other parts of the underlying software framework (not shown here).
With the help of all theses specifications, the SPICA development environment is able to
generate source code for the whole communication and collaboration infrastructure. For this
purpose, the AASTra tool has to be told about the target platform the modules and data
structures should be generated for, and the desired communication scheme (IP multicast)
has to be configured. After the transformation, the resulting modules and classes can easily
be integrated into the underlying communication frameworks. Only an instance of the
generated module has to be created as a singleton and the DMCs can be accessed by the
generated API.
Listing 9 illustrates the corresponding source code fragments for integration into the Carpe
Noctem framework in C#. First, a callback method GetSharedBallHypotheses is
defined. It is called when the sharedBall DMC of the SharedWorld model has been
changed. This is the case, every time the MHKF has finished an iteration. In this simple
example, the method just writes all hypotheses to the console. Afterwards, an instance of the
SharedWorld module is created and the callback is added as a delegate to the Changed-
event of the SharedBall property for the respective DMC. The following line shows how
the role of the current robot can be accessed (MyBuffer returns the DMC of the current
robot from the DMC array). The rest of the source code fragment creates an instance of the

Communication module, creates a new BallMessage, initializes its fields, and adds it to
the corresponding DMC. The transmision of the message is handled by the
Communication module as specified above.

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 23

Listing 9. C# fragment showing the integration of SPICA-generated code

6. Related Work

Research on robot software architectures in the past mostly focused on middleware
frameworks for autonomous robot development. Abstraction layers in this approach
simplify access to robotic hardware and make it more convenient to use. By adding abstract
interface definitions and APIs, modular programming is promoted.
Our approach shifts the focus right to the development process, a conceptually even more
abstract level. We address the way systems have to be developed and the question what has
to be implemented. The goal is to make the development process and the implementation
more platform-independent, enabling the developer to focus on the actual functionality
rather than bothering with characteristics of the platform. Our development environment
for robotic software neither has hard dependencies on hard- or software architectures nor on
operating systems. We provide modelling facilities that are focused on the respective
program domain such as multi-party interaction or distributed sensor fusion. By combining
ideas from the model-driven development movement with lessons learned from the
development of middleware frameworks, a powerful development tool chain is provided.
As robotic systems are normally quite reactive and the system configuration is likely to be
modified during the development process, one key requirement is the ability to incorporate
new or existing components into the given software architecture. Furthermore, especially
AMRs have to be able to use heterogeneous hardware devices, cope with physical
variability in measurement, and bypass architectural mismatches. Several approaches have

using Spica.Modules;
using Spica.Messages;

...

protected void GetSharedBallHypotheses(Module m) {
 SharedWorld sw = (SharedWorld)m;

 Console.WriteLine("SharedBall Hypotheses: {0}",
 sw.SharedBall.ToString());
}

SharedWorld sw = SharedWorld.GetInstance();

sw.SharedBall.Changed += GetSharedBallHypotheses;

Console.WriteLine("Own Role: {0}", sw.Roles.MyBuffer.Last);

Communication c = Communication.GetInstance();

BallMessage bm = new BallMessage();

bm.BallPos.X = 1000.0;
bm.BallPos.Y = 1000.0;
bm.BallPos.Certainty = 1.0;

c.BallMessage.Add(bm);

 Robotic Soccer 24

been proposed in the last years which try to provide suitable solutions or address similar
problems in other related areas. A range of solution and projects is outlined below.

6.1 Middleware Frameworks

Several middleware frameworks utilize the concept of abstraction layers to ease the
development of robotic software in a heterogeneous environment.
MARIE (Mobile and Autonomous Robotics Integration Environment) (Côté et al., 2006) is a
middleware framework for robots that targets the development and integration of software
components. It provides the Mediator Interoperability Layer (MIL), a design pattern that
offers a common interaction language for components in the system. MARIE itself is written
in C++ for UNIX environments. CLARAty (Coupled Layer Architecture for Robotic
Autonomy) (Volpe et al., 2001) is an object-oriented framework for robotic systems which
focuses reusability and integration of algorithms and components. It basically reduces the
software hierarchy to two layers, a decision and an execution layer; realizations of
functional requirements can be integrated into the decision layer while the execution layer is
not affected. Another object-oriented framework for robotic applications is MIRO
(Middleware for Robots) (Utz et al., 2002). It provides abstraction from system-specific
implementations and is based on the ACE/TAO (Schmidt et al., 1997) framework. A device
layer features hardware abstraction and takes care of the operating system integration. A
communication layer offers services required in distributed systems. A Service Layer finally
provides abstractions for sensors and actuators by decoupling the device interfaces from the
driver implementations.
Similar to MIRO where skeletons for sensors and actors can be described using an Interface
Definition Language (IDL), the Reconfigurable Context-Sensitive Middleware (RCSM) (Yau
et al., 2002) uses a newly defined IDL to specify context requirements. It is a middleware
framework supporting the development of context-aware applications focusing on
spontaneous interactions. Application skeletons are generated from the IDL specifications
which interact with the RCSM Object Request Broker (R-ORB), the context management
processor in RCSM.
The Pervasive Autonomic Context-aware Environments (PACE) (Henricksen et al., 2005)
middleware provides tools for validating context models, generating stubs for different
languages, and accessing context from different programming languages and platforms. It
provides a context management system (CMS) with a distributed set of content management
repositories. The queries to the CMS can be placed using RMI or automatically generated
stubs, for example.
In contrast to the approaches outlined above, SPICA is no middleware framework but a
development environment aiming at platform-independent specifications and automatic
code generation. Therefore, we address a conceptually different level. Besides, its flexible
code generation system easily adapts to new target languages and we focus on a convenient
modelling and on lean generated code.
AMQP (Advanced Message Queuing Protocol) (http://www.amqp.org/) is an open
standard messaging middleware. It was developed first off to meet the needs of investment
banks, employing a network-friendly, binary protocol. Similar to the DMCs used in SPICA,
AMQP provides queues to accomplish a store-and-forward semantic. Message routing and
delivery is due to centralized message broker systems.

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 25

The implementation generated by SPICA exhibits MOM characteristics, as well. In contrast
to AMQP, however, SPICA also supports decentralized peer-to-peer techniques.

6.2 Development Environments

A quite different approach is followed by the Microsoft Robotic Studio
(http://msdn.microsoft.com/robotics/). It is a development environment for robotics that
targets different robot platforms. It builds on the .NET framework and offers a runtime as
well as a powerful simulation environment. Besides the programming languages available
in .NET, a so-called Visual Programming Language may be used for development of robotic
software. Therefore, it can be considered as a model-driven software development
approach. CoSMIC (Component Synthesis using Model-Integrated Computing) (Gokhale et
al., 2003; Balasubramanian et al., 2005) is another development environment which follows
the paradigm of MDD. It is a collection of domain-specific modelling languages and
generative tools for the development, configuration, deployment, and validation of
distributed component-based real-time systems.
Both approaches are similar to SPICA. The Microsoft robotics studio targets rapid
development of robot control software but focuses more on prototyping than on efficient
and domain-adapted solutions. CoSMIC is a complex, model-driven approach that follows
very similar goals. In contrast, our approach aims to be lightweight and allows for rapid
development and easy integration.

6.3 Context Management Systems

In the area of context-aware computing applications and middleware services use
information about their execution environment to adapt their functional and non-functional
behaviour for appropriate quality of service in every situation. For this purpose, context
management systems are required which collect context information and make them
accessible for adaptation reasoning. However, in a pervasive computing environment it is
very likely that context information originate from heterogeneous sources. Therefore, many
research activities addressing the development of context management systems also focus
on heterogeneity issues. Examples are RCSM and PACE already mentioned above, but also
the Context Toolkit (Salber et al., 1999), CoCo (Buchholz et al.) and CoBrA (Chen et al.,
2003). While RCSM and PACE aim at providing an infrastructure to integrate heterogeneous
context providers, the Context Toolkit, CoCo, and CoBrA focus on the interpretation of
context information from heterogeneous sources. In particular, CoCo and CoBrA are related
to our approach as they claim the necessity of using ontologies to establish a common
understanding of the semantics of context information and their representations. However,
here it has to be distinguished between approaches using ontologies for runtime reasoning
and for code generation purposes as in our case. Our approach also has many similarities to
the Context Ontology Language (CoOl) already mentioned above, as they also deal with
different representations and define operations to convert between them. However, in our
approach the operations for conversion are not defined explicitly, but we aim at
automatically deriving the conversion methods from the definition of coordinate systems
and references to measurement units.
In general, the development of a cooperative world model has many similarities to the
development of context management systems. Here too, information about the current

 Robotic Soccer 26

environment, like the ball position, player position etc., has to be collected and calculations
have to be performed on them. In the area of context aware computing this is referred to as
context reasoning. There are also some approaches providing development support and
patterns for context reasoning. An example is the work done by Chen et al. (Chen et al.,
2004). They propose the use of Context Fusion Networks (CFNs) to provide data fusion
services with regard to the aggregation and interpretation of sensor data to context-aware
applications.

7. Conclusion and Future Work

Because of the lack of standard software, which prompts every RoboCup team to develop its
own software framework, heterogeneity issues play a decisive role. They cause several
problems when establishing a mixed-team of soccer robots involving different hardware
and software platforms.
In order to cope with theses issues, we presented SPICA, a development environment for
communication and collaboration infrastructures for heterogeneous teams of soccer robots.
In SPICA, we have adopted a model-driven development approach which is naturally very
appropriate to cope with heterogeneity. One of its basic paradigms is the platform-
independent specification of software allowing automatic generation of source code for
different platforms. Accordingly, SPICA provides a modelling language and tools
facilitating the specification of communication and collaboration infrastructures as well as
the automatic transformation of the resulting models into source code.
The SPICA modelling language consists of three domain-specific sublanguages, which are
tailored to different aspects of the infrastructure. The MDL allows the specification of
messages and containers along with their representations. The DFDL provides specification
means for module stubs, the data flow between them, and for their data management
capabilities. In order to allow a flexible filtering of data and to support the creation of a
cooperative world model, the DADL was developed. It is a general purpose language for
calculations on the exchanged data and also provides some predefined patterns for data
fusion. As illustrated in a detailed example, the development effort for a team-play in
heterogeneous teams of soccer robots can be reduced significantly with the help of SPICA.
The generated source code can be integrated into the existing software framework very
easily and with very little effort.
However, as already mentioned above, the development of SPICA is still work in progress.
In particular, this is true for the DADL and the corresponding transformation support.
Appropriate support for code generation is available only for a subset of the predefined
data-fusion patterns at the moment and only a basic set of predefined functions is integrated
into the language. In the future, we will enhance the language and the corresponding code
generation tools with regard to especially these issues. We also aim at integrating support
for defining functions and calling functions from external libraries. Besides, as not only the
programming of a complex communication infrastructure is a challenging task, but also its
configuration, we try to include support for self-configuration of the generated
infrastructures into the SPICA environment.
However, we are quite confident that with the SPICA development framework one
important step was made towards the realization of cooperative team organization. It is our
vision that teams provide and publish descriptions of the messages and corresponding data

Communication and Collaboration in Heterogeneous Teams of Soccer Robots 27

they would like to communicate. For new mixed teams only the tactics would have to be
specified then; the appropriate communication and collaboration infrastructure is generated
by the SPICA development framework automatically.

8. References

Akashi, H. & Kumamoto H. (1977). Random sampling approach to state estimation in
switching environments. Automatica, Vol. 13, pp. 429–434.

Aström, K. J. (1965). Optimal control of markov decision processes with incomplete state
estimation. Journal of Mathematical Analysis and Applications, Vol. 10, pp. 174–205.

Baer, P. A.; Reichle, R.; Zapf, M.; Weise, T. & Geihs, K. (2007). A Generative Approach to the
Development of Autonomous Robot Software. Proceedings of the Fourth IEEE
International Workshop on Engineering of Autonomic & Autonomous Systems (EASe
2007), pp. 43-52.

Balasubramanian, K.; Krishna, A. S.; Turkay, E.; Balasubramanian, J.; Parsons, J.; Gokhale, A.
& Schmidt, D. C. (2005). Applying Model-Driven Development to Distributed Real-
time and Embedded Avionics Systems. International Journal of Embedded Systems,
special issue on Design and Verification of Real-Time Embedded Software.

Buchholz, T.; Krause, M.; Linnhoff-Popien, C. & Schiffers, M. (2004). Dynamic Composition
of Context Information. Proceedings of 1st Ann. International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous 04), pp. 335-343.

Castelpietra, C.; Iocchi, L.; Nardi, D.; Piaggio, M.; Scalzo, A. & Sgorbissa, A. (2000).
Coordination among heterogeneous robotic soccer players. Proceedings of Intelligent
Robots and Systems 2000 (IROS 2000), Vol. 2, pp. 1385-1390, ISBN 0-7803-6348-5,
Takamatsu, Japan.

Chen, G.; Li, M. & Kotz, D. (2004). Design and implementation of a large-scale context
fusion network. Proceedings of 1st Annual International Conference on Mobile and
Ubiquitous Systems (MobiQuitous), pp. 246–255, IEEE Computer Society.

Chen, H.; Finin, T. & Joshi, A. (2003). Using OWL in a pervasive computing broker.
Proceedings of Workshop on Ontologies in Agent Systems, July 2003.

Côté, C.; Brosseau, Y.; Létourneau, D.; Raïevsky, C. & Michaud, F. (2006). Robotic Software
Integration Using MARIE. International Journal of Advanced Robotic Systems, Special
Issue on Software Development and Integration in Robotics, Vol. 3, No. 1, pp. 55-60.

Dempster, A. P. (1968). A generalization of Bayesian inference, Journal of the Royal
Statistical Society, Vol. 30, Series B, pp. 205-247.

Fox, D.; Burgard, W. & Thrun, S. (1999). Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, Vol. 11, pp. 391–427.

Gokhale, A. S.; Schmidt, D. C.; Lu, T.; Natarajan, B. & Wang, N. (2003). CoSMIC: An MDA
Generative Tool for Distributed Real-time and Embedded Applications. Proceedings
of Middleware Workshops, pp. 300–306.

Handschin, J. E. & Mayne, D. Q. (1969). Monte carlo techniques to estimate the
conditionalexpectation in multi-stage non-linear filtering. International Journal of
Control, Vol. 5, No. 5, pp. 547–559.

Henricksen, K.; Indulska, J.; McFadden, T. & Balasubramaniam, S. (2005). Middleware for
Distributed Context-Aware Systems. On the Move to Meaningful Internet Systems
2005, LNCS 3760, pp. 846-863, Springer.

 Robotic Soccer 28

Isik, M.; Stulp, F.; Mayer, G. & Utz, H. (2007). Coordination without Negotiation in Teams of
Heterogeneous Robots. In: RoboCup 2006: Robot Soccer World Cup X, Vol. 4434, ISBN
978-3-540-74023-0, to appear.

Kalman, R.E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, Vol. 82, Series D, pp. 35–45.

Nardi, D.; Adorni, G.; Bonarini, A.; Chella, A.; Clemente, G.; Pagello, E. & Piaggio, M. (1999).
ART – Azzurra Robot Team. In: RoboCup-99: Robot Soccer World Cup III, LNCS 1856,
pp. 15-39, Springer.

Nesnas, I. A.; Simmons, R.; Gaines, D.; Kunz, C.; Diaz-Calderon, A.; Estlin, T.; Madison, R.;
Guineau, J.; McHenry, M.; Shu, I.-H. & Apfelbaum; D. (2006). CLARAty:
Challenges and Steps Toward Reusable Robotic Software. International Journal of
Advanced Robotic Systems, Special Issue on Software Development and Integration in
Robotics, Vol. 3, No. 1, pp. 23-30.

Pearl, J. & Kaufmann, M. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo
CA, ISBN 0-934613-73-7.

Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on Automatic
Control, Vol. 24, Nr. 6, pp. 843–854.

Salber, D.; Dey, A. K. & Abowd, G. D. (1999). The Context Toolkit: Aiding the Development
of Context-Enabled Applications. Proceedings of Conference on Human Factors in
Computing Systems (CHI '99), pp. 434-441, Pittsburgh, PA, May 15-20, 1999.

Schmidt, D. C.; Gokhale, A.; Harrison, T. & Parulkar; G. (1997). A high-performance
endsystem architecture for real-time CORBA. IEEE Communications Magazine, Vol.
14, No. 2.

Selic, B. (2003).The pragmatics of model-driven development. IEEE Software, Vol. 20, No. 5,
pp. 19–25.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
Strang, T.; Linnhoff-Popien, C. & Korbinian, F. (2003). CoOL: A Context Ontology Language

to enable Contextual Interoperability. Proceedings of 4th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems (DAIS 2003), LNCS
2893, pp. 236-247, ISBN 3-540-20529-2, Springer.

Thrun, S.; Fox, D.; Burgard, W. & Dellaert, F. (2000). Robust monte carlo localization for
mobile robots. Artificial Intelligence, Vol. 128, No. 1-2, pp. 99–141.

Utz, H.; Sablatnög, S.; Enderle, S. & Kraetzschmar, G. K. (2002). Miro–Middleware for
Mobile Robot Applications. IEEE Transactions on Robotics and Automation, Special
Issue on Object-Oriented Distributed Control Architectures, Vol. 18, No. 4, pp. 493-497.

Utz, H.; Stulp, F. & Mühlenfeld, A. (2004). Sharing Belief in Teams of Heterogeneous Robots.
In: RoboCup 2004: Robot Soccer World Cup VIII. LNCS 3276, pp. 508-515, Springer.

Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R. & Das, H. (2001). The CLARAty
Architecture for Robotic Autonomy. Proceedings of IEEE Aerospace Conference, Big
Sky, Montana.

Yau, S. S.; Karim, F.; Wang, Y.; Wang, B. & Gupta, S. K. S. (2002). Reconfigurable Context-
Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing, Vol. 1,
No. 3, pp. 33-40.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,
Vol. 1, pp. 3–28.

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Philipp A. Baer and Roland Reichle (2007). Communication and Collaboration in Heterogeneous Teams of

Soccer Robots, Robotic Soccer, Pedro Lima (Ed.), ISBN: 978-3-902613-21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/communication_and_collaboration_in_heterogeneous_team

s_of_soccer_robots

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

