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ABSTRACT 

Drug metabolism can produce metabolites with physicochemical and 

pharmacological properties that differ significantly from those of the parent drug. 

These mechanisms are an important factor in the high attrition rates currently found in 

drug discovery and development, including late-stage clinical trials. The relevance of 

drug metabolism for both safety and efficacy implies a vital requirement for efficient 

and reliable ways to predict drug metabolism in vitro, in silico, and in intact 

organisms. In this Perspective, we provide an overview of the state-of-the-art of 

experimental and computational approaches for investigating drug metabolism. We 

highlight the scope and limitations of these methods and indicate strategies to harvest 

the synergies resulting from combining measurement and prediction. 

INTRODUCTION 

Metabolism is a signature of living systems, and enables organisms to create a 

viable environment within which to perform the complex biochemical transformations 

that maintain homeostasis. The metabolic system has evolved as the main line of 

defence against foreign, hazardous substances, by transforming them into readily 

excretable metabolites. These xenobiotics also include synthetic drugs, in addition to 

naturally occurring substances (e.g. bacterial, fungal and herbal toxins), often 

produced as part of a specific defence mechanism. Recent studies have highlighted 

the often synergistic signalling between the host organism and the microbiome 

facilitated by metabolism
1
. For about 75% of all drugs metabolism is one of the major 

clearance pathways
2,3

. The process of biotransformation can produce metabolites with 

substantially altered physicochemical, physiological, pharmacological, and 

toxicological profiles
4-6

. Metabolism is the main factor mediating the activation, 

deactivation, toxification and detoxification of small molecules, and is a key 

determinant in the performance and safety of small molecules, including their uses in 

medicines, cosmetics, nutritional supplements and agrochemicals (Box 1). 

 

<<Box 1 approx. here>> 
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The complexity and malleability of the metabolic system cannot be overstated, 

A plethora of diverse enzyme families are involved in xenobiotic metabolism, 

including cytochrome P450s (CYPs), dehydrogenases, flavin-containing 

monooxygenases, hydrolases, peroxidases, UDP-glucuronosyltransferases, 

sulfotransferases, and glutathione S-transferases
7
. Their expression patterns and 

substrate specificities can vary greatly among different species, which implies there is 

a risk of missing toxic metabolites formed in humans when extrapolating from in vitro 

and animal testing results. Expression patterns also differ between tissues and organs, 

and there are indications that metabolic enzymes engage in synergistic collaborations 

with transporters (e.g. CYP 3A4 and P-glycoprotein
8,9

). On top of this, many inter- 

and intra-individual factors need to be considered, such as gender differences and 

genetic polymorphisms, age, biological rhythms, pregnancy, intestinal flora, diseases, 

stress, lifestyle, diet and medication
4
. Hence even with the advanced technologies and 

knowledge available today, accurate prediction remains highly challenging. 

Understanding metabolic processes on a molecular level of detail is of 

fundamental importance and key to successful drug discovery and development. 

Knowing the metabolic properties of a molecule can help to optimize the stability and 

in consequence the in vivo half-life and risk-benefit ratio of a drug. A plethora of 

experimental methods are available for investigating the metabolic fate of drugs at an 

unprecedented level of detail. However, these experimental approaches remain 

demanding with respect to scientific equipment, human expertise, cost and time, 

which have acted as major drivers for the development of computational tools for 

drug metabolism prediction. In silico methods allow the prediction of the metabolic 

fate of virtual compounds and to plan for the most promising strategy to optimize 

metabolic stability of project compounds a priori. 

Experimental and theoretical approaches are (still) all too often regarded as 

separate domains. It is most important to realize that there is enormous potential for 

synergy in the combination of both areas, which will allow the analysis and prediction 

of drug metabolism to make a major leap forward. 
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BIOSYSTEMS AND ANALYTICAL METHODS FOR 

INVESTIGATING DRUG METABOLISM 

CYPs are of major significance to drug metabolism, and the most relevant 

forms are expressed predominantly in the liver, but also in a whole variety of other 

organs at lower expression levels (Figure 1). Hence liver, or liver-derived in vitro 

systems are often the most convenient, interesting and important experimental model 

systems for metabolism studies, e.g. when considering the first-pass metabolism of an 

orally bioavailable drug. Because of the considerable variability in metabolism among 

different species it is essential and valuable early in drug discovery to use in vitro 

systems with human-derived material, since man is generally the target species. 

Several in vitro systems, as well as new in vivo approaches are available and can be 

specifically used depending on the issue or problem to be solved (Table 1). The 

simplest systems are recombinant enzymes (expressed together with coenzymes to 

achieve optimal catalytic activity). They can be used e.g. as a single CYP isoform 

system to assess which isoforms are involved in the metabolism of a compound or for 

drug interaction studies. From native material, e.g. liver, different enzyme families 

can be separated by centrifugation. Soluble cytosolic enzymes, e.g. sulfotransferases 

(SULTs) remain in the supernatant, whereas membrane-bound enzymes like CYPs, 

UDP-glucuronosyltransferases (UGTs) etc. are enriched in the pellet and after re-

suspension, the material described as “microsomes” (membrane vesicles of the 

endoplasmic reticulum) are obtained. Microsomal preparations can be easily stored 

while retaining their functionality, and are convenient to use because they are also 

available in sufficient quantity for high throughput assays. 

 

<< Figure 1 approx. here>> 

<< Table 1 approx. here>> 

 

Another subcellular matrix is the S9-fraction, which consists of both the 

cytosolic and microsomal fractions. In all subcellular fractions, due to dilution or 

washout of cofactors during the preparation process, cofactor-dependent enzymes in 

microsomes, e.g. CYPs or UGTs need to be specifically supplemented with the 

cofactor (NADPH in the case of CYPs) to regain enzymatic activity. The 
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metabolically most competent system is one having intact liver cells (hepatocytes), 

with all appropriate cofactors, coenzymes etc. present in physiological conditions and 

environment. Hepatocytes, while being less “robust” than microsomes, are useful 

when a more comprehensive picture of the hepatic metabolism of a selected 

compound is required. Both fresh and commercially produced cryopreserved primary 

hepatocytes, or immortalized hepatocyte-derived cell lines can be easily produced 

from preclinical species, and there is now more straightforward access to human 

derived material. New preclinical models such as “humanized mice” (either mice with 

specific human drug-metabolising genes inserted
10

 or chimeric animals where human 

hepatocytes have replaced >90% of the murine hepatocytes in the liver
11

) are 

becoming available which may improve studies of human metabolism, drug-drug 

interactions etc. in an in vivo animal model very early in drug discovery or 

development, significantly before entering clinical studies
12,13

. 

Currently high-performance liquid chromatographic (HPLC) separation 

systems coupled to mass spectrometry (MS) is the workhorse for detecting and 

characterising drug metabolites. The metabolite data generated by LC-MS analyses 

are in general qualitative in the absence of synthetic reference material, since parent 

drug and the metabolites formed can have dramatically different MS-responses. 

Integrating UV-detectors in these systems can provide at least semi-quantitative data, 

providing that metabolism does not affect the chromophore, and this can be used to 

assess major or minor metabolic pathways. Clearly, quantitative data without 

standards (ideally stable isotope labelled if LC-MS is to be used for quantification), 

particularly from complex in vivo matrices can only be generated using radiolabeled 

compounds and these (like the synthetic standards of the metabolites themselves) are 

rarely available during the discovery phase. Depending upon the spectrometer used, 

with high resolution mass spectrometry (HRMS) the preferred option, a suite of MS-

based experiments can be deployed to help characterize metabolites, e.g. MS/MS, 

MS
n
, MS

e
, mass defect filters (MDFs), neutral losses

14,15
. 

The experienced MS operator can use a variety of strategies including 

knowledge, rules and databases
16

 for metabolite detection and identification (MetID) 

to deduce lists of masses to be monitored. Indeed, all of the major mass spectrometer 

manufacturers offer bespoke metabolite identification software for this purpose. This 

can be supplemented by in silico tools such as IsoScore
17

 or Mass-MetaSite
18,19

 that 
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predict the metabolic fate to guide metabolite detection and identification
20

. The 

expert system Meteor Nexus
21

 includes functionality for linking metabolites predicted 

for phase I and II biotransformations to mass spectrometry data. It highlights matches 

in the graphical depiction of the metabolic tree. Also tools based on the SyGMa
22

 

metabolite prediction method have been successful in supporting MetID efforts for 

drugs
23

, and recently an open source library for LC-MS data processing, 

MassCascade
24

, has been released. Another method is to search for metabolites using 

multivariate statistical analysis of the data (this approach is derived from the 

developing field of metabonomics/metabolomics where normally the data is used to 

deduce the relationships between the metabolism and phenotypic readouts such as 

clinical endpoints
25

). Comparison of the MS data from a sufficient number of samples 

obtained from dosed and control in vitro incubations, or animal experiments, can be 

mined using techniques such as principal components analysis for changes in 

metabolic profiles. Whilst some of these changes may well result from alterations in 

the endogenous metabolites, other changes will be due to the production of drug 

metabolites
26,27

. 

Despite the availability of these MS-technologies, and the various in silico 

aids it is often difficult, or impossible, to assign a full constitutional structure. The use 

of techniques such as (LC-)NMR spectroscopy may enable a more complete structural 

characterization of unknown metabolites provided sufficient material is available
28

. 

However, full metabolite characterization is generally only undertaken on a “for 

cause” basis, or after a compound has entered full development
14

. In the initial stages 

of discovery programs a simple measure of compound stability (i.e., rate of substrate 

disappearance) in hepatic microsomes or primary hepatocytes may suffice. Based on 

the data generated here, those molecules with greater metabolic stability can then be 

chosen for further investigation and chemical optimization. This type of analysis can 

easily be automated, and medium- to high-throughput metabolic stability assays are 

routinely applied
29-31

. Such assays can also be applied to investigations of a 

compound’s susceptibility to metabolism by specific enzyme systems. 

Once appropriate structures have been selected for lead optimization, 

additional metabolic information helps to identify metabolic “hotspots” so that in vivo 

breakdown can be restricted and exposure improved. Rapid generic analysis based on 

a reversed-phase gradient chromatographic separation may be employed for 



 7 

metabolite profiling. Such methods can indicate the general nature of the 

biotransformations occurring (hydroxylation, dealkylation, reduction, conjugation 

reactions etc.) and provide insights into the SoMs as well as the enzyme classes 

involved. Microsomal systems are also useful for examining candidates for the 

generation of reactive intermediates based on so-called “trapping” experiments
32,33

. 

Such screening aims to detect both “soft” and “hard” nucleophiles formed as reactive 

metabolites via panels of trapping reagents. 

As programs progress through the discovery phases, studies of more complex 

systems such as hepatocytes will be deployed, giving a more complete picture of 

hepatic metabolism, including further information about the generation of reactive 

intermediates. Finally, keeping in mind potential issues with allometric scaling, 

studies in animals provide the opportunity to investigate the in vivo metabolism, 

distribution and excretion of a selected number of candidate compounds, often using a 

much more bespoke chromatographic separation to maximize the data recovery from 

samples such as urine, bile and tissue extracts. However, the difficulties of obtaining 

truly comprehensive metabolite profiles in the absence of radiolabelled materials (or 

some other tracer) in biofluids should not be underestimated. The presence of 

endogenous metabolites increases the complexity of detection while effects such as 

ion suppression may attenuate signals for candidate drug metabolites. 

COMPUTATIONAL APPROACHES FOR 

INVESTIGATING DRUG METABOLISM 

A wide array of computational methods and integrated approaches have been 

developed for the prediction of drug metabolism, and are distributed in the form of 

web services and as free and commercial software (Table 2)
34,35

. They may be 

classified as specific (“local”) or comprehensive (“global”) tools
36,37

. Specific models 

apply to certain biomolecules (mainly metabolic enzymes) and/or to specific 

metabolic reactions, while global models are in principle applicable to diverse 

biological systems (i.e. to any metabolic enzyme and biotransformation) and to most 

small organic compounds. The goal of many metabolism software packages generally 

lies in combining various tools and methods not for a single enzyme, but for the 

largest possible number of targets related to drug metabolism. The inclusion of other 
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functional proteins, which may synergize with metabolising enzymes, such as 

transporters (e.g. P-glycoprotein
9
) can also be envisaged. 

Among the most common applications of computational methods is the 

determination of fundamental structural, functional and mechanistic properties of 

biomolecules related to drug metabolism, which enables the identification of 

metabolically labile positions (SoMs) in small organic molecules and the prediction of 

metabolites. Once the chemical structures of the actual metabolites are determined, a 

good starting position for predicting their reactivity, toxicity, bioactivity and other 

pharmacokinetic and pharmacodynamic properties has been obtained. An overview of 

the scope and limitations of computational methods is provided in Table 3. 

 

<<Table 2 approx. here>> 

<<Table 3 approx. here>> 

 

Components to successful prediction of drug metabolism 

Virtually any technique of computational chemistry has been adopted for the 

task of drug metabolism prediction, but it has become clear that the key to success is 

the integration of various methods and resources. 

Component 1: Experimental data 

Computational models are often (but not exclusively) based on experimental 

data, and the amount and quality of the available data will determine their coverage 

and performance. Experimental data are generally generated under controlled 

conditions, meaning that a number of variables are set and kept constant, leaving large 

portions of the space of possibilities unexplored. As an example, the concentration 

and distribution of metabolic enzymes in vivo may not be equivalent to those from 

which the experimental model was derived. Computational models can therefore be 

false, irrelevant, or, at best, incomplete. 

Recently, efforts in making experimental data on small organic molecules 

available to the public have clearly increased
38

, but data on drug metabolism is still 



 9 

sparse. There are only a few databases of relevance to this topic in the public 

domain
35

 (Table 4), and even proprietary data collections are surprisingly limited in 

their coverage. Data collections on metabolism have been built up over decades and 

are often not stored in a machine-readable format. 

Assay technologies, protocols, requirements for new medicines, definition of 

targets and the chemical space of interest etc. have changed during the last years, 

resulting in heterogeneous datasets. Apart from the limited quantity and coverage, 

data quality is a further concern, including issues related to experimental variability 

and errors introduced during data collection, curation and manipulation
37,39,40

. When 

searching the literature (or in-house archives) for metabolic data, one is all too often 

confronted with unconvincingly documented or unsolved constitutional assignments, 

especially for minor metabolites. For example, sites of hydroxylation or conjugation 

(i.e. product regioselectivity) are often left unassigned. Such partly solved metabolic 

structures certainly have some utility, but they must be clearly designated as such to 

avoid an over- or misuse. Configurational (i.e. stereochemical) aspects of metabolite 

formation and characterization have received considerably less attention than 

constitutional aspects
41,42

, despite their obvious pharmacological significance. For all 

these reasons, distilling high quality data that can be used for training computational 

models is a challenging and labour-intensive task that needs to be done by experts. 

Experimental data such as bioactivities can be modelled using (Q)SAR 

techniques. These methods have evolved from univariate statistical approaches to 

multivariate machine learning techniques based on heuristics. Classical (Q)SAR 

methods apply linear regression techniques to fit experimental data. Regression 

(numerical) models have historically been used to model continuous responses (such 

as pKD) from high-quality datasets, while classification (categorical) models are often 

favoured for modelling noisy data (e.g. when collected from different laboratories or 

from assays with a high intrinsic variability). Machine-learning methods generally 

outperform classical approaches on large and highly diverse datasets featuring 

complex non-linear relationships. With the rapid increase of available data these 

methods are becoming increasingly popular, despite obvious drawbacks such as 

limited interpretability
37

. However, it may be unwise to dismiss such models for the 

sole reason of lack of (linear) interpretability. Here, chemists can learn from other 
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disciplines, e.g. physics and engineering, that very successfully employ nonlinear 

modelling approaches for solving complex problems. 

(Q)SAR models have primarily been reported for the interaction of molecules 

with specific CYP isoforms, but also UGTs and sulfotransferases, and receptors 

involved in enzyme induction, in particular the CYP-inducing AhR (aryl hydrocarbon 

receptor), CAR (constitutive androstane receptor), and PXR (pregnane X 

receptor)
37,43,44

. On a broader scale, statistical and machine learning methods are used 

to predict comprehensive bioactivity spectra of small molecules. However, current 

mechanistic models generally do not take into account information beyond target 

annotation, and hence are limited in their ability to predict phenotypes
45

. Linking 

pathway information to targets can hence improve model accuracy. MetaCore and 

MetaDrug46,47, two pharmacology platforms that use comprehensive biological 

networks for estimating the pharmacological effects and risk of small molecules, 

harness this approach. However, the coverage and accuracy of annotated pathways is 

still a work in progress and there is often significantly less overlap between different 

databases of annotated pathways than one would expect. This is often compounded by 

lack of information on tissue expression levels and rate constants for metabolising 

enzymes. There clearly is an opportunity to invest additional effort in this area to 

further increase the reliability of computation models. 

The majority of toxicity models available to date are trained solely on 

toxicological endpoints. These quantitative structure-toxicity relationship (QSTR) in 

general make use of only a few basic chemical descriptors in combination with classic 

linear modelling techniques. They serve primarily as hazard identification tools to 

support the general risk assessment. Only rarely they are derived for exposure-

response relationships that allows the prediction of absolute toxicity in isolation
39

. 

Biotransformation data can be used to derive models for predicting both the 

sites and products of metabolism in an automated fashion. MetaPrint2D
48

, for 

example, generates simple statistical models for SoM prediction from 

biotransformation databases. An extension of this software, MetaPrint2D-React
48

, 

identifies and encodes the type of metabolic reaction observed for specific atom 

environments. The program is able to generate the chemical structures of likely 

metabolites by applying reaction rules to predicted SoMs. Realistically, such data 

mining approaches require thousands of biotransformation records for proper model 
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development, which with the present sparsity of data, is one of their major limitations. 

These methods therefore have a limited applicability. 

 

<<Table 4 approx. here>> 

 

Component 2: Expert knowledge 

Given the limited quality and quantity of available data, and the wealth of 

empirical knowledge that medicinal chemists have accumulated over decades of 

research in drug metabolism, scientists have been keen to devise sets of rules 

(dictionaries) from expert human knowledge, and to develop reasoning engines to 

apply this knowledge to metabolite structure prediction
49

. Knowledge-based 

approaches such as Meteor
21

 predict the sites and products of metabolism by 

scrutinizing a molecule of interest for the presence of target fragments. Their key 

advantage is the provision of the rational basis underlying a prediction (e.g. literature 

references and brief descriptions). However, these tools often generate a 

combinatorial explosion of predictions, as all possible combinations of 

transformations encoded by the dictionary can be performed, for several (usually 

three) generations of metabolites. Without pruning of the product trees produced, 

large numbers of metabolites may be presented to the user, and their analysis requires 

experience and diligence again. Hence the ranking of metabolites and the definition of 

adequate cut-off criteria are key challenges of knowledge-based approaches, which 

requires additional components to be integrated into such expert systems. 

Rule-based systems are also firmly established in predictive toxicology, where 

they are used to interrogate molecules for structural elements linked to toxicity
50

. 

They have received considerable interest from regulatory authorities concerned with 

medicines registration (e.g. 
51

) and are typically included as part of the guidance in 

investigating the toxic liability of new substances including drugs. 

Component 3: Physicochemical properties 

Sufficiently water-soluble compounds are likely to be excreted without 

undergoing metabolism. Expert systems and many other predictors make extensive 

use of this fact and other computed physicochemical properties such as logP 
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(octanol/water) or logD, the pH-dependent partition coefficient, as a means of 

metabolite ranking and filtering. A note of warning is apposite here, since more and 

more physicochemical parameters used in structure-metabolism relationships are 

calculated ones using common software whose limits and levels of precision are 

ignored by users. Also the effects of transporters on excretion of small molecules can 

be profound. For example glucose is almost 100% re-absorbed in the kidneys from 

the ultra filtrate despite being very hydrophilic. 

Component 4: Target structure 

Ligand-based methods need to deal with significant uncertainty about the 

target structure, specifically the ligand-receptor interaction site. Structure-based 

methods additionally take into account structural properties of the target, a key 

component for understanding protein-ligand interactions at an atomic level of detail. 

Only twelve years ago the first crystal structure of a human microsomal CYP (2C9) 

was resolved
52

. Today about one hundred crystal structures of CYPs are available 

covering most isoforms relevant to human drug metabolism. This is a respectable 

collection of potentially valuable data, but it is important to note that these structural 

models cover only a fraction of the enzymes’ conformational space relevant to the 

binding of small molecules
53

. 

Automated ligand docking can be useful for examining whether a specific site 

on a molecule is likely to bind to a specific locus in a target protein. SoMs can be 

predicted by relating the proximity of ligand atoms in a computed docking pose to the 

catalytic centre of the target enzyme. The approach is generally able to correctly 

predict the approximate ligand orientation within the binding pocket (for binding sites 

of low flexibility) and provide a structural hypothesis for the observed biological 

response
53-55

. The technique is particularly valuable for rationalising e.g. diverging 

biological properties of enantiomers. In fact, we advocate the prediction of metabolic 

stereoselectivity be added as a benchmark of the maturity of substrate-enzyme 

docking simulations. Current automated docking methods are not particularly 

promising for 3D-QSAR modelling because of the poor performance of the available 

scoring functions
56

. Specifically, while enthalpic contributions to ligand-receptor 

binding for high affinity molecules are more or less captured by the various scoring 

functions that guide the ligand docking process, the entropic contributions (and other 
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more subtle effects like changes in the heat capacity of the complex) elude these 

techniques. There are remarkable differences in the performance of the various 

docking algorithms but the limitations of this method are primarily defined by 

(structural) data availability (in particular the coverage of relevant protein 

conformations), expert knowledge of the target, the algorithm itself and model 

parameterization. 

Steric and chemical properties of target macromolecules can be described by 

molecular interaction fields (MIFs). MIFs are generated by embedding the target into 

a grid and computing interaction energies with a chemical probe for each grid 

node
57,58

. A probe is a small chemical fragment used to characterize a specific type of 

chemical features, most commonly hydrophobic features and hydrogen bonding 

regions. MIFs can be visualized as isopotential 3D maps indicating the directionality 

and topology of the interactions formed between a ligand and the receptor. MetaSite
59

 

is such an integrated software package for metabolism prediction that is based on 

MIFs. Among several other components, it features a fast docking surrogate method 

to relate the structure of small molecules to CYPs for SoM and metabolite prediction. 

Component 5: Target flexibility 

Metabolic enzymes and effectors involved in their regulation are known for 

remarkable ligand promiscuity. The plasticity and size of their binding sites (some of 

them have two or more) is a direct result of their function, which in the case of 

xenobiotic-metabolising enzymes is to provide a flexible and adaptable system for 

processing a wide range of substrates. Today, molecular dynamics (MD) simulations 

(often in combination with quantum chemical methods) are the most powerful 

theoretical approaches for analysing and predicting the interactions of protein-ligand 

pairs, and much of our knowledge about the structure, function, specificity and 

mechanisms of metabolic enzymes has been derived from these simulations
60,61

. 

MD simulations have revealed conformational changes induced by the binding 

of small molecules
62,63

 to various CYP isoforms and established a relationship 

between substrate specificity and enzyme malleability
64

. They have been employed to 

study the solvation of the active sites of various CYP isoforms
65

, and the active site 

access and egress pathways, which might play a key role in substrate selectivity and 

specificity
66,67

. Various methods have been developed to enhance conformational 
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sampling, including the application of an artificial force applied to the ligand in order 

to pull toward a specific (steered MD simulation
68

) or random (random accelerated 

MD simulation
69

) direction. The fact that the dynamic motions of CYPs are affected 

by their binding to membranes introduces another layer of complexity to their 

analysis
60

. 

Free energy (pathway) methods such as free energy perturbation
70

, 

thermodynamic integration
71

 and the Bennett acceptance ratio method
72

 allow the 

calculation of the free energy of binding with a mean absolute error typically ~1.5 

kcal/mol
73

 (NB: the difference between a high and a low affinity analogue is only a 

few kcal/mol). These methods also come at high computational cost
24

. Faster free 

energy methods (such as LIE
74

) have been developed, but they are generally less 

accurate
73

. Free energy methods have been employed e.g. to study the binding of the 

acidic and lactone forms of atorvastatin to CYP3A4
75

, the stereoselective metabolism 

of CYP substrates, and the impact of mutations on substrate affinities
76,77

. 

MD simulation methods come with considerable demands in computational 

power and human expertise. Therefore they have mostly been applied a posteriori for 

studying the time-dependent structural and electronic properties of the most important 

metabolic enzymes. GPU technology with faster MD algorithms is boosting 

capabilities to sample the phase space more comprehensively
78

, but the setup of the 

simulation (protein preparation, ligand parameterization) in particular, and the 

respective analysis remain laborious and accessible to experts only. Data can be 

complex, “Big”, and overwhelming, therefore there is a need to develop more 

efficient ways to decode the crucial bits of information. Various clustering techniques 

can be used to elucidate representative protein conformations that could be used for 

automated docking
79

. The many options to consider: water molecules, solvation, 

protonation and other factors, result in a very large number of possible receptor 

models. From a computational point of view this is generally not a limitation as 

molecules can be easily docked against thousands of protein structures within a short 

period of time. The problem lies again with the insufficient performance of scoring 

functions, leaving the question of which docking pose to trust. 
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Component 6: Reactivity 

Reactivity is the major determinant of drug metabolism (at least for CYP-

mediated biotransformations
80

), and quantum mechanical (QM) methods allow its 

study at an electronic level of detail. Regarding metabolism as a hypothetical two-step 

process, the molecule must fit into the active site, and then must be sufficiently 

activated by the enzyme to undergo metabolism. QM systems generally take into 

account only the most proximate protein environment that is directly involved in a 

chemical reaction but ignore effects originating from the more distant protein 

environment. But even with these abstract representations of enzyme systems, fairly 

accurate predictions for specific metabolic reactions are possible
81

. 

With MD simulations and QM methods having complementary properties, it 

comes as no surprise that the combination of both approaches, referred to as quantum 

mechanical/molecular mechanical (QM/MM) methods
82

, has become a key 

technology for investigating enzyme reactions
61,83

. The idea of the QM/MM hybrid 

approach is to tackle large systems by describing the region where a chemical reaction 

takes place by a QM method while accounting for effects of the environment by MM 

methods. QM/MM methods have been extensively used for investigating the catalytic 

cycle of metabolic enzymes, primarily that of CYPs
61,83

, but also of epoxide 

hydrolase
84

 and glutathione S-transferases
85,86

, for example. Reaction intermediates 

can be unstable with very short lifetimes, which makes them extremely challenging to 

observe with experimental approaches. Knowing their chemical structure is of 

immediate relevance to drug discovery, as it allows the rational design of molecules 

with specific binding properties (in particular substrates or inhibitors). This is an area 

of research where QM/MM methods can be effective. 

A new direction to the QM calculation of full proteins is being explored 

utilising fragmentation methods like divide-and-conquer or fragment molecular 

orbital theory (FMO)
87

, where the protein is split into terminally capped amino acid 

fragments to be calculated locally and an overall energy extracted from their pair 

interaction energies. Specifically designed GPU (graphics processing unit) based 

algorithms like TeraChem
88

 allow for even QM molecular dynamics simulations of 

full proteins in an MM solvent environment. 

Calculating molecular flexibility and/or reactivity is a non-trivial task, and it is 

important to note that such models depict one specific protein-ligand interactions or 
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enzyme mechanism only. They are also computationally fairly expensive, which is a 

further complication in the implementation of such methods in drug discovery 

workflows. Fast QSAR methods have therefore been preferred in an attempt to 

incorporate reactivity implicitly through chemical descriptors
89,90

. Also these are 

generally confined to a specific type of metabolic reaction. Machine learning methods, 

on the other hand, are able to encode a whole range of different metabolic reactions, 

which is one of the main reasons for the popularity of these methods, including 

support vector machines (SVMs), artificial neural networks (ANNs) and random 

forests. The types of chemical descriptors used for encoding SoMs, their numbers and 

level of sophistication are in fact remarkable. The spectrum ranges from FAME
91

, a 

random forest model for phase I and II metabolism that uses only seven molecular 

descriptors, to RS-Predictor
92

, an SVM model for CYP-mediated metabolism which 

employs more than 500 chemical descriptors. 

Component 7: Metabolic networks - systems biology 

Comprehensive models (simulators) of drug metabolism require the ability to 

correctly predict a whole cascade of events and properties of the system to allow the 

estimation of biological effects. This would involve accurate knowledge and 

prediction of the (i) concentrations and distribution of the drug, (ii) metabolic 

liabilities (SoMs), (iii) chemical structure of metabolites, (iv) interactions with 

pharmacologically and toxicologically relevant biomolecules, (v) reaction rates and 

(vi) tissue concentration and localisation of enzymes and cofactors. While prediction 

of likely metabolites is feasible, it is challenging to ascertain their pharmacological 

and toxicological relevance in the context of the biological system. Target prediction 

tools allow the identification of likely ligand-protein interactions and possibly 

extrapolation to the contribution of these interactions to prediction of phenotypic 

effects using QSAR techniques. However, pharmacological effects are strongly linked 

with reaction rates and metabolite concentrations in specific tissues, which themselves 

are to a significant extent influenced by many factors including the activity of 

transporters. Possibly, these will only be reliably estimated if binding, ligand 

recognition and unbinding processes (pharmacodynamics) are understood at an 

atomic level of detail. Metabolic rates are specific to an enzyme and a substrate. 

Regardless of the structural or chemical significance of changes to substrates, these 
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can have a huge impact on the binding and unbinding processes (which SoM and 

metabolite prediction algorithms typically do not include), and consequently, on 

metabolic rates
93

. Chemical modifications of one part of a molecule to increase its 

metabolic stability may in fact lead to metabolic switching, resulting in the expedited 

biotransformation at another position in the molecule. As a consequence, prediction of 

metabolic rates, if possible at all, is only feasible within an extremely narrow and 

well-defined chemical space
93

. Even if metabolic rates could be obtained, it is still a 

far cry from being able to estimate effects of metabolites on a biological system, in 

particular as metabolic processes and biological responses can be highly specific to 

the individual
13

. 

Integrated computational approaches 

Integrated computational approaches combine a variety of data sources, 

models, and algorithms in order to boost applicability, information content, and 

significance and prediction success rates, with the ultimate goal of rendering a (more) 

complete picture of physiological processes. One common strategy is to combine 

ligand- and structure-based methods. It has been shown that both have their individual 

methodological advantages and disadvantages, and there is no clear preference for a 

single method
43,94

 but a lot to gain by their combination. The targeted use of 

consensus approaches and composite modelling workflows represent further 

established strategies for improving the accuracy and significance of predictions, e.g. 

for the task of bioactivity profiling
95,96

. Pathway information and network analysis 

algorithms have been successfully integrated for predicting the pharmacokinetic and 

pharmacodynamic properties of drug molecules
46,47

. Integration of data 

types/resources and algorithms has also become a major driver of tools for 

regioselectivity and metabolite prediction. For example, knowledge-based systems 

use physiochemical property estimators and QC methods to flag potentially toxic 

metabolites and reduce false-positives rates. The latter has also been addressed by 

implementing docking as a post-filtering tool for generated metabolites
97

. MetaSite 

uses MIFs derived from the protein structure structural data, combined with a 

fingerprint-based algorithm (fast docking surrogate method) and a QC approach 

(reactivity estimator). The importance for including reactivity, steric accessibility and 

pharmacophoric constraints has been studied in detail for SMARTCyp
80,98,99

, but in 
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fact most statistical and machine-learning approaches make use of descriptors that 

encode these components. 

BEST OF BOTH WORLDS: INTEGRATION OF 

EXPERIMENT AND COMPUTATION 

A broad portfolio of experimental and theoretical methods for studying 

metabolism at different levels of sophistication is available today. It is important to 

realise that when used independently, any of these approaches illuminate only specific 

aspects of drug metabolism and ignores most of the others. In contrast, the 

combination of various experimental and theoretical approaches will generate a fairly 

complete picture of a compound’s metabolic fate. One would assume that synergies 

created by the integration of both domains has long been harnessed by the 

pharmaceutical industry, when in fact it seems that there is still some way to go to 

reach this point. The reasons for this situation are manifold: limited resources, costs of 

process restructuring, organizational structures, timelines for learning cycles, 

diverging (and in part incompatible) schools of thought, and the limitations of current 

methods. A key problem is the open availability of relevant and diverse data, which is 

often secured in pharmaceutical companies and CROs. Sharing these data is often 

impossible due to intellectual property constraints. However, solving this problem 

will provide data related to a broader chemical space and thereby increase the 

applicability domain of computational prediction models. 

Departments for computational and experimental research of drug metabolism 

are traditionally operated as well-separated “silos”. Scientists of both areas have 

different backgrounds, use distinct terminologies, and are focused on applying their 

acquired expertise. Depending on the organizational setup of research organisations or 

projects, the level of integration of drug metabolism research varies greatly. 

Computational tools may be used by experts in drug metabolism and/or by 

computational or medicinal chemists. The latter tend to focus on SAR and synthesis. 

Computational chemists may not have expert knowledge in pharmacokinetics, and 

sophisticated theoretical methods may not necessarily be within the comfort zone of 

specialists in drug metabolism. Close interplay of the different disciplines is therefore 

of utmost importance to tackle the problem of metabolism prediction. Efficient 

communication allows the development of appropriate models based on in-house data 
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to guide metabolic optimization. Early access to data on microsomal or hepatocyte 

stability is required. A recent example for the successful liaison of experimental and 

theoretical approaches is the optimisation of the metabolic stability of 

mineralocorticoid receptor antagonists reported in Box 2. But there is room for 

improvement, in particular with respect to modelling CYP induction, the rate and 

extent of metabolic reactions, and the prediction of phase II metabolism. 

 

<< Box 2 approx. here>> 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

A plethora of powerful in vitro assay and analytical technologies are at our 

disposal, allowing us in principle to obtain a fairly complete and accurate picture of 

metabolic processes. Whilst it is likely that robust and cost-effective metabolite 

generating systems such as hepatic microsomes will continue to provide a solid 

bedrock for metabolite generation the development of so-called 3D bioreactor (“organ 

on a chip”) technology is a rapidly developing field. These systems provide a much 

more “organ-like environment” for cells, which can be maintained for long periods 

whilst being exposed to drugs in order to assess metabolism and toxicity
100-102

. If, as 

seems likely, such bioreactors (which are not limited to hepatocytes) can be made into 

a robust and easily deployed technology this will represent a major advance for in 

vitro techniques. 

Analytical techniques for drug metabolite detection and identification are 

likely to remain focussed on the use of MS-based technologies of ever increasing 

levels of sophistication and sensitivity for the foreseeable future. The development of 

robust miniaturized separation systems will further drive down the sample 

requirements
103

. Another promising development is the application of ion mobility 

spectrometry (IMS), which can enhance metabolite separation and, by additional 

characterization capability, improve SoMs identification. The approach is based on 

separating isomeric species depending on differences in their IMS drift times, which 

are linearly proportional to the collision cross-section reflecting physical size and 

shape
104,105

. Fundamental progress in SoM and metabolite prediction would result 
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from improvements in the reporting of additional metadata on the origin (tissues, 

genomes, experimental conditions etc.) of samples, complete identification of major 

and minor products, improved experimental and statistical software tools for the 

normalisation of mass spectral data, integration with transport phenomena and 

experimental data on the concentrations and rates of reaction. 

Rapid advances can also be expected in the development of new animal 

models, either based on the engraftment of human cells into animals such as those 

seen in the “chimeric humanized” mice or animals genetically modified to contain 

human drug-metabolising enzymes and transporters. These models can be expected to 

provide much more accurate predictions of the metabolic and pharmacokinetic 

properties of candidate drugs in humans
10,11

, but certainly raise ethical issues. 

Experimental approaches to investigate metabolism come with substantial 

demands in technical resources and human expertise. This is where computational 

chemistry can introduce a big leap forward in metabolism research. Computational 

prediction of drug metabolism is still a young field of research but in silico methods 

do not only have the potential to guide or (partially) replace experimental efforts, they 

may also be the method of choice to investigate catalytic processes and highly 

reactive species. The most obvious synergy to gain from the combination of both 

domains is from coupling of software and spectroscopic instruments for more 

efficient metabolite identification and characterization. Manufacturers of mass 

spectrometers are vigorously pursuing this. 

Today drug metabolism is typically addressed in the industrial setting rather 

than academia, with the consequence that software and data are generally withheld 

and not available to the scientific community at large. However, the tide seems to be 

turning and the field of cheminformatics appears to be finally making much more 

program code and data available to the scientific community. Data on the sites and 

products of metabolism, metabolite concentrations and tissue locations of 

metabolising enzymes are being harvested and incorporated into various databases 

which address different aspects of metabolism, including drug and agrochemical 

metabolism in a variety of species of plants and animals. The information stored 

ranges from data that is semantically rich to numerical data on concentrations and 

locations of metabolites. Annotated metabolic pathways and data on transporters 

complement this picture. 
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Metabolism is an example of an emergent process, and the complexity of the 

system is influenced by many extraneous and individual factors. Current 

computational approaches take little account of these and other factors including 

transporters, proper consideration of metabolising enzymes other than CYPs, 

environmental factors, and in particular the concentrations, metabolic networks and 

rates of metabolism of metabolising enzymes. Substantial progress is being made in 

gathering data for pharmacokinetic/pharmacodynamic (PK/PD) modelling, and this 

will have a significant effect on prediction not just which metabolites are present, but 

also their concentrations and flux over time. In addition, the emerging field of 

metabonomics attempts to connect the metabolic state of an individual or population 

to phenotypic measures. This covers the whole gamut of metabolic research, 

instrument design and measurement protocols to machine learning and clinical 

prediction. There is enormous potential in this area to combine all the experimental 

and theoretical methods to improve patient stratification and clinical outcomes. 

We will continue to see substantial gains in computational power, driven by 

GPU and cloud technology, increasingly efficient algorithms, and advances in parallel 

computing. This will open up many new avenues for the development and application 

of highly accurate methods for the simulation of biomolecules and indeed whole 

biosystems. 

For experimental and theoretical approaches alike, human expertise remains 

an important ingredient. The broad range of disciplines involved at the cutting edge of 

predictive drug metabolism is impressive. It draws on chemistry (physical, organic-

synthetic, analytical, medicinal etc.), biology (biochemistry, enzymology, genetic, 

epigenetics etc.), pharmacology (molecular, clinical, pharmacokinetic, toxicology, 

therapeutics etc.), and computational components (software development, quantum 

chemistry, simulations, statistics, machine learning etc.). For all of these experimental 

and theoretical domains of research, there is no technology available to date that is 

superior in all relevant scenarios. Bringing experimentalists and theoretical scientists 

closer together will result in progress. Ideally, a feedback loop of experiment, design 

and testing would greatly improve predictive models, as much of the present work has 

concentrated on retrospective analysis. In the future, closer collaboration is needed to 

further develop these models. The central role that metabolism plays in biology and 

the requirement that predictive models be incorporated into a wide variety of research 



 22 

and development programs (e.g. drug discovery, environmental science, clinical 

phenotyping, pesticide development) means that significant resources will be applied 

and progress in understanding and in generating predictive models will continue. 
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ELEMENTS 

Box 1. The many implications of drug metabolism 

Categories of drugs with respect to their metabolic behaviour 

Soft drugs have (or, are designed for) fast and predictable metabolic 

transformation into inactive, nontoxic metabolites (often via conjugation or hydrolysis 

reactions)
106

. Examples include succinylcholine and esmolol. Metabolically stable (or 

highly resistant) drugs, on the other hand, are excreted without undergoing 

metabolism. Examples include lisinopril and bisphosphonates. 

Drugs with active or highly active metabolite(s) include cisplatin ( 

monoaqua and diaqua species), diazepam ( nordiazepam), encainide ( O-

desmethylencainide and 3-methoxy-O-desmethyl encainide), morphine ( morphine-

6-O-glucuronide), tamoxifen ( 4-hydroxytamoxifen and endoxifen), and tramadol 

( O-desmethyltramadol) 

Metabolites with comparable or improved therapeutic properties 

marketed as drugs include oxazepam ( diazepam), cetirizine ( hydroxyzine), 

desloratadine ( loratadine), paracetamol ( phenacetin), and fexofenadine ( 

terfenadine). 

Prodrugs are medicinal compounds whose complete, or nearly complete 

therapeutic potential is based on the activity of the metabolite(s)
107-111

. Chemical 

groups liable to metabolism are often introduced to improve ADME (absorption, 

distribution, metabolism and excretion) properties or to reduce toxicity (e.g. 

chemotherapeutics). Examples include enalapril ( enalaprilat), fenofibrate ( 

fenofibric acid), levodopa ( dopamine), oseltamivir ( oseltamivir carboxylate), 

and valaciclovir ( aciclovir). 

Changes in pharmacological activity 

Drug metabolites can range from intrinsically inactive to highly active, on the 

identical pharmacological target as the parent drug or any other biomolecule
4,112-114

. 

Gain in pharmacological activity: 
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Metabolism can produce active species that contribute to the therapeutic 

activity of drugs, and this actually is not a rare event. In the past drugs were often 

developed and almost solely guided by animal models, and it could happen that the 

observed biological response was to a significant part (or even completely) a result of 

an active metabolite and not the parent
113

. 

Gain of therapeutic activity may be observed for metabolites with favourable 

physicochemical properties for disposition, assisting transfer to their pharmacological 

target. Also chiral inversion as a result of metabolism may lead to severe changes in 

biological activity/toxicity. Metabolites may be (preferred) substrates of influx 

transporters. 

Loss of pharmacological activity: 

Extensive biotransformation of metabolically unstable molecules into inactive 

or rapidly excreted metabolites can result in a substantial drop or complete loss of 

therapeutic efficacy. This is in principle predictable and assays are available that can 

identify problematic molecules. Metabolic instability is particularly challenging if 

drug metabolism is induced as part of a resistance mechanism (most commonly 

observed for anti-infectives and anti-cancer drugs). Metabolites may also be 

substrates of efflux transporters. 

Toxicity 

Biotransformation bears the risk of unwanted toxification, resulting in adverse 

drug reactions (ADRs)
4
. 

On-target ADRs (in the context of metabolism) are a result of exceedingly 

high concentrations of a drug or an active metabolite, sometimes in a non-target tissue. 

They are generally dose-dependent and in principle predictable. 

Off-target ADRs result from the interaction of a drug or its metabolite(s) with 

a non-intended target. A relevant example is cardiotoxicity caused by several (often 

but not exclusively) lipophilic drugs belonging to various pharmacological classes by 

blocking the human ERG potassium channel at therapeutic doses
115

. Off-target ADRs 

are generally dose-dependent and in principle predictable. 

ADRs involving reactive metabolites are a reason for concern because they 

can involve covalent binding to biomolecules (adduct formation) and/or oxidative 
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stress following the formation of reactive oxygen species
116,117

. They are in principle 

predictable (or rationalisable) and dose-dependent. 

Idiosyncratic drug reactions are rare (< 1 case in 5000) but with potentially 

severe consequences (anaphylaxis, blood dyscrasias, hepatotoxicity, and skin 

reactions). They are not currently predictable and apparently dose-independent. Their 

underlying mechanisms are poorly understood but are often thought to be associated 

with reactive metabolites
118

. 

Drug-drug interactions 

Drug-drug interaction refers to the situation where the drug concentration 

present at (anti-) target sites is changed dramatically by the interference of another 

substance with drug-metabolising enzymes or related biomolecules. Potential 

outcomes of drug-drug interactions are (i) loss of pharmacological efficacy due to 

enhanced clearance, (ii) toxic effects caused by accumulation, and (iii) increase of the 

rate of reactive, toxic intermediates formed. They can be life threatening. For example, 

monoamine oxidase inhibitors are well known for potentially lethal dietary
119

 and 

drug
120,121

 interactions, and hence they are currently used only as a last resort for the 

treatment of atypical depression. 

Drug resistance 

Induction of metabolic pathways is a major route of drug resistance, in 

particular for anti-infectives and cancer drugs, but this also has huge implications for 

the effectiveness of pesticides. Multidrug resistance can also be driven by active 

efflux facilitated by transporters
122

. 

Changes in physicochemical properties 

Biotransformation has an impact on physicochemical properties
6
 and hence 

pharmacokinetics, in particular with respect to distribution and excretion. It also 

affects parameters such as absorption, passive membrane permeation, transport, 

binding to macromolecules etc.
9,12

. 

 

<< END OF BOX 1>> 
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Box 2. Combination of experimental and theoretical 

approaches to analyse and predict drug metabolism: An 

example from real life 

The fruitful combination of experimental and computational approaches to 

optimize metabolic compound stability in a pharmaceutical industry setting can be 

exemplified by the work on a series of potent and selective non-steroidal 

mineralocorticoid receptor antagonists from a lead optimization project at Bayer 

Healthcare
123

. Since metabolite identification (MetID) assays are limited in 

throughput, most of the optimization of metabolic properties was done via in vitro and 

in vivo stability assays combined with sites of metabolism (SoM) prediction with the 

Bayer in-house software CypScore
89

. Additionally, in silico prediction allowed 

profiling of alternative designs before synthesis. In the course of the project, hundreds 

of compounds and metabolites were predicted in silico, whereas only a small amount 

of MetID experiments could be performed. 
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Mineralocorticoid receptor antagonist 1 showed low metabolic stability in 

hepatocytes with an Fmax (percentage of compound remaining) of 21% and also high 

blood clearance (CL) in rat of 4.2 L/(h×kg). Via MetID assay experiments in human 

and rat liver microsomes, oxidation of the of the 5- (or 6-) position of the indole and 

two-step oxidation of the methyl group leading first to the alcohol and then the acid 

were identified as the main metabolites. CypScore SoM predictions for 1 and the (not 

synthesized) metabolite 1-MET were in accordance with experiment, but for 1-MET 

an additional weaker SoM was predicted at the carbon in the α-position to the cyano 

group. There was no experimental in-house evidence for such a metabolic reaction. 

In accordance with target SAR, the methyl group was replaced with a nitrile in 

2, which as expected resulted in an increase of stability for rat hepatocyte, Fmax to 

34%, but not as much as expected. The major SoM was now the aromatic edge, but 

again accompanied by the weaker predicted SoM at the α-carbon of 2, which was now 

also identified via MetID. Based on target fit and SoM prediction, the chain length 

was successfully reduced by one carbon leading to 3. This increased the Fmax value 

to 63%. Further metabolic stabilization was consistently achieved by introducing 

derivatives with fluorination in the 5-position. 

The metabolically labile methyl group in compound 1 was also replaced by 

various other substituents of different size, hydrophobicity and polarity. Several 

active sulphonamides were prepared that turned out to reduce the liability of the 

aromatic fragment, as exemplified by the low-clearance compound 4 with an Fmax = 

75% and rat plasma clearance of 1.4 L/(h×kg). 

This example shows the successful combination of various in vitro and in vivo 

experiments with in silico models to optimize the metabolic stability and in parallel 

target activity of a compound series. 

 

<< END OF BOX 2>> 
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Figure 1 

 

Figure 1. Shapes of cytochrome P450 binding pockets differ according to the 

class. The cluster diagram in the centre of the figure represents a grouping of the 

enzymes based on the shape and “buriedness” of their heme-containing active 

sites. Cartoons of substrate-free pockets are shown for selected cytochrome 

classes. The pockets were automatically extracted using the software 

PocketPicker
124

. Note that CYP2 and CYP3 families have evolved as essentially 

xenobiotic metabolising enzymes, whereas CYP11 and CYP46 are two among the 

many CYP families playing essential physiological roles. Colour intensity 

indicates the local buriedness (dark colour: Far from the protein surface, light 

colour: Surface exposed). 
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Table 1. Experimental Methods for Characterising 

Metabolic Stability and Identifying Sites of Metabolism. 

 

Experimental approach Scope 

Incubations with individual drug-metabolising 

enzymes e.g. CYPs, UGTs  

Method for determining enzyme involvement and 

specificity, mechanism–based inhibition and drug-

drug interactions. 

Microsomal incubations + NADPH More detailed determination of oxidative 

metabolism, metabolic stability. 

Microsomal incubations + UDPGA Determination of glucuronidation. 

Incubations with hepatocytes (from a range of 

species including human) 

Determination of hepatic metabolite profiles 

including conjugations and reactive metabolite 

trapping, and metabolic stability. 

Specific reactive metabolite trapping in 

microsomal incubations, trapping of soft 

nucleophiles using e.g. glutathione or cysteine, 

and hard nucleophiles with e.g. cyanide. 

Identification of hot spots leading to reactive 

intermediates, using high resolution MS or, in 

complicated cases, NMR for precise structures. If 

reactive intermediates are detected, LC-MS-based 

proteomics can be used for further identification 

of sites of binding and nature of the reactive 

intermediate. 

If radiolabelled compounds are available then 

quantitative studies of covalent binding of reactive 

intermediates to proteins can be performed. 

Animal models: Most commonly rodents (mouse 

and rat), including complex models designed to 

look at e.g. biliary elimination. Newer models 

include genetically modified and “humanized” 

strains (usually mice) as well as “chimeric” 

animals containing e.g. human hepatocytes. 

Used to solve problems where e.g. in vivo 

pharmacokinetics are poorly predicted by in vitro 

studies, e.g. due to unchanged excretion, drug-

drug interactions or more information on 

compound distribution is needed.  
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Table 2. Computer Software Used in Drug Metabolism Prediction.
a,b

 

Predicting regioselectivity Core 

component(s) 

Type Coverage Licensing Description 

MEXAlert
125

 rules LB, 2D phase II commercial Quick screening tool to identify metabolically unstable 

molecules. 

QikProp
126

 rules LB, 2D ~20 phase I reactions commercial Fast SMARTS pattern matcher for predicting SoMs for 

phase I reactions. 

MetaSite
59

 molecular 

interaction fields 

+ reactivity 

estimator 

SB, 3D variety of CYPs commercial Uses MIFs derived from protein structures plus molecular 

orbital calculations to identify likely SoMs. 

P450 Site of Metabolism 

Predictor
127

 

induced-fit 

docking + 

reactivity 

estimator 

SB, 3D CYPs 2C9, 2D6, 3A4 commercial Induced fit docking approach in combination with a 

quantum chemical model. 

SMARTCyp
128,129

 DFT-derived 

reaction energies 

LB, 2D CYPs 1A2, 2A6, 

2B6, 2C8, 2C19, 

2E1, 3A4 

free, open source Utilizes a set of pre-computed activation energies in 

combination with topological accessibility descriptors. 

Available also as free online service. 

StarDrop P450 Metabolism 

Prediction module
130

 

semi-empirical 

method 

LB, 3D CYPs 2C9, 2D6, 3A4 commercial Combines quantum chemical analysis with a ligand-based 

model of CYP substrates to identify SoMs. Takes into 

account calculated logP values. 

CypScore
89

 surface 

electrostatics + 

semi-empirical 

method 

LB, 3D Individual CYP 

reactions 

free 

reimplementation 

available; requires 

commercial 

software 

components  

Collection of six MLR models to cover the major reaction 

types of CYPs. 

Metaprint2D
48

 atom mapping; 

statistical model 

LB, 2D phase I+II free, open source Derives likelihoods of metabolic transformation for atoms 

with a defined atom environment by mining large 

biotransformation databases. Available also as free online 

service. 
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ADMET Predictor 

Metabolism module
131

 

ANN ensemble LB, 2D CYPs 1A2, 2A6, 

2B6, 2C8, 2C19, 

2C9, 2D6, 2E1, 3A4 

commercial Derives likelihoods of metabolic reactions using ANN 

ensembles on a large, curated dataset. 

Percepta P450 

Regioselectivity module
132

 

PLS (GALAS) LB, 2D human liver 

microsomal 

metabolism and 

CYPs 1A2, 2C9, 

2C19, 2D6, 3A4 

commercial Global partial least squares-based QSAR model for 

calculating baseline regioselectivity; local corrections 

according to training data. Predicts and ranks major 

reaction types. 

RS-WebPredictor
133

 MIRank (SVM) LB, 2D CYPs 1A2, 2A6, 

2B6, 2C8, 2C9, 

2C19, 2D6, 2E1, 3A4 

free Array of pre-trained SVM models using topological 

descriptors and SMARTCyp reactivities for predicting 

SoMs. Intuitive web service. 

FAME
91

 random forest LB, 2D phase I+II free for academic 

use 

Set of random forest models for predicting phase I and II 

metabolism in different species. Trained on drugs, drug-

like molecules, endogenous metabolites and natural 

products. 

Predicting metabolites Core 

component(s) 

Type Coverage Licensing Description 

MetabolExpert
134

 knowledge-

based system 

LB, 2D phase I+II commercial Knowledge base containing rules and lists of substructures 

that inhibit or promote the reaction. Uses logP for filtering 

metabolites likely to be directly excreted. Predicts 

pathways in animals, plants or through photodegradation. 

Meta-PC
135

 knowledge-

based system 

LB, 3D phase I+II commercial Uses a large biotransformations dictionary. Analyses 

metabolite stability using quantum mechanical 

calculations and predicts pathways in mammals, through 

aerobic and anaerobic biodegradation. 

Meteor Nexus
21

 knowledge-

based system 

LB, 2D phase I+II commercial Employs a collection of knowledge-based 

biotransformation rules defined using a dedicated structure 

representation language. User-accessible knowledge base 

to aid the decision-making process. Considers calculated 

logP values for predictions. Latest version includes 

SMARTCyp. 

MetaDrug
136

 knowledge-

based system 

LB, 2D phase I+II commercial Derived from a large knowledge base (MetaBase). 

Generates metabolites from a dictionary of 160 rules. 

Predicted metabolites are rank-ordered and can be directly 
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assessed regarding their pharmacological potential and 

toxicity. 

TIMES
137

 knowledge-

based system 

LB, 2D phase I+II commercial Employs a biotransformation library and a heuristic 

algorithm to generate metabolic maps. Dedicated models 

for skin metabolism, rat in vitro (S9) and in vivo 

metabolism. 

SyGMa
22

 knowledge-

based system 

LB, 2D phase I+II available to 

academia 

Predicts structures of likely metabolites based on rules 

derived from statistical analysis of several thousand 

biotransformations. Assigns probability scores to each 

metabolite. 

EAWAG-BBD Pathway 

Prediction System
138

 

knowledge-

based system 

LB, 2D phase I+II free Rule-based system specialized in microbial catabolic 

metabolism of environmental pollutants. Classification of 

metabolites with respect to their likelihood. Intuitive web 

service. 

JChem Metabolizer
139

 knowledge-

based system 

LB, 2D phase I (can be 

extended to phase II) 

commercial Enumerates all possible metabolites of a given compound. 

Prognosis on metabolic pathways, major metabolites and 

metabolic stability. Species-specific predictions of 

metabolites. 

Metaprint2D-React web 

server
48

 

atom mapping; 

statistical model 

LB, 2D phase I+II free Generates structures of likely metabolites based on the 

MetaPrint2D data mining approach (using SMIRKS 

patterns). Intuitive web service. 

MetaSite
59

 molecular 

interaction fields 

SB, 3D CYP commercial Produces a comprehensive set of metabolites from a 

collection of metabolic reactions. Calculates exact mass 

and relative retention times. Generated metabolites can be 

used for automated metabolite identification in Mass-

MetaSite. 

Predicting interactions of 

drugs with metabolising 

enzymes 

Core 

component(s) 

Type Coverage Licensing Description 

Percepta P450 Specificity 

module
132

 

PLS (GALAS) LB, 2D CYPs 1A2, 2D6, 

2C9, 2C19, 3A4 

commercial Collection of CYP models for predicting inhibitors and 

substrates. Based on same training data and modelling 

technique as the Percepta regioselectivity predictor (see 

above). Reports reliability measure for individual 

predictions. 

Percepta Microsomal random forest LB, 2D human liver 

microsomal 

commercial Random forest model for classifying small molecules into 
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Stability module
132

 metabolism metabolically “stable”, “unstable” or “undefined”. 

isoCyp
140

 SVM LB, 3D CYPs 2C9, 2D6, 3A4 commercial Classification model based on 2D descriptors. Works 

under the assumption that any input molecule is substrate 

of one of the three isoforms. 

MetaDrug substrate 

models
136

 

recursive 

partitioning 

LB, 2D CYPs 1A2, 2B6, 

2D6, 3A4 

commercial Collection of models for identifying substrates and 

inhibitors of important CYPs. Use recursive partitioning in 

combination with atom-centred fragment descriptors. 

Fully integrated into the MetaDrug pharmacology 

platform (web interface). 

MetaDrug inhibitor 

models
136

 

recursive 

partitioning 

LB, 2D CYPs 1A2, 2C19, 

2C9, 2D6, 3A4 

commercial 

MetaPred web server
141

 SVM LB, 3D CYPs 1A2, 2C9, 

2C19, 2D6, 3A4 

free SVM model for predicting CYPs metabolising drug-like 

molecules. 

ADMET Predictor 

Metabolism module
131

 for 

substrates 

ANN ensemble LB, 2D CYPs 1A2, 2A6, 

2B6, 2C8, 2C9, 

2C19, 2D6, 2E1, 3A4 

commercial Predictor based on large curated dataset. Covers the most 

important CYPs and includes a dedicated model for 

predicting inhibitors of human liver microsomes. 

Predicts Km and Vmax values for hydroxylation reactions 

and CLint resulting from the action of five CYPs. 
ADMET Predictor 

Metabolism module
131

 for 

inhibitors 

ANN ensemble LB, 2D human liver 

microsomes and 

CYPs 1A2, 2C19, 

2C9, 2D6 and 3A4 

commercial 

WhichCyp
142

 web server SVM LB, 2D CYPs 1A2, 2C9, 

2C19, 2D6, 3A4 

free Web service for predicting the selectivity of CYP 

inhibitors using SVM models derived from high-

throughput screening data. Uses molecular signatures
143

 as 

descriptors. 

VirtualToxLab
144

 docking + QSAR LB + SB, 

3D 

CYPs 1A2, 2A13, 

2C9, 2D6, 3A4 

commercial; free 

version available 

Uses flexible docking in combination with a multi-

dimensional QSAR approach to predict ligand interaction 

with 16 proteins, including CYP1A2, 2A13, 2C9, 2D6 and 

3A4. 

ADMEWORKS 

Predictor
145

 

MLR LB, 2D 

and 3D 

CYP3A4 inhibitors 

CYP2D and 3A4 

substrates 

commercial Collection of MLR-based QSAR models for the prediction 

of Ki values for CYP3A4 inhibition and Km values for 

CYP2D and 3A4. Classification model for CYP3A4 

inhibitors. 

Predicting toxicological 

effects of metabolites 

Core 

component(s) 2.1.1.1.1.1.1.1.1 T

y

p

e 

Coverage Licensing Description 
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DEREK Nexus
21

 knowledge-

based system 

LB, 2D broad range of 

toxicological 

endpoints 

commercial Predicts toxicological profiles by evaluating evidence for 

and against a broad collection of endpoints. Literature 

lookup functionality for examination of data underlying a 

prediction. 

HazardExpert
146

 knowledge-

based system 

LB, 2D 7 different toxicity 

classes 

commercial Identifies toxic molecules based on fragments. Also 

calculates bioavailability, accumulation, and other 

parameters. 

VirtualToxLab
144

 docking + QSAR LB + SB, 

3D 

16 target proteins commercial; free 

version available 

Docking and QSAR hybrid approach for predicting 

activity on hERG, hormonal receptors, drug metabolising 

enzymes and their modulators. 

MetaDrug
136

 recursive 

partitioning 

LB, 2D 70 models for 

compound toxicity, 

ADME and 

therapeutic activity 

commercial Systems pharmacology platform built on data from 

MetaBase. Prediction of mechanism of action, toxicity, 

and off-target effects. 

Leadscope toxicity 

models
147

 

partial logistic 

regression 

LB, 2D 8 sets of models for a 

broad range of 

toxicological 

endpoints 

commercial Collection of models for adverse cardiological, 

hepatobiliary and urinary tract effects, as well as 

developmental, genetic, neurotoxic, reproductive toxicity, 

and carcinogenicity. 

(M)CASE Ultra & 

modules
148

 

QSAR hybrid 

approach 

LB, 2D ~450 models 

covering a wide 

range of toxicological 

and pharmacological 

measures 

commercial Uses a fragment-based approach and continuous 

parameters for modelling toxicity. 

ToxTree
149

 decision tree LB, 2D 17 modules for 

predicting 

toxicological and 

metabolic properties 

free, open source Free software for predicting various toxicological 

properties. 

TOPKAT
150

 linear regression 

(different types) 

LB, 2D 14 toxicity measures commercial Predicts toxicity measures in a variety of in vitro assays 

and animal models. 

Percepta Toxicity 

modules
132

 

PLS (GALAS) LB, 2D 7 models for a variety 

of toxicity measures 

commercial Prediction of acute toxicity, aquatic toxicity, endocrine 

disruption, genotoxicity, hERG channel inhibition, 

irritation and health effects. 

ADMET Predictor
131

 ANN ensemble LB, 2D 

and 3D 

19 models for a 

variety of toxicity 

and environmental 

commercial Prediction of endocrine disruption, hERG channel 

inhibition, skin sensitization, phospholipidosis etc. 
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fate measures 

TIMES
137

 collection of 

QSAR models 

LB, 2D 15 models for a 

variety of toxicity 

endpoints 

commercial Collection of models for evaluating the toxicity of 

metabolites, including skin sensitization, acute oral 

toxicity, phototoxicity, various endpoints related to 

endocrine disruption and cancerogenicity. 

SYMMETRY
151

 collection of 

QSAR models 

LB >80 models for a 

variety of toxicity 

endpoints 

commercial Collection of models for preclinical and clinical predictive 

toxicology. 

a
Adapted with permission from 

43
. Copyright 2012 American Chemical Society. Supplemented with data from 

34
, revised, and extended 

with additional software categories and products.
 

b
Abbreviations: ADME, absorption, distribution, metabolism, excretion; ANN, artificial neural network; DFT, density functional theory; 

LB, ligand-based; MLR, multiple linear regression; PLS, partial least squares; SB, structure-based; SoM, site of metabolism; SVM, support 

vector machine. 
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Table 3. Scope and Limitations of Computational Methods. 

Investigation/prediction 

of 

Computational method(s) Scope, limitations 

Structure, function and 

mechanisms of metabolic 

enzymes 

Homology modelling, quantum 

mechanics, molecular dynamics 

simulations etc. 

Analysis of ligand binding events and enzyme mechanisms at a high level of detail and accuracy. 

Particularly useful for the investigation of unstable reaction intermediates with very short 

lifetimes. 

Sites of metabolism Knowledge-based systems, data mining, 

machine learning, QSAR models, 

reactivity models, ligand docking, 

molecular interaction fields, shape-based 

methods etc. 

Able to predict the likely SoMs with adequate accuracy: In general at least one SoM is correctly 

identified among the three highest-ranked atom positions of a molecule in 70-90% of all cases
152

 

within the domain of chemical applicability. 

Metabolites (chemical 

structure) 

Knowledge-based systems, data mining Dominated by knowledge-based systems. Can produce large numbers of metabolites. Main 

challenge: finding ways of ranking metabolites accurately. 

Metabolic rates Quantum mechanics, molecular 

dynamics simulations, (QSAR models) 

Prediction generally not possible. Only within extremely narrow chemical space QSAR-like 

approaches may work. 

Interactions of drugs 

with targets related to 

drug metabolism 

QSAR models Prediction of ligand affinity and inhibitory activity where adequate training data is available. 

Prediction of mechanism-based inhibitors remains highly challenging. 

Free energy calculations Accurate prediction of binding affinities without need for extensive training data. 

Computationally expensive and labour-intense. 

Bioactivity and 

toxicological effects 

Various ligand- and structure-based 

approaches 

Target prediction methods have become abundantly available but high false positives rates (i.e. 

accurate ranking of targets) remain a limiting factor. Prediction of bioactivities for metabolites 

hampered by lack of training data. Rule-based approaches are able to detect most toxicophores, 

but prediction of time-dependent inhibitors remains challenging. 

Metabolite identification 

(MetID) 

Various metabolite generation and 

spectra analysis approaches 

Has seen major advances in recent years, driven by increasingly available data, data exchange and 

new algorithms. Major scientific instruments manufacturers offer bespoke MetID software. 

Vendor-independent and open-source packages are becoming increasingly available. 
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Table 4. Examples of Data Resources for Drug Metabolism and Overview of Their Information 

Content. 
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ADME Database
153

 Database of interactions of small 

molecules with drug-metabolising 

enzymes and transporters. 

>100,000 protein-ligand 

interactions 

x x   x x x x    

BindingDB
154

 Bioactivity database focused on 

drug targets. 

>1,000,000 bioactivities for 

>450,000 compounds 

x x x x x x x x    

ChEMBL
155

 Very large repository for 

bioactivity data. 

>12,000,000 bioactivities for 

>1,600,000 compounds 

x x x  x  x x    

Drug Database (GOSTAR)
156

 Comprehensive resource for 

metabolites of approved drugs. 

PK parameters collected from 

>50,000 publications. 

x x x x x x  x x   

DrugBank
157

 Comprehensive encyclopaedic 

database on drugs. 

>1,500 approved drugs 

>1,200 drug metabolites 

x x x x x x x x x  x 

EAWAG-BBD
158

 Data resource for biodegradation 

of xenobiotics, mainly 

environmental pollutants. 

~1,400 molecules 

>1,500 reactions 

>200 degradation pathways 

(x) x x x x       

Human Metabolome Database 

(HMDB)
159

 

Database focused on human 

endogenous metabolites. 

>41,000 metabolites  x x x x x x  x  x 

KEGG
160

 Large database comprising ~20 

different (sub-) collections of data 

>17,000 molecules (KEGG 

COMPOUND) 

x x x x x  x x x   
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on metabolism. 

MetaBase
161

 Database of biological properties 

and effects of drugs and drug-like 

molecules. 

>9,000 metabolic reactions 

>5,000 endogenous metabolites 

x x x x x   x x   

Metabolism and Transport Drug 

Interaction Database (DIDB)
162

 

Collection of in vitro and in vivo 

data on drug-drug interactions in 

humans. 

Data from >8,300 publications 

>70 new drug applications 

x x    x x  x   

Metabolite
163

 Collection of metabolic pathways 

of drugs, drug-like molecules, 

natural products, and endogenous 

metabolites. 

>100,000 biotransformations 

~15,000 metabolic pathways 

x x x x x    x   

METLIN
164

 Large and quickly expanding 

repository of metabolite 

information and MS/MS spectra. 

Powerful online search. 

>240,000 metabolites 

>60,000 MS/MS spectra 

x x x        x 

PharmGKB
165

 Encyclopaedia focused on drugs. 

Rich in pharmacogenomics data. 

>3,000 drugs 

>100 drug metabolism 

pathways 

x x x x x x x x x   

PKKB
166

 Pharmacokinetic data for drugs. >1,600 drugs 

>11,000 data points 

x x x x x x  x x   

Protein Data Bank (PDB)
167

 Largest public repository for 

experimentally determined 

structures of biomolecules 

> 100,000 structures x x   x  x x  x  

PubChem
168

 One of the largest libraries of 

chemicals. Extensive 

pharmacological data for drug 

molecules. 

>52,000,000 molecules x x x x x x x x x   

SuperCyp
169

 Database for drug-CYP 

interaction. Contains biological 

and structural data, and 

information on CYP 

polymorphisms. 

>1,100 drugs 

>2,700 drug-CYP interactions 

x x   x  x     

Wikipedia
170

 Largest and most popular general 

encyclopaedia. 

Comprehensive coverage of 

marketed drugs, drug candidates 

and failed drugs. 

x x x x x x x x x   

 


