6 research outputs found

    In Silico Exploration of Aryl Halides Analogues as CheckpointKinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study,and ADMET Screening

    Get PDF
    Purpose: In this review, a set of aryl halides analogs were identified as potent checkpoint kinase1 (Chk1) inhibitors through a series of computer-aided drug design processes, to develop modelswith good predictive ability, highlight the important interactions between the ligand and theChk1 receptor protein and determine properties of the new proposed drugs as Chk1 inhibitorsagents.Methods: Three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling,molecular docking and absorption, distribution, metabolism, excretion and toxicity (ADMET)approaches are used to determine structure activity relationship and confirm the stableconformation on the receptor pocket.Results: The statistical analysis results of comparative -molecular field analysis (CoMFA) andcomparative molecular similarity indices analysis (CoMSIA) models that employed for a trainingset of 24 compounds gives reliable values of Q2 (0.70 and 0.94, respectively) and R2 (0.68 and0.96, respectively).Conclusion: Computer–aided drug design tools used to develop models that possess goodpredictive ability, and to determine the stability of the observed and predicted molecules in thereceptor pocket, also in silico of pharmacokinetic (ADMET) results shows good properties andbioavailability for these new proposed Chk1 inhibitors agents

    Characterisation of data resources for in silico modelling: benchmark datasets for ADME properties.

    Get PDF
    Introduction: The cost of in vivo and in vitro screening of ADME properties of compounds has motivated efforts to develop a range of in silico models. At the heart of the development of any computational model are the data; high quality data are essential for developing robust and accurate models. The characteristics of a dataset, such as its availability, size, format and type of chemical identifiers used, influence the modelability of the data. Areas covered: This review explores the usefulness of publicly available ADME datasets for researchers to use in the development of predictive models. More than 140 ADME datasets were collated from publicly available resources and the modelability of 31selected datasets were assessed using specific criteria derived in this study. Expert opinion: Publicly available datasets differ significantly in information content and presentation. From a modelling perspective, datasets should be of adequate size, available in a user-friendly format with all chemical structures associated with one or more chemical identifiers suitable for automated processing (e.g. CAS number, SMILES string or InChIKey). Recommendations for assessing dataset suitability for modelling and publishing data in an appropriate format are discussed

    Predicting drug metabolism: experiment and/or computation?

    Get PDF
    Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.This is the accepted manuscript of a paper published in Nature Reviews Drug Discovery (Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G, Nature Reviews Drug Discovery, 2015, 14, 387–404, doi:10.1038/nrd4581). The final version is available at http://dx.doi.org/10.1038/nrd458

    Data mining methods for the prediction of intestinal absorption using QSAR

    Get PDF
    Oral administration is the most common route for administration of drugs. With the growing cost of drug discovery, the development of Quantitative Structure-Activity Relationships (QSAR) as computational methods to predict oral absorption is highly desirable for cost effective reasons. The aim of this research was to develop QSAR models that are highly accurate and interpretable for the prediction of oral absorption. In this investigation the problems addressed were datasets with unbalanced class distributions, feature selection and the effects of solubility and permeability towards oral absorption prediction. Firstly, oral absorption models were obtained by overcoming the problem of unbalanced class distributions in datasets using two techniques, under-sampling of compounds belonging to the majority class and the use of different misclassification costs for different types of misclassifications. Using these methods, models with higher accuracy were produced using regression and linear/non-linear classification techniques. Secondly, the use of several pre-processing feature selection methods in tandem with decision tree classification analysis – including misclassification costs – were found to produce models with better interpretability and higher predictive accuracy. These methods were successful to select the most important molecular descriptors and to overcome the problem of unbalanced classes. Thirdly, the roles of solubility and permeability in oral absorption were also investigated. This involved expansion of oral absorption datasets and collection of in vitro and aqueous solubility data. This work found that the inclusion of predicted and experimental solubility in permeability models can improve model accuracy. However, the impact of solubility on oral absorption prediction was not as influential as expected. Finally, predictive models of permeability and solubility were built to predict a provisional Biopharmaceutic Classification System (BCS) class using two multi-label classification techniques, binary relevance and classifier chain. The classifier chain method was shown to have higher predictive accuracy by using predicted solubility as a molecular descriptor for permeability models, and hence better final provisional BCS prediction. Overall, this research has resulted in predictive and interpretable models that could be useful in a drug discovery context
    corecore