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Communication and Collaboration in 
Heterogeneous Teams of Soccer Robots 

Philipp A. Baer and Roland Reichle 
University of Kassel 

Germany 

1. Introduction 

The RoboCup tournaments foster research in the area of autonomous robotics and 
cooperative behaviour. Recently, modifications to the rules were adopted promoting further 
developments towards a typical human playing ground. Some simplifications such as 
constant lighting were dropped and further modifications will follow in the next years. 
Regarding team cooperation and coordination, the most important change in 2007 is the 
enlargement of the playing field. The maximum number of players in a team has been 
increased to 6; for the long time goal the number of players will approach 11. 
For research groups it may be difficult to keep up with the enlargement of team sizes, for 
newcomers it even constitutes a virtually infeasible financial effort. This is why so-called 
mixed teams gain a lot of popularity. Here, two or more research groups pool their 
resources together to provide a joint, more powerful team (Nardi et al., 1999; Castelpietra et 
al., 2000). This implies that different hardware and software systems have to communicate 
and collaborate. A number of problems have to be faced which arise from the heterogeneity 
of the systems involved. Among other things, the interpretation of different representations, 
the fusion of information to a consistent world view, and the realization of team-play 
strategies on the different platforms are predominant questions. 
In order to cope with these challenges, we have adopted a model-driven software 
development approach. Below we introduce our development environment for 
communication infrastructures. Afterwards, we summarize our research activities towards a 
model-driven development approach for modelling cooperative behaviour in teams of 
autonomous soccer robots. A detailed example describes the creation of a software 
infrastructure for a mixed-team of soccer robots. It illustrates the benefits of our 
development environment and highlights our contribution. We conclude with a 
presentation of our vision for further developments. 

2. Problem Description 

When RoboCup was announced in 1995, it was a research challenge to build autonomous 
mobile robots (AMRs) that were able to find the ball and the goals, to avoid collisions with 
other players, to estimate their position on the field, and to score goals. Nowadays, a large 

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria
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number of approaches are available for solving these problems. The research focus therefore 
shifted towards creating teams of robots that cooperatively play soccer.  
To realize a team-play, robots must be able to exchange information with their team-mates, 
interpret the exchanged data, and fuse the information to a consistent world view, as 
already outlined in the introduction. This is the basis for coming to an agreement about the 
current situation on the field and coordinating the cooperative behaviour of the team. 
Nowadays, almost every team in the RoboCup middle-size league implements some kind of 
team-play, which in most cases is tailored to the capabilities and the needs of the underlying 
robotic software framework. Due to the lack of standard software and because of the variety 
of different software frameworks, heterogeneity issues play a decisive role when forming a 
mixed-team. 

Fig. 1. Carpe Noctem fighting against another team 

During the RoboCup World Championships 2006 in Bremen, Germany, the teams Carpe 
Noctem from Kassel University – shown in Fig. 1 – and the Ulm Sparrows from Ulm 
University formed a mixed-team. The Ulm Sparrows use Miro (Utz et al., 2002), a 
middleware framework that is implemented in C++ and heavily relies on CORBA. Greater 
parts of the Carpe Noctem software framework are realized in C# using the Mono 
(http://www.mono-project.org/) framework. To set up team cooperation a suitable 
communication infrastructure had to be established first. The Ulm Sparrows relied on an IP 
multicast-based group communication scheme over which the SharedBelief (Utz et al., 2004; 
Isik et al., 2007) data structure was exchanged. In order to talk to the other team, Carpe 
Noctem thus needed to provide a corresponding implementation along with suitable data 
conversion techniques. The implementation as such was a quite time consuming task. 
For real interoperability it is not sufficient to only communicate data, they also have to be 
interpreted with regard to their semantics and representations. Teams have to either agree 
on a standard representation which includes common measurement units and coordinate 
systems or provide appropriate data conversion routines. However, recent discussions in 
the RoboCup community show that it is quite difficult to reach an agreement on a standard 
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representation, as almost any team provides a self-defined representation scheme. 
Fortunately, the measurements units and the coordinate systems used by the Ulm Sparrows 
and Carpe Noctem were quite similar. 
To be able to agree on the current situation on the field and to realize dynamic role 
assignment, Carpe Noctem provided a cooperative world model named SharedWorld. It 
fused the exchanged information to a consistent world view and provided realizations of 
different team-play strategies which were used as a basis for the role assignment. 
SharedWorld was also capable of calculating the ball position by taking into account the 
trustworthiness and impreciseness of observations, gathered from the different robots. For 
the Ulm Sparrows a module with nearly the same functionality was created because 
decisions had to be taken consistently among all players. A re-implementation of 
SharedWorld was necessary because of the incompatible software frameworks of the two 
teams.
This example makes it quite obvious that the realization of cooperative behaviour in 
heterogeneous teams of robots is a challenging and time consuming task. This problem has 
even more effect in groups consisting of more than two teams. Therefore, methods and 
development support is needed to ease the realization of communication and collaboration 
in heterogeneous teams of soccer robots.  

3. Our Contribution 

The previous section showed that the realization of team-play strategies in heterogeneous 
teams of soccer robots is a quite time consuming task. In order to reduce the development 
effort we present SPICA, a development framework for communication and collaboration 
infrastructures in teams of AMRs. SPICA assists in integrating software systems realized in 
different programming languages and developed for different platforms in heterogeneous 
distributed environments. It further provides patterns for data and sensor fusion and 
facilitates the development of cooperative behaviour in groups of AMRs.  
To be able to cope with heterogeneity issues, we have adopted a model-driven development 
approach for SPICA. It supports the specification of communication and collaboration 
infrastructures of AMRs at an abstract and platform-independent level. Models are then 
automatically transformed to platform-specific source code which can easily be integrated 
into existing software frameworks. The modelling support is based on the SPICA modelling 
language which consists of several domain-specific sublanguages tailored to the different 
aspects of communication and collaboration infrastructures. The total of all sublanguages 
form the SPICA modelling language, also referred to as the Abstract Architecture Specification
(AAS) language. 
With the Message Description Language (MDL) a developer may specify the structure of 
network messages in an efficient and platform-independent manner, similar to ASN.1. 
Communication among AMRs is mostly event-based, so we decided to apply concepts of 
message-oriented middleware (MOM) architectures as they turned out to be most appropriate. 
The Data flow Description Language (DFDL) supports the specification of communication 
infrastructures in terms of modules and the data flow between them. Module stubs are 
created from the specifications which are basically adapters to the underlying 
communication infrastructure. The DFDL also facilitates the specification of the data 
management behaviour. For this purpose, it provides so-called Data Management Containers
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(DMCs) which are data structures used for managing incoming and outgoing data. DMCs 
further build the foundation of the general purpose Data-Analysis Description Language 
(DADL). It provides modelling support for filters that operate directly on the contents of the 
DMCs. DADL comprises a Matlab-like syntax allowing calculations on the exchanged data 
to be specified in a platform-independent manner. Examples are the calculation of a robot’s 
role or the agreed ball position. In addition, the DADL also provides some predefined filter 
patterns to fuse the exchanged data to a consistent world view. The integration of other 
services such as data encryption or authentication is possible as well. Apart from these 
sublanguages we employ the concept of ontologies. They allow us to establish a common 
understanding of the involved semantic concepts and different representations and 
therefore help to realize automatic conversion of data representations. 
With the help of the tools provided by the SPICA development environment, the resulting 
platform-independent models (PIMs) of the communication and collaboration infrastructure 
can be transformed into platform-specific implementations in C#, C++, and Java. Our 
template-based approach allows for easy integration of further programming languages. 
The model-driven development approach proved to significantly reduce the development 
effort for the realization of communication and collaboration infrastructures for 
heterogeneous teams of AMRs. A suitable communication and collaboration infrastructure 
has to be developed only once by specifying the desired functionality in a platform-
independent manner. The corresponding platform-specific implementations are generated 
automatically and can be integrated into new or existing software frameworks very easily. 
In addition, the SPICA development framework also completely relieves the developers 
from the burden of dealing with encoding and decoding issues, heterogeneous data 
representations, and synchronization issues. In this aspect, the SPICA-based 
implementations are comparable to Remote Procedure Call-based (RPC) solutions. The main 
difference here is that generated implementations are tailored to the characteristics of event-
driven AMR group communication. Using SPICA, the developers furthermore do not have 
to deal with the time-consuming implementation of data fusion and analysis schemes for 
each of the involved platforms. 
In the following, we will introduce the SPICA development environment in more detail 
along with its modelling language and associated capabilities. Afterwards, an elaborate 
example will outline the steps required to specify a communication and collaboration 
infrastructure between two different groups of AMRs. 

4. The Spica Approach 

The concept of the SPICA development environment was first published in 2007 (Baer et al., 
2007). The first generation of SPICA was capable of generating message structures, the 
second generation added support for modelling data flow. The third generation we outline 
here, brings major language cleanups, enhancements, and new features such as dynamic 
module binding, semantic annotation, and automatic data conversion. 
Dynamic module binding relies on a service discovery engine embedded into the generated 
implementation. The creation of channels is based on the availability of resources. It is also 
possible to create static channels which do not require the service discovery engine. 
Automatic data conversion relies on the semantic annotation of the specified data structures. 
Here, a common understanding of the semantics of data structures and the relations 
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between them may be established using an ontology specification. Our framework also 
foresees the integration of ontologies provided by third parties.  
For several reasons we decided to develop a textual domain-specific modelling language 
instead of using existing general purpose ones. First of all, the development of a novel 
domain-specific language (DSL) enables us to provide a very compact modelling notation, 
reduced to the needs and tailored to the semantics of our modelling domain. The SPICA 
sublanguages cover these areas where more specific modelling support is required. They are 
designed in such a way that they combine to the overall SPICA modelling language in a 
consistent fashion. This is not only advantageous for the model transformation process but 
also for the developer, who does not have to deal with different semantics of different 
description languages. A textual notation is furthermore sufficient for most modelling tasks. 
If designed with simplicity in mind, it is often even more convenient to use than graphical 
notations and it may allow for rapid prototyping. 

Parse AAS
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Fig. 2. Internal workflow of the SPICA development environment 

DSLs, of course, require us to create tools that interpret and transform models into concrete 
implementations. The corresponding tool developed for SPICA is the AAS Transformator
(AASTra), covering the whole process from interpreting a model down to generating 
concrete source code. It follows a three-layered approach as shown in Fig. 2, representing 
the reduction of abstraction from the topmost down to the lowest level of modelling. The 
SPICA modelling language resides on the topmost layer named AAS; it represents the PIM 
in the context of Model-driven Development (MDD). On the second layer, an in-memory 
intermediate representation of the AAS models is generated which is referred to as the 
AASTra Intermediate Representation (AIR). Processing is carried out in two steps: First, the 
model is parsed and references are resolved. Afterwards, the model is processed and 
transformed into a representation more suitable for the final code transformation. Here, the 
consistency of the model is checked and the required non-trivial transformations are 
performed. Language compilers follow a very similar approach when transforming a 
language specification to assembler or executable binaries.  
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The actual code transformation is performed on the third layer. Here, a template engine 
keeps the transformation process very flexible and customizable. Templates can access to 
the AIR directly. Reoccurring patterns are encapsulated in smaller sub-templates. To reduce 
redundancy in the code, frequently used functionality is relocated to libraries. 
We will now introduce the SPICA modelling language along with all its sublanguages, 
starting with a description of common language features. 

4.1 Common Model Semantics 

4.1.1 Blocks 

Related statements are grouped together in logical blocks. Each such block has a type and a 
name. The body of the block is enclosed in curly braces. The example below outlines the 
general structure. 

<type> <name> [<inheritance spec>] [<annotations>] { 
 <body> 
}

The type of such a block is given by one of the predefined keywords header, message,

container, coord, or module. The first four keywords are belonging to MDL while the 
remaining one is part of DFDL. A type is followed by a name, an inheritance specification, 
and additional annotations. The optional inheritance specification is available in the MDL 
only. Annotations are lists of key-value pairs enclosed in square brackets; values may be 
omitted. They parameterize the respective elements and thus influence the code generation 
process. Annotations are supported in every sublanguage but are optional as well. 

4.1.2 Semantic Model 

In a heterogeneous distributed environment, where a-priori unknown systems have to 
communicate and interpret the exchanged data, it is essential to establish a common 
understanding of their semantics and representations. Therefore, the SPICA AAS language 
supports semantic annotation of data structures. The semantic model provides two types of 
classes: concepts and representations. A concept defines the conceptual appearance of an 
element while a representation defines its concrete representation. A base ontology defines 
fundamental concepts like ball or player, but also coordinate systems and representations 
such as physical units. It thus builds the foundation for an automatic conversion of 
representations, a conversion from mm to m, for instance. Due to the availability of 
coordinate system specifications defined with regard to a reference system also non-trivial 
operations like converting the representation from one coordinate system to another can be 
provided automatically. For even more complex tasks we also allow the definition of custom 
conversion methods in a way similar to (Strang et al., 2003). 
Semantic descriptions provided by third-parties may be used as well. The base ontology and 
third-party additions are managed by a simple, distributed storage system which supports 
retrieval or insertion of ontology classes in a lightweight manner. 
Two semantic annotations are created for all blocks in a SPICA model automatically if not 

specified explicitly: concept specifies the ontology class name while rep specifies the 
representation of the element. To reference a block type, its concept, or representation, the 



Communication and Collaboration in Heterogeneous Teams of Soccer Robots 7

reftype, refconcept, and refrep annotations are provided. The type reference replaces 
the other two. References to coordinate system are modelled using the refcoord
annotation.
Ontology classes such as concepts or representations are referenced using URNs. Unique 
URNs are assigned to elements implicitly, providing a reference name to their concept and 
representation. In order to allow for a compact specification the developer can use 
abbreviations to URN in terms of prefixes. The default prefix # references the SPICA URN 

namespace urn:spica.

4.1.3 Variants 

Block variant identifiers have been introduced because several blocks with the same name 
may be defined. Variant identifiers are arbitrary strings representing the target AMR 
platform. They are appended to the block name, wrapped into angle brackets. If there is 
more than one target platform, it is possible to specify multiple variant identifiers delimited 
by colons. 
The existence of variant identifiers changes the automatic generation of concept and 
representation URNs for blocks. The following concept and representation URNs are 
created by default if no variant names are given: 

urn:spica:<type>:concept:<name>
urn:spica:<type>:rep:<name>

If a variant name is provided, the URNs read as follows: 

urn:spica:<variant name>:<type>:concept:<name>
urn:spica:<variant name>:<type>:rep:<name>

4.2 Message Specification 

As already outlined above, the concept of message-oriented communication is well suited 
for AMRs. This has several reasons: The network infrastructure of mobile autonomous 
system resembles the characteristics of mobile ad-hoc networks, so communication links are 
likely to exist only for a limited period of time. This is why a message-oriented and 
connection-less communication scheme has clear advantages over a connection-oriented 
one. Another reason stems from the communication behaviour of AMRs. As environmental 
monitoring and sensing are known to be mostly event-driven, message-oriented 
communication here directly reflects their characteristics. Messages may further get lost 
during transmission where a dependency to previous messages may average the usefulness 
of information.   
Based on these observations we created the MDL as a sublanguage of the SPICA modelling 
language. It is used to specify messages and containers for the SPICA communication 
infrastructure. The modelling concept is closely related to structure definitions in 
programming languages such as C, but offers more advanced features like single 
inheritance, dynamic arrays, and strings. It provides a set of commonly used primitive 
types. Complex types are containers in the SPICA context, which are made up of primitive 
types or other containers again. A customizable serialization and de-serialization interface 
allows arbitrary message encodings to be used. Support for automatic conversion of 
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message values is supported by augmenting the model with references to semantic concepts 
and representations.  
The objectives of ASN.1 and MDL are quite similar. However, ASN.1 lacks support for some 
fundamental techniques required by SPICA: It does not provide, for example, the 
mandatory concept of semantic annotations. In contrast, a custom modelling language like 
MDL may be designed in such a way that all required functionality is covered in a lean 
fashion. The specification support of MDL is sufficient for SPICA and we can easily extend it 
to our specific requirements.  
We will now describe the modelling entities of MDL in more detail, covering the definition 
of message headers and containers. Messages, as they represent a specialization and 
aggregation of these concepts respectively, are introduced afterwards. 

4.2.1 Headers 

A header specification represents a special form of container used only for structuring the 
fields of the message header. These fields are used to control the way a message is handled 
and processed. There is only one mandatory field in SPICA: A special field holds the type 
identifier of the message as messages are strongly typed. A unique identifier is generated 
automatically using a suitable hash function. Other, mostly optional control fields in the 
header include the endian flag or the message identifier. Message headers may have 
different variants and be derived from each other. Headers may not be instantiated. Every 
message must be derived from exactly one header. From this point of view, a header 
represents an abstract class in the context of object-oriented programming.  
The example below depicts the layout of a header specification using a minimal header with 
only one field identifying the type. A reference to the corresponding concept is required 
here to establish the meaning of the field. 

header MessageBase { 
uint16 type [refconcept=#message:concept:type]; 

}

As outlined above, default context and representation URNs are assigned automatically. For 

this example they read urn:spica:header:concept:MessageBase and 
urn:spica:header:rep:MessageBase respectively. 

4.2.2 Containers 

Container specifications create composite types consisting of zero or more primitive or 
composite types. Containers may be derived through single inheritance from other 
containers. Compared to ordinary structures in C, instances of containers have the 
additional capability of being able to serialize and de-serialize themselves. Besides, they are 
not bound to the SPICA communication infrastructure only, but can be used as general 
purpose data structures as well. 
A container is similar to a header but differs in one point: headers are only used as 
supertypes for messages while containers may only be used as a part of the message body. 

The example below shows a simple container. It defines the field double d referencing a 
semantic concept as well as a representation. A unique type identifier based on the 
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representation URN is assigned to each container implicitly. The example further defines the 
container as being a variant of type cn.

container Distance<cn> { 
double d [refconcept=#coord:distance, refrep=#rep:units:mm]; 

}

The concept URN reads urn:spica:cn:container:concept:MessageBase; its 
representation counterpart urn:spica:cn:container:rep:MessageBase. Considering 
the referenced concept and the representation, the value of d is a distance measured in mm.  

4.2.3 Messages 

One header and zero or more containers make up a message. The specification of a message 
differs from that of headers or containers in two ways. First, the topmost message in the 
inheritance hierarchy must be derived from exactly one header definition, providing all the 
required header fields. A container contains an implicitly defined type identifier which, 
however, is not represented as a field. A header is thus not required for a container. The 
second point in which a message differs from a container is that no primitive types may be 
added to the payload of a message; only containers are allowed. The example below outlines 
the definition of a message. 

message DistanceMessage : MessageBase { 
 Distance<cn> dist; 
}

4.2.4 Coordinate Systems

In the area of AMRs, many containers are most likely to be used to store the position of 
some objects or observations in terms of their coordinates. In order to facilitate a correct 
interpretation of the fields of the corresponding container, the MDL also includes 
specification means to define coordinate systems. We include this modelling support into 
the MDL as it can be seen as additional semantic description of the containers – a container 
can reference a certain coordinate system. The specification of coordinate systems with 
regard to reference systems retains the freedom of choosing your own coordinate system 
and allow for automatic conversion between different ones.  
In our modelling approach we currently support three basic types of coordinate systems – 

Cartesian2D, Cartesian3D, and Polar2D – and two different views – ego and allo. 
Egocentric coordinates resemble the egocentric view of the robot, whereas allocentric 
coordinates resemble the view of an external observer of the field. For the different types of 
coordinate systems we have some predefined concepts like an x-coordinate 
(#coord:xcoord) or a distance (#coord:distance) indicating the distance of the object 
from the pole of an polar coordinate systems. For a correct interpretation of container fields 
they have to refer to such a predefined concept. 
In order to define a new coordinate system, the new origin, the axes (or a zero-ray for polar 
systems), and the view have to be specified. Some example specifications are shown in 
section 5. 
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4.3 Data flow Specification 

One intention of the SPICA modelling language is to describe the communication behaviour 
in groups of AMRs in an abstract and platform-independent fashion. AMRs are basically 
hardware agents that are asked to accomplish a job or mission, similar to software agents. 
Just as software agents, AMRs can be regarded as modules which are mostly independent 
from each other. They further initiate mutual communication to exchange information and 
to collaborate. This is why the Data flow Definition Language (DFDL) follows an inherently 
modularized approach. Each AMR may be made up of several modules that communicate 
with each other or other AMRs. Such a scenario can easily be modelled given a modular 
software architecture where modules are connected via network links. There is, in fact, no 
difference between local and remote modules. For local communication, however, more 
suitable communication schemes might be chosen whereas communication between robots 
should be based on proven network communication schemes.  
SPICA now introduces specification means for modelling data exchange between modules 
in an abstract manner. Modules are the main modelling entity here. For each module the 
requested as well as the offered message types have to be specified. At least one of the two 
options must be present; the module otherwise exhibits no functionality. For each 
communication direction – i.e. incoming and outgoing –DMCs are responsible for the 
management of messages and containers. They are used by the communication engine and 
by filters for passing data. Finally, the message transmission schemes have to be specified. 
They represent specific communication techniques tailored to the communication behaviour 
of AMRs. The block layout below outlines the basic structure of a module specification. 

module Communication { 
offer { ... } 
request { ... } 
export { ... } 

}

The offer, request, and export blocks will be introduced below in more detail. We will first 
start with the offer and request blocks that describe the basic communication structure of a 
module. The DMCs and transmission schemes are outlined thereafter. This section closes 
with the presentation of the description of filters incorporating the DADL sublanguage. 

4.3.1 Message offers and requests 

Let us now have a look at the specification of the most important parts of the module model. 
Offering and requesting messages is a fundamental functionality of MOM-based 
communication systems. In the DFDL model, offer blocks provide the information about 
offered, i.e. outgoing messages whereas request blocks deal with the reception of messages. 
Every message that is provided by a module has to be listed in an offer block using the 

message directive. Along with the name of the message the specification of a transmission 
scheme is mandatory as it determines in which way the given message is handled. Apart 
from that, DMCs are required as input buffers and as temporary data storage for filters. The 
example below outlines the structure of an offer block. 
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offer { 
message DistanceMessage scheme ...; 
dmc ...; 

}

It has to be noted here that arbitrarily many message and dmc statements may be listed. 
The scheme keyword defines the transmission scheme to be applied here. A request block is 
specified in exactly the same way except that it is not mandatory to specify a transmission 
scheme.
The relations between messages and DMCs are not explicitly modelled in the above 
example. It is, however, established automatically during model transformation. The next 
subsection will show how this can be accomplished. 

4.3.2 Data Management Containers 

Data Management Containers (DMCs) have been mentioned earlier already. They resemble 
data management structures for messages or containers in SPICA. They also perform basic 
synchronization tasks. The most important characteristic of the DMCs is the fact that each 
DMC is responsible for a specific semantic concept and a respective realization. This is 
where the relations between messages and DMCs are identified automatically. 
In request blocks the identification of relations even goes one step beyond: For each 
incoming message not only the message type but also the types of the enclosed containers 
are checked. If the semantic type of a message container conforms to the referenced semantic 
type of a DMC, it is added to this DMC automatically. The representation of the container is 
further adapted to the DMC’s representation if required. This way, further processing on the 
incoming data is possible in a very efficient manner. Irrelevant information is further 
discarded without manual intervention. 
DMCs are implemented as linear lists with characteristics specific to the application domain: 
message passing. Queues and ringbuffers are more elaborate instances of linear lists and 
well-known examples of data structures in this context. All DMCs exhibit a consistent 
interface through which elements can be added, accessed, or retrieved. The semantic of 
these operations depends on the actual parameterisation, though. The retrieval operation, 
for example, may change the number of elements in the DMC, i.e. remove the element in 
question, or leave it alone.  
The following DMCs with the stated characteristics are available in SPICA so far. More may 
be added if required. The size (size) and the management scheme (scheme) of a DMC may 
be changed using the appropriate annotations.
list: A list implements the semantics of an ordered list using a fixed-size buffer space. If the 

buffer is full, no new elements may be added. Elements have to be removed explicitly. 
The management scheme defaults to FIFO. 

queue: A queue implements the semantics of an ordered list using a fixed-size buffer space. 
If the buffer is full, no new elements may be added. Elements are removed on retrieval 
except when using indexers. The management scheme defaults to FIFO. 

ringbuffer: A ringbuffer implements the semantics of an ordered, circular list using a fixed-
size buffer space as if it were connected end-to-end. If the buffer is full, the oldest 
element is overwritten if a new one is added. The management scheme defaults to LIFO. 

The generic annotations refconcept, refrep, and reftype as introduced earlier are 
supported by every DMC. They are required to specify the element type. 



  Robotic Soccer 12

Arrays of DMCs are supported as well. The array semantic is, however, not quite as 
expected: A DMC array is managed in such a way that each array element is uniquely 
assigned to one specific system that attends the communication. Every array thus has the 
same number of elements in the array, each of which corresponds to the same system. The 
DMC of the local system is also contained in the DMC array and can be retrieved using a 
dedicated operation on the DMC.  
In order to complete the dmc statement in the example above, we will present a possible 
parameterization below. We will assume that a ringbuffer with only one element is used 

which accepts elements of the type DistanceMessage:

dmc ringbuffer dist [type=DistanceMessage, size=1]; 

DMCs have been defined only in the context of the model so far. It is very likely that more 
than one DMC is used and only a subset of these need to be accessible from userspace. The 
DFDL provides the export block for this purpose. DMCs that have to be visible from 
userspace only have to be added to the export block. The example below illustrates this. 

export { dist; } 

4.3.3 Transmission Schemes 

Transmission schemes fulfil another very important task especially for offering messages. 
Data transmission in groups of AMRs is assumed to be very dynamic. Locations of modules 
local to a system are normally not subject to change but the location of modules on remote 
systems: Robots may join or leave a group spontaneously; other types of systems may 
appear and disappear in the same way. 
This is why SPICA introduces the concept of transmission schemes for establishing 
communication links. In contrast to ordinary socket-based communication establishment, 
these schemes exhibit a special behaviour which is tailored to the dynamic communication 
behaviour of AMRs. For local modules, a static scheme that does not change its endpoints is 
sufficient as it can do without the overhead for dynamic binding. For ad-hoc communication 
with remote systems, however, heartbeat techniques are tried and tested. This is especially 
true for unreliable environments. Three schemes are outlined below which implement the 
requested characteristics of static and dynamic binding. It has to be noted here that only 
messages may be sent. Containers have to be wrapped in messages for this purpose. 
static: The static transmission scheme is a one-to-one communication scheme which 

supports local communication characteristics. Basically, two modules are bound together 
statically. The location of communication partner must not be subject to change. It is not 

possible to change the communication endpoints during runtime. The module
annotation is used by the sender to reference a destination module. 

announce: The announce transmission scheme is a one-to-many communication scheme. 
The sender announces the availability of a data source to which one or more interested 
receivers can listen to. This scheme implements the heartbeat technique: The sender 
provides an alive-signal which contains the respective endpoints of the data source. This 

information is used by interested receivers to listen to the data source. The heartbeat
annotation is used by the sender to specify the interval for the alive-signal. 
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request: The request transmission scheme is a one-to-many communication scheme. It is 
similar to announce but implements a variant of a publish-subscribe protocol. The 
sender again announces the availability of a data source but without immediately 
starting the transmission: It is triggered once at least one receiver is available. Receivers 
have to emit subscription heartbeats that inform the sender of the availability of an 
interested party. It depends on the endpoints provided by the receivers and on the 
number of receivers where and how the sender directs the data to. The heartbeat
annotation is used to specify the interval for the alive signal for the sender as well as the 
receiver.

There are some annotations that are available for every transmission scheme. They basically 
resemble event processing capabilities: Transmission schemes must be either able to send 
messages periodically or after some events occurred. These annotations may be used both at 
the same time. The interval annotation is used to specify if a transmission should be 
triggered periodically. With the on annotation, the transmission scheme reacts on the events 
given in the annotation value. 
In order to complete the scheme statement in the example above, we will present a possible 
parameterization below. We will assume that the announce scheme is used which sends 
messages with 30 Hz: 

message DistanceMessage scheme announce [interval=33ms]; 

4.3.4 Filters 

In the previous sections we introduced the MDL and the DFDL which allow us to realize 
communication infrastructures for heterogeneous groups of AMRs. The modules defined in 
DFDL exchange messages, adjust the representation of received data if required, and store 
the information into appropriate DMCs automatically. However, in order to also facilitate 
the development of a collaboration infrastructure in terms of a cooperative world model, we 
have to go beyond this: it must be possible to interpret the exchanged data and perform 
arbitrary calculations on them. For this purpose, we introduce the Data-Analysis Description 
Language (DADL). The design of the language and its modelling elements is based on the 
following observations. 
The realization of a cooperative world model first requires data to be collected from the 
different robots in the group, which must then be combined to a consistent world view. 
Here, the impreciseness of the observations – which is mainly due to the physical limitations 
of the sensors used – has to be taken into account. For this purpose approaches for 
probabilistic state estimation are commonly applied, such as e.g. Bayesian Filtering (Aström, 
1965; Fox et al., 1999; Thrun et al., 2000) and derivates like Kalman-Filtering (Kalman, 1960) 
or Particle Filters (Handshin & Mayne, 1969; Akashi & Kumamoto, 1977). In order to deal 
with uncertainty a number of different approaches are available: Dempster-Shafer theory 
(Dempster, 1968; Shafer, 1967), Bayesian Inference (Pearl & Kaufmann, 1988), and Fuzzy sets 
(Zadeh, 1978), to mention only some. In most cases, however, the implementation of these 
approaches is non-trivial and time-consuming. Therefore, we tried to identify frequently 
used patterns for which appropriate predefined filters are included in the DADL. 
Especially in the area of Computer Vision but also in robotics, Matlab 
(http://www.mathworks.com/) is widely used for rapid prototyping. Matlab is a numerical 
computing environment and programming language, designed to efficiently deal with 
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matrices and operations on them. When dealing with arrays or lists it provides a very 
compact syntax and elaborate indexing methods. Therefore, we decided to adopt a Matlab-
like syntax for specifying the algorithms needed to perform calculations on the exchanged 
data.
The main modelling element in DADL is a filter block because all calculations on exchanged 
data are considered as a form of filtering operation in SPICA. The basic structure of a filter 
block depends on whether a predefined filter pattern or a custom filter is required. We will 
first discuss the predefined filter patterns. Afterwards the custom filters are introduced. 
The structure of a predefined filter patterns is given below. 

filter <name> { 
 <spec for the result DMCs> 

predefined <filter type> <annotations> { 
  <additional input specs> 
 } 
}

A filter specification starts with a list of DMCs that store the results of the calculations. They 
are defined in exactly the same way as the DMCs for offer or request blocks in a module. 
They are furthermore globally accessible, can be referenced throughout the module and in 
other filters. So, it is possible to specify whole filter chains. 
The actual specification for predefined patterns only includes the filter type and associated 
annotations. The annotations contain basic parameters for the filter and specify when the 
filter is triggered, similar to the annotations of the transmission schemes described above. 
The input for the predefined filter is specified in its body. It has to be noted here that it 
depends on the type of predefined filter which DMCs have to be provided for input and 
output. However, the SPICA framework is able to investigate the container for fields that 
correspond with the expected concepts and to associate them to the inputs and outputs of 
the filter. 
Currently three predefined patterns are available to be used for data-fusion: Kalman-Filter
(KF) (Kalman, 1960), Multi-Hypothesis-Kalman-Filter (MHKF) (Reid, 1979), and Simple-Multi-
Hypothesis-Estimation (SMHE). 
A KF is an approach for probabilistic state estimation that can be used to fuse data that 
represent observations on the field in terms of their Cartesian coordinates. It can also be 
utilized for object tracking and velocity estimation. However, it should be guaranteed that 
all the data to be fused correspond to the same object, i.e. the KF is not able to deal with false 
positives. The KF pattern can be parameterized in several ways. For example, it can be 
configured to realize a linear or a non-linear KF. In addition, it can be specified if the 
velocity of the observed objects should be taken into account and estimated and if the 
filtering should be iterative or non-iterative. 
MHKF is an extension of the KF that is able to deal with false positives, i.e. not all 
observations must belong to the same object. For this purpose, the observations are forming 
a set of hypothesis for the object state and for each hypothesis a separate KF is applied. The 
pattern can be configured in the same way as the KF pattern. 
SMHE is a simplification of the MHKF used in the Carpe Noctem software framework. It 
focuses on the multi-hypotheses tracking and avoids the complexity of MHKF through 
applying some heuristics. The pattern can be parameterized for an iterative or a non-
iterative filtering.  
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We also intend to provide some predefined patterns to estimate situations based on the 
evidence for hypotheses. Here, Bayesian Inference and Dempster-Shafer theory will be 
applied. However, work on this is in a very preliminary state and therefore detailed 
descriptions are omitted here.  
Custom filters are specified in a filter block as shown below: 

filter <name> { 
 <spec for the result DMCs> 

call <annotations> { 
  <filter body> 
 } 
}

As with the predefined filters, the block for a custom filter starts with the specification of the 
result DMCs. In contrast to predefined filters, no special rules have to be followed here; the 
most appropriate DMCs can be chosen to store the results of the calculations. Annotations 
are used here as well to specify the way a filter is triggered. The filter body is a collection of 
statements in the Matlab-like DADL syntax, supporting arbitrary calculations on the DMCs.  
From the Matlab programming language we have adopted – among other things – the 
following concepts: 

implicit typing 
control statements like for-loops, while-loops and if-conditions 
basic arithmetic and logical operations 
definition of matrices and vectors 
matrix operations  
array and matrix indexing methods 
a basic set of functions like min, max, cos, sin, tan, atan, atan2, sqrt, that 
accept also matrices as input values, perform the calculations per element, and may 
return matrices as well. 

In addition to these concepts, MDL containers and DMCs are seamlessly integrated into the 
DADL language. DMCs can be indexed just like arrays in Matlab. We also allow calling 
methods on DMCs as, for example, to create or delete an element. The containers are 
accessed in the same way as structures in Matlab or in other common programming 
languages. Due to space limitations, we do not present the whole specification support 
provided by the DADL for the definition of custom filters here. In section 5, however, two 
custom filters are presented.  

5. Evaluation and Results 

In this section, we demonstrate the applicability of our approach. We show how the SPICA 
development environment was used to realize communication and collaboration in a mixed-
team of soccer robots involving two heterogeneous platforms. For this purpose, we return to 
the scenario that was already outlined in section 2: A mixed-team formed by the Ulm 
Sparrows ( referred to as US) – and Carpe Noctem  (referred to as CN).  
In our example, SPICA is used to establish a communication infrastructure bridging the gap 
between the two software frameworks. Afterwards, we show how SPICA facilitates the 
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development of a cooperative world model which is used to agree on a common ball 
position within the team and to realize a basic role assignment of the robots.  
The cooperative world model can be realized either in a centralized or decentralized way. In 
a centralized scenario, the robots would share information with only one leading robot 
acting as hub or data sink. In the decentralized approach, AMR exchange information 
directly with all their team-mates in a peer-to-peer fashion. There is no designated data sink 
to which all data is sent to, but all systems process the provided information on their own. 
Each robot can so decide which piece of information is important and should be further 
processed.  
We decided to go for the decentralized approach, as during the last RoboCup tournaments it 
has shown to be better suited and less error-prone. This is mostly because robot systems are 
likely to crash once or several times during a match due to hardware or software failures. 
Therefore, a team with one leading robot that coordinates the cooperative behaviour should 
be avoided. Besides, according to our experiences the network infrastructure at RoboCup 
tournaments is quite unreliable, bandwidth is scarce and the network is sometimes not 
available at all. For these reasons, we base our communication infrastructure on IP 
multicast, as it facilitates our decentralized approach and, as a connection less 
communication scheme, it is also not affected by an unreliable network with regard to 
blocking issues.  

Fig. 3. System architecture of the mixed team “Ulm Sparrows and Carpe Noctem” 

Fig. 3 provides a basic overview of the system architecture. Each of the robots of the Ulm 
Sparrows, depicted by a circle, and of Carpe Noctem, depicted by a triangle, runs an 
instance of the corresponding software framework which integrates two SPICA-generated 

modules, namely Communication and SharedWorld. The Communication module of 
the Ulm Sparrows is responsible for sending a SharedWorld message to the multicast 
group, containing the detected ball position and the robot’s position on the field. In contrast, 
the Communication module of Carpe Noctem provides a separate BallMessage for the 
ball position and a RobotPosMessage for the robot’s position on the field. Here, it is 
assumed that it fits more into the existing framework to send one combined message or two 

separated messages, respectively. The SharedWorld modules of the Ulm Sparrows and 



Communication and Collaboration in Heterogeneous Teams of Soccer Robots 17

Carpe Noctem have identical functionality: receiving the messages from all the team-mates, 
fusing the ball information to an agreed ball position and calculating a basic role 
assignment. Therefore, this module has to be specified only once and is generated for the 
two different target platforms: C++ for the Ulm Sparrows and C# for Carpe Noctem.  
In the following paragraphs, we show how this architecture can be specified and realized 
with the help of the SPICA development environment. First, we start with the definition of 
messages, containers and the coordinate systems used by these two teams.  

Listing 1. Definition of the containers 

Listing 1 shows the specification of the containers that have to be defined for our 
communication and collaboration infrastructure. The listing includes two variants of the 
BallPosition container, one for Carpe Noctem and one for the Ulm Sparrows. Both 
containers refer to the concept #concept:BallPosition, but different representations 
corresponding to different coordinate systems are used. Carpe Noctem represents the 
position of the ball in an egocentric Cartesian coordinate system 
(#cn:coord:Cartesian2D), whereas the Ulm Sparrows use an egocentric polar 
coordinate system (#us:coord:Polar). For both containers the covariance matrices, 
representing the uncertainty of the observations with regard to the corresponding 

coordinate systems, are defined. In addition, the BallPosition container of Carpe Noctem 
also includes a field indicating the probability of the observation to be correct. The 
AlloBallPosition container of Carpe Noctem has the same fields as the Carpe Noctem 

BallPosition container, however refers to an allocentric coordinate system 
(#coord:cn:AlloCartesian2D). Besides, the RobotPosition container definition is 
identical to Carpe Noctem and the Ulm Sparrows. It is noteworthy here that the semantic 
annotation of containers can be considered as just a way of commenting, but of course with 
some guidelines. 

container BallPosition<cn> [refconcept=#concept:BallPosition, 
refcoord=#cn:coord:Cartesian2D] { 

 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm]; 
 double y [concept=#coord:ycoord, refrep=#rep:units:mm]; 
 double probability [refconcept=#refconcept:propability, 

refrep=#rep:units:pct01];
 cov(x, y) cov; 
}
container AlloBallPosition<cn> : BallPosition<cn> 

[refcoord=#cn:coord:AlloCartesian2D];
container BallPosition<us> [refconcept=#concept:BallPosition, 

refcoord=#us:coord:Polar] { 
 double d [refconcept=#coord:distance, refrep=#rep:units:mm]; 
 double alpha [refconcept=#coord:angle, refrep=#rep:units:deg]; 
 cov(d, alpha) cov; 
}
container RobotPosition<cn,us> [refconcept=#concept:RobotPosition, 

refcoord=#coord:Cartesian2D] { 
 double x [refconcept=#coord:xcoord, refrep=#rep:units:mm]; 
 double y [refconcept=#coord:ycoord, refrep=#rep:units:mm]; 
 double heading [refconcept=#coord:heading, refrep=#rep:units:deg]; 
 cov(x,y,heading) cov; 
}
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Listing 2. Definition of the coordinate systems 

Listing 2 shows the specification of the coordinate systems used by Carpe Noctem and the 
Ulm Sparrows. As already mentioned above, the coordinate systems are described by 
providing values for predefined concepts like the view, the axis and the origin (pole) of the 
coordinate system with regard to the reference systems. 

Listing 3. Definition of the messages 

With the help of these specifications the framework is able to provide the appropriate 
transformations between the representations in different coordinate systems automatically. 
Here, the development environment also deals with automatic conversions between the 
measurement units as well as with automatic transformation of the covariance matrices. As 
now the specification of all needed containers and of the coordinate systems are available, 
the corresponding messages can be defined as shown in Listing 3. 
As depicted in the overview of the architecture, we have to define a SharedWorldMessage

for the Ulm Sparrows that includes a BallPosition and a RobotPosition. The 
communication module of Carpe Noctem provides the same kind of information but in two 
separate messages: BallMessage and RobotPosMessage.

message SharedWorldMessage<us> : MessageBase { 
 BallPosition<us> ballPos; 
 RobotPosition<us> robotPos; 
}
message BallMessage<cn> : MessageBase { 
 BallPosition<cn> ballPos; 
}
message RobotPosMessage<cn> : MessageBase { 
 RobotPosition<cn> robotPos; 
}

coord Cartesian2D<cn> [refconcept=#coord:Cartesian2D] { 
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm]; 
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none]; 
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none]; 
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
}
coord AlloCartesian2D<cn> [refconcept=#coord:Cartesian2D] { 
 origin = (0.0, 0.0) [refconcept=#coord:origin, rep=#rep:units:mm]; 
 xAxis = (1.0, 0.0) [refconcept=#coord:xaxis, rep=#rep:none]; 
 yAxis = (0.0, 1.0) [refconcept=#coord:yaxis, rep=#rep:none]; 
 view = allo [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
}
coord Polar<us> [refconcept=#coord:Polar2D] { 
 pole = (0.0, 0.0) [refconcept=#coord:pole, rep=#rep:units:mm]; 
 zero_ray = (1.0, 0.0) [refconcept=#coord:zero_ray, rep=#rep:none]; 
 view = ego [refconcept=#coord:coordView, rep=#rep:coord:coordView]; 
}
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Listing 4. Definition of the Communication modules 

Now we can start with the definition of the modules of our architecture. The specifications 
of the Communication modules for the two teams are shown in Listing 4. The 
Communication module of the Ulm Sparrows offers a SharedWorldMessage using the 
announce scheme, when a new message is placed into the ringbuffer. In contrast, the 
Communication module of Carpe Noctem is defined to offer the two messages, 
BallMessage and RobotPosMessage, each of which is sent with 10Hz. In order to allow 
other parts of the software framework to access the message DMCs, they are included into 
the export block in both modules.  

Listing 5. Definition of the SharedWorld module 

As the SharedWorld module provides a more complex functionality – receiving messages, 
fusing the exchanged data and calculating a role assignment – we show the corresponding 

module SharedWorld<cn,us> { 
 request { 
  message SharedWorldMessage<us>; 
  message RobotPosMessage<cn>; 
  message BallMessage<cn>; 
  dmc ringbuffer[] balls [concept=#concept:BallPosition, 

rep=#cn:container:rep:BallPosition, size=10, ttl=5s]; 
  dmc ringbuffer[] robots [concept=#concept:RobotPosition, 

rep=#cn:container:rep:RobotPosition, size=10, ttl=5s]; 
 } 
 filter ego2Allo { ... } 
 filter calculateSharedBall { ... } 
 filter calculateRoleAssignment { ... } 
 export { ... } 
}

module Communication<us> { 
 offer { 
  dmc ringbuffer sharedWorld [type=SharedWorldMessage<us>, size=1]; 
  message SharedWorldMessage<us> scheme announce 

[on=sharedWorld.new"];
 } 
 export { sharedWorld; } 
}
module Communication<cn> { 
 offer { 
  dmc ringbuffer ballMessage [type=BallMessage<cn>, size=1]; 
  dmc ringbuffer robotPosMessage [type=RobotPosMessage<cn>, size=1]; 
  message BallMessage<cn> scheme announce [period=100ms]; 
  message RobotPosMessage<cn> scheme announce [period=100ms]; 
 } 
 export { 
  ballMessage; 
  robotPosMessage; 
 } 
}
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specification in several steps. Listing 5 provides a general overview of the description and 
focuses on the request block for receiving messages. 
The module is defined to receive the messages SharedWorldMessage from Ulm Sparrows 

robots, and the RobotPosMessage and the BallMessage from Carpe Noctem robots. 
DMC arrays are specified to be filled with the BallPosition
(#concept:BallPosition) and RobotPositions (#concept:RobotPosition)
containers for each of the robots in the team. The corresponding information is 
automatically extracted from the messages named above. 
In order to realize the functionality of calculating the agreed ball position and a basic role 
assignment, we have to define filters that are able to process the data collected in the DMCs 

or more precisely DMC arrays. The BallPosition containers are represented with regard 
to an egocentric coordinate system, so we first have to transform the data into an allocentric 
representation. A common allocentric view is a prerequisite to fuse data about observations 
collected by a group of robots. This is the purpose of the filter ego2Allo. The 
corresponding specification is shown in Listing 6. 

Listing 6. A filter performing the transformation from egocentric to allocentric view 

First, the filter defines a ringbuffer array named alloBalls that stores the allocentric ball 
positions (#concept:BallPosition) in the representation AlloBallPosition
(#cn:container:rep:AlloBallPosition) for each of the robots in the team. 
Afterwards, the body of the filter is defined. It is called every time a new ball position is 
available. The filter fetches the index of the corresponding ball DMC in the array which 
represents the number of the respective player in the team. Then variables are declared and 
initialized with the robot’s last position on the field. To this position the egocentric ball 
position rotated by the heading of the player on the field is added. Now a new container is 
added to the array and initialized with the coordinates of the allocentric ball position 
calculated above. At the end of the filter body, the field for the covariance matrix is 

filter ego2Allo { 
 dmc ringbuffer[] alloBalls [concept=#concept:BallPosition, 

rep=#cn:container:rep:AlloBallPosition,
size=10];

 call [on=balls.new]{ 
  index = balls.changedIndex(); 
  heading = robots(index).last.heading; 
  alloX = robots(index).last.x; 
  alloY = robots(index).last.y; 

  alloX = alloX + cos(heading)*balls(index).last.x – 
sin(heading)*balls(index).last.y;

  alloY = alloY + sin(heading)*balls(index).last.x + 
cos(heading)*balls(index).last.y;

  alloBalls(index).new; 
  alloBalls(index).last.x = alloX; 
  alloBalls(index).last.y = alloY; 

  //Calculate and assign transformed covariance matrix 
  alloBalls(index).last.cov = ... ; 
 } 
}
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assigned. Due to space limitation the corresponding transformation was left out. However, 
as just a rotation of the matrix is required, the transformation can be specified in basically 
the same way as the rotation of the egocentric ball coordinates.  

Listing 7. An MHKF for the agreed ball position 

All ball positions are now available in a common allocentric view, thus we can apply a 
Multi-Hypothesis-Kalman-Filtering (MHKF) to fuse the information and keep track of 
different hypothesis of the ball position on the field. In our case, the agreed position can be 
determined as the position hypothesis with the highest probability. Listing 7 illustrates how 
the corresponding MHKF can be included into the specification.  

Listing 8. A filter for calculating the role assignment 

filter calculateSharedBall { 
 dmc list sharedBall [concept=#concept:BallPosition, 

rep=#cn:container:rep:BallPosition];
 predefined MHKF [period=100ms, iterative, linear, staticObject] { 
  input = alloBalls(:).last; 
 } 
}

filter calculateRoleAssignment { 
 dmc ringbuffer[] roles [concept=#concept:Role, rep=#rep:string, 

size=1, init="None"];
 call calculateRoleAssignment [period=100ms]{ 
  [maxProb, maxIndex] = max(sharedBall.probability); 
  teamBall = sharedBall(maxIndex); 
  ballDistances = sqrt((robots(:).last.x - teamBall.x).^2 + 

(robots(:).last.y - teamBall.x).^2); 
  [minBallDist, AttackerIndex] = min(ballDistances); 
  roles(AttackerIndex) = "Attacker"; 

  minXPos = 20000.0; 
  minIndex = -1; 

  for i = 1:teamsize() 
   if(roles(i) == "None" && robots(i).last.x < minXPos) 
    minXPos = robots(i).last.x; 
    minIndex = i; 
   end; 
  end; 

  roles(minIndex) = "Defender"; 

  for i = 1:teamsize() 
   if(roles(i) == "None") 
    roles(i) = "Supporter"; 
   end; 
  end; 
 } 
}
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The filter calculateSharedBall uses a list named sharedBall to store the hypothesis 
for the ball positions returned by the MHKF. The probability of the hypothesis is 
automatically assigned to the corresponding field in the container which is determined by 

the associated concept #concept:probability. The MHKF is iteratively applied with 
10Hz. The options linear and staticObject indicate that a linear Kalman-Filter is used 
and that no velocity of the object should be estimated and the velocity is not considered 
when applying the motion model. Of course, the MHKF also has to know which data it has 
to work on. The input of the Kalman-Filter is given as the last observed allocentric ball 
positions of all the robots in the team. 
Listing 8 shows the specification of the filter calculateRoleAssignment. As for all 
filters, the definition starts with creating a DMC or DMC array to store the results of the 
filtering. Here a ringbuffer array named roles is defined to store the roles of all the robots 
(#concept:Role). Each array element is a ringbuffer that contains exactly one element of 
type string that is initialized with the string “None”. At the beginning of the filter body the 
index of the shared ball hypothesis with the highest probability is calculated using the max-
function. This index is used to store the corresponding shared ball hypothesis in teamBall.
Afterwards, the distances of the robots to the team ball are calculated and the index of the 
player nearest to the ball is determined. The following line associates the role “Attacker” 
with it. Next, we determine the player which is nearest to the own base line – indicated by 
the minimal x-coordinate of the corresponding robot position – and has no role associated 
yet. This is achieved by using a for-loop and an appropriate if-condition. Afterwards, the 
resulting player gets the role “Defender”. All remaining players are associated with the role 
“Supporter”, which is also done using a for-loop. 

Now the specification of the SharedWorld module is nearly complete. Only the DMCs 
sharedBall and roles have to be exported, in order to make them available for access 
from other parts of the underlying software framework (not shown here). 
With the help of all theses specifications, the SPICA development environment is able to 
generate source code for the whole communication and collaboration infrastructure. For this 
purpose, the AASTra tool has to be told about the target platform the modules and data 
structures should be generated for, and the desired communication scheme (IP multicast) 
has to be configured. After the transformation, the resulting modules and classes can easily 
be integrated into the underlying communication frameworks. Only an instance of the 
generated module has to be created as a singleton and the DMCs can be accessed by the 
generated API.  
Listing 9 illustrates the corresponding source code fragments for integration into the Carpe 
Noctem framework in C#. First, a callback method GetSharedBallHypotheses is 
defined. It is called when the sharedBall DMC of the SharedWorld model has been 
changed. This is the case, every time the MHKF has finished an iteration. In this simple 
example, the method just writes all hypotheses to the console. Afterwards, an instance of the 
SharedWorld module is created and the callback is added as a delegate to the Changed-
event of the SharedBall property for the respective DMC. The following line shows how 
the role of the current robot can be accessed (MyBuffer returns the DMC of the current 
robot from the DMC array). The rest of the source code fragment creates an instance of the 

Communication module, creates a new BallMessage, initializes its fields, and adds it to 
the corresponding DMC. The transmision of the message is handled by the 
Communication module as specified above. 
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Listing 9. C# fragment showing the integration of SPICA-generated code 

6. Related Work 

Research on robot software architectures in the past mostly focused on middleware 
frameworks for autonomous robot development. Abstraction layers in this approach 
simplify access to robotic hardware and make it more convenient to use. By adding abstract 
interface definitions and APIs, modular programming is promoted. 
Our approach shifts the focus right to the development process, a conceptually even more 
abstract level. We address the way systems have to be developed and the question what has 
to be implemented. The goal is to make the development process and the implementation 
more platform-independent, enabling the developer to focus on the actual functionality 
rather than bothering with characteristics of the platform. Our development environment 
for robotic software neither has hard dependencies on hard- or software architectures nor on 
operating systems. We provide modelling facilities that are focused on the respective 
program domain such as multi-party interaction or distributed sensor fusion. By combining 
ideas from the model-driven development movement with lessons learned from the 
development of middleware frameworks, a powerful development tool chain is provided. 
As robotic systems are normally quite reactive and the system configuration is likely to be 
modified during the development process, one key requirement is the ability to incorporate 
new or existing components into the given software architecture. Furthermore, especially 
AMRs have to be able to use heterogeneous hardware devices, cope with physical 
variability in measurement, and bypass architectural mismatches. Several approaches have 

using Spica.Modules; 
using Spica.Messages; 

...

protected void GetSharedBallHypotheses(Module m) { 
 SharedWorld sw = (SharedWorld)m; 

 Console.WriteLine("SharedBall Hypotheses: {0}", 
  sw.SharedBall.ToString()); 
}

SharedWorld sw = SharedWorld.GetInstance(); 

sw.SharedBall.Changed += GetSharedBallHypotheses; 

Console.WriteLine("Own Role: {0}", sw.Roles.MyBuffer.Last); 

Communication c = Communication.GetInstance(); 

BallMessage bm = new BallMessage(); 

bm.BallPos.X = 1000.0; 
bm.BallPos.Y = 1000.0; 
bm.BallPos.Certainty = 1.0; 

c.BallMessage.Add(bm);
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been proposed in the last years which try to provide suitable solutions or address similar 
problems in other related areas. A range of solution and projects is outlined below. 

6.1 Middleware Frameworks 

Several middleware frameworks utilize the concept of abstraction layers to ease the 
development of robotic software in a heterogeneous environment. 
MARIE (Mobile and Autonomous Robotics Integration Environment) (Côté et al., 2006) is a 
middleware framework for robots that targets the development and integration of software 
components. It provides the Mediator Interoperability Layer (MIL), a design pattern that 
offers a common interaction language for components in the system. MARIE itself is written 
in C++ for UNIX environments. CLARAty (Coupled Layer Architecture for Robotic 
Autonomy) (Volpe et al., 2001) is an object-oriented framework for robotic systems which 
focuses reusability and integration of algorithms and components. It basically reduces the 
software hierarchy to two layers, a decision and an execution layer; realizations of 
functional requirements can be integrated into the decision layer while the execution layer is 
not affected. Another object-oriented framework for robotic applications is MIRO 
(Middleware for Robots) (Utz et al., 2002). It provides abstraction from system-specific 
implementations and is based on the ACE/TAO (Schmidt et al., 1997) framework. A device 
layer features hardware abstraction and takes care of the operating system integration. A 
communication layer offers services required in distributed systems. A Service Layer finally 
provides abstractions for sensors and actuators by decoupling the device interfaces from the 
driver implementations. 
Similar to MIRO where skeletons for sensors and actors can be described using an Interface 
Definition Language (IDL), the Reconfigurable Context-Sensitive Middleware (RCSM) (Yau 
et al., 2002) uses a newly defined IDL to specify context requirements. It is a middleware 
framework supporting the development of context-aware applications focusing on 
spontaneous interactions. Application skeletons are generated from the IDL specifications 
which interact with the RCSM Object Request Broker (R-ORB), the context management 
processor in RCSM. 
The Pervasive Autonomic Context-aware Environments (PACE) (Henricksen et al., 2005) 
middleware provides tools for validating context models, generating stubs for different 
languages, and accessing context from different programming languages and platforms. It 
provides a context management system (CMS) with a distributed set of content management 
repositories. The queries to the CMS can be placed using RMI or automatically generated 
stubs, for example.  
In contrast to the approaches outlined above, SPICA is no middleware framework but a 
development environment aiming at platform-independent specifications and automatic 
code generation. Therefore, we address a conceptually different level. Besides, its flexible 
code generation system easily adapts to new target languages and we focus on a convenient 
modelling and on lean generated code.  
AMQP (Advanced Message Queuing Protocol) (http://www.amqp.org/) is an open 
standard messaging middleware. It was developed first off to meet the needs of investment 
banks, employing a network-friendly, binary protocol. Similar to the DMCs used in SPICA, 
AMQP provides queues to accomplish a store-and-forward semantic. Message routing and 
delivery is due to centralized message broker systems. 
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The implementation generated by SPICA exhibits MOM characteristics, as well. In contrast 
to AMQP, however, SPICA also supports decentralized peer-to-peer techniques. 

6.2 Development Environments 

A quite different approach is followed by the Microsoft Robotic Studio 
(http://msdn.microsoft.com/robotics/). It is a development environment for robotics that 
targets different robot platforms. It builds on the .NET framework and offers a runtime as 
well as a powerful simulation environment. Besides the programming languages available 
in .NET, a so-called Visual Programming Language may be used for development of robotic 
software. Therefore, it can be considered as a model-driven software development 
approach. CoSMIC (Component Synthesis using Model-Integrated Computing) (Gokhale et 
al., 2003; Balasubramanian et al., 2005) is another development environment which follows 
the paradigm of MDD. It is a collection of domain-specific modelling languages and 
generative tools for the development, configuration, deployment, and validation of 
distributed component-based real-time systems. 
Both approaches are similar to SPICA. The Microsoft robotics studio targets rapid 
development of robot control software but focuses more on prototyping than on efficient 
and domain-adapted solutions. CoSMIC is a complex, model-driven approach that follows 
very similar goals. In contrast, our approach aims to be lightweight and allows for rapid 
development and easy integration.  

6.3 Context Management Systems 

In the area of context-aware computing applications and middleware services use 
information about their execution environment to adapt their functional and non-functional 
behaviour for appropriate quality of service in every situation. For this purpose, context 
management systems are required which collect context information and make them 
accessible for adaptation reasoning. However, in a pervasive computing environment it is 
very likely that context information originate from heterogeneous sources. Therefore, many 
research activities addressing the development of context management systems also focus 
on heterogeneity issues. Examples are RCSM and PACE already mentioned above, but also 
the Context Toolkit (Salber et al., 1999), CoCo (Buchholz et al.) and CoBrA (Chen et al., 
2003). While RCSM and PACE aim at providing an infrastructure to integrate heterogeneous 
context providers, the Context Toolkit, CoCo, and CoBrA focus on the interpretation of 
context information from heterogeneous sources. In particular, CoCo and CoBrA are related 
to our approach as they claim the necessity of using ontologies to establish a common 
understanding of the semantics of context information and their representations. However, 
here it has to be distinguished between approaches using ontologies for runtime reasoning 
and for code generation purposes as in our case. Our approach also has many similarities to 
the Context Ontology Language (CoOl) already mentioned above, as they also deal with 
different representations and define operations to convert between them. However, in our 
approach the operations for conversion are not defined explicitly, but we aim at 
automatically deriving the conversion methods from the definition of coordinate systems 
and references to measurement units. 
In general, the development of a cooperative world model has many similarities to the 
development of context management systems. Here too, information about the current 
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environment, like the ball position, player position etc., has to be collected and calculations 
have to be performed on them. In the area of context aware computing this is referred to as 
context reasoning. There are also some approaches providing development support and 
patterns for context reasoning. An example is the work done by Chen et al. (Chen et al., 
2004). They propose the use of Context Fusion Networks (CFNs) to provide data fusion 
services with regard to the aggregation and interpretation of sensor data to context-aware 
applications.  

7. Conclusion and Future Work 

Because of the lack of standard software, which prompts every RoboCup team to develop its 
own software framework, heterogeneity issues play a decisive role. They cause several 
problems when establishing a mixed-team of soccer robots involving different hardware 
and software platforms. 
In order to cope with theses issues, we presented SPICA, a development environment for 
communication and collaboration infrastructures for heterogeneous teams of soccer robots. 
In SPICA, we have adopted a model-driven development approach which is naturally very 
appropriate to cope with heterogeneity. One of its basic paradigms is the platform-
independent specification of software allowing automatic generation of source code for 
different platforms. Accordingly, SPICA provides a modelling language and tools 
facilitating the specification of communication and collaboration infrastructures as well as 
the automatic transformation of the resulting models into source code. 
The SPICA modelling language consists of three domain-specific sublanguages, which are 
tailored to different aspects of the infrastructure. The MDL allows the specification of 
messages and containers along with their representations. The DFDL provides specification 
means for module stubs, the data flow between them, and for their data management 
capabilities. In order to allow a flexible filtering of data and to support the creation of a 
cooperative world model, the DADL was developed. It is a general purpose language for 
calculations on the exchanged data and also provides some predefined patterns for data 
fusion. As illustrated in a detailed example, the development effort for a team-play in 
heterogeneous teams of soccer robots can be reduced significantly with the help of SPICA. 
The generated source code can be integrated into the existing software framework very 
easily and with very little effort.  
However, as already mentioned above, the development of SPICA is still work in progress. 
In particular, this is true for the DADL and the corresponding transformation support. 
Appropriate support for code generation is available only for a subset of the predefined 
data-fusion patterns at the moment and only a basic set of predefined functions is integrated 
into the language. In the future, we will enhance the language and the corresponding code 
generation tools with regard to especially these issues. We also aim at integrating support 
for defining functions and calling functions from external libraries. Besides, as not only the 
programming of a complex communication infrastructure is a challenging task, but also its 
configuration, we try to include support for self-configuration of the generated 
infrastructures into the SPICA environment. 
However, we are quite confident that with the SPICA development framework one 
important step was made towards the realization of cooperative team organization. It is our 
vision that teams provide and publish descriptions of the messages and corresponding data 
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they would like to communicate. For new mixed teams only the tactics would have to be 
specified then; the appropriate communication and collaboration infrastructure is generated 
by the SPICA development framework automatically.  
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