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Abstract 

Oral administration is the most common route for administration of drugs. With the 

growing cost of drug discovery, the development of Quantitative Structure-Activity 

Relationships (QSAR) as computational methods to predict oral absorption is highly 

desirable for cost effective reasons. The aim of this research was to develop QSAR 

models that are highly accurate and interpretable for the prediction of oral 

absorption. In this investigation the problems addressed were datasets with 

unbalanced class distributions, feature selection and the effects of solubility and 

permeability towards oral absorption prediction. Firstly, oral absorption models were 

obtained by overcoming the problem of unbalanced class distributions in datasets 

using two techniques, under-sampling of compounds belonging to the majority class 

and the use of different misclassification costs for different types of 

misclassifications. Using these methods, models with higher accuracy were produced 

using regression and linear/non-linear classification techniques. Secondly, the use of 

several pre-processing feature selection methods in tandem with decision tree 

classification analysis – including misclassification costs – were found to produce 

models with better interpretability and higher predictive accuracy. These methods 

were successful to select the most important molecular descriptors and to overcome 

the problem of unbalanced classes. Thirdly, the roles of solubility and permeability 

in oral absorption were also investigated. This involved expansion of oral absorption 

datasets and collection of in vitro and aqueous solubility data. This work found that 

the inclusion of predicted and experimental solubility in permeability models can 

improve model accuracy. However, the impact of solubility on oral absorption 

prediction was not as influential as expected. Finally, predictive models of 

permeability and solubility were built to predict a provisional Biopharmaceutic 

Classification System (BCS) class using two multi-label classification techniques, 

binary relevance and classifier chain. The classifier chain method was shown to have 

higher predictive accuracy by using predicted solubility as a molecular descriptor for 

permeability models, and hence better final provisional BCS prediction. Overall, this 

research has resulted in predictive and interpretable models that could be useful in a 

drug discovery context. 
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1. Introduction 

The cost of bringing a drug onto the market keeps on rising (DiMasi et al., 2003). 

Therefore drug companies look for methods to increase cost effectiveness. There is a 

demand for drugs with good absorption, distribution, metabolism and excretion 

(ADME) properties. Originally these properties were only tested later on in drug 

development; however this resulted in a high attrition rate due to poor 

pharmacokinetics. By testing ADME properties in early drug discovery with 

experimental and/or in silico models there has been a reduction in failure rates due to 

poor pharmacokinetics (Kola and Landis, 2004). Even with the increase in 

automation, high throughput screening experimental assays are suffering bottlenecks 

in drug discovery due to the vast number of compounds. In silico models, 

particularly quantitative structure activity relationships (QSAR), can predict ADME 

properties of new compounds from molecular descriptors calculated just from 

chemical structure. QSAR models offer an appealing cost effective addition or 

alternative to remove compounds with undesirable properties as early as possible 

without chemical synthesis or testing (Yu and Adedoyin, 2003).  

Oral administration is the most common and popular route of administration. For 

that reason, the accurate prediction of oral absorption is highly desirable. However, 

oral absorption depends on many physiological, physicochemical and formulation 

factors, making prediction by QSAR models a challenge. In addition, high quality 

data are required with relevant molecular descriptors that can produce models that 

try to take in account all the mitigating drug related factors affecting absorption (Hou 

et al., 2007c). The focus of any QSAR model, including an oral absorption model, is 

to be predictive and suitable for intended use, yet interpretability of the model is also 

desirable. 

Thus, this work starts by branching out from previous research carried out on 

published oral absorption datasets. The publication of a large dataset of over 600 

compounds offers a good starting point for building models to predict oral 

absorption (Hou et al., 2007c). The main problem with previous oral absorption 

models is that they are built using datasets that contain a much higher proportion of 



2 
 
 

highly-absorbed compounds compared to poorly-absorbed compounds. This results 

in models biased towards the prediction of highly-absorbed compounds and not 

reflective of a drug discovery scenario where there are more poorly-absorbed than 

highly-absorbed compounds (Lipinski, 2000).  

In many applications of QSAR, there are a large variety of molecular descriptors 

utilised to build models. The use of too many descriptors can result in over-fitting, 

lower predictability and a decrease in interpretability of resulting models (Goodarzi 

et al., 2012). Therefore exploration of feature selection methods in relation to oral 

absorption can be investigated.  

With the lack of oral absorption data in recent publications, this work expands by 

focussing on the two main factors influencing absorption: permeability and 

solubility, which are measured frequently in drug discovery. The lack of oral 

absorption models which take into account these properties, in particular solubility, 

is not reflective of an industry scenario where there are an increasing number of 

poorly soluble compounds (Williams et al., 2013). Therefore, the collection of 

permeability and solubility data from the literature to study the influence of these 

two properties on oral absorption is explored in this research.  

Finally, there is a growing number of models that predict permeability and solubility 

separately and fail to take into account the interaction between these two properties 

(Gozalbes et al., 2011, Gozalbes and Pineda-Lucena, 2010). Therefore, models 

which predict these two properties simultaneously and take into account the 

interaction are also examined in this research. 

1.1 Aims and Objectives 

The ultimate aim of this work is to develop models that are predictive and 

interpretable for a drug discovery context. Different approaches will be explored in 

this project in order to produce oral absorption models that achieve the project’s 

aims, which are summarised in Figure 1.1 
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Figure 1.1. Overview of the development of interpretable and predictable oral 

absorption models 

As shown in Figure 1.1, this work will follow the three problems and the resolutions 

to these problems in order to accomplish the aims of this work, to produce models 

that are predictive and interpretable. 

Specific aims are: 

x Investigate the effects of under-sampling and misclassification costs to 

overcome the problem of datasets with unbalanced class distribution and 

improve model accuracy, this was presented in chapter 6 and 7; 

x Determine the influence of pre-processing feature selection methods in the 

interpretation and predictive ability of oral absorption models as shown in 

chapter 8; 

x Examine the effect of solubility and permeability for oral absorption 

prediction as defined in chapter 9; 

x Compare multi-label classification methods to predict two rate limiting steps 

of absorption: solubility and permeability, for provisional Biopharmaceutics 

Classification System (BCS) class prediction in the final experimental 

chapter 10. 

Resolutions Problems Aims of this 
work Focus 

Oral Absorption 
models 

Predictability & 
Interpretability 

Class imbalance 

Undersampling 

Misclassification 
costs 

Feature 
selection 

Pre-processing 
feature selection 

Permeability & 
solubility 

Influence of 
solubility 

Multi-label 
classification 
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The experimental chapters that deal with the specific aims of this thesis can be found 

in chapters 6-10. The final chapters present a summary of the key findings (chapter 

11) and discuss potential future research directions related to this project (chapter 

12). In addition, Appendices 1-4 provide additional information relating to the 

results of the experimental chapters 6-10. The datasets used in this work and extra 

supporting information which was too large to include in the appendices can be 

found with the accompanying disk with this thesis. 

1.2 Original Contributions 

The summary of the main contributions of this thesis is presented below: 

Firstly, this is the first work to my best knowledge which presents two methods for 

overcoming the problem of oral absorption datasets with unbalanced class 

distribution and compares them with models based on these data unbalanced datasets 

using a variety of linear and non-linear data mining methods, predicting categorical 

and numerical variables. These methods included training set selection by under-

sampling of the majority class and the use of higher misclassification for the 

classification of the minority class. The methods for overcoming unbalanced datasets 

were further extended to showing the influence of higher misclassification costs on a 

balanced dataset where the majority class was under-sampled for the prediction of 

oral absorption.  

Secondly, the combination of various pre-processing feature selection methods with 

misclassification costs has not been carried out for oral absorption models in the 

literature, to the best of my knowledge. Therefore, in this work, the effects of various 

pre-processing (as opposed to embedded) feature selection methods in conjunction 

with the use of various misclassification costs were examined. 

The expansion of the fraction absorbed dataset with more drugs, including the 

collection of permeability, solubility, melting point and maximum dose data could be 

useful for those interested in modelling this type of data for drug and drug like 

properties. From this dataset, this work presents the inclusion of experimental 

permeability and solubility in oral absorption models to see the influence (if any) 

they have on oral absorption prediction. 
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Finally, based on the collected data and published dataset, this research offers a first 

use of the classifier chain method for the multi-label classification of permeability 

and solubility as a provisional biopharmaceutics classification system (BCS) class 

prediction suitable for drug discovery.  

From the above contributions the aims of this thesis to obtain interpretable and 

predictable models have been achieved, as will be shown by the computational 

results reported later in this thesis. 
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2. Drug Discovery and Oral Absorption 

2.1 Relevance to the Pharmaceutical Industry 
The cost to bring a drug to market is rapidly increasing. The time taken to 

successfully progress a drug from discovery to market is on average 10 years with 

costs of over 1 billion dollars (DiMasi et al., 2003). The high failure rate of drug 

candidates adds to the pressure to produce a money making blockbuster drug in the 

shortest time possible (Bunnage, 2011). 

Drug discovery has now shifted from primarily focusing on efficacy and selectivity 

of new drug candidates, to the incorporation of testing of absorption, distribution, 

metabolism, elimination and toxicity (ADMET) properties. Historically, these 

properties were usually characterised later on in drug development. The 

incorporation of testing these ADMET properties earlier has resulted in a decrease in 

drug candidate failure rate due to poor ADMET properties, from 40% to 10%, in 

phase I clinical trials (Kola and Landis, 2004). This is one of the many cost effective 

strategies employed by pharmaceutical companies that can ensure recognition and 

elimination   of   unsuitable   compounds   as   early   as   possible   using   a   “fail   fast,   fail  

cheap”  approach  (Yu and Adedoyin, 2003).  

High throughput experimental assays that evaluate ADMET properties are carried 

out across the main stages of drug discovery (Figure 2.1). Even with the help of high 

throughput automation, there is still a large bottleneck due to the overwhelming 

number of potential hits in the lead identification and optimisation (Gleeson et al., 

2011, Caldwell et al., 2001).  

 

 

 

Figure 2.1. Simplified summary of drug discovery process  
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Target 
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In silico modelling of ADMET properties (particularly absorption) has been 

incorporated into the hit to lead screening of compounds in tandem with 

experimental ADMET assays (Caldwell et al., 2009, Gleeson et al., 2011). The 

benefit of using in silico models is that predictions can be made based on chemical 

structure alone with no chemical synthesis. Therefore in silico models avoid the 

experimental screening of potentially millions of compounds providing a fast cost-

effective method to solve the bottleneck in lead identification and optimisation 

(Kortagere and Ekins, 2010, Oprea and Matter, 2004).  

Therefore in silico models can be used as a cost-effective strategy to remove 

unsuitable compounds as soon as possible whilst fast tracking promising ones. 

Additionally, the predictions can act as a guidance tool to help select the next 

appropriate assays to perform in the drug discovery process (van de Waterbeemd and 

Gifford, 2003, Geerts and Heyden, 2011). 

Progress has been made by incorporating in silico modelling into early drug 

discovery programmes; however, there are always constant improvements that can 

be made to produce models that are predictive and interpretable that will help to 

bring a money-making drug to market. 

2.2 Pharmacokinetics and ADMET 

Pharmacokinetics (PK) is the mathematical description of what the body does to the 

drug from administration to the site of action (Figure 2.2). This can be further 

expanded as the study of rates of ADMET of the drug after administration (Kwon, 

2002, Rosenbaum, 2011) 
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Figure 2.2. The pharmacokinetic profile of a drug after oral administration, 

indicating the path of the drug from administration to the site of action and removal 

from the body 

Absorption is the first process a drug must overcome from the administration site to 

reach the systemic circulation. It is influenced by a variety of physiological effects 

which, in turn will be dependent on the physicochemical properties of the drug and 

formulation factors. A more in depth discussion of oral absorption is presented in the 

later sections. 

Distribution of a drug shows how well and quickly a drug reversibly transfers 

between different compartments within the body. The distribution stage is important 

as compounds must distribute throughout the body, through different tissues, in order 

to reach the target site and exert a pharmacological effect (Caldwell et al., 2009). 

The rate and extent of distribution for a drug will depend on physicochemical 

properties such as affinity for particular tissues, tissue composition, tissue volume 

and protein binding (Dowty et al., 2011, Kirkovsky and Zutshi, 2011).  
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Metabolism refers to the structural modification of the drug into product metabolites 

by a variety of enzymes in the body. This process occurs mainly in the liver, 

however, metabolism also occurs in the small intestine, lungs, kidney and other 

organs. The aim of metabolism is to convert hydrophobic drug compounds into more 

hydrophilic entities that can be readily excreted and removed from the body. This is 

carried out by phase I and II metabolic phases governed by different metabolising 

enzymes (King, 2009).  

Excretion is the removal of the unchanged drug or hydrophilic metabolites through 

the kidneys (urine) or faeces. Hydrophilic compounds tend to be excreted via the 

kidneys whereas larger lipophilic compounds are excreted into faeces via the bile 

duct (Caldwell et al., 1995, Ghibellini et al., 2006). Defining the main route of 

elimination is important firstly to avoid compound accumulation and potential toxic 

effects. This is particularly important in cases of hepatic or renal failure. Secondly, 

the data from these excretion studies can be used to calculate intestinal absorption in 

humans which can be used for in silico modelling (Zhao et al., 2001). 

Finally, toxicity is now included with the other ADME processes as it is important 

with regards to drug safety. Studies that predict or give information about side 

effects such as cardiac, genetic and hepatic toxicity can also help guide the selection 

of drug candidates (Gleeson et al., 2012). 

There are many factors a drug must overcome and avoid in order to get to the site of 

action to exert a physiological effect. The common factor in ADMET is that the 

physicochemical properties of compounds can govern all these processes. Therefore, 

defining the relationship between the chemical structure and these properties can be 

a powerful tool to determine which drugs have the best ADMET profiles and are 

potential marketable drugs. 

2.3 Process of Oral Drug Absorption through the Body 

In order to appreciate the factors that affect oral absorption it is important to 

understand the route a drug takes in order to be absorbed. 
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The gastrointestinal tract (GIT) comprise of four main anatomical areas: 

x Oesophagus 

x Stomach 

x Small intestine 

x Large intestine 

The overall function of the GIT is to break down materials and move materials such 

as water, nutrients and electrolytes from the external environment of the body into 

the internal environment of the body. In addition there are many protective 

mechanisms which prevent harmful foreign substances (including drugs) from 

reaching the internal tissues. These physiological factors can determine if a drug will 

be a successful orally administered compound (Shen, 2009). 

When a drug is swallowed, e.g. as a tablet or capsule, it travels down the oesophagus 

to join into the stomach via the cardiac orifice. The stomach is an acidic reservoir 

containing gastric acid secreting cells and various enzymes which can degrade, break 

up and mix the drug in the GIT fluid. The process of gastric emptying delivers drug 

in the GIT fluid to the small intestine at a controlled rate (Silverthorn, 2001, Pal et 

al., 2007). 

The small intestine is divided into 3 parts: 

x Duodenum 

x Jejunum 

x Ileum 

The small intestine is the major site for oral absorption of many drugs. However the 

specific region of absorption will depend on the physicochemical properties of the 

drug itself as well as formulation, pH and transporter abundance in the small 

intestine regions (Kay, 2011, Petri and Lennernäs, 2003, Martinez and Amidon, 

2002). Only drug that is dissolved in the GIT fluid can be absorbed. The dissolved 

drug must diffuse through the unstirred water layer (UWL) in order to reach the 

intestinal cell wall. Once through the UWL, the drug can pass through the gut 

absorptive cells (enterocytes) by a variety of mechanisms. Once the drug molecules 

have passed through enterocytes into the hepatic portal vein via the mesenteric 
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capillary network, the drug is considered absorbed. Once absorbed, other 

pharmacokinetic processes take affect hopefully leading to the exertion of the 

pharmacological effect of the drug. 

There are many physiological barriers a drug must overcome to be absorbed, 

additionally there are many more after this to prevent a drug reaching its intended 

target. The process of oral absorption of a drug needs to be understood from a 

physiological perspective to develop more robust in silico models that offer a 

mechanistic understanding of the many barriers faced by a drug after oral 

administration. 

2.4 Structure of the Small Intestine 

To understand why the small intestine is well adapted for extensive absorption of 

nutrients and also drug compounds, this section highlights the structural anatomy of 

the gut wall and the intestinal cells in relation to oral absorption. 

The wall of the gastrointestinal tract has 4 fundamental histological layers: 

x Serosa 

x Muscularis externa  

x Sub mucosa 

x Mucosa 

These four layers are the main features, however there are adaptations in different 

regions and this enables the GIT to carry out its function of digestion and absorption 

(Pocock and Richards, 2009). The two inner layers of the sub mucosa and the 

mucosa are important in relation to drug absorption due to the increase in surface 

area and substantial blood supply of the small intestine (Figure 2.3).  

Firstly, the mucosa has finger-like extensions protruding into the intestinal lumen 

increasing surface area for potential absorption, and on top of this, each individual 

villus is covered with microvilli (brush border) to enhance the surface area even 

further to about 200m2. This is a massive surface area for potential drug absorption 

compared with the stomach which has a surface area of about 1m2 (Susanto Park and 

Chang, 2011, Silverthorn, 2001). 
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Secondly, the sub mucosa has a substantial blood supply which drives and maintains 

a concentration gradient. This is important in relation to drug absorption, as the sink 

conditions promote the drug molecules to leave the enterocyte and not to diffuse 

back into the cell due to constant removal by the portal vein blood flow and dilution 

in the blood (Buckley et al., 2012). 

 

Figure 2.3. Structure of intestinal villi and absorptive cell (enterocyte) showing the 

microvilli increasing surface area and absorption adapted from (Silverthorn, 2001) 

In addition to enterocyte cells, there are also endocrine cells and goblet cells in this 

layer. Endocrine cells secrete hormones and goblet cells secrete mucus to cover and 

protect the enterocyte cells. All these cells are created from stem cells in the crypt 

lumen (Specian and Oliver, 1991). Enterocytes take 3-5 days to differentiate and 

migrate from the crypt lumen to the villus tip. At the villus tip enterocytes undergo 

apoptosis and are sloughed off into the intestinal lumen to ensure the small intestine 

remains efficient and undamaged for effective absorption (Ruemmele et al., 2002).  
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2.5 Routes for Drug Absorption Through the Small Intestine 

The main route for drug absorption is controlled by one or more of following 

mechanisms; transcellular diffusion, paracellular diffusion, efflux and influx through 

carrier proteins also known as transporters. 

 
Figure 2.4. Primary mechanisms of intestinal absorption adapted from (Thomas et 

al. 2006) 
(Thomas et al., 2006) 

2.5.1 Passive diffusion 

Transcellular and paracellular diffusion can be categorized as passive absorption 

mechanisms. Passive diffusion is the movement of molecules from an area of high 

concentration to a low concentration across the cell membrane. This process is 

governed  by  Fick’s  first  law  (Equation 2.1). 

Rate  of  Diffusion  =  D  A  P  (Ch  -  Cl)x                                                                                                                                       Eq. 2.1 

The rate of passive diffusion is dependent on D, the diffusion coefficient which is 

related to the ability of the drug molecule to diffuse into the cell membrane; A, the 

surface area of the membrane; P, the partition coefficient relating to the affinity of 

the drug to the membrane; Ch – Cl, is concentration difference between high and low 

concentrations and finally x, the thickness of the membrane.  

Passive diffusion is driven by concentration gradients due to the difference in 

concentrations across the cell membrane and maintained by sink conditions of the 

GIT. The concentration gradient for the drug is dependent on GIT physiology, cell 
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membrane composition and also physicochemical properties of the drug including its 

solubility and partition coefficients (Singer and Nicholson, 1972, Martinez and 

Amidon, 2002). 

Passive transcellular absorption is where the drug molecule permeates the apical 

membrane of the enterocyte, diffuses through the cell cytoplasm inside the cell, and 

finally diffuses out through the basolateral membrane to be absorbed into the blood 

(Stenberg et al., 2000). On the other hand, the passive paracellular route involves 

compounds being absorbed from between the enterocyte cells through water filled 

pores and tight junctions. In contrast to the transcellular route, the paracellular route 

is more selective for small, cationic, hydrophilic drugs (<200 Da and logP < 0) due 

to the characteristics of the water pores and tight junctions (Petri and Lennernäs, 

2003, Martinez and Amidon, 2002). Additionally there is only a small surface area of 

water pores for paracellular absorption. Due to the increasing tightness of the tight 

junctions in the later regions of the small intestine this route does not contribute 

significantly to the intestinal absorption of the vast majority of drugs (Stenberg et al., 

2000, Ungell et al., 1998). 

2.5.2 Influx and Efflux Carrier Mediated Transport 

Carrier mediated transport involves the movement of molecules across the cell 

membrane using a transporter protein embedded in the cellular membrane. This 

active process often requires cellular energy unlike passive absorption which does 

not. The key to carrier mediated transport is substrate specificity. If a compound has 

the right specificity for the transporter it will be transported via this route. In the 

context of absorption, transporters on the apical membrane that can increase drug 

concentrations into the cell are influx transporters and those that decrease the number 

of drug molecules entering the cell are termed efflux transporters. Drug design has 

involved exploiting influx transporter specificity in order to increase the absorption 

of many drugs (Dobson and Kell, 2008, Kikuchi et al., 2009). On the other hand, 

knowledge regarding substrate specificity of efflux transporters can aid with drug 

design to avoid making potential substrates for these efflux transporters (Raub, 

2005). 
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There are many differences between passive and carrier mediated transport. One 

major difference is that carrier mediated transport can be saturated and limited by the 

abundance of a particular transporter. This can have implications for the oral 

absorption of compounds which are transport substrates. The impact of transporter 

saturation can result in non- linear absorption potentially affecting other ADMET 

processes. The impact of an absorption route can vary depending on the drug; 

however there is strong evidence to suggest that multiple absorption mechanisms co-

exist for the oral absorption for many drugs (Sugano et al., 2010, Di et al., 2012, 

Smith et al., 2014). However, a counter argument suggests that all absorption is 

mediated by transporters (Dobson and Kell, 2008, Kell et al., 2013). What is clear is 

that regardless of which absorption mechanism is dominant, carrier mediated 

transporters can impact on intestinal absorption; therefore increasing research into 

this area will only benefit understanding. An overview of carrier mediated intestinal 

transporters is detailed in later sections. 

2.6 Intestinal Absorption and Bioavailability  

Oral bioavailability and intestinal absorption are important to distinguish as 

sometimes these terms are used interchangeably. It must be emphasised that 

intestinal absorption is the prerequisite to oral bioavailability (Zhu et al., 2011). 
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Figure 2.5. The difference between intestinal absorption and bioavailability adapted 

from (van de Waterbeemd and Gifford 2003) 

Intestinal absorption is defined as the amount of drug that passes through the 

intestinal tissue and enters the portal vein unchanged (Hou et al., 2009, Sinko, 1999). 

Oral bioavailability is described as the amount of drug that reaches the systemic 

circulation unchanged after first pass metabolism (Kwon, 2002, Zhu et al., 2011). 

Therefore the main difference between the two is hepatic metabolism due to first 

pass effects of the liver (Figure 2.5). Oral bioavailability is a function of fraction 

absorbed (fa), fraction escaping intestinal metabolism (fg) and fraction escaping 

hepatic metabolism (fh).  

Bioavailability (F) = Fa × Fg × Fh                                                                                             Eq. 2.2 

Intestinal absorption is measured in humans to give percentage human intestinal 

absorption (%HIA) or fraction absorbed (Fa), and oral bioavailability is measured by 

a variety of methods to give F as a percentage (Burton et al., 2002, Chiou, 2001).  

It has been indicated that over half of compounds have the same absorption and 

bioavailability (Hou et al., 2009). Therefore, absorption prediction can potentially 

give an indication of bioavailability. This is advantageous due to difficulty in 

bioavailability prediction in drug discovery, because of the complexity of 
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metabolism and many other variables (Zhu et al., 2011, Metcalfe and Thomas, 

2010). 

2.7 Physiological and Physicochemical Factors Affecting Oral 
Absorption 

It is important to distinguish what factors affect and how they affect oral absorption. 

This will aid in mechanistic understanding and improvement of resulting QSAR 

models that are built on the basis of previous knowledge of oral absorption. The 

three main areas affecting oral absorption are physicochemical, physiological and 

formulation factors (Figure 2.6). For the purpose of this thesis, only physicochemical 

and physiological factors affecting oral absorption will be discussed. Although 

formulation factors are of great interest in relation to oral absorption, they are not the 

focus of this thesis. 

 

Figure 2.6. The main physicochemical, physiological and formulation factors 

affecting oral absorption adapted from (Ashford, 2007, Martinez and Amidon, 2002 

and Darwich et al., 2010) 

(Ashford, 2007, Martinez and Amidon, 2002, Darwich et al., 2010) 
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Physicochemical properties are drug characteristics that do not change, whereas 

physiological effects can depend on genetics or environmental factors of an 

individual. These factors can affect absorption independently or result in the change 

of other absorption-related factors directly or indirectly. 

Physicochemical Factors Affecting Oral Absorption 

2.7.1 Lipophilicity 

Lipophilicity is one of the most important factors for intestinal absorption and 

determines other ADME properties of a drug (Testa et al., 2000, Arnott and Planey, 

2012). In this context, lipophilicity determines the tendency of the drug molecule to 

partition either the lipophilic cell membrane or aqueous cell environment, and 

therefore can give an indication of membrane permeability and hence absorption. 

The partitioning of drug molecule between the two phases depends on intermolecular 

and intramolecular forces arising from the hydrophilic and hydrophobic functional 

groups on the molecule (Thomas et al., 2006, Testa et al., 2000).  

The partition coefficient (logP) is the main measure of lipophilicity used in drug 

discovery (van de Waterbeemd and Gifford, 2003, van de Waterbeemd et al., 2001). 

It can be best described by the distribution of the drug molecule between two 

immiscible solvents, in particular 1-octanol and water. LogP can only be measured 

when the drug compound is completely neutral. However a majority of drugs are 

ionized at some point along the GIT due to the pH variations. Therefore logD is used 

and this is the logarithm of the apparent distribution coefficient between two 

immiscible solvents at a specific pH. LogD, although more complicated to measure, 

is usually the preferred property to calculate as it takes into account the ionization of 

the drug and pH (Ekins et al., 2000, Hou et al., 2007b).  

2.7.2 Dissolution and Solubility 

For a drug to be absorbed it needs to be dissolved in the GIT fluids. This depends on 

the dissolution rate and solubility of the compound. The dissolution rate is how fast 

the drug disintegrates and dissolves in the GIT fluids, whereas solubility is the 

concentration of drug that can be dissolved (saturated concentration) in a solvent at a 

specific temperature and pH. Therefore, the difference between the two is: solubility 
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is a thermodynamic process and is dependent on the physicochemical properties of 

the compound; whereas dissolution is a kinetic process, driven by solubility, and is a 

property of the compound in formulation also dependent on particle size and crystal 

state (Noyes and Whitney, 1897).  

Solubility is a complex progression of energetically favourable processes such as 

crystal lattice energy, solvent cavity formation energy and solvation energy. 

Ultimately, the total energy depends on overcoming the intermolecular and 

intramolecular forces between drug molecules and between the solvent (GIT fluid) 

molecules, and formation of new intermolecular interactions between the drug 

molecule and GIT fluid, which results in the final solubility and availability for 

absorption (Lipinski, 2000, Wang and Hou, 2011).  

Inadequate aqueous solubility can lead to poor, erratic, variable absorption. 

Therefore, solubility can be a rate limiting step for oral absorption. The impact of 

poor solubility is becoming more apparent as there are a growing number of new 

chemical entities (NCEs) that are practically insoluble in water (Lipinski, 2000, 

Savjani et al., 2012). The relationship between solubility and absorption-related 

parameters, such as lipophilicity, is normally negative (inversely related) (Buckley et 

al., 2012, Lipinski, 2000). Therefore physicochemical properties and some 

physiological properties such as GIT pH that are related to solubility are also related 

to oral absorption. 

2.7.3 Ionization and Charge 

Most drug compounds are weak acids or bases, so can exist as both ionized and 

unionized forms. The pH of the medium controls the proportions of 

ionized/unionized forms of the drug along the GIT and therefore absorption. The 

relationship between ionization and oral absorption is that unionized molecules are 

more permeable than ionized molecules and therefore the unionized state is the 

dominant form for passive diffusion (Brodie et al., 1957). The extent of ionization of 

a molecule at a specific pH can be measured using the acid dissociation constant, pka. 

At a specific pH, pka can be used to indicate the proportions of ionized and unionised 

forms of the molecule calculated from Henderson-Hasselbach equations, and is a 

function of the acidic and basic groups on the drug molecule. Originally it was 
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thought only the unionized neutral form of the drug could sufficiently cross cell 

membranes; nevertheless, it has been shown that some ionized drugs can still 

permeate cell membranes (Palm et al., 1999). 

Some molecules have a permanent charge which is not influenced by pKa or pH. 

Examples of these permanently charged drug molecules are those containing 

quaternary ammonium groups, frequently found in neuromuscular-blocking drugs 

and antiviral agents. Due to the permanently positive charge these compounds have 

poor intestinal absorption but can potentially be absorbed via ion-pairing. Yet, there 

is speculation regarding the validity of this mechanism, as it can depend on 

physicochemical and physiological factors such as stomach content and also the 

strength of the ionic bond to the counter-ion (Miller et al., 2010, Jonkman and Hunt, 

1983, Van Gelder et al., 1999). 

2.7.4 Molecular Size 

Molecular size is an important factor affecting intestinal absorption and biological 

activity. If molecular size increases, intestinal absorption decreases (Chan and 

Stewart, 1996). Molecular weight (MW) is the simplest indication of molecular size, 

although other parameters can be used such as surface area, molar volume and molar 

refractivity (Agatonovic-Kustrin et al., 2001). Molecular size hinders intestinal 

absorption of many drugs not just by the overall size and bulkiness of the molecule, 

but also by influencing other physicochemical properties such as lipophilicity and 

solubility. The importance of molecular weight is shown due to its inclusion in 

Lipinski’s   rule   of   5,  which   states   that   poor   absorption   is   likely   if   two   or  more   of  

these conditions are satisfied: molecular weight >500, logP >5, number of H-

bonding donor groups >5 or number of H-bonding acceptor groups >10 (Lipinski et 

al., 1997). There are exceptions to the molecular weight rule due to carrier mediated 

transport of larger compounds (Pang, 2003). Additionally, there are size restrictions 

for those compounds being absorbed via the paracellular route. 
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Physiological Factors Affecting Oral Absorption 

2.7.5 Gastrointestinal Transit Times and Food Effects 

The small intestine transit time is usually constant (~3 hours) and not influenced by 

physical state, dosage form or food effects; the physicochemical effects of the drug 

influence the rate of absorption, not the small intestine transit time (Yuen, 2010, 

Davis et al., 1986). Gastric emptying, on the other hand, can be one of the main 

influencing factors for drug absorption for the majority of drugs (Prescott, 1974). It 

is defined as the time taken for the oral dose to move through the stomach and can be 

highly variable from 5 minutes to 2 hours (Ashford, 2007).  

Gastric emptying depends on fed or fasted state (Ashford, 2007), formulation, food 

composition (Charman et al., 1997), posture (Queckenberg and Fuhr, 2009), the drug 

itself (Fleisher et al., 1999) and the disease state of the individual (Heading et al., 

1973). In particular, the absorption of some drugs, particularly acidic ones, can be 

directly correlated with the rate of gastric emptying (Prescott, 1974). With the 

knowledge of the effects of gastric emptying, some drugs are designed to take 

advantage of these aspects to increase their absorption. 

2.7.6 Intestinal Gut Metabolism 

Although the small intestine has mainly an absorption function, drugs can be 

susceptible to metabolism in the small intestine and this can contribute significantly 

to overall metabolism of the compound (Gertz et al., 2010, Thelen and Dressman, 

2009). An overview of main metabolising enzymes in the small intestine is shown in 

Figure 2.7. 
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Figure 2.7. The main metabolising enzymes in the human GIT adapted from (Paine 

et al., 2006, Fisher et al., 2001 and Glatt et al., 2001) 
Abbreviations: CYP, cytochrome P450,   UGTs,   Uridine   5’-diphosphate glucuronosyltransferases; 
SULTs, Sulfotransferases  

 (Paine et al., 2006, Fisher et al., 2001, Glatt et al., 2001)  

Drugs can be degraded in the lumen by a variety of enzymes such as lipases, 

amylases, peptidases, as well as the enzymes from microflora present in the small 

intestine, all with overlapping or specific substrate specificity. The main 

metabolising enzyme present in the small intestine is the phase I cytochrome P450 

(CYP) 3A4, making  over 70% of all CYPs located in the small intestine with the 

highest abundance in the jejunum (Petri and Lennernäs, 2003, Thelen and Dressman, 

2009).  

The majority of enzymes in the small intestine are found in other places such as the 

liver. Some compounds, although highlighted as substrates for specific enzymes, are 

not susceptible to gut metabolism, but are metabolised by the same enzyme in the 

liver. Reasons for some compounds being susceptible to gut metabolism and others 

not, even though they are both enzyme substrates, could be the differences in 

biotransformation rate by the enzyme, solubility/dissolution rate, permeation rate, 

dose amount and substrate affinity (Fagerholm, 2007, Gertz et al., 2010, Lin et al., 
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1999). The loss of the drug via gut metabolism is important to consider as it can 

result in the overestimation of absorption by in silico predictions.  

2.7.7 Permeability 

Permeability is the rate of absorption across the cell membrane in the small intestine. 

This is not the same as fraction absorbed, which measures the extent or amount of 

absorption (Burton et al., 2002).  

Permeability is a popular measurement carried out in drug discovery using a wide 

variety of assays which will be discussed later on in this thesis. On the whole, there 

is a close correlation between the experimental permeability rate and overall oral 

absorption (Artursson and Karlsson, 1991, Lennernas, 1997). In general if 

permeability is poor then absorption and bioavailability are likely to be poor too, 

however there are exceptions.  

Due to the close relationship between permeability and absorption, the same 

physicochemical factors affect both permeability and absorption such as 

lipophilicity, solubility and molecular size (Martinez and Amidon, 2002). Therefore, 

for passive transcellular absorption, permeability is higher for compounds that are 

lipophilic and unionized due to the lipophilic bilayer membrane. Additionally, 

physiological factors such as transporter abundance can greatly influence 

permeability and potentially affect the correlation with oral absorption. 

As permeability is considered an important factor governing the absorption of many 

drugs, any experimental or computer model that can be utilised to indicate 

permeability can be used as a guide to indicate overall oral absorption. 

2.7.8 Gastrointestinal pH 

The pH along the GIT gradually increases from the stomach to the small intestine. 

Moreover, there are pH differences along the GIT in fed and fasted states (Table 

2.1). 
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Table 2.1.  Summary of the mean pH in fed and fasted states for the different areas 

of the gastrointestinal tract – adapted from (Dressman et al. 1998 and Horter et al. 

2001) 

GIT Region pH range (Fasted) pH range (Fed) 
Stomach 1.4-2.1 3.0-7.0 

Duodenum 4.9-6.4 5.1-5.2 
Jejunum 4.4-6.6 5.2-6.2 

Ileum 6.5-8.0 6.8-8.0 

The main factors influencing pH are disease states, food, patient variability and the 

drug itself (Parsons, 1977, Martinez and Amidon, 2002). Similar to gastric emptying, 

these effects can be utilised and used to develop strategies to improve absorption,  

overcome degradation or improve ionization due to either fed or fasted states. 

These pH differences in the GIT regions as highlighted in Table 2.1 can govern 

intestinal absorption due to different amount of ionization of the drug at the different 

pH’s.  There  is  a  close  relationship  between  pH  and  ionization,  and  this  will  govern  

intestinal absorption and many other properties such as solubility. Anything that 

affects the fraction of the unionized drug to be absorbed can decrease or increase the 

absorption. pH is a mitigating factor for the absorption of many drugs and important 

to consider in relation to oral absorption (Dressman, 1986, Charman et al., 1997). 

2.7.9 Transporters 

There are many influx and efflux transporters that can control membrane 

permeability of drug and endogenous compounds in the small intestine (Pang, 2003, 

Mizuno et al., 2003). The main transporter proteins present in the small intestine are 

shown in Figure 2.8. One of the main influential efflux transporters in the reduction 

of absorption and bioavailability of many compounds is a member of the ATP-

binding cassette (ABC) transporters, permeability glycoprotein, P-gp. Compounds 

are frequently tested to see if they are substrates for the P-gp transporter due to its 

potential impact of lowering absorption and bioavailability of drugs (Chan et al., 

2004, Zhang and Benet, 2001). 
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Figure 2.8. Diagram of major drug transporters expressed on the apical and 

basolateral intestinal membranes. Arrows denote transport direction.  

Abbreviations; Multi-drug resistance protein (MDR)/P-Glycoprotein (P-gp); Multidrug resistance 

associated protein (MRP), Breast cancer resistance protein (BCRP), Monocarboxylate transporter 

protein (MCT), Peptide transport protein (PEPT), Organic anion transporting polypeptide (OATP), 

Organic cation transporter (OCT), Apical sodium-dependent bile acid transporter (ASBT), 

Concentrative nucleotide transporter (CNT), Electroneutral organic cation transporter (OCTN), 

Equilibrative nucleoside transporter (ENT), Organic solute transporter (OST), Plasma membrane 

monoamine transporter (PMAT). Adapted from (Custodio et al., 2008, Shugarts and Benet., 2009, 

Estudante et al., 2013; Morrissey et al., 2012, Sedykh et al., 2013, Yoshida et al., 2013).(Shugarts and Benet, 2009, 

Sedykh et al., 2013, Estudante et al., 2013, Yoshida et al., 2013, Morrissey et al., 2012, Custodio et al., 2008) 

The impact of transporters on absorption is difficult to predict. Factors such as 

specificity and substrate affinity can influence whether or not a drug will be a 

substrate. On the other hand, if a drug is a substrate for a transporter there are other 
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factors that can impact on absorption such as transporter abundance, contribution of 

transporter route to overall absorption, multiple substrate transport by other 

transporters, high substrate concentration and the kinetics (Giacomini et al., 2010, 

Sugano et al., 2010). 

From a modelling perspective, transporter effects can give rise to incorrect 

predictions of passive oral absorption from molecular structure. With the growing 

research and increasing discoveries of transporter substrates it is important to attempt 

to take into account compounds that are transporter substrates in oral absorption 

models. 

2.7.10 Other Factors Affecting Absorption 

There are other factors that may be taken into account for the assessment of intestinal 

absorption; however these factors may not be essential for early drug absorption 

assessment in drug discovery. However, it does appear that there is a lack of research 

in some of these areas. A summary of these factors is presented in Table 2.2. 
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Table 2.2. Other factors that can affect oral absorption of drugs 

Factor How it can potentially affect absorption References 

Perfusion Lack of sink conditions due to the slow removal of 

drug (i.e. perfusion) by the mesenteric capillaries. 

Zhao et al., 2002 

(Zhao et al., 2002). 

Exercise Affects perfusion rate and appears to depend on type 

of exercise. Data in this area is limited. 

Khazaeinia et al., 2000 

(Khazaeinia et al., 2000) 

Gender Gastric emptying and pH have been shown to be 

different between genders. 

Pregnancy can increase hormone levels and 

physiological changes can affect perfusion. 

Loebstein et al., 1997; 

Schwartz, 2003;  

Morris et al., 2003; 

Freire et al., 2011 

(Freire et al., 2011, 

Schwartz, 2003) 

(Loebstein et al., 1997) 

(Morris et al., 2003) 

Age Higher pH in stomach and slower gastric emptying in 

new-borns. 

Slower intestinal transit, slower gastric emptying and 

postprandial pH response may differ significantly 

between geriatric population and younger healthier 

adults. 

Koren, 1997; 

Gidal, 2006 

(Koren, 1997) 

(Gidal, 2006) 

 

Disease Any disease or even surgery that affects the pH, 

mucosal enzymes or gastric emptying will affect 

absorption. For example,   Crohn’s   disease   decreases  

the surface area in small intestine and hence 

absorption. 

Parsons, 1977; 

Gubbins and Bertch, 1991; 

Fleisher et al., 1999; 

Titus et al., 2013 

(Parsons, 1977) 

(Gubbins and Bertch, 

1991) 

(Titus et al., 2013) 

Drug-Drug 

Interactions 

(DDIs) 

Drugs that are absorbed via similar transporters will 

compete for that transporter, potentially resulting in 

altered absorption. 

This principle also applies to drugs metabolised by 

the same enzyme in the small intestine. 

DDIs can affect absorption indirectly by altering 

gastric emptying, gut motility and complexation with 

endogenous bile salts. 

Richens, 1975; 

Welling, 1984; 

Fleisher et al., 1999 

 

(Fleisher et al., 1999) 

(Welling, 1984) 

(Richens, 1975) 
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2.8 Experimental Assessment of Oral Absorption 

In drug discovery there are many experimental assays that give an indication of oral 

absorption for compounds. The type of assay will vary in complexity, experimental 

throughput, cost and information gained from the experiment. The order of 

complexity increases from in vitro, in situ to in vivo assays. The assessment of oral 

absorption in drug discovery is usually a combination of these assays.  

The experimental values from these assays can be used to build and validate 

computational models for the prediction of absorption for unknown compounds from 

structure alone. Computational models and simpler faster assays can be used to first 

screen a large number of compounds and, based on these results, fewer compounds 

are assessed by slower but more predictive assays (Balimane et al., 2000). As there 

are many assays, it must be noted that the value obtained must correlate with in vivo 

oral absorption in humans (Yu and Adedoyin, 2003). 

An overview of in vitro and in vivo techniques where this data were utilised in the 

building of computational models in this thesis is described next. 

2.8.1 In vitro Methods 

There are a variety of in vitro techniques which measure the permeability of a drug 

using artificial membranes, cell monolayers and isolated intestinal tissues. The ideal 

permeability model for the small intestine mimics the physical and biochemical 

processes of intestinal absorption (Volpe, 2008). In vitro methods measuring 

permeability have been correlated with human intestinal absorption and these values 

can be used as surrogates in early drug discovery. 

The main drawback of many in vitro assays is that they fail to take into account 

physiological and biochemical properties (Le Ferrec et al., 2001). Therefore, in some 

cases the relationship with the in vivo situation is difficult to establish. In spite of 

this, the isolation of one factor of oral absorption could be beneficial for problematic 

compounds. Although in vitro assays offer a fast and cheap alternative to the in vivo 

situation, the limitations of the methods must not be overlooked. 
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Apparent permeability (Papp) measured using cell monolayers is a popular in vitro 

method used in drug discovery and is usually measured in cm/s-1. There are many 

different cell lines that can be used to measure permeability. Human colon 

adenocarcinoma (Caco-2) is a commonly used cell line (Balimane et al., 2000, Fogh 

and Trempe, 1975, Hidalgo et al., 1989), which displays biological and characteristic 

properties of the enterocytes of the small intestine such as the brush border and tight 

junctions (Artursson, 1990, Pinto et al., 1983, Hidalgo et al., 1989, Volpe, 2008). 

These cells can express a variety of transporters and metabolic enzymes, allowing 

other transport and metabolism mechanisms to be investigated (van Breemen and Li, 

2005). Drawbacks of the Caco-2 cell line are inter-laboratory differences (which also 

holds for many other cell lines), variable transporter expression, long culture time, 

tighter junctions compared with in vivo situation and lack of mucus secreting goblet 

cells (Volpe, 2008, BriskeAnderson et al., 1997, Le Ferrec et al., 2001). Some of 

these problems have been resolved by other cell lines such as 2/4/A1, a rat intestinal 

epithelial cell line, which has leakier tight junctions (Matsson et al., 2005, Tavelin et 

al., 2003); also, the cell line HT29-MTX, a human colorectal adenocarcinoma cell 

line, is a co-culture of Caco-2 cells with mucus secreting goblet cells to study the 

effects of mucus on absorption (Hilgendorf et al., 2000).  

Another cell line that has been gaining popularity is MDCK II (Madin-Darby Canine 

Kidney strain II) cells, due to shorter culture time (of 3-5 days), leakier tight 

junctions and low expression of transporters compared with Caco-2, making it an 

ideal cell line for passive permeability assessment even with species and tissue 

differences (Braun et al., 2000, Irvine et al., 1999, Avdeef and Tam, 2010, Varma et 

al., 2012). There are many similarities and differences between Caco-2 and MDCK 

cell lines. Despite this, there is a linear relationship between the permeability 

measured in the two cell lines, which has been shown using small compound sets 

(Irvine et al., 1999, Braun et al., 2000, Avdeef and Tam, 2010). 

2.8.2 In vivo Methods 

In vivo methods are studies of biological properties performed within living animals 

and humans. These methods integrate all the factors of absorption; therefore they 

offer the determination of intestinal absorption within a living system which other 
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methods lack. In spite of this, the integration of all components of absorption can be 

problematic as it is difficult to differentiate which one is the limiting factor 

(Lennernas, 2007, Le Ferrec et al., 2001). What is important to emphasise is that all 

the previous methods are meaningless unless they can characterize the fundamental 

principles of intestinal absorption as shown by in vivo studies.  

Studies that measure the fraction absorbed are rare in humans due to the invasive 

nature of measurement. Therefore, the best way to determine intestinal absorption in 

vivo is using pharmacokinetic and/or mass balance studies in humans. Mass balance 

studies measure the amount of compound and/or drug-related material, usually radio 

labelled, excreted into either (or combined) urine, faeces and bile after oral 

administration. Additionally, the ratio of cumulative amount of drug excreted into 

urine after oral and intravenous administration can also be used (Varma et al., 2010, 

Zhao et al., 2001). Bioavailability studies can also be used as an indication of 

fraction absorbed, so long as the level of metabolism is negligible. The main 

problem with the in vivo assays used to determine fraction absorbed is that they are 

not suitable for high throughput screening (HTS) in drug discovery. Compounds 

with good drug like properties are tested in vivo in humans later in drug development 

and clinical studies (Gleeson et al., 2011). 
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3. Quantitative Structure-Activity Relationships (QSAR)  

QSAR is the mathematical relationship between biological activity and structure. 

The structure of a chemical gives rise to different properties, and specific features are 

assumed to be responsible for the biological activity. The mathematical relationships 

between structure and activity can be established and then utilised to predict the 

activity of new chemicals. In other words, the biological activity of new chemicals 

can be predicted from structure alone without experimental measurement of activity 

(Figure 3.1). Moreover, this offers enormous advantages for the pharmaceutical 

industry to get an early idea of biological properties, such as oral absorption, before 

synthesis providing information for compound development. 

 

Figure 3.1. Graphical representation of the relationship between structure and 

activity for the underlying principles of QSAR 

There are many studies that form the basis of modern QSAR today; the works by 

Hammett and Taft regarding the Hammett electronic constant and steric effects as 

well as many others made way for the work carried out by Hansch, who is 

considered the founder of modern day QSAR (Hammett, 1970, Hammett, 1935, Taft, 

1952). The research carried out by Hansch and co-workers produced an equation that 

illustrated that the biological activity (Log 1/C) from chemicals could be described 

by a series of parameters: hydrophobicity and electronic effects (Hansch et al., 

1962). From this work there have been vast developments and improvements for 

QSAR and these principles are the foundations for new approaches based on the 

machine learning and statistics.   
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The process of obtaining a suitable QSAR model can simply be put into five steps 

(Figure 3.2).  

 

Figure 3.2. Steps to creating a QSAR model extracted from (Cherkasov et al., 2014) 
(Cherkasov et al., 2014) 

3.1 Data Collection and Curation 

The basis of QSAR models is the quality of data used to build them. Poor models 

result when data are of poor quality, therefore the collection of high quality data is 

essential. The quality of data can be a limiting factor in many QSAR models 

published in the literature (Egan and Lauri, 2002). In particular, oral absorption 

datasets are vulnerable due to the different methods to obtain the data plus other 

factors, such as formulation and solubility and variable absorption, which could also 

account for the differences.  

Curation of the collected data is required to check and remove errors. In some cases 

published databases are used without checking primary references, therefore any 

potential errors can be copied from different studies in the literature (Hou et al., 

2007c). Besides experimental variations, errors with the chemical structure can result 

in the calculation of incorrect molecular descriptors and can lead to significant 

reduction of predictability of models. Manual curation of structures can lead to 
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increased model predictivity (Young et al., 2008). Another common error in large 

datasets is the presence of duplicated compounds. Duplications can give a model 

artificial predictability and affect the model development by altering structural 

feature frequency. The work carried out by Tropsha highlights standardized steps for 

dataset curation (Tropsha, 2010, Fourches et al., 2010). Pre-processing initial data is 

essential to ensure a good starting point for model development and should result in 

higher predictivity of resulting models. This has been further emphasised by a recent 

publication by Cherkasov et al (2014). Additionally, recent work carried out by 

Golbraikh et al (2014) has developed a data modelability index (MODI), which 

estimates the feasibility of obtaining predictive QSAR models for binary data. This 

index utilises compound similarity and whether if similar pairs (calculated using 

Euclidean distances) of compounds have the same activity (Golbraikh et al., 2014). 

3.2 Molecular Descriptors 

Molecular descriptors are mathematical representations of the chemical structure 

used to derive relationships between structure and biological activity. The 

relationship between molecular descriptors and activity forms the basis of QSAR 

models. There are thousands of different molecular descriptors that can be used; 

these can vary from experimental measurements such as logP and solubility to purely 

theoretical ones based on quantum chemistry, graph theory, information theory and 

many more (Todeschini and Consonni, 2000).  The choice of molecular descriptors 

can depend on several factors such as model interpretability, predictability and 

computational cost of molecular descriptor calculation. There are different types of 

molecular descriptors that have been categorised by dimensionality and presented in 

Table 3.1. 
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Table 3.1. Different types of molecular descriptors with examples – adapted from 

(Todeschini and Consonni, 2000) 

Descriptor 
type Descriptor Examples 

0D 

Atom counts Molecular weight  
Bond counts Number of atoms e.g. H, C,  

Simple counting of atoms/bonds Number and type of bonds e.g. H, C 
single/double bonds  

  Number of ringed systems 

1D 

Structural fragments, 
fingerprints Number of carboxyl groups 

Simple counting of fragments or 
atomic properties 

Number of hydrogen bond 
donors/acceptors 

2D 

Topological  Kappa shape indices 
Descriptors can be predicted 
using methods such as graph 
theory based on 2D structure 

Chi connectivity indices 
Topological polar surface area (TPSA) 
Weiner index 
BCUT/GCUT descriptors 

3D 

Geometric descriptors Potential energy descriptors e.g. 
solvation energy 

Two types of descriptor based 
on internal or external 
orientation properties of 
structure, require 3D 
coordinates of molecule 

Size, shape and volume descriptors e.g. 
van der waals surface area, GETAWAY 
descriptors 
Polar Surface area 

4D 

Geometric flexibility descriptors Extension of 3D GRID or CoMFA 
methods, including Volsurf descriptors Descriptors derived from stereo-

electronic or lattice 
representation, based on 3D but 
descriptors account for the 
different flexibility of same 
molecule i.e. different 
conformations 

(Todeschini and Consonni, 2000) 

A brief summary of the different types of molecular descriptors in relation to 

intestinal absorption is further described in the following sections. Rather than group 

0D-4D molecular descriptors, in relation to oral absorption, for a better 

physicochemical understanding of the molecular descriptors, the descriptors have 

been grouped according to hydrophobic, electronic and steric effects, and a few 

examples relating to oral absorption have been discussed. Additionally this is a broad 

grouping, and there are many cases where molecular descriptors overlap. 



35 
 
 

3.2.1 Hydrophobic Descriptors 

Molecular descriptors that relate to molecular interactions between polar and non-

polar groups, including lipophilic partitioning, can be broadly termed hydrophobic 

descriptors.  

LogP and logD are frequently used molecular descriptors that can be experimentally 

measured or theoretically obtained from the 2D structure. Although it gives an 

indication of the ability to penetrate a membrane, it is the lipophilicity parameter and 

other factors such as hydrogen bonding and ionization are also involved in defining 

the absorption. There is a positive contribution to the passive absorption of drug 

compounds with increasing lipophilicity (Zakeri-Milani et al., 2006). However, it 

has been shown that the relationship is non-linear with an optimum logP/D value for 

suitable absorption and solubility (Hansch et al., 1962). 

There are other descriptors which are indirectly related to hydrophobicity. An 

example is polar surface area (PSA), which is a combination of steric (size) feature 

and the polarity of a molecule which is inversely related to hydrophobicity. PSA is 

the area of the van der Waals surface that arises from oxygen or nitrogen or to 

hydrogen atoms bound to these polar atoms in the molecule. Hence it is inversely 

related to hydrophobicity. This descriptor is often considered more suitable for the 

prediction of ADME than hydrophobicity descriptors such as calculated logP as it 

accounts for atoms that are shielded from other atoms within the molecule and 

internal hydrogen bonds (Palm et al., 1997, Clark, 1999). Another benefit is that this 

descriptor  can  be  calculated  from  the  molecules’  2D  structure, so called topological 

polar surface area, so is much quicker to compute. Topological polar surface area has 

a high correlation with 3D PSA (Ertl et al., 2000). 

3.2.2 Electronic Descriptors 

Electronic descriptors give information relating the electronic distribution of a 

molecule. The electronic distribution or related electronic charge properties can be 

derived from empirical or molecular orbital calculations. Additionally electronic and 

steric indices can be combined to give charged partial surface area descriptors.  
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The main examples relating to intestinal absorption are dipole moments, 

polarizability and molecular orbital energies such as lowest unoccupied molecular 

orbital (LUMO) and highest unoccupied molecular orbital (HOMO) (Agatonovic-

Kustrin et al., 2001, Norinder et al., 1999).  

Dipole moments are measures of polarity plus other internal electronic effects of the 

molecules. Dipoles moments are created by atoms in the molecule with different 

partial charges that are a specified distance away from one another in various 

directions; it is a vector defined by the magnitude of the charge related to distance. 

The dipoles can vary in strength and type depending on the functional groups and 

their position on the molecule. 

Polarizability descriptors give information on how susceptible the electron cloud of 

individual atom or molecule is to distortion by an external field. It implies that 

compounds that are electron rich with loosely bound electrons will have high 

polarizability. High polarizability is associated with high absorption (Norinder et al., 

1999).   

An example of electronic properties could be hydrogen bonding ability of a 

molecule. Counts of functional groups such as hydrogen bond donors and acceptors 

can give an indication of hydrogen bonding (Agatonovic-Kustrin et al., 2001). The 

influence of hydrogen bonding, which relate to inter and intra-molecular interactions 

between the compound and its environment, can dictate oral absorption of many 

compounds. In fact a high number of hydrogen bond acceptors and donors have a 

negative correlation with intestinal absorption and make up two of the rules of 

Lipinski’s   rule   of   five   (Lipinski et al., 1997). More complex descriptors take into 

account hydrogen bonding strength, and internal hydrogen bonding can also be used 

(Abraham et al., 2002, Platts et al., 1999).  

Finally, LUMO and HOMO energies are derived from quantum chemistry theories 

and relate to the reactivity of the compound. Although informative, they do require 

the 3D conformation of the molecule to be calculated. HOMO and LUMO energies 

relate to the electron donating and accepting ability of the molecule, respectively. A 

larger difference between these two energies results in a more stable absorbable 

compound (Agatonovic-Kustrin et al., 2001). 
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3.2.3 Steric and Topological Descriptors 

Steric and topological descriptors give an indication of the size and shape. In 

particular, topological descriptors give an indication of size and shape through the 

connectivity of atoms in  a  compound.  The  size  and  shape  can  relate  to  a  molecule’s  

ability to pass through the enterocyte membrane or bind to a carrier transporter in the 

intestine.  

Molecular weight is the simplest 0D size descriptor. A large molecular weight 

directly causes poor absorption as well as indirectly affecting other properties such 

as lipophilicity (Lipinski et al., 1997, Veber et al., 2002) .The shape of the molecule, 

which can be described by chi and kappa shape topological indices (Xue et al., 

2004), can also influence absorption. These topological descriptors quantitatively 

encode information from molecular structural features. Chi or connectivity indices 

describe the number of atoms/fragments and branching of molecules including cyclic 

components of molecules (Hall and Kier, 1991). Kappa shape indices indicate the 

molecular shape in terms of cyclicity, branching and the position of the 

branches/cycles within the molecule, i.e. in the centre or closer to the extremities of 

the molecule. It is computed based on counts of one-bond, two-bond and three-bond 

fragments (Hall and Kier, 1991). Overall compounds that are planar and rigid with 

reduced molecular flexibility tend to have better absorption (Xue et al., 2004). 

3.3 Selection of Molecular Descriptors: Feature Selection 

As seen from the previous section, there are thousands of ways to characterise a 

chemical compound computationally to produce numerous molecular descriptors. In 

order to develop a model that is robust and has a high predictive power, the selection 

of molecular descriptors is very important. By considering the process of oral 

absorption, any descriptors that can influence this property in any way will be useful 

in creating a predictive model (Jensen et al., 2005). Identifying the relevant 

descriptors correlating with intestinal absorption can be carried out using statistical 

feature selection methods, or additionally, educated assumptions can be made about 

the process of oral absorption and the physiological and physicochemical factors that 

influence it, in order to choose the useful descriptors (Suenderhauf et al., 2011).  
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Feature selection is frequently used in QSAR to selectively reduce the number of 

molecular descriptors (independent variables) used to accurately describe the 

property of interest (dependent variable) (Wong and Burkowski, 2011, Xue et al., 

2004). Feature selection is important for several reasons. Firstly, fewer molecular 

descriptors increases interpretability and understanding of resulting models 

(Ghafourian and Cronin, 2005, Liu, 2004). Secondly, feature selection can provide 

improved model performance for the prediction of new compounds (Dudek et al., 

2006, Xue et al., 2004). Finally, feature selection can reduce the risk of overfitting 

from noisy redundant molecular descriptors (Goodarzi et al., 2012). 

Feature selection can be split into two broad categories; data pre-processing or 

embedded methods. Data pre-processing feature selection involves reduction of 

molecular descriptors before model building and can be further split into filter and 

wrapper techniques, whereas embedded methods incorporate the feature selection 

into the training and building of the model (Goodarzi et al., 2012, Saeys et al., 

2007). Filter techniques usually involve calculating a relative score of the molecular 

descriptors and ranking them in order of best score, and the descriptors that are at the 

top of the list are then used as input for model building. Filter methods offer a fast 

and simple way to select important descriptors. In addition, because they are 

independent of the algorithm, the score for each descriptor only needs to be 

calculated once, and the selected descriptors can be used as input for a variety of 

algorithms. A disadvantage of univariate filter methods is they fail to account for 

interactions between independent variables, as most measure the correlation between 

the dependent variable and each independent variable separately. This can be 

overcome by multivariate filter methods which take into account independent 

variable interactions (Saeys et al., 2007). 

  

Wrapper techniques consider a number of candidate subsets of molecular 

descriptors, evaluate each of these based on the predictive performance of a model 

built from that descriptor subset, and eventually select the descriptor subset with the 

best predictive performance (Kohavi and John, 1997). Wrapper techniques are 

usually much more computationally expensive than filter techniques, but unlike 

many univariate filter techniques, they take into account independent variable 
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interactions (Goodarzi et al., 2012, Saeys et al., 2007). There are now methods that 

combine filter and wrapper techniques to create successful hybrid feature selection 

techniques (Wegner et al., 2004).  

3.4 Development of QSAR Models 

To develop a QSAR model, the purpose and intended use of the model need to be 

established. This will help in the selection of the appropriate method based on the 

level of interpretability and predictability taking into account cost-effectiveness. 

QSAR models can be mainly split into two categories; unsupervised and supervised 

methods. 

Unsupervised methods do not distinguish between dependent and independent 

variables (i.e. there is no special dependent variable to be predicted); rather, their 

goal is to discover patterns and associations between the variables to potentially 

define possible groups. These groups and patterns may be used later in order to make 

predictions using supervised methods. The unsupervised methods are applied under 

the assumption that similar compounds (with similar descriptors) will have similar 

activities, and so will be grouped together and reveal meaningful patterns not seen in 

the raw data. Unsupervised methods, such as clustering methods, can also be used as 

pre-processing techniques to select training and validation sets (Martin et al., 2012, 

Golbraikh and Tropsha, 2002b). Another example of unsupervised methods is 

principal component analysis (PCA). PCA is used to produce new independent 

variables (principal components), which then can be used as molecular descriptors in 

model development by supervised methods (Lauria et al., 2009). Some types of data 

mining methods are broad enough to include both supervised and unsupervised 

algorithms, such as neural networks (Gini et al., 2004). 

With supervised methods, the dependent variable is known and it is this information 

plus the input from the independent variables (molecular descriptors) that guide the 

supervised method to predict the dependent variable. Supervised methods are more 

common in the QSAR field and for ADMET prediction. These methods can be 

further split into regression or classification methods, where the dependent variable 

to   be   predicted   is   numerical   (continuous)   or   categorical   (e.g.   ‘high’   or   ‘low’),  

respectively (Dudek et al., 2006). There are factors to consider when choosing 
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between regression or classification methods, such as data quality, interpretability 

and purpose of the intended outcome. For example, a regression model based on data 

with high variability will produce a poor predictive model, whereas classification 

into two classes can remove noise and variability and could produce a better model, 

but some information can be lost. As another example, categorical classification 

methods would probably not be suitable for a chemical series of lead compounds 

which only differ by a functional group, as a classification model would be too 

broad, and therefore a regression model to distinguish between very similar 

compounds predicting a precise numeric value would be more suitable. 

A brief summary of the main unsupervised and supervised methods used in QSAR is 

presented in Figure 3.3 and the following text: 

 

 

Figure 3.3. Summary of typical methods used for QSAR models adapted from 

(Dudek et al., 2006) 
(Dudek et al., 2006) 

It must be noted that several types of methods mentioned in Figure 3.3 can be 

utilised for both regression and classification analysis. A good example is decision 

trees, particularly the classification and regression trees (C&RT) algorithm. This 

method is able to predict either the numerical value or the (categorical) class of the 
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compound (Breiman et al., 1984). Supervised methods can either be linear or non-

linear, and this is something else to consider when selecting a model. Linear models 

predict the dependent variable as a linear function of the molecular descriptors. A 

good example is multiple linear regression. Linear methods can offer high accuracy 

and interpretability for models. However, some molecular descriptors are not linear 

in relation to the dependent variable, which can restrict the predictive accuracy of the 

resulting linear models. For example, logP and logD have non-linear relationships 

with intestinal absorption. Therefore, non-linear methods can be used to take into 

account the non- linear function of the molecular descriptors. However, non- linear 

methods such as SVM and ANN can be harder to interpret and prone to over fitting 

(Dudek et al., 2006). 

3.5 Validation of QSAR Models 

Once a model has been built using the training set, it needs some sort of validation. 

Model validation has received much attention for the acceptance of QSAR models 

(Gramatica, 2007), particularly from a regulatory point of view. For consideration of 

the use of QSAR models for regulatory purposes, the OECD principles were 

established to offer international agreement or a benchmark of model validation 

(OECD, 2007). In particular, model validation requires appropriate measures of 

goodness-of-fit, robustness and predictivity. The training sets are assessed on 

goodness-of-fit and robustness and the internal and external validation set assesses 

the predictivity of the model. 

 

Performance of models can be quantified in some form of accuracy measure. There 

are many accuracy measures utilised in QSAR. For regression, the statistical 

parameter most popular is r2, particularly used in MLR, which assesses the 

rectilinear relationship between the dependent and independent variables. The Fisher 

(F) statistic is used to assess the statistical significance of the regression model. As 

the F-value becomes higher, the greater the probability is that the equation is 

significant (OECD, 2007). The error of the regression methods can be assessed based 

on   the   difference   between   the   model’s   predicted   values   and   the   observed   values.  

Parameters such as root mean square error (RMSE), Mean absolute error (MAE) and 

mean fold error (MFE) are just a few examples of measurements used in QSAR 
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studies to measure performance of the training and validation sets. The lower the 

error the better, as there is less difference between the observed and predicted values 

(Aptula et al., 2005). 

 

For the assessment of classification models, originally utilised for medical testing, 

the Cooper statistics (Cooper et al., 1979) are commonly used for the classification 

of QSAR models (Hou et al., 2007c, Hou et al., 2007a). This is based on percentages 

of the overall correct predictive performance in relation to the number of compounds 

in the training or validation set, or can be further split to calculate parameters that 

give values for predictive accuracies associated with different classes in the 

classification model, called specificity and sensitivity (Baldi et al., 2000). Other 

parameters used in QSAR validation are Matthews correlation coefficient 

(Matthews, 1975), Youden J statistic (Youden, 1950) and kappa weighed index 

(Cohen, 1968). 

 
The measures mentioned above can be used to calculate the accuracy of a model for 

training set (model fit) and its predictive performance on validation sets. The 

performance  of   the  models’  predictive accuracy the training set is likely to be over 

optimistic   of   the   model’s   true   predictive   power.   Therefore   the   predictive   power  

should be assessed using internal validation of the training set and an independent 

external validation set. An internal validation or sometimes called cross-validation 

are common statistical techniques, where different proportions of the compounds in 

the training set are iteratively removed from the training set and predicted using the 

developed model. Examples of these methods are leave one out (LOO), leave more 

out (LMO) or bootstrapping (Gramatica, 2007). There has been much criticism of 

solely using cross validation values to assess model predictability. In fact, these 

methods tend to overestimate the predictive ability of the resulting model as well as 

being computationally expensive. However, others have argued that when the sample 

size is small, keeping back an external validation set of compounds is wasteful 

(Hawkins et al., 2003, Hawkins, 2004). It has been shown that a high value of 

internal validation (Q2) using LOO does not necessarily correlate with high 

predictive power (Golbraikh and Tropsha, 2002a, Golbraikh and Tropsha, 2002b). 

Additionally Y-scrambling or Y-randomization can be used to highlight if the model 
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occurred by chance correlation due to redundant molecular descriptors (Tropsha et 

al., 2003). 

 

An external validation set is a set that is independent of the training set and is used to 

determine whether or not the model built has a good predictive performance for a 

new set of compounds. If there is a correlation between the predicted and observed 

values for the external validation set, then over fitting of the model has not occurred. 

Using an external validation set is considered by some authors the best way to 

evaluate the predictive accuracy of a model (Golbraikh and Tropsha, 2002a, 

Golbraikh and Tropsha, 2002b). However, this does not mean the internal validation 

techniques are not useful, they are vital for model development; but when they are 

used with an external validation set a more complete assessment of model validation 

can be achieved (Gramatica, 2007). What is apparent is that some form of model 

validation is required and justified. For methods that require external model 

validation, firstly the dataset needs to be split into a training set and validation/test 

set. The training set is used for building and optimising the model and the validation 

set is used as a validation of the predictive power of model using a dataset not used 

for model development. The splitting of the dataset into training and validation sets 

can be random or produced by using algorithms such as the one proposed by 

Kennard and Stone (Kennard and Stone, 1969). It is important to make sure that 

compounds in the training set are structurally diverse and cover a large chemical 

space, and the validation set compounds must be similar to the ones in the training 

set to avoid extrapolation (Martin et al., 2012). 

 

In addition, the applicability domain (AD) estimation can be calculated. Broadly 

speaking, the applicability domain is essentially used to assess the reliability of a 

model for future predictions by defining the chemical coverage of the training set 

compounds, in comparison to those compounds being predicted by the model 

(Netzeva et al., 2005). In other words, according to the similarity approach for AD, 

prediction set compounds must be reasonably similar to those in the training set; 

otherwise extrapolation will occur and a prediction with less confidence is expected. 

The definition of chemical similarity can be subjective; however, in order to see if 

the model can interpolate for the validation set compounds, a variety of techniques 
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such as PCA analysis, probability density and distance-based methods can be carried 

out (Jaworska et al., 2005, Sahigara et al., 2012). The applicability domain is 

calculated in model validation but can transcend into model development, and can be 

calculated constantly to ensure any new chemicals predicted using the proposed 

model fall within the scope of the applicability domain of the model. 
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4 In silico Models for the Prediction of Oral Absorption 

There have been many publications in the literature that focus on the prediction of 

oral absorption. These can be subdivided into categories and the use of each type of 

model will depend on many factors. The main factors that can determine which 

category of model is used are the availability of data and the level of predictability 

and interpretability needed at any particular stage in drug discovery. As there are 

many examples of oral absorption models in the literature, only those relevant to this 

thesis and the problems in hand were selected; but it is appreciated there are many 

more examples that could be used. The recent publications on the prediction of oral 

absorption highlight that this area is an important research topic for the 

pharmaceutical industry. 

4.1 Oral Absorption Models are Built Using Highly Unbalanced 
Datasets 

Early oral absorption models were based on small datasets of usually fewer than 100 

compounds (Wessel et al., 1998, Niwa, 2003, Norinder et al., 1999). Small datasets 

are not ideal, as models built using them are affected by lack of generalizability for 

new compounds. Although more recently larger datasets have been published to 

potentially overcome this lack of generalizability, in general datasets still share the 

same problem (Zhao et al., 2001, Hou et al., 2007c, Cao et al., 2012). The problem 

is that datasets contain many more highly-absorbed compounds compared to poorly-

absorbed compounds, creating a highly unbalanced dataset.  

In general, oral absorption datasets published in the literature contain around 80% of 

highly-absorbed compounds (Wessel et al., 1998, Hou et al., 2007c, Zhao et al., 

2001). In this case, highly-absorbed means any compound with 50% or more fraction 

absorbed. The main reason for this is that larger numbers of highly-absorbed 

compounds are amongst the marketed drugs that constitute the datasets (Wessel et 

al., 1998, Zhao et al., 2001). Furthermore, the vast majority of percentage oral 

absorption data are obtained from clinical trials, where it is expected for compounds 

to have good absorption in order to have reached this stage. Additionally, the lack of 
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published data representing poorly-moderately absorbed compounds is thought to 

contribute to this unbalanced dataset problem as well (Gleeson et al., 2011).  

Due to the high number of highly-absorbed compounds compared with poorly-

absorbed compounds, models produced will have better predictability for the 

majority highly-absorbed compounds and will be poorly predictive for the poorly-

absorbed compounds. For many models in the literature this statement is true. 

Although this imbalance might be initially appealing for model building, it is not 

suitable for numerous reasons.  

Firstly, models should be able to distinguish equally between highly and poorly-

absorbed compounds and not be influenced by the dataset distribution. A model is 

not useful to predict high or low absorption if the majority of cases are highly-

absorbed, as it will be unable to predict well those that are poorly-absorbed due to 

their under-representation. Secondly, these models in the literature based on these 

biased, unbalanced-class datasets are not representative of a true industry scenario at 

present, where there are more drug candidates with poor absorption. There are more 

compounds that are poorly-absorbed due to the increasing number of larger, more 

lipophilic and poorer solubility compounds being designed in drug discovery 

(Lipinski, 2000, Leeson and Springthorpe, 2007). 

This pattern of dataset imbalance is seen throughout many datasets in the literature 

and not just oral absorption datasets (Czodrowski, 2013, Eitrich et al., 2006). 

Furthermore, for oral absorption models in the literature, dataset imbalance is stated 

as a problem; however, there are few studies that attempt to resolve it (Niwa, 2003, 

Yan et al., 2008). In spite of this, there are exceptions where a resolution to 

overcome the unbalanced class distribution of datasets was considered; however, 

there is no extensive comparison of models produced when using unbalanced and 

balanced datasets for oral absorption prediction (Talevi et al., 2011, Hou et al., 

2007a, Bai et al., 2004).  
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4.2 Oral Absorption Models are Based on Passively Absorbed 
Compounds with Good Solubility 

The compounds used to build absorption models cover the different absorption 

processes from passive to active transport of chemical compounds. They therefore 

will give rise to models with a large applicability domain. In spite of this, compound 

data are sometimes removed in order to help produce useful models for specific 

predictions, in the case of oral absorption models for the prediction of passive 

absorption (Hou et al., 2007a, Hou et al., 2007b). 

The main oral absorption models in the literature remove compounds that are 

absorbed via carrier mediated transporters, have solubility issues, low data reliability 

and  software’s  inability to calculate molecular descriptors (Zhao et al., 2001, Hou et 

al., 2007c).  According to the works by Tropsha and co-workers, data curation is one 

of the essential steps in model building to ensure a homogenous dataset is produced 

suitable for modelling (Fourches et al., 2010, Tropsha, 2010). Although an essential 

step in data curation, the   removal  of   these   ‘outlier’   compounds as specified above 

could result in oral absorption models with reduced applicability and generalization 

to new compound sets. Additionally, there are other implications which are 

discussed next. 

Firstly, a particular example of data curation is used in the work by Hou and co-

workers. For modelling, 95 compounds were excluded from a training dataset of 647 

compounds. These compounds were identified to undergo absorption mechanisms 

other than transcellular, had solubility problems, missing logD values or had a 

permanent quaternary ion in the structure. Their justification on compound removal 

was to guarantee the accuracy for passive absorption models. Although the removal 

of  these  ‘outliers’  has  resulted  in  a  homogenous  dataset with compounds undergoing 

similar biological processes, there are potential issues. Firstly, they removed 

paracellular compounds, also defined as passively absorbed. Secondly, with recent 

research on transporters, there are more compounds being identified as undergoing 

transport mechanisms. Finally, those compounds with a permanent quaternary 

ammonium ion were initially excluded but then added to the training as an additional 

rule for compounds prediction, therefore aiding the statistics of their model. In spite 
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of this, many other QSAR works have utilised the dataset with compounds 

exclusions (Yan et al., 2008, Shen et al., 2010). 

The main question is whether or not the removal of these compounds is necessary. 

Although Hou stated compound removal was carried out to guarantee the accuracy 

for passive absorption models, there was no comparison with and without these 

outliers. The comparison of models with and without the compounds absorbed via 

carrier mediated transport was carried out by Taveli et al., 2011. The removal of 

these compounds did not result in a significant difference between r2 values for the 

training set of models built, where r2 of 0.659 and 0.663 were obtained using the full 

dataset and the dataset after removal of outliers, respectively. This study suggests 

that non-passively absorbed compounds could be included in models to increase 

model applicability.  

Additionally, it has been hypothesised that compound absorption can involve the co-

existence of different absorption mechanisms, but oral absorption may be governed 

by the dominant process (Sugano et al., 2010, Smith et al., 2014). In fact, Reynolds 

identified some highly-absorbed compounds that were also substrate for efflux 

transporters and poorly-absorbed compounds identified as substrate for influx 

transporters (Reynolds et al., 2009). With these studies in mind, plus the increasing 

research into carrier mediated absorption, the inclusion of these compounds would 

be attractive for industry purposes. 

Compounds with solubility and dissolution problems are also commonly removed or 

not included in oral absorption models (Egan et al., 2000, Reynolds et al., 2009). 

This is because inadequate aqueous solubility can result in poor and variable 

absorption, making absorption prediction of these compounds more difficult and 

with higher errors (Zhao et al., 2001). However the simplification of resulting 

models will reduce the applicability and may impact the potential generalizability of 

the resulting models. 
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4.3 Oral Absorption Models Can Be Built From a Selection of 
Thousands of Different Molecular Descriptors 

There are many molecular descriptors that can describe chemical structures available 

from various software programmes. Therefore, the selection of the most important 

and relevant molecular descriptors is vital. The reduction of the set of molecular 

descriptors increases interpretability and simplicity of resulting models, as well as 

improves model performance and reduces risk of over-fitting (Goodarzi et al., 2012). 

The majority of oral absorption models in the literature utilise some form of feature 

selection method, either in pre-processing or embedded manner. There is a variety of 

research in the literature, and this varies greatly with the focus of feature selection. 

There are fewer studies in the literature that compare different feature selection 

techniques and compare the molecular descriptors chosen by the different techniques 

for oral absorption (Wegner et al., 2004, Suenderhauf et al., 2011). The majority of 

studies, however, focus on obtaining a model with high predictive accuracy, and do 

not have feature selection as their primary focus (Hou et al., 2007c, Talevi et al., 

2011).  

Examination of the wide range of feature selection methods utilised in individual 

oral absorption models reveals that different feature selection methods should be 

tried and evaluated for the dataset at hand. For many oral absorption models only 

one feature selection method is applied to each study; these vary from simple filter 

methods through to those that have embedded feature selection in model training. 

Common examples of the latter type of feature selection approach, where studies 

focus on high predictive accuracy, used in the literature are Genetic algorithm (GA) 

combined with neural networks (Wessel et al., 1998), support vector machine (Yan 

et al., 2008) and multivariate adaptive regression splines (MARS) (Hou et al., 

2007c).  

In contrast to this, Xue and co-workers considered three different datasets, including 

one involving the prediction of oral absorption. They used recursive feature 

elimination (RFE) for feature selection and Support Vector Machine (SVM) to 

classify compounds. They compared the results with and without the feature 
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selection method and found that, for oral absorption, improved accuracy was 

obtained when the feature selection method was used (Xue et al., 2004). Whereas the 

study by Xue et al. only used SVM alongside RFE feature selection, Suenderhauf et 

al. used a variety of modelling techniques including C&RT, SVM, and chi-squared 

automatic interactor detector (CHAID). These modelling methods were used 

alongside a variety of feature selection methods such as best first feature selection 

(BFS), a greedy hill-climbing algorithm, linear correlation analysis and decision tree 

splitting criteria (Suenderhauf et al., 2011). Suenderhauf et al. found that feature 

selection before model training did not improve model accuracy, in contrast to the 

findings of Xue et al. A possible conclusion is that in Suenderfauf et al. the 

preprocessing feature selection was less effective because two of the classification 

algorithms (C&RT, CHAID) perform embedded feature selection, reducing the need 

for pre-processing feature selection.  

4.4 Oral Absorption Models are a Balance Between Interpretability 
and Predictivity 

There are a variety of computational methods that have been utilised for the 

prediction of oral absorption. These vary from simple rules of thumb to more 

complex methods such as support vector machine and artificial neural networks. The 

choice of method can depend on many factors such as the dataset and computational 

time, but most importantly interpretability and predictability. A balance between 

interpretability and predictability is required in order to obtain a valuable model for 

the prediction of intestinal absorption that is also user friendly for application.  

The simplest models are those based on rules of thumb. These consist of analysing 

large compound datasets and finding patterns of properties or specific structures that 

correlate with good oral absorption. The main advantage of this type of model is the 

simplicity and interpretability for the non-specialist; and this approach is sufficient 

for high throughput screening (HTS) for a quick approximation, which can highlight 

potential unsuitable/suitable compounds for further drug development. The main 

example   is   Lipinski’s   Rule   of   five   (Lipinski et al., 1997). Originally used for 

assessing drug-likeness, the rules were applied for oral absorption. Lipinski stated 

that poor absorption is highly likely to occur if two or more of the following rules 
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were satisfied: if molecular weight >500 Da, sum of OH and NH hydrogen bond 

donors >5, calculated logP (C LogP) >5 and sum of N and O atoms as hydrogen 

bond acceptors >10.  

Even with the simplistic nature of the rule of five, there have been criticisms stating 

these rules are too simple to predict intestinal absorption, due to its complexity. In 

addition, the rules can lead to a high number of false positives i.e. those that satisfy 

the rules indicating they should be poorly-absorbed but are actually highly-absorbed 

due to carrier-mediated influx transporters. Therefore, the rule of five is only suitable 

for passively absorbed compounds (Yalkowsky et al., 2006, Lipinski et al., 1997). In 

addition, other works in the literature have indicated that some properties not 

included in the rule of five, such as number of rotatable bonds, PSA (polar surface 

area) and solubility should be considered too, as all are important for good 

absorption (Lobell et al., 2006, Clark, 1999, Palm et al., 1997, van de Waterbeemd 

and Kansy 1992). 

Although a qualitative prediction for oral absorption is quick and simple, a 

quantitative approach allows a deeper mechanistic understanding of the different 

processes of oral absorption. In general, earlier oral absorption models appear to 

favour prediction of a numerical/continuous value, rather than classification into 

high or low absorption groups (Talevi et al., 2011, Hou et al., 2006). Numerical 

(regression based) models of oral absorption have produced acceptable predictive 

accuracy and remain popular. In spite of this, it has been argued that, due to the 

variability of the data, the numerical prediction of HIA may not be suitable, with 

experimental errors of HIA% being as high as 20% for some compounds (Klopman 

et al., 2002). This could really affect numerical predictions, unlike binary 

classification, which could cover the error of the data as long as the variation does 

not cover the threshold that distinguishes between the two classes. 

Early studies of Wessel (1998) and Zhao (2001) have used methods such as MLR 

and ANN for numerical HIA prediction, and these methods are used frequently by 

other studies (Niwa, 2003, Talevi et al., 2011). ANN is a good technique to use for 

modelling parameters with complex relationships such as oral absorption. However, 

it can prone to over-fitting, plus it is difficult to interpret as there is no QSAR 
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equation produced from the output of the algorithm. Other methods such as PLS, 

SVM and Multivariate Adaptive Regression Splines (MARS) have also been 

adopted for the numerical prediction of oral absorption (Deconinck et al., 2007, Yan 

et al., 2008, Norinder et al., 1999).   

In general there have been fewer classification models for oral absorption in earlier 

literature studies, however this has been growing over the past decades (Hou et al., 

2006). The use of classification methods such as SVM has appeared in publications 

for the prediction of oral absorption (Shen et al., 2010, Hou et al., 2007a). One of the 

highest predictive accuracy models for oral absorption classification was obtained 

using SVM. Hou et al (2007a) achieved 98% classification accuracy for the 

validation set (n=98) using SVM developed using a training set of 480 compounds. 

Although SVM and ANN methods achieve high predictive accuracy, the models 

built  by   these  methods  are  difficult   to   interpret,   and  hence   they  are   labelled   ‘black  

box’  techniques  (Tian et al., 2011). Other methods for categorical prediction include 

DT (decision trees). These methods offer a balance between interpretability and 

predictability, by showing a simple visual representation of the model as well as 

having good predictive accuracy (Deconinck et al., 2005, Hou et al., 2007c).  

In addition to the type of prediction to be made there is another factor to be 

considered. Methods can either be linear or non-linear. In general, the use of linear 

methods, in particular MLR was popular in earlier oral absorption models; in fact 

Wessel et al (1998) highlighted the comparison between linear vs. non- linear 

methods by modelling oral absorption using MLR and ANN. The models achieved a 

RMSE of 35% and 16% for validation set for linear regression and neural networks 

respectively. Therefore, this indicates that non- linear methods can outperform linear 

methods. This result has also been shown in the majority of studies of oral 

absorption models (Wessel et al., 1998, Talevi et al., 2011, Yan et al., 2008). Non-

linear methods have been shown to work better due to the larger overestimation of 

poorly-absorbed compounds by the linear methods compared to non- linear methods. 

In addition, non-linear methods take into account the non-linearity of some 

molecular descriptors such as logP/D and ionization (Reynolds et al., 2009). Despite 

this, Zhao and co-workers found that, although there were lower predictive errors for 
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non-linear models as expected, the regression coefficients between linear and non-

linear models were similar (Zhao et al., 2002). 

No model is perfect; therefore models will have incorrect predictions. These can 

either be false negatives or false positives. In the context of oral absorption, false 

negatives occur when classfication models predict an observed highly-absorbed 

compound as poorly-absorbed and false positives occur when models predict an 

actually poorly-absorbed compound as highly-absorbed. Therefore, in addition to 

considering interpretability and predictability of the models produced, the emphasis 

on which type of error is more important to reduce in drug discovery is under debate, 

as both are detrimental.  

False negative predictions give rise to missed opportunities of potential new 

blockbuster drugs, and on the other hand false positives can give rise to expensive 

unsuitable compounds. There appears to be a lot of business emphasis on reducing 

the number of false negatives in drug discovery due to the potential of missing the 

next potential drug and therefore potential loss of revenue (Malo et al., 2006). A 

reduction in the number of false negatives is favoured in most publications, as in 

practice they are more difficult to assess and highlight, so a model with as low as 

possible false negative rate is preferred (Zhang et al., 2000).  

However, despite this, reducing the number of false positives could be considered 

equally as important or more important for cost-effectiveness reasons. If a drug is 

misclassified as highly-absorbed when in fact it is poorly-absorbed (false positive), 

more time, effort and money are invested  to  investigate  and  reveal  the  compound’s  

true class with further tests. Although there are few publications indicating that false 

positives need to be decreased rather than the business need of reducing false 

negatives, with the spiralling cost of drug discovery, a future consideration for many 

companies may be to reduce false positives and therefore to become more cost and 

time effective (Cummings, 2006, Oprea, 2000). A suitable balance of errors, 

depending on the context of the problem and the intended outcomes may be the 

answer to reduce time and money testing unsuitable drugs, compared with reducing 

the potential for missed opportunities of new drug candidates, as long as there are 
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still a high number of true positives being discovered (White, 2000, Rydzewski, 

2008). 

Overall, from the literature, the justification of a modelling method can be based on 

the successful use of the method for modelling oral absorption and/or the 

consideration of the balance between interpretability and predictability of the 

resulting model. 

4.5 The Relationship Between Oral Absorption and in vitro 
Permeability is Determined Subjectively 

From a modelling perspective, the prediction of fraction absorbed in humans would 

be the best approach rather than prediction of in vitro measures of permeability. 

However as stated previously, studies in humans are carried out later, on fewer 

compounds, therefore this causes a potential problem for oral absorption datasets. In 

terms of future developments, it is expected that only a small number of data will be 

added for the validation and model improvement over time (Egan et al., 2000). Plus 

the chances of the new additions being highly-absorbed are high, therefore this adds 

to the data imbalance problem discussed earlier. 

Permeability and related parameters are now frequently experimentally measured in 

drug discovery, in particular using Caco-2 and MDCK cell lines (Irvine et al., 1999, 

Volpe, 2008). As discussed previously, the correlation between the results of these 

cellular assays and human absorption allows an indication of human absorption 

earlier on in drug discovery. Due to the increase in HTS, there are more permeability 

data that could be potentially added to the dataset to possibly create an even 

distribution of data.   

The relationship between the permeability and fraction absorbed of a drug in humans 

can be determined numerically (regression) or categorically (classification). From a 

classification perspective, a permeability threshold can give an indication of high or 

low intestinal absorption (absorption class). The permeability thresholds defined in 

the literature vary greatly (Table 4.1) and the majority of studies appear to set the 

permeability threshold subjectively from a visual inspection of the graphical fit, 

rather than using an objective method using analysis of existing datasets. 
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Table 4.1. Examples of permeability thresholds determined by the literature 

Study Cell line Papp 
threshold 
(x 10-6 cm/s) 

Oral absorption 
class (%) 

Number of 
compounds 

Artusson and Karlsson (1991)  Caco-2 >1  
≤  0.1   

 100 
< 1 

20 

Yee et al (1997)  Caco-2 < 1  
1-10  
>10  

0-20 
20-70 
70-100 

35 

Gres et al (1998)  Caco-2 > 2.0 100 20 

Pade and Stavchansky (1998) Caco-2 > 10 > 90 10 

Stenburg et al (2001) Caco-2 ≤  0.074 
≥  3.5 

10 
90 

21 

Bergstrom et al (2003)  Caco-2 ≤  0.2 
≥  1.6 

≤  20 
≥  80 

27 

Hou et al (2007c) Caco-2 ≥  6  .0 High 
(>80) 

69* 

Di et al (2011)  MDCK II** ~ 3 
 

Low/medium (<80) 
High (>80) 

19 
 

Varma et al (2012)  MDCK II** ≥  5.0 ≥  80/90 97 
Pham-The et al (2013b)  Caco-2 ~ 0.7 

≥  16  .0 
< 30 
≥  85 

324* 

*Collated permeability literature values from different laboratories 
** MDCKII strain (MDCK-LE) cell line with isolated low endogenous efflux transporter expression 
(Artursson and Karlsson, 1991, Yee, 1997, Gres et al., 1998, Pade and Stavchansky, 1998, Stenberg et al., 2001, Hou et al., 2007c, Di et al., 2012, Varma et al., 2012, 
Pham-The et al., 2013a, Pham-The et al., 2013b, Bergstrom et al., 2003) 

An example from Table 4.1 is by Artusson et al (1991), using a dataset of 20 

compounds, who defined that a compound would have complete absorption if it had 

a permeability > 1 x10-6 cm/s (Artursson and Karlsson, 1991). More recent studies 

have indicated higher permeability thresholds than 1 x10-6 to define a high 

absorption compound (Yee, 1997, Stenberg et al., 2001, Pade and Stavchansky, 

1998). All of the above appear to be based on a subjective selection apart from the 

recent investigation by Varma et al (2012). This study used Receiver Operating 

Characteristic (ROC) analysis to objectively define the best permeability threshold 

for fraction absorbed based on a dataset of 82 compounds with permeability 

measured in a low transporter expression MDCK II cell line. The threshold defined 

was > 5 x 10-6 cm/s  for  ≥  80%  or  ≥  90%  fraction  absorbed  (Varma et al., 2012).  

Additionally to Table 4.1, the Food and Drug Administration (FDA) agency has 

recommended a set of high and low permeability standards compounds with known 

fraction absorbed (CDER/FDA, 2000). These standard compounds can be measured 

alongside new chemical entities (NCEs), which are then considered as highly or 

poorly permeable, depending on whether the permeability is greater or lower than 

the FDA standards. This can then be related to fraction absorbed based on these 
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standards. Potential problems with this are the choice of standard. For example, the 

high permeability standards propranolol, verapamil and metoprolol have differences 

in their permeability which could result in potential incorrect prediction depending 

which standard is used when testing alongside NCEs. The recent study by Pham-The 

et al. (2013) established a rank order relationship between Caco-2 permeability and 

oral absorption for 324 compounds. This was achieved using Caco-2 values collated 

from different laboratories. The thresholds defined were based on the permeability of 

the FDA standard metoprolol. In this case, Caco-2 permeability greater than           

16 x  10 -6 cm.s-1, which is 0.8 times the metoprolol permeability was used to take 

into account the lower HIA threshold of 85% used (Pham-The et al., 2013b). 

4.6 Most Oral Absorption Models Fail to Take into Account 
Permeability and Aqueous Solubility 

Permeability and solubility are considered the main fundamental properties that 

govern the rate and extent of oral absorption (Amidon et al., 1995). These two 

important properties are utilised by the Biopharmaceutics Classification System 

(BCS), which will be discussed further in the next section. For a drug to be absorbed, 

it must firstly dissolve in the gastrointestinal fluid in order to then permeate the 

intestinal membrane. As an increasing number of NCEs have high lipophilicity and 

low solubility, predicting absorption of NCEs is problematic. Inadequate aqueous 

solubility can lead to poor, erratic, variable absorption, so it is important to consider 

the effects of solubility for the prediction of intestinal absorption (Miller et al., 

2011). 

In studies by Zhao and co-workers, data with solubility and dose dependency were 

defined but not used in the majority of the initial oral absorption models. Upon 

inclusion of compounds with solubility issues, the resulting models had higher error 

(Zhao et al., 2001). It was also noted, however, that the more insoluble a compound, 

the lower the resulting absorption. In a later study, compounds with no identified 

solubility issues were used to build models, and some of these resulting models were 

then used to predict absorption for the compounds with dose-limiting and dose 

dependency effects. Overall, the prediction of absorption of these excluded 
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compounds was in agreement with observed values or the models tended to 

overestimate absorption (Zhao et al., 2002).  

There is a lack of studies that incorporate solubility into oral absorption models. 

However, in work by Pham-The et al. (2013), oral absorption was predicted, taking 

into account solubility. In this study, Pham-The, using a rank order relationship, 

noted that the relationship between permeability and oral absorption is less certain 

for poorly-absorbed compounds. They also found, using various contour plots, that 

incorporating solubility improves classification of HIA based on permeability data 

by about 10%; therefore showing that using solubility in models is potentially 

advantageous for oral absorption prediction. However, predicted solubility used on 

its own is not a good predictor of oral absorption, particularly for poorly-absorbed 

compounds (Hou et al., 2007a). 

The lack of solubility incorporated into oral absorption models is not surprising 

given that both permeability and absorption are closely but inversely related with 

solubility (Buckley et al., 2012, Lipinski, 2000). When comparing with permeability, 

solubility seems not to be regarded as important as permeability in relation to oral 

absorption; instead, it is regarded as a factor that can lead to poor (solubility limited) 

absorption, in addition to other limiting factors such as transporter and enzyme 

effects. Furthermore, the relative importance of solubility could be dependent on the 

goals of the research organization, and the mechanistic importance of solubility in 

regards to oral absorption may not be considered (Lipinski, 2000). In spite of this, 

the main reasons for poor oral absorption have been shown to be either poor 

permeability or poor solubility or both (Savjani et al., 2012). 

Even if models were to include experimental solubility, the main issue here is the 

lack of experimental solubility for drug compounds to be used in oral absorption 

modelling. Therefore, molecular descriptors that describe the process of 

solubilisation of the drug, such as crystal lattice energy, solvent cavity formation 

energy and solvation energy are utilised in the prediction of solubility (Wang and 

Hou, 2011, Ghafourian and Bozorgi, 2010). The general solubility equation (GSE) is 

a simple method that predicts aqueous solubility using only two parameters, logP 

and melting point (Jain and Yalkowsky, 2001). Other methods may employ more 
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specific molecular descriptors to improve the predictive accuracy (Cheng and Merz, 

2003, Chen et al., 2002). GSE and its variants have been used for the estimation of 

oral absorption-related parameters termed absorption potential (Dressman et al., 

1985, Sanghvi et al., 2001). Recently, a melting point based absorption potential 

(MPbAP) has been proposed, which is derived from the GSE and includes maximum 

dose, to give an indication of oral absorption. In general, it was found that the lower 

the melting point the higher the tendency the compound had to be highly-absorbed 

and vice versa. It was also found that for some higher melting point compounds 

absorption was limited by dose (Chu and Yalkowsky, 2009). Due to the complexity 

of solubility, it is difficult to find one molecular descriptor to adequately describe all 

the solubility processes. 

In summary, the importance of solubility on oral absorption is highlighted in the 

literature, but there are few studies that incorporate both experimental solubility and 

permeability values within a model, in order to see the effect these two properties 

have on oral absorption (Pade and Stavchansky, 1998, Bergstrom et al., 2003).  

4.7 There is a Need for Permeability and Solubility Multi-Label 
Models 

The importance of permeability and solubility has been emphasised by their use in 

the Biopharmaceutics Classification System (BCS) (Amidon et al., 1995). The BCS 

system was developed to classify drugs into one of four classes based on solubility 

and/or dissolution properties and intestinal permeability (Figure 4.1). The BCS has 

been adopted by many regulatory authorities as a standard for the justification of 

biowaivers for costly bioequivalence studies. Compounds that are eligible for 

biowaivers under the BCS are immediate release dosage forms with high 

permeability and high solubility (BCS class 1) and are experimentally shown to 

exhibit rapid dissolution. In addition, the EMA (EMA, 2010) has extended the 

eligibility of biowaivers to include certain class 3 compounds. Therefore the BCS is 

shown to be a vital cost effective tool during drug development (Amidon et al., 

1995, CDER/FDA, 2000). 
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 High 
permeability 

Low 
permeability 

High 
solubility 

Class I Class III 

Low 
solubility 

Class II Class IV 

Figure 4.1. The Biopharmaceutics Classification System (BCS) 

In drug discovery the characterization of preliminary BCS classification is of great 

interest. The use of a provisional BCS class prediction can help guide decision 

making and formulation of compound development strategies (Ku, 2008, Varma et 

al., 2012, Pham-The et al., 2013a, Bergstrom et al., 2003, Lennernas and 

Abrahamsson, 2005, Butler and Dressman, 2010). In addition, it has been observed 

that knowledge of the different BCS classes can give an indication of the rate 

limiting steps of absorption as well as potential metabolic routes and transporter 

interactions (Wu and Benet, 2005, Lennernas and Abrahamsson, 2005). 

There are many classification models in the literature that predict oral absorption, 

solubility or permeability classes in separate models (Ghafourian et al., 2012, 

Gozalbes et al., 2011, Gozalbes and Pineda-Lucena, 2010). These classification 

models predict just one property and assign a compound to one class label out of two 

or more mutually exclusive class labels, for example high or low absorption. This is 

single label classification. The problem with this is that in a real life scenario most 

objects belong to more than one class at the same time. For example a drug molecule 

can be highly-absorbed but can also have high solubility or low solubility. The 

prediction of multiple class labels at the same time is termed multi-label 

classification (Carvalho and Freitas, 2009, Tsoumakas and Katakis, 2007, Read et 

al., 2011). Due to the relationship between solubility and permeability with oral 

absorption, a potential multi-label problem exists. 

Early research into multi-label modelling has focussed on text categorization 

(McCallum, 1999, Schapire and Singer, 2000) and now this type of method has 

expanded into being utilised in many different fields such as gene function prediction 

(Schietgat et al., 2010), medical diagnosis (Shao et al., 2013), and drug discovery 
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(Michielan et al., 2009). There are two main types of multi-label methods; problem 

transformation and algorithm adaptation methods. Problem transformation methods 

involve transformation of the multi-label data into single label data to then carry out 

conventional single label classification. Therefore problem transformation methods 

can also be termed algorithm independent methods and be used with any single label 

classification method. Algorithm adaption methods involve the adaptation of original 

single-label algorithms to deal with multi-label data directly (Carvalho and Freitas, 

2009, Tsoumakas and Katakis, 2007, Read et al., 2011). 

Problem transformation is a more common route for dealing with multi-label data. 

There are several different strategies in order to transform multi-label data into single 

label data for analysis. A common approach is the binary relevance method. This is 

where each class label, or property, is separately predicted. The results are then 

combined to give the results for the multi-label problem. In relation to the BCS 

prediction, solubility and permeability are predicted separately then the predicted 

BCS is assigned based on the combined permeability and solubility predictions 

based on the two separate labels. This method is simple and any single label 

classification algorithm can be used. A benefit of this method is that the compounds 

in the datasets do not need to be identical as the properties are modelled separately; 

therefore all available data are used. However, one important drawback of this 

method is that it fails to take into account label interactions (Carvalho and Freitas, 

2009, Tsoumakas and Katakis, 2007, Read et al., 2011). 

An example of binary relevance multi-label method utilised in the literature for BCS 

classification is by Pham-The and co-workers (Pham-The et al., 2013a). Although 

the multi-label method termed binary relevance is not mentioned in this study it built 

separate models for the in silico prediction of solubility or Caco-2 cell permeability. 

The results from the models were then combined to give a provisional BCS 

prediction (Pham-The et al., 2013a). A similar study predicts solubility and rate of 

metabolism separately to predict biopharmaceutical drug disposition classification 

class (BDDCS) (Wu and Benet, 2005) using the combined predictions (Broccatelli et 

al., 2012). 
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Another typical multi-label method in the problem transformation category is called 

label power set. This is where the two labels to be predicted are converted into a 

single label by combining the labels (Carvalho and Freitas, 2009). In the context of 

BCS, this method is basically the prediction of BCS classes directly. Therefore 

rather than a prediction of solubility and permeability a BCS class is predicted. The 

only relevant examples in the literature predict BDDCS class (Wu and Benet, 2005, 

Khandelwal et al., 2007), instead of predicting BCS class. In one example the 

prediction of BDDCS class was carried out using recursive partitioning (building a 

single decision tree), random forest (building a set of decision trees) and support 

vector machine (Khandelwal et al., 2007). Although this method takes into account 

interactions between labels, the main problem with this method is the lack of 

representation of some of the classes. In other words some classes may have fewer 

examples compared to the rest and leads to a poor predictive accuracy for that 

underrepresented class (Broccatelli et al., 2012). In addition, models can only be 

built when both labels are known for each compound in the dataset, therefore not 

utilising all of the data available. Therefore, for this work this method was not 

utilised due to the drastic reduction of data available for modelling. Note that it is 

also possible to predict continuous values of permeability and solubility, or another 

approach would be to classify compounds into multiple categories (low, medium, 

high)(Macheras and Karalis, 2014). However these approaches are out of the scope 

of this current work since it concerns in binary classification of chemicals according 

to the BCS system. 

A less well known multi-label method is classifier chain (Read et al., 2011). This 

method seeks to overcome the drawbacks of binary classifier by taking into account 

label interactions. The method works by firstly predicting one label. Then, the 

predicted label is used, along with any other predictors (molecular descriptors), in 

order to predict the second label. Finally, the predictions from both labels are 

combined like binary relevance for the final BCS prediction. A potential issue with 

this method could be the noisy data created from using the predicted value of the 

first label as a descriptor to predict the second label. One of the problems of this 

method is deciding which label to predict first (Gonçalves et al., 2013). In some 

cases there may be a definite order of the labels from a mechanistic point of view, 
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making this choice obvious. For example, in the case of solubility and permeability 

prediction, solubility would be the first label and permeability would be the second. 

This is because solubility is a basic property that can affect permeability of 

molecules, whereas permeability is a higher level property. Molecules need to be 

dissolved and solubilised first, before they can permeate the intestinal wall.  

Both binary relevance and classifier chain also require an extra step to convert the 

single labels into a final label result (BCS class assignment). Both have the benefit of 

utilising all available data for modelling without being restricted like the power set 

method. A summary of multi-label methods is presented in Table 4.2 

Table 4.2. A comparison of multi-label classification methods. 

Method Advantages Disadvantages 

Binary relevance 
(BR) 

x Any  single label 
classification algorithm can 
be used 

x Higher computational cost than 
power set 

x Simple x Ignores potential label 
interactions 

Label 
Power set (PS) 

x Any  single label 
classification algorithm can 
be used 

x Often, there are underrepresented 
(multi-label) classes with few 
compounds, which tends to cause 
over fitting x Takes into account label 

interdependences 

Classifier chain 
(CC) 

x Takes into account label 
interdependences 

x Which label to choose first? 
Order of chain has an effect on 
accuracy (Gonçalves et al., 2013) 

x Noisy data created from using 
predicted value of the first label 

 

4.8 Summary of the Literature on Oral Absorption Models 

From the literature, there are certain problem areas that have been identified as 

relevant and that could be investigated; 

Firstly, oral absorption datasets typically contain many more highly-absorbed 

compounds than poorly-absorbed compounds, creating highly unbalanced datasets. 

Models are not reflective of an industry setting and not fit for purpose. Furthermore, 

there are few methods in the literature that directly cope with datasets with 

unbalanced class distribution for oral absorption. 



63 
 
 

Secondly, the main oral absorption models available in the literature are only 

suitable for the prediction of passively absorbed compounds with no solubility issues 

due to data exclusions. With the increasing research and the shift in drug candidates 

towards poorly-absorbed compounds, and the inclusion of compounds undergoing 

different and multiple transport absorption routes, global models that include all 

types of absorption mechanisms are sought after. 

Thirdly, it is apparent that feature selection is important, and this is highlighted by 

the large number of oral absorption models utilising some kind of feature selection. 

Therefore, the impact of feature selection for oral absorption datasets in tandem with 

methods that cope well with datasets with unbalanced class distribution needs further 

investigation. 

Next, as permeability and solubility are rate limiting steps fundamental to oral 

absorption, investigation into the effect of these factors into models is lacking. 

Furthermore the relationship of in vitro permeability with absorption needs to be 

established objectively rather than subjectively.  

Finally, the importance of oral absorption has resulted in separate single label 

models predicting permeability and solubility in the drug discovery literature. 

However there are few models that predict both permeability and solubility in a 

multi-label fashion. The area of provisional BCS classification using multi-label 

methods needs further investigation. 

There are a variety of oral absorption models in the literature, which attempt to be 

interpretable, predictable or both. The review of the literature and all of the above 

points are important to consider in relation to the aims and objectives of this thesis. 
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5 Datasets and Methods 

This chapter details the generic methodology utilised in this research. Specific 

information regarding individual methods can be found in individual chapters of this 

thesis. 

5.1 Datasets 

A summary of the data available for the four datasets used in this thesis are presented 

in Table 5.1. This table shows the chapter(s) in which each dataset are used and the 

number of compounds in each dataset. These datasets including references can be 

found on the accompanying disk in this thesis. 

 
Table 5.1. Overview of the four experimental datasets used in this thesis 

Chapter Dataset HIA 
(%) 

Caco-2 Papp          
(x 10-6 cm/s) 

MDCK 
Papp  

(x 10-6 cm/s) 

Aqueous 
solubility 
(mg/mL) 

Melting 
Point 
(oC) 

Maximum 
strength 

dose 

6,7 1 645           
8 2 689           
9 3 931 386 246 482 609 893 

10 4   1428 247 750     
 

5.1.1 Dataset 1 

This dataset consisted of Human Intestinal Absorption (%HIA) data for (initially) 

647 drugs and drug-like compounds freely available on the internet 

(http://cadd.suda.edu.cn/admet/) (Hou et al., 2007c).  These 647 drugs and drug-like 

compounds covered a wide variety of pharmacological and chemical classes. After 

the removal of duplicates (sulfamethazine and glycine) a final dataset consisting of 

645 compounds was obtained. From the 645 drugs, 95 compounds were identified by 

Hou et al (2007c) to be excluded from the QSAR model development. More 

precisely, 43 were absorbed via carrier mediated transporters or via the paracellular 

route, 24 had poor solubility problems, 26 contained ammonium groups, and for 2, 

logD could not be calculated resulting in a total of 95 compounds. For QSAR 

modelling it is important that datasets are curated to produce homogenous group of 

http://cadd.suda.edu.cn/admet/
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data with a similar biological mechanism therefore the effect of removing some of 

these compounds from the model building process was investigated.  

5.1.2 Dataset 2 

This dataset consisted of the compounds from dataset 1 plus a small collection of 

additional %HIA data for 47 compounds collected mainly from the dataset of Varma 

et al (Varma et al., 2010) and the literature. 

5.1.3 Dataset 3 

Dataset 3 contained collected data for %HIA, in vitro apparent permeability, aqueous 

solubility, maximum dose strength and melting point.  

Human Intestinal Absorption 

Using these datasets with collected %HIA as a starting point, an extensive literature 

search was then carried out and additional compounds were also added from the drug 

information obtained from the FDA (www.fda.gov) Drugs@FDA database (accessed 

from June 2012 to May 2013) and the literature. I used the same principles to 

calculate and evaluate the reliability of fraction absorbed values as defined by other 

works (Varma et al., 2010, Zhao et al., 2002). Where there was no numerical value 

defined in the literature, categorical values for fraction absorbed were also included 

for this dataset. At the end, this final dataset consisted of 914 numerical and 17 

categorical fraction absorption values creating a final dataset of 931 compounds with 

% HIA data. 

In vitro Apparent Permeability 

Apparent permeability (Papp) data measured in cm.s-1 was collected for compounds 

with known fraction absorption from this dataset. The dataset contains apparent 

permeability data for two different cell lines, Caco-2 and MDCK, obtained from the 

literature. The dataset contains 386 Caco-2 and 246 MDCK Papp values for drug and 

drug-like compounds. For 185 compounds the permeability was found for both cell 

lines, and this dataset was used to investigate the relationship between the two cell 

lines. Where there were multiple permeability values for a single compound these 

results were averaged, unless they were very different; in which case comparison of 

http://www.fda.gov/
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MDCK and Caco-2 permeability was carried out (if available) or careful 

examination of the experimental conditions of the specific value was performed in 

order to justify inclusion. 

For Caco-2 permeability, the published dataset by Pham-The et al (Pham-The et al., 

2011) was used as the starting point from which an exhaustive literature search was 

carried out. For MDCK permeability, permeability data from two studies by Varma 

and co-workers (Varma et al., 2005, Varma et al., 2012) were used as a starting 

point. As there are different strains of this cell line, it was important to reference 

what strain (if known) was used in the study. In addition, it was decided not to just 

isolate data collection on one strain, but make a note which would aid in 

interpretation at a later stage. The main two types of MDCK strains collected were 

MDCK II and MDCK-MDR1. A preliminary statistical paired t test of these two 

main strains showed no significant difference between these two strains in this 

dataset (p > 0.05), therefore all the data for MDCK were used together for 

comparison with Caco-2 (See chapter 9). 

Aqueous Solubility 

For the compounds with %HIA data, aqueous solubility was collated where available 

in the literature. Aqueous solubility for 483 compounds in mg/mL was obtained 

primarily from the AQUASOL dATAbASE (6th Edition) and SRC (PHYSPROP) 

databases (http://esc.srcinc.com/fatepointer/search.asp) and the literature. For the 

AQUASOL data, those values that had the highest evaluation codes as defined by the 

database were selected, and those compounds with more than one value were 

averaged. 

Melting Point 

Experimental melting point (in oC) was obtained from the AQUASOL dATAbASE, 

SRC (Physprop), the Hazardous substances data bank (HSDB) 

(http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB) and the literature. The 

average was taken if a melting point range was stated.  

 

http://esc.srcinc.com/fatepointer/search.asp
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
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Maximum Strength Dose 

The maximum strength dose was obtained for the compounds in this dataset from the 

British National Formulary (BNF, 2012), FDA electronic orange book 2012 

(accessed December 2012-January 2013) and Martindale (Martindale, 2009). Where 

there were still missing values, an extensive literature search was carried out and the 

values presented are the best recommendation based on an evaluation of the 

literature data. Where doses were based on bodyweight, a body weight of 70kg was 

used to calculate the maximum dose for human. 

5.1.4 Dataset 4 

In vitro Apparent Permeability 

The permeability dataset used to build the initial permeability models was taken 

from the published dataset of Pham-The et al (2013a). This dataset contained 

apparent permeability values for 1301 compounds from the Caco-2 cell line, 

measured in the pH range 6.5-7.4. Upon the removal of duplicates, compounds with 

incorrect structures and compounds with molecular weights greater than 3000, a 

dataset of 1288 compounds remained for permeability modelling.  

In addition, a selection of in vitro permeability data collected from Caco-2 and 

MDCK cell lines from dataset 3 was used. These 127 compounds were not present in 

Pham-The et al.’s  published  permeability  dataset  and  had  solubility  values  present. 

The references for this validation set can be found in Appendix 4. 

Aqueous Solubility 

Experimental solubility data were obtained from dataset 3 and from the literature. In 

addition to this, qualitative aqueous solubility was collected for those compounds 

with missing experimental solubility values. The main source of qualitative 

solubility was obtained from Martindale (2009) and from the literature. For the 250 

qualitative solubility values that were obtained, these were converted to numerical 

values based on the principles of Kasim et al. according to Table 5.2 (Kasim et al., 

2004). The final total dataset size was 750 compounds. 
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Table 5.2. Solubility definitions adapted from Kasim et al. (2004) 

Descriptive term  
(solubility definition) 

Solubility 
assigned 
(mg/mL) 

Very soluble (VS) 1000 
Freely soluble (FS) 100 
Soluble (S) 33 
Sparingly soluble (SPS) 10 
Slightly soluble (SS) 1 
Very slightly soluble (VSS) 0.1 
Practically insoluble (PI) 0.01 

 

5.2 Molecular Descriptors 

A variety of different software packages were used to compute 2D/3D molecular 

descriptors; they include TSAR 3D v3.3 (Accelrys Inc), MDL QSAR (Accelrys 

Inc.), Advanced Chemistry Development ACD Labs/ LogD Suite v12. For chapter 6, 

Kowwin (U.S. EPA) was also used. In addition, for chapters 7, 8 and 10, additional 

molecular descriptors were calculated using MOE (Chemical Computing Group Inc.) 

v2011.10 and v2012.10. Due to software limitations, some molecular descriptors 

could not be calculated for some compounds in the datasets.  

5.3 Training and Validation Sets 

For the majority of datasets the compounds were placed into either training or 

validation sets randomly after the dependent variable (i.e. %HIA, permeability, 

solubility) was sorted by ascending  values and then by log P. The ascending values 

were then put into groups depending on the dataset size to ensure that a large and 

diverse set of compounds were placed into the validation set. For example, for 

ascending %HIA values, these compounds were put into groups of six, then 5/6th of 

these compounds was placed in the training set and the remaining into the validation 

set. The details and numbers of compounds in the training and validation sets can be 

found in the specific chapters of this thesis. 
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5.4 Feature Selection Techniques 

Feature selection can reduce redundancy and chance correlations with molecular 

descriptors when models are built. Feature selection methods select the best 

molecular descriptors for the classification or correlation with the dependent 

variable. In this work feature selection methods are only applied to the training sets 

or method optimisation sets and never carried out using the compounds in the 

validation set. 

The feature selection methods used in this thesis are summarised in Table 5.3, where 

an  ‘x’  indicates  the  feature  selection  method utilised in the work in that chapter: 

Table 5.3. Feature selection methods utilised in this work 

 Chapter 
Software used Feature selection 

method 6 7 8 10 

Stepwise regression x x     MINITAB       
v 15.1.0.0 

Stepwise Discriminant x      TSAR v 3.3 

Lipinski's rule of five* x x      n/a 

Predictor importance 
using random forest     x x STATISTICA 

v 11 and 12 

Chi-square     x   STATISTICA 
v 11 

Information gain 
ratio     x   WEKA v 3.6 

Greedy stepwise     x   WEKA v 3.6 

Genetic search     x   WEKA v 3.6 

*Including number of rotatable bonds 

5.4.1 Stepwise Regression Analysis 

Stepwise regression analysis was performed on the training sets using MINITAB 

Statistical Software (version 15.1.0.0) to select descriptors that had significant linear 

relationships with the %HIA, the dependent variable. The calculated molecular 

descriptors were set as independent variables. In order to minimise the risk of chance 
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correlations, the maximum number of descriptors allowed in the models was 

restricted to eight. All the descriptors selected using this method had a p-value < 

0.05, showing that the chosen descriptors by this method were significant for 

predicting %HIA. 

5.4.2 Stepwise Discriminant Analysis 

Forward stepwise discriminant analysis was carried out using TSAR 3D v 3.3. This 

method works by calculating Mahalanobis distance (Mahalanobis, 1936). The 

independent variable is chosen if it has the greatest increase in the total Mahalanobis 

distance between the two classes compared to the rest of the molecular descriptors. 

The seven molecular descriptors selected using this method were only used for 

classification modelling of HIA class in chapter 6. 

5.4.3  Lipinski’s  Rule of Five Descriptors Plus the Number of Rotatable Bonds. 

Lipinski’s   ‘rule   of   five’   is   a   popular   rapid   screen   to   identify   compounds   that   are  

poorly-absorbed (Lipinski et al., 1997). The descriptors proposed by Lipinski are: 

molecular weight, number of hydrogen bonding donor and acceptor groups and logP. 

Number of rotatable bonds was also added, as it has been suggested to help predict 

oral bioavailability and hence oral absorption (Veber et al., 2002). This resulted in a 

total of five molecular descriptors. 

5.4.4 Predictor Importance Ranking Using Random Forest (RF) 

The molecular descriptor set is generated using random forest. Using STATISTICA 

v 11 and v 12, random forest generates a set of decision trees based on random 

subsets of compounds and descriptors in the training set. The ensemble of decision 

trees vote based on the individual tree results and then the majority vote for a 

particular compound determines the classification of that compound (Breiman, 

2001).  

Additionally, random forest calculates an output of predictor importance of all the 

molecular descriptors used to generate the random forests. A set number of 

molecular descriptors with the highest ranking predictor importance were selected to 

be used for model building. The calculation of descriptor importance in 
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STATISTICA software is explained as follows. For every molecular descriptor, the 

drop in each node impurity (delta) is summed for all nodes in the trees and expressed 

relative to the largest sum – i.e. the most significant descriptor. The delta is 

calculated for every descriptor (even if not used in the node for the splitting of the 

tree) and summed for every node and tree produced in the forest. The larger the delta 

the more significant the molecular descriptor is. The final summed delta value for 

every descriptor is normalized against the most important molecular descriptor and 

therefore expressed relative to the molecular descriptors with the largest delta. This 

means that important molecular descriptors that may not have been picked to be in 

the trees may still appear in the final predictor importance table. Additionally this 

method allows the application of different misclassification costs for different 

classes; therefore it can be used to overcome unbalanced class distributions (a 

problem that occurs in my datasets in general). 

Optimization of the random forest method was carried out based on the plot of the 

misclassification rate vs. the number of trees. The misclassification rate is the 

number of misclassified compounds divided by the total number of compounds. The 

lower the misclassification rate, the better the model. Based on the misclassification 

rate, the optimum number of trees was selected and used to repeat the analysis with 

the new optimized value. From this optimised model, a set of the top molecular 

descriptors were selected with the highest predictor importance for each of the 

dependent variables: HIA (used in chapter 8), permeability and solubility class (used 

in chapter 10). 

5.4.5 Chi Square (CS) 

CS is a statistical measure of the association (or dependence) between two 

categorical variables (Liu and Setiono, 1995). The greater the CS value, the more 

statistically significant the molecular descriptor is in relation to the %HIA class, 

therefore allowing the most statistically important molecular descriptors to be 

ranked. The main drawback of using CS as well as many other filter techniques is 

that it is a univariate feature selection method; therefore it does not take into account 

interactions between the molecular descriptors. CS is an association measure for 

categorical descriptors, therefore there may be problems when continuous variables 
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are used that contain a large spread of numerical values, since the conversion of 

numerical variables into categorical ones (required for the use of the chi square 

measure) may lose relevant information. This feature selection method was carried 

out using STATISTICA v 11. The software default number of bins (10) was used for 

chi square discretization of the molecular descriptors. The top 20 molecular 

descriptors for HIA class were selected using this method in chapter 8. 

5.4.6 Information Gain Ratio (IGR) 

Information gain ratio is a normalised function of the information gain feature 

selection method developed by Quinlan as part of the ID3 (Iterative Dichotomiser) 

decision tree algorithm (Quinlan, 1979). This feature selection method is used to 

split the decision tree into nodes and identify molecular descriptors that are the best 

for the individual splits. Information gain works to minimise the information needed 

to classify compounds into resulting nodes. It is the difference between the original 

information (before the data are split) and the new information produced after using 

the molecular descriptor to split the training set data. This difference is the gain of 

information achieved by using a specific molecular descriptor, therefore the 

molecular descriptor with the highest gain is the one used for the split. Information 

gain ratio was first described by Quinlan in the context of the C4.5 algorithm, which 

superseded ID3 (Quinlan, 1993). The higher the ratio value the better the molecular 

descriptor for the split. Information gain ratio overcomes the bias towards selecting 

those molecular descriptors with many numerical values by normalising the 

information gain. This feature selection technique was carried out using WEKA 3.6 

to select the top 20 molecular descriptors for HIA class in chapter 8. 

5.4.7 Greedy Stepwise (GRD) 

Feature selection methods such as chi square and information gain ratio are based on 

ranking the molecular descriptors based on a certain criterion and do not take into 

account the interactions between the molecular descriptors. Greedy stepwise takes 

molecular descriptor interactions into account as well as the correlation with HIA 

class. This method seeks to maximise the correlation between HIA and the molecular 

descriptors being tested, and minimise correlations between the molecular 

descriptors. Greedy stepwise is a forward stepwise feature selection method, 
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therefore is a local search method (Kittler, 1978). This local search method firstly 

considers all the molecular descriptors and picks the best one – i.e., the one that 

correlates with HIA class. It then starts again with all the remaining molecular 

descriptors, and picks the best molecular descriptor that best pairs with the 

previously selected molecular descriptor in relation to HIA class. The iterations carry 

on until a local maximum is reached. As only a local search can be carried out based 

on the molecular descriptor(s) selected in all the previous iterations, the potential for 

a global search of all the different possible subsets is limited, and promising regions 

of molecular descriptor space can be missed (Dudek et al., 2006). The evaluator 

function used in WEKA v 3.6 to guide the greedy search in the feature selection 

process was correlation-based feature selection subset evaluator (CfssubsetEval). 

This evaluator aims to maximise the correlation between the best molecular 

descriptors and HIA class and also minimises the correlation or redundancy between 

the descriptors for the search subsets generated. In chapter 8 this method was used 

for HIA modelling and 21 molecular descriptors were selected and utilised further 

for model building to predict HIA class. 

5.4.8 Genetic Search (GEN) 

In chapter 8 this feature selection method is utilised as a filter (rather than wrapper) 

version of the genetic algorithm (Shah and Kusiak, 2004). Genetic algorithm (GA) 

was first created by Holland (Holland, 1975), although the concept of genetic 

algorithm was being researched before this. GA generally is an evolutionary 

algorithm, which mimics the process of natural evolution. An initial population is 

created containing random candidate solutions. In the context of this work, a 

candidate solution is a molecular descriptor subset. Each candidate solution is 

evaluated in terms of its fitness (quality), and candidate solutions are then selected to 

be reproduced and to undergo modifications with a probability proportional to their 

fitness  values.  The  process  of  selecting  “parent”  candidate solutions based on fitness 

and   producing   “offspring”   solutions   that   are   based   on   the   parents   is   iteratively  

performed for a number of iterations, so that the population of candidate solutions 

gradually evolves towards better and better candidate solutions (Holland, 1975). In 

this work I have utilised the genetic search feature selection method using WEKA 

software (Goldberg, 1989).  This  method  carries  out  a  global  search  in  the  ‘molecular  
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descriptor   space’   to   find   the   best   subset   of   molecular   descriptors   relating   to   HIA  

class, guided by a subset evaluator that generates a numerical value of   ‘fitness’  

(quality) of any given feature subset. Like with the greedy search technique, the 

evaluation  function  used  for   the  genetic  search  method  was  ‘CfssubsetEval’.  Using  

this feature selection method for HIA class, 64 molecular descriptors were selected 

and utilised further for model building in chapter 8. 

5.5 Modelling Techniques 

5.5.1 Multiple Linear Regression (MLR) 

Linear regression involves deriving a linear model between X and Y variables. 

Multiple linear regression models the relationship between multiple independent Y 

variables and the dependent variable, X, by fitting a linear equation to observed data 

in the training set. MINITAB v15.1.0.0 software was used to carry out MLR in 

chapter 6. In the context of this work the dependent variable is numerical %HIA and 

the independent variables are the molecular descriptors as selected via the feature 

selection methods described in previous sections. The linear equation derived from 

the compounds in the training set can be used to predict %HIA for the validation set 

to test the predictability of the MLR model obtained. 

5.5.2 Linear Discriminant Analysis (LDA) 

LDA is a statistical classification method that finds a linear combination of 

independent variables that can best characterise or separate two or more classes 

based on the dependent variable. LDA is different from MLR as the dependent 

variable is a categorical value rather than a numerical value; however still continuous 

independent variables are used to build models to predict the categorical class. In 

chapter 6, LDA, using MINITAB v15.1.0.0, was used to find molecular descriptors 

that can discriminate between high and low absorption class values using the training 

set. The models built were then utilized to predict the absorption of drugs in the 

validation set. 



75 
 
 

5.5.3 Classification and Regression Trees (C&RT) 

STATISTICA v11 and v 12 (StatSoft Ltd) software was used for classification of 

compounds into classes using C&RT analysis. C&RT analysis is a statistical 

technique that uses decision trees to solve regression and classification problems 

developed by Breiman (Breiman et al., 1984). If the dependent variable is 

categorical then a classification tree is made (e.g. predicting low or high absorption 

classes) and if the dependent variable is continuous then a regression tree is 

produced, resulting in the prediction of numeric values of the dependent variable.  

The  binary  C&RT  analysis   starts  building   the  decision   tree   at   the   ‘tree   root’  using  

molecular descriptors. The algorithm in C&RT will choose the most appropriate 

(statistically significant) molecular descriptor to split the tree and the most 

appropriate threshold value to define the split. A parent node splits into two child 

nodes and then these become the parent nodes for the next split. The splitting of the 

tree continues until it can be no longer split or until the tree satisfies one of the 

stopping factors being applied by the user to prune the tree to prevent over-fitting. 

The nodes which cannot be split anymore are termed terminal nodes, and they 

contain the predicted classes (Breiman et al., 1984, Tan et al., 2006). In chapters 7-

10 in this thesis categorical prediction of binary HIA, permeability and solubility 

classes was focussed on using C&RT analysis. 

5.5.3.1 Classification Thresholds 

For classification, when the class variable takes numerical values, a threshold needs 

to be defined in order to assign compounds into the binary classes. In this 

investigation,   compounds   were   placed   into   categorical   classes   of   ‘high’   or   ‘low’ 

absorption according to the observed %HIA value in the dataset. For chapters 6-8, 

the threshold for the classes was 50%; therefore, any compound with %HIA ≥  50% 

was   assigned   to   the   ‘High’   class,   and   any   compound   with   a   %HIA   <   50%   was  

assigned  to  the  ‘Low’  class.  For  chapter 9, a range of %HIA thresholds were tested 

from 30% to 90%. Finally, for chapter 10 specific thresholds for permeability and 

solubility were assigned, as detailed further in chapter 10. 
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5.5.4 Multi-Label Classification 

Multi-label classification was used to predict multiple class labels simultaneously. In 

this thesis multi-label classification was used to predict permeability and solubility 

labels in the form of BCS class prediction using classification C&RT analysis. 

For the multi-label work in this thesis, only problem transformation methods were 

considered, as they are more common for dealing with multi-label data. There are 

several different strategies in order to transform multi-label data into single label 

data for analysis (Carvalho and Freitas, 2009); however, in this work the two multi-

label methods of binary relevance and classifier chain were used to predict BCS 

class using permeability and solubility, using dataset 4. 

Binary relevance involves building separate models of solubility and permeability, 

and the predicted BCS is assigned based on the combined permeability and solubility 

prediction based on the two separate labels (Figure 5.1).  

 

Figure 5.1. How the binary relevance problem transformation method works for 

BCS class prediction 

The second multi-label method utilised in chapter 10 was classifier chain (Read et 

al., 2011). See Figure 5.2 for a schematic representation of this method. 
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Figure 5.2. Prediction of BCS using the classifier chain multi-label method 

The method works by firstly predicting one label (in this case solubility), then using 

the first predicted label, along with the other molecular descriptors used to build the 

models, in order to predict the second label (Figure 5.2). Then the predictions from 

both labels are combined (like in the binary relevance method) for the final BCS 

prediction. 

5.6 Statistical Evaluation of Models 

5.6.1 Evaluation of Continuous/Numerical models 

For MLR analysis in chapter 6, the following statistical criteria were obtained: N, the 

number of observations; r2, the squared correlation coefficient; S, the standard 

deviation; q2, leave one out cross validation squared correlation coefficient F, 

Fisher's criterion. From the predicted and observed %HIA data, the RMSE (root 

mean squared error) was calculated for the training and validation sets separately 

(Equation 5.1). 

𝑅𝑀𝑆𝐸 =   √𝑀𝑆𝐸 = ∑( )                                                    Eq. 5.1 

In equation 5.1, pred is the predicted and obs is the observed %HIA, and n is the 

number of compounds. 
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5.6.2 Evaluation of Categorical/Classification models 

5.6.2.1 Single Label Evaluation 

For binary classification, the possible outcomes of a prediction model can be 

visualised using a confusion matrix (Figure 5.3). True positives and true negatives 

are correct predictions of the classes by the classification model. False positives and 

false negatives are misclassifications by the model. In the context of oral absorption, 

a false positive is an observed poorly-absorbed compound that is predicted to be 

highly-absorbed by the model, and a false negative is a compound that is actually 

highly-absorbed but is predicted to be poorly-absorbed by the model. The number of 

correct classifications and misclassifications of both the classes are used in 

calculations to give an indication of the predictive ability of a classification model. 

  Observed class 
  HIGH LOW 

Predicted 
class 

HIGH 
True 

Positive 
(TP) 

False 
Positive 

(FP) 

LOW 
False 

Negative 
(FN) 

True 
Negative 

(TN) 

Figure 5.3. A confusion matrix that outlines the possible outcomes of a binary 

classification 

The predictive performance of classification models was measured using Specificity 

(SP), Sensitivity (SE), the cost normalised misclassification index (CNMI) and SP × 

SE. 

Specificity is the ratio of correct classifications of poorly-absorbed compounds as 

depicted by Equation 5.2. 

SP = TN/(TN+FP)                                                                                             Eq. 5.2 

In this equation SP is the total number of true negatives divided by the total of true 

negatives and false positives as defined in Figure 5.3. Specificity is inversely 

proportional to the number of false positives.  
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Sensitivity indicates the correct number of classifications for the highly-absorbed 

compound class as shown in Equation 5.3. 

 SE = TP/(TP+FN)                                                                                             Eq. 5.3 

In equation 5.3, SE is the number of true positives divided by the total number of 

true positives and false negatives predicted by the model. Sensitivity is inversely 

proportional to the number of false negatives.  

In this work, in order to represent the overall predictive performance, specificity 

multiplied by sensitivity was used (SP × SE)(Parpinelli et al., 2002). Overall 

accuracy is often defined as the number of correct predictions (true positives and true 

negatives) divided by the total number of compounds in either the training or 

validation set (TP + TN)/ (TP + TN + FP + FN)). However, this calculation is not 

suitable to use for this work when the dataset has a highly unbalanced class 

distribution, especially for %HIA data.  In other words, due to the majority of 

highly-absorbed compounds in the training and validation sets, the classification 

outcome of these compounds disproportionately affects the overall accuracy: 

therefore, accuracy will follow the same trend as the sensitivity values in the model 

and fail to take into account the specificity appropriately. For example, if a dataset 

contained 90% of highly-absorbed and 10% of poorly-absorbed compounds, a trivial 

classifier would consist of predicting the highly-absorbed class (the majority class) 

for all compounds in the validation set. Such a trivial majority classifier, which does 

not involve any data analysis, would trivially achieve an overall accuracy of 90% (if 

accuracy is simply measured as (TP + TN)/ (TP + TN + FP + FN)). However, this 

high accuracy is misleading. Although the majority classifier achieved perfect 

prediction for the high absorption class, it achieved no correct predictions for the 

poorly-absorbed class. This example clearly shows a weakness of the overall 

accuracy measure, which is not an appropriate measure to use when the class 

distribution is very unbalanced. The use of SP × SE avoids the above problem in this 

scenario, since the trivial majority classifier would achieve a prediction of 0% by 

multiplying the sensitivity (100%) and specificity (0%), and this would highlight the 

majority  classifier’s  poor  ability  to  classify  both  classes.  A  measure  of  0%  accuracy  

for the majority classifier is also intuitively fair; since that classifier is not even 
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taking a look at the value of the descriptors (it just counts the number of compounds 

in each class in order to determine the majority class). In summary, the overall 

accuracy as defined in the literature is an incorrect measure of accuracy in problems 

with very unbalanced class distributions, like the oral absorption datasets used in this 

thesis. In this work, to overcome the problem, the better accuracy measure of SP × 

SE was used as the measure of the overall accuracy. This measure is a better 

representation  of  a  model’s  predictive  power,  as  it  is  affected  the  same  way  by  false  

negatives as by false positives, and therefore was used in measuring the overall 

accuracy of classification models in this thesis. 

 
The cost normalised misclassification index (CNMI) was calculated using equation 

5.4. This is a useful evaluation measure when different misclassification costs are 

applied to false positives and false negatives in models predicting HIA, permeability 

and solubility classes in chapters 7, 8 and 10. 

The CNMI is calculated in the following way: The numerator of this equation is 

calculated by first multiplying the number of each type of misclassifications (false 

positives and false negatives) by the corresponding misclassification cost and then 

adding those two products. The denominator (normalization factor) is calculated by 

first multiplying the total number of compounds in each class – i.e. number of 

negatives (poorly-absorbed compounds) and number of positives (highly-absorbed 

compounds) – by the corresponding misclassification costs and then adding those 

two products. 

𝐶𝑁𝑀𝐼 = (𝐅𝐏  ×  𝐂𝐨𝐬𝐭𝐅𝐏) (𝐅𝐍  ×  𝐂𝐨𝐬𝐭𝐅𝐍)
(𝐍𝐞𝐠  ×  𝐂𝐨𝐬𝐭𝐅𝐏) (𝐏𝐨𝐬  ×  𝐂𝐨𝐬𝐭𝐅𝐍)

                                                              Eq. 5.4     

CostFP and CostFN are the misclassification costs assigned for false positives or false 

negatives; Neg is the total number of poorly-absorbed compounds and Pos is the 

total number of highly-absorbed compounds. Note that the numerator of equation 5.4 

is the total misclassification cost obtained by using a classification model to classify 

compounds in the training or validation set, whilst the denominator is the maximum 

misclassification cost that could in principle be achieved (if all compounds in the 

validation set were misclassified). Hence, the calculated value will be between zero 

and one, with zero representing no misclassifications, as the number increases to one 
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then the misclassifications of the model increase. The value of this measure has been 

calculated for models predicting HIA, permeability and solubility classes in chapters 

7, 8 and 10. 

5.6.2.1 Multi-Label Evaluation 

For chapter 10, the evaluation of multi-label classification models requires different 

measures from conventional single label classification models (Tsoumakas and 

Katakis, 2007, Carvalho and Freitas, 2009). The statistical evaluation of multi-label 

work can be difficult, as a result can be fully correct, partially correct or fully 

incorrect. Therefore, it is important to have several different evaluation measures, 

due to the issue of multiple class labels, to help select the best model, i.e. the one 

with the best model performance over a set of evaluation measures. 

 

For multi-label classification there are two broad types of evaluation measures. 

These are label based evaluation measures and label set evaluation measures 

(Tsoumakas and Katakis, 2007, Read et al., 2011, Carvalho and Freitas, 2009). Label 

based evaluation measures are those based on the individual single labels, such as 

Hamming loss (Schapire and Singer, 2000) and classification/subset accuracy 

(McCallum, 1999, Zhu et al., 2005). In this work, the accuracy of the individual four 

BCS classes was used, which is essentially the converse of the Hamming loss – in 

the sense that the latter is to be minimized, whilst the individual accuracy per class is 

to be maximized. The individual class accuracy for each class was calculated by 

dividing the correct number of predictions for compounds of that class divided by 

the total number of compounds of that class, resulting in four accuracy measures for 

the individual four BCS classes. Additionally, for this work the SP X SE accuracy 

measure of the individual permeability and solubility labels was calculated. 

 

Label set evaluation measures are based on the prediction of all labels together. 

Therefore this type of measure can be very harsh, as if there is not a perfect 

prediction of both labels for a compound, that prediction will be considered 

completely wrong, even if one of the two labels was correctly predicted. Examples 

of label set evaluation measures are micro-averaging and macro-averaging (Yang, 

1999). The label set evaluation measures used in this work are based on macro-
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averaging (Yang, 1999). Macro-averaging is the average, by compound, of all the 

accuracies for the different BCS classes. To calculate the overall accuracy, the 

number of correct predictions (regardless of class) was divided by the total number 

of compounds. It must be noted that the overall accuracy calculated in this way could 

be biased and not give an accuracy measure which would show the predictive 

accuracy of all four classes. Therefore, in addition the geometric mean of all four 

individual predictive accuracy measures for the BCS classes was calculated. The 

geometric mean is calculated by multiplying all the four BCS class accuracy 

measures and taking the fourth root of this product. The benefit of this measure is 

that it will not be biased towards the distribution or predictive accuracy of any 

individual BCS class. In other words, if a model can predict three out of four classes 

with high accuracy but is unable to predict accurately for one class, the geometric 

mean accuracy will be low.  
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6 The Effect of Under-Sampling the Majority Class of the 
Training Set for Oral Absorption Models 

6.1 Introduction 

There are many oral absorption models that are based on unbalanced class-

distribution datasets (Zhao et al., 2001, Wessel et al., 1998). In oral absorption 

datasets, there are typically many more highly-absorbed than poorly-absorbed 

compounds. This creates biased models, which are better at predicting the majority 

highly-absorbed compounds compared with the minority poorly-absorbed class. This 

defeats the objective of a good model, which should be able to predict both high and 

low absorption with high level of accuracy. Furthermore, models produced will not 

reflect real life drug discovery scenarios where a higher proportion of drugs are more 

likely to be poorly-absorbed (Wu and Benet, 2005).  

There are resolutions to this problem of biased models due to unbalanced class 

datasets. One potential resolution is the method of under-sampling. Under-sampling 

involves removal of compounds of the highly-absorbed majority class from the 

training set to create a balanced training set of 50:50 distribution of high and low 

absorption compounds (Figure 6.1).  

 

Figure 6.1. Under-sampling the majority class in an unbalanced class-distribution 

dataset to create a balanced training set for modelling 

Although studies have attempted to resolve the problem of unbalanced class-

distribution datasets, there is little evidence of work comparing the predictive ability 
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of models built using unbalanced vs and balanced data using the under-sampling 

method for oral absorption (For examples of recent studies see (Talevi et al., 2011, 

Bai et al., 2004)).  

Therefore, this chapter addresses the problem of unbalanced class distributions by 

creating a balanced training set through under-sampling the highly-absorbed 

compounds. In doing so, this chapter seeks to achieve more effective models with a 

better predictive accuracy for the poorly-absorbed compounds without jeopardising 

the predictive accuracy for the highly-absorbed drugs. 

6.2 Methods 

6.2.1 Dataset 

Dataset  1  was  utilised  for  the  prediction  of  oral  absorption  as  defined  in  the  ‘Dataset  

and  Methods’  section  5.1.1  of  this  thesis.  In this study, the 26 compounds containing 

ammonium groups were excluded entirely to avoid the added complications as stated 

in the methods section 5.1.1. These 26 compounds were a part of the 95 compounds 

as identified by Hou et al (Hou et al., 2007c). Therefore in this chapter the statement 

“Upon   exclusion   of   the   95   compounds”  means   the   exclusion   of   the   remaining   69  

compounds as defined by Hou et al (Hou et al., 2007c), as the 26 compounds 

containing quaternary compounds have already been removed. The remaining 619 

compounds where %HIA was available were used in the resulting analyses. 

6.2.2 Training Sets and Validation Sets 

The dataset was split into a training set and a validation set. From the same original 

dataset, different training sets were created and had different numbers of compounds. 

From the remaining compounds, either the rest were used as a validation set or a 

selection of the remaining compounds was used as a validation set. Table 6.1 is a 

summary of the numbers of compounds assigned to the training and validation sets 

for the different splits of the datasets. The next section describes the rationale behind 

partitioning the dataset into these training and validation sets. 
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Table 6.1. Datasets of intestinal absorption and numbers of compounds in each set 

(n) 

Training 
Set Name 

Validation 
Set Name 

n Training 
Set 

n Validation 
set n Total 

TS1 VS1 94 502 596 
TS2 VS2 496 100 596 

TS1 or TS2 VS3 94 or 496 89 183 or 585 

6.2.2.1 TS1–VS1  

The overall dataset contained more highly-absorbed than poorly-absorbed 

compounds, especially in the 80-100 %HIA range. Therefore, random selection of 

compounds into training and validation sets could result in a higher number of the 

highly-absorbed compounds, creating a bias towards this majority. To overcome this 

issue, a balanced dataset was devised. Compounds were sorted by ascending %HIA, 

then by ascending log P values. From the sorted dataset, 10 categories of %HIA, 

each of which contained about 10 drugs from each 10% range of %HIA, were 

created; and for each category, compounds were selected randomly for the training 

set. By taking 10 samples from each %HIA range, under-sampling the majority class 

is achieved due to the larger number of highly-absorbed compounds being removed 

and not used compared with the poorly-absorbed class. The remaining compounds 

were used as the validation set (VS1). Under-sampling the majority class (high 

absorption compounds) gave a more balanced training set with similar numbers of 

low and high absorption drugs in the training set.  

6.2.2.2. TS2–VS2  

The dataset was initially sorted based on ascending %HIA and then by ascending 

logP values. Then, from each group of six consecutive compounds, five were 

assigned to the training set, and one compound was allocated to the validation set 

randomly. This ensured similar distributions of %HIA values in the training and 

validation sets. The resulting dataset is unbalanced and not under-sampled, and it has 

a %HIA distribution similar to the one in the original dataset, with a higher 

proportion of highly-absorbed compounds in the training and validation sets.  
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6.2.2.3 VS3  

An additional balanced validation set containing 89 compounds was used to compare 

the models developed from the training sets, TS1 and TS2. This is because it would 

be unfair to compare models from these different training sets as the validation sets 

are not identical. Recall for the TS1 training set, the initial validation set, VS1 (of 

502 compounds), consisted of all the remaining compounds not used in the training 

set. Therefore the training and validation sets have different %HIA distributions. In 

other words, not only the validation sets of TS1 and TS2 are very different in terms 

of the number of the compounds, for TS1, the validation set is not a correct 

representation of the training set as the %HIA distributions are very different.  

Therefore a new validation set, VS3, containing 89 compounds was developed as 

follows. From the remaining 502 compounds in VS1, 89 compounds were selected 

randomly by under-sampling the highly-absorbed compounds (VS3). None of the 

compounds from TS2 were included in this validation set. This new validation set 

had a similar %HIA distribution of 50:50 highly:poorly-absorbed compounds to that 

of the TS1 training set. This new validation set enabled direct comparisons between 

all the models comprehensible when using the results from the validation set VS3. 

6.2.2.4 Exclusion of Outliers  

The removal of the 95 compounds as highlighted by Hou et al. (2007c) from the 

dataset reduced the number of compounds in the training and validation sets. The 

final numbers left in the training and validation sets after these compounds were 

removed was for TS1, 73 and 477; and for TS2, 458 and 92 respectively. Removing 

the outliers did not affect the balance of high to low absorption compounds 

significantly for VS1, VS2, VS3 or TS2. For TS1 the balance changed towards 

highly-absorbed compounds from the initial 50:50 split to 33:67. 
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6.2.3 Model Development 

6.2.3.1 Molecular Descriptors 

A total of 215 descriptors were used in this study using a variety of different 

software including TSAR 3D (Accelrys Inc.), MDL QSAR (Symyx Inc.), Kowwin 

(U.S. EPA) and Advanced Chemistry Development ACD Labs/LogD Suite v 12. 

6.2.3.2 Feature Selection 

For this chapter the following feature selection methods were used to select 

molecular descriptors: 

1) Stepwise regression analysis 

2) Stepwise discriminant analysis (used only for LDA classification analysis) 

3) Lipinski’s  rule  of  five  plus  number  of rotatable bonds 

The molecular descriptors selected by these methods were used in the models 

developed by regression and discriminant analysis. There were a significant number 

of compounds that had missing values for descriptors such as ACD Density, 

therefore stepwise regression was carried out again excluding these descriptors and a 

second model was developed for the TS1. 
6.2.3.3 QSAR Modelling Techniques 

The following QSAR methods were used in this chapter: 

1) Multiple linear regression (MLR) was used for the continuous prediction of 

%HIA. 

2) Linear discriminant analysis (LDA) for the categorical prediction of HIA 

class. 

For MLR analysis, predictive models were built using observed %HIA set as the 

dependent variable and each set of the molecular descriptors selected by stepwise 

regression analysis and the rule of five descriptors as independent variables. 

For the LDA analysis, according to observed %HIA values in the dataset, 

compounds were placed into either  the  “high”  class  if  %HIA  was  equal  to  or  greater  
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than  50%  or  the  “low”  class  if  %HIA  was  less  than  50%.  In this manner, predictive 

classification models were developed using the observed %HIA class as the 

response, and each set of the descriptors selected by stepwise regression analysis, 

stepwise discriminant descriptors and the rule of five descriptors. Molecular 

descriptors selected via stepwise discriminant analysis were solely used for the 

classification of the compounds into highly-absorbed (%HIA ≥   50%)   or   poorly-

absorbed groups (%HIA < 50%) and not for prediction of precise %HIA values 

using regression analysis. 

6.3 Results 

In this work, continuous and categorical models were developed using different 

training sets with different data distributions, using subsets of molecular descriptors. 

The names of the molecular descriptors and a brief description of each descriptor 

used in the models in this chapter can be found in the Appendix 1 (Table A1.1).  

6.3.1 Regression Models 

Two regression models were developed for the training set TS1; the under sampled 

training set contains roughly a 50:50 distribution of high:low absorption compounds 

(Equations 6.1 and 6.2). These models were obtained using the descriptors selected 

by stepwise regression when all the descriptors were used in analysis (model 1) and 

when several descriptors with a high number of missing values (ACD_density and 

logP) were excluded (model 2). The statistics reported are r2, squared correlation 

coefficient; q2, cross validation coefficient; F, Fisher's criterion; S, standard 

deviation and n, number of compounds. 

Model 1 Stepwise Regression 1 TS1 (Equation 6.1) 

%HIA = 125 - 0.357 SHHBd - 0.627 SHBint2 + 4.71 ACDLogD5.5 - 0.00643 

Inertia Moment 2 Size - 0.516 SHBint7 - 297 SpcPolarizability - 22.2 ACD_Density 

- 1.24 SsCH3 

 

n = 94  S = 15.7   r2 = 0.755 q2=0.690  F = 32.7                                               Eq. 6.1 
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Model 2 Stepwise Regression 2 TS1 (Equation 6.2) 

%HIA = 101 - 0.0753 ACD_PSA + 4.02 ACDLogD7.4 - 2.72 ka3 - 0.272 SHBint2   

- 6.16 aliphatic rings(5) - 2.98 SHBint2_Acnt - 284 SpcPolarizability - 0.275 

SHBint3 

 

n = 94  S = 16.1   r2 = 0.742 q2=0.687   F = 30.5                                             Eq. 6.2 

 
Using TS2, which is a randomly selected training set of 496 compounds, stepwise 

regression model 3 was obtained. Model 4 is the regression equation obtained for 

TS2  using  Lipinski’s  ‘rule  of  five’  parameters. 

 
Model 3 Stepwise Regression 3 TS2 (Equation 6.3) 

%HIA = 95.4 - 0.138 ACD_PSA - 12.9 ACD_Rule_Of_5 - 3.22 ACDLogD2            

- 1.35 SHBint9 + 6.27 ACDLogD5.5 + 3.48 SdsssP 

 

n = 496  S = 16.1   r2 = 0.686  q2=0.674 F = 178.2                                          Eq. 6.3 

 

Model 4 – Ro5 Descriptors (Ro5) TS2 (Equation 6.4) 

%HIA = 98.5 + 0.0072 Mass - 1.08 Rotatable Bonds - 5.12 H-bond Donors               

- 2.40  H-bond Acceptors + 2.34 ACD_LogP 

 

n = 496  S = 20.2   r2 = 0.533 q2=0.510  F = 112.0                                            Eq. 6.4 
 

From the original dataset by Hou et al (2007c) there are 95 compounds that were 

excluded for a variety of reasons, as previously mentioned in the methods section 

5.1.1. These remaining outliers were removed from the dataset and regression 

analysis was performed again. It must be noted that only some of the outliers fell 

within the training sets and the remaining belonged to the validation set. 

Additionally, for a better comparison of the models, RMSE values were calculated 

for the new common validation set, VS3, containing 89 compounds for all 4 models. 

Table 6.2 shows the statistical parameters of the equations obtained for the training 

sets before and after the exclusion of the outliers. Table 6.2 also indicates the 
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average prediction error (RMSE) for the validation sets and for the new validation 

set, VS3.   

 

Table 6.2. Statistical parameters and prediction accuracies of regression models for 

training (t) and validation (v) sets 

Model 
(E.q.) 

Training 
Set 

Name 

Validation 
Set     

Name 
r2 F S 

RMSE n 

t v t v 
6.1 TS1 VS1 0.755 32.73 15.66 14.90 25.49 94 502 
6.2 TS1 VS1 0.742 30.51 16.08 15.29 26.11 94 502 
6.3 TS2 VS2 0.686 178.2 16.56 17.30 20.37 496 100 
6.4 TS2 VS2 0.533 111.1 20.17 20.37 23.24 496 100 

Common Validation set (VS3) 
6.1 TS1 VS3 0.755 32.73 15.66 14.90 25.05 94 89 
6.2 TS1 VS3 0.742 30.51 16.08 15.29 24.45 94 89 
6.3 TS2 VS3 0.686 178.2 16.56 17.30 30.83 496 89 
6.4 TS2 VS3 0.533 111.1 20.17 20.37 38.64 496 89 

After exclusion of 95 compounds (Hou et al. 2007c) 
6.1 TS1 VS1 0.788 29.80 15.41 14.43 24.40 73 477 
6.2 TS1 VS1 0.785 29.25 15.52 14.54 23.84 73 477 
6.3 TS2 VS2 0.697 172.9 15.37 15.24 18.59 458 92 
6.4 TS2 VS2 0.540 106.0 18.91 18.79 22.38 458 92 

r2-correlation coefficient; F-Fisher's criterion; S-standard deviation; RMSE-root mean squared error; n-number of compounds, 

t-training set; v-validation set 

 

From Table 6.2, the most suitable equation based on the statistics for the training set 

was equation 6.1, which used dataset TS1. Equation 6.1 shows a slightly better r2 to 

the training set than equation 6.2 using the same training set. In Table 6.2, equations 

6.3 and 6.4 (developed using TS2) appeared to have poorer statistics for the training 

sets; however, their RMSE for the validation sets is better than equations 6.1 and 6.2. 

However, it must be noted that a direct comparison of equations 6.1 and 6.2 with 

equations 6.3 and 6.4 at this point is not coherent. This is because models 6.1 and 6.2 

were derived from a small training set of 94 compounds (TS1) and evaluated using 

VS1, a large validation set (n=502), with a different %HIA distribution to the 

training set; whereas models 6.3 and 6.4 were derived using a much larger training 

set (TS2) and were evaluated using VS2, a smaller validation set that was 

representative of the training set in terms of %HIA distribution.   
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For a better comparison of the models with each other, a new validation set of 89 

compounds (VS3) was randomly selected from the original large validation set of 

TS1. This new validation set was assembled in a way that the %HIA distribution was 

similar to the TS1 training set, i.e., similar numbers of compounds at the different 

%HIA ranges. RMSE values were calculated for the predicted %HIA values 

obtained from equations 6.1-6.4 for the 89 compound in VS3, the new validation set. 

The results in Table 6.2 show that model 6.2 has the lowest RMSE value of 24.45. 

Models 6.3 and 6.4 have much larger RMSE values for the new validation set, 

indicating that these models work well for estimation of %HIA of highly-absorbed 

compounds as shown by the results in Table 6.2, but the estimation accuracy is 

dropped when the validation set consists of roughly equal proportion of highly and 

poorly-absorbed compounds, which may be true in real life drug-candidates. This is 

expected due to the highly biased nature of the training set used for the development 

of these models (TS2). 

 

In Table 6.2 there is not much difference between the RMSE and r2 values of the 

models before and after the exclusion of the compounds identified by Hou et al as 

being absorbed actively or whose absorption is believed to be dissolution limited. 

When these remaining compounds were excluded from the models above in Table 

6.2, the statistics were improved slightly for both the training and validation sets for 

all models. 

6.3.2 Classification Models 

Stepwise discriminant analysis selected seven descriptors for the classification of 

%HIA class using TS1. The descriptors were: number of six-membered aromatic 

rings, ACD LogD5.5, fraction of drugs ionised at pH 1, SdsssP_acnt, SHBint3, 

SHBint7 and SHHBd (Appendix 1, Table A1.1). Following this, discriminant 

analysis was performed using the %HIA class as defined in the main methods 

section and molecular descriptors selected by the three stepwise regressions on TS1 

or TS2 (descriptors in Eqs 6.1-6.3),   Lipinski’s   rule   of   five   descriptors   plus   the  

number of rotatable bonds, and descriptors selected by stepwise discriminant 

analysis (total of five models). Tables 6.4 and 6.5 show the measures of predictive 
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accuracy (measured on the training and validation sets) of the discriminant models 

for TS1 and TS2, respectively. 

Table 6.3. Results of Discriminant Analysis Models using training set TS1 and 

measured on the validation set VS1 

Model Set Accuracy 
(SP X SE) 

Sensitivity 
(SE) 

Specificity 
(SP) Descriptor Set 

1 
TS1 0.736 0.943 0.780 

Stepwise Regression (Eq. 6.1) 
VS1 0.719 0.915 0.786 

2 
TS1 0.757 0.887 0.854 

Stepwise Regression (Eq. 6.2) 
VS1 0.752 0.879 0.855 

3 
TS1 0.597 0.906 0.659 

Stepwise Regression (Eq. 6.3) 
VS1 0.913 0.959 0.952 

4 
TS1 0.671 0.887 0.756 Lipinski Rule of 5 plus number 

of rotatable bonds VS1 0.753 0.904 0.833 

5 
TS1 0.814 0.962 0.846 

Stepwise Discriminant Analysis 
VS1 0.685 0.871 0.786 

After exclusion of 95 compounds (Hou et al. 2007c) 

1 
TS1 0.727 0.918 0.792 

Stepwise Regression (Eq. 6.1) 
VS1 0.785 0.968 0.811 

2 
TS1 0.748 0.898 0.833 

Stepwise Regression (Eq. 6.2) 
VS1 0.675 0.925 0.730 

3 
TS1 0.626 0.939 0.667 

Stepwise Regression (Eq. 6.3) 
VS1 0.920 0.973 0.946 

4 
TS1 0.689 0.918 0.750 Lipinski Rule of 5 plus number 

of rotatable bonds VS1 0.804 0.959 0.838 

5 
TS1 0.689 0.918 0.750 

Stepwise Discriminant Analysis 
VS1 0.756 0.932 0.811 

t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE). 

 

Table 6.3, referring to models built from training set TS1, shows that for the 

classification of the validation set the best overall classification accuracy as 

measured by SP x SE was 0.913, which equated to 481/502 correct predictions using 

model 3. This model had the highest specificity value of 0.952 (40/42) and the 

second best sensitivity of 0.959 (441/460) for VS1 validation set. However, for this 

model, the overall accuracy and specificity are much lower for the training set 

compared with the validation set. In fact, in most cases the accuracy, specificity and 

sensitivity of many models are better for the validation set than for the training set. 
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This can be due to the compound composition of the training and validation set, with 

the training set containing, by chance, more outlier compounds. This could also be 

due to the biased distribution of %HIA of the compounds and lack of 

poorly/moderately absorbed compounds represented in validation set. 

Considering also the training set, the best model taking into account the overall 

accuracy, specificity and sensitivity values for the training and validation sets was 

model 1. However, there were many descriptor values missing (ACD_Density and 

logP), therefore this model may not be appropriate in a real life setting as these 

descriptors may be difficult to obtain for new compounds. From this perspective, the 

best applicable model considering the training and validation sets is model 2. This 

achieved an overall SP X SE of 0.751 resulting in 522/596 total correct predictions, 

and with specificity and sensitivity values of 0.879 (451/513) and 0.855 (71/83) 

respectively, when those measures are calculated over all compounds in the full 

dataset (merging the training and validation sets). Model 3 has better SP x SE 

accuracy of 0.769 (556/596) when calculated this way; however, models 1 and 2 

have better overall accuracies for the training set than model 3, as mentioned 

previously. 
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Table 6.4. Results of Discriminant Analysis Models using training set TS2 and 

measured on the validation set VS2 

Model Set SP X SE SE SP Descriptor Set 

1 
TS2 0.712 0.958 0.743 

Stepwise Regression (Eq. 6.1) 
VS2 0.538 0.942 0.571 

2 
TS2 0.722 0.937 0.771 

Stepwise Regression (Eq. 6.2) 
VS2 0.591 0.919 0.643 

3 
TS2 0.718 0.967 0.743 

Stepwise Regression (Eq. 6.3) 
VS2 0.598 0.930 0.643 

4 
TS2 0.739 0.958 0.771 Lipinski Rule of 5 plus number 

of rotatable bonds VS2 0.471 0.942 0.500 

5 
TS2 0.737 0.956 0.771 

Stepwise Discriminant Analysis 
VS2 0.414 0.965 0.429 

After exclusion of 95 compounds (Hou et al. 2007c) 

1 
TS2 0.739 0.985 0.750 

Stepwise Regression (Eq. 6.1) 
VS2 0.538 0.988 0.545 

2 
TS2 0.739 0.985 0.750 

Stepwise Regression (Eq. 6.2) 
VS2 0.700 0.963 0.727 

3 
TS2 0.695 0.982 0.708 

Stepwise Regression (Eq. 6.3) 
VS2 0.605 0.951 0.636 

4 
TS2 0.655 0.982 0.667 Lipinski Rule of 5 plus number 

of rotatable bonds VS2 0.450 0.988 0.455 

5 
TS2 0.692 0.977 0.708 

Stepwise Discriminant Analysis 
VS2 0.538 0.988 0.545 

t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE). 

  
The classification results obtained for TS2 (Table 6.4) indicate that the classification 

of poorly-absorbed drugs (specificity values) are less accurate than the highly-

absorbed compounds (sensitivity). Moreover, the specificity values of the models 

developed using TS2 are much lower than models developed using TS1 (compare 

Tables 6.3 and 6.4). This is due to the unbalanced training set used (TS2), with a 

lower number of poorly-absorbed compounds compared to highly-absorbed 

compounds. On the other hand, sensitivity is higher in most models obtained for 

TS2, compared with models developed with TS1, with exceptions being the 

validation set sensitivity of model 3 and model 5. 
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For both TS1 and TS2 the effect of removal of the excluded compounds as 

highlighted by Hou et al (2007c) increased overall accuracy, specificity and 

sensitivity values in the majority of cases, but there was not a significant increase of 

evaluation metrics when comparing with and without excluded compounds. So, in 

practice leaving these compounds in will achieve a more applicable model that will 

have better generalization for new compounds.  

In order to compare the models, the accuracy (SP x SE), sensitivity and specificity of 

discriminant analysis for the classification of the new validation set, VS3, 

(containing 89 compounds) using all 5 models were calculated and the results are in 

Tables 6.5 and 6.6 for TS1 and TS2, respectively.  

Table 6.5. Discriminant Analysis Results for new validation set (VS3) for TS1 

Model Set SP X SE SE SP Descriptor Set 
1 VS3 0.677 0.880 0.769 Stepwise Regression (Eq. 6.1) 
2 VS3 0.643 0.760 0.846 Stepwise Regression (Eq. 6.2) 
3 VS3 0.816 0.860 0.949 Stepwise Regression (Eq. 6.3) 

4 VS3 0.657 0.800 0.821 Lipinski Rule of 5 plus number of 
rotatable bonds 

5 VS3 0.551 0.717 0.769 Stepwise Discriminant Analysis 
t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE). 

Table 6.6. Discriminant Analysis Results for new validation set (VS3) for TS2 

Model Set SP X SE SE SP Descriptor Set 
1 VS3 0.689 0.918 0.750 Stepwise Regression (Eq. 6.1) 
2 VS3 0.724 0.878 0.825 Stepwise Regression (Eq. 6.2) 
3 VS3 0.696 0.898 0.775 Stepwise Regression (Eq. 6.3) 

4 VS3 0.718 0.898 0.800 Lipinski Rule of 5 plus number of 
rotatable bonds 

5 VS3 0.681 0.939 0.725 Stepwise Discriminant Analysis 
t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE). 

Comparing the sensitivity and specificity values reported in Tables 6.5 and 6.6 for 

the consistent validation set of 89 compounds (VS3), it can be seen that the best 

specificity is achieved for models developed using TS1 (Table 6.5) with the highest 
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value obtained using model 3. On the other hand the best sensitivity values were 

obtained using models developed using TS2 (Table 6.6). This shows that TS1, the 

balanced dataset has a better classification accuracy compared with TS2 (unbalanced 

dataset) for predicting poorly-absorbed compounds; whereas TS2 has a better 

classification accuracy for highly-absorbed compounds due to the biased nature of 

the dataset.  

6.4 Discussion 

The aim of this study was to create models that could predict %HIA values or 

classify compounds into highly and poorly-absorbed classes with emphasis on using 

a training set with a balanced class distribution to see if there was an improvement in 

prediction and classification accuracy for poorly-absorbed compounds. Data splitting 

techniques such as the Kennard-Stone algorithm (1969), which is used for the 

training set selection based on the molecular descriptor values, could have been used 

to split the data; however, it would not be useful in this case since the highly-

absorbed compounds cover a much larger descriptor space compared with poorly-

absorbed compounds (Tropsha 2010). For instance, it was observed in this dataset 

that splitting the data based on the logP values, or based on the first or the second 

principal components produced by principal component analysis using all molecular 

descriptors, will still select for the training set a majority of highly-absorbed 

compounds (85%-86% highly-absorbed). Therefore, to overcome the well- 

documented problem of highly biased training sets (towards the highly-absorbed 

compounds), a subset of the available data was selected with under-sampling of the 

majority group (highly-absorbed compounds). The selected training set consisted of 

about ten compounds in each 10% %HIA ranges (94 in total). The models generated 

using this training set (TS1) were compared with the models generated for a 

randomly selected training set consisting of 5/6 of the dataset entries (TS2). 

Regression analysis and classification analysis results are discussed highlighting the 

best model for each type of analysis. 
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6.4.1 Regression Models 

Regression models were generated using the biased training set, TS2 and the under-

sampled training set, TS1. The best overall model with the lowest RMSE for the new 

validation set VS3 is equation 6.2. 

Equation 6.2 contained the following descriptors: PSA, log D7.4, Ka3, SHBint2, 

aliphatic rings(5), SHBint2_Acnt, SpcPolarizability and SHBint3. All of these 

descriptors can be used in combination to correlate with intestinal absorption; 

however the correlation decreases significantly when the descriptors are used 

independently, highlighting that absorption is a complex process and is reliant and 

influenced by a number of different descriptors, not just one (Hou et al., 2007a). 

PSA has been found to be the most popular descriptor used in the prediction of 

intestinal absorption, since its first use in relation to brain penetration (van de 

Waterbeemd and Kansy 1992). It is a measure of the area of the Van der Waals 

surface that arises from oxygen and nitrogen atoms or hydrogen atoms bound to 

these atoms. PSA is related to hydrogen bonding capacity, which is one of the main 

influencers of passive drug absorption along with lipophilicity (Palm et al., 1997). 

PSA is used more frequently and is deemed more suitable than normal hydrogen 

bonding potential descriptors as it accounts for the 3D effects of the molecule, such 

as shielding of the polar functional groups by other atoms. It has been shown that if a 

molecule has a  dynamic  PSA  of  ≥  140Å, it is likely to have poor absorption (<10% 

HIA)   and   if   the  molecule   has   a   PSA  ≤60Å, %HIA values >90% can be achieved 

(Palm et al., 1997, Clark, 1999). This is in agreement with my results as PSA has a 

negative impact on absorption. Hydrogen bonding ability has been further 

characterised in model 6.2 by three topological descriptors of SHBint2_Acnt, 

SHBint2 and SHBint3, all of which have negative coefficients in agreement with the 

literature. 

Hydrophobicity is another physiologically important parameter for intestinal 

absorption. Molecular descriptors relating to hydrophobicity, such as logP and logD, 

have a positive contribution to the predictions of passively absorbed compounds 

(Hou et al., 2007c) An increase in hydrophobicity would initially increase the 

permeation of the compound into and through the intestinal membrane. However, it 
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has been suggested that the relationship between logD and permeation is non-linear, 

so if the drug is too hydrophobic with a very high logD value, for example, it may 

not penetrate the membrane at all and can affect other physicochemical properties 

such as solubility (Comer, 2003, Varma et al., 2010, Kerns and Di, 2008). On the 

other hand, if a compound has a low logD value this could also prevent absorption 

unless the compound is small enough (MW less than 200 Da) to be absorbed via the 

paracellular route (Stenberg et al., 2000, Martinez and Amidon, 2002). In this work, 

logD7.4 has been used in model 6.2, which is the apparent octanol/water partition 

coefficient at pH 7.4. This particular descriptor has been used in other studies, as 

well as other logD values at lower pH values (Hou et al., 2007b, Hou et al., 2007c). 

It has been indicated that although logP is easier to calculate from structure, logD 

has a better prediction ability, as it takes into account the pH and ionisation. Studies 

have also shown that a combination of PSA and logD have good prediction abilities 

for intestinal absorption, indicating that it is a combination of descriptors that 

influence predictions (Hou et al., 2009, Hou et al., 2007a) 

 

There are numerous summary tables in the literature compiling an overview of 

results for previously published oral absorption models (Hou et al., 2006, 

Suenderhauf et al., 2011, Talevi et al., 2011). This enables a comparison between the 

results obtained here and those from previous studies in the literature. However, it 

must be emphasized in this chapter and throughout this thesis that it is very difficult 

to compare these models, due to the lack of compound information regarding data 

distribution for the training and validation sets and lack of consistency in validation 

techniques (Stouch et al., 2003). The only way this possibly could be done would be 

to  mimic  the  datasets  used  and  compare  the  models  on  previous  works’  datasets   

(Davis and Brunea, 2003). 

 

The results presented in Table 6.2 shows that there is not much difference between 

the RMSE and r2 values of the models before and after the exclusion of the 

compounds that are believed to be absorbed actively or whose absorption are 

dissolution limited. This indicated that the effect of transporters does not have a 

significant effect on the goodness of fit of the regression models and has been shown 

in other work in the literature (Talevi et al., 2011). The reason for the small 
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difference could be because for some compounds, although known to be absorbed 

via transporters, this process may not be dominant and the effect of the transporters 

is insignificant compared with passive diffusion of the compounds (Sugano et al., 

2010, Smith et al., 2014). So, in practice, leaving these compounds in may be more 

realistic and help build generic models with a variety of absorption mechanisms, 

rather than removing these compounds and possibly reducing the applicability of the 

model (Suenderhauf et al., 2011). 

 

Taking my best regression model, which was model 2 using dataset TS1 with 

exclusions, an r2 value of 0.785 was achieved with a RMSE for the training and 

validation set VS1 of 14.54 and 23.84, respectively. Other studies that used 

regression analysis such as Wessel et al (1998), Zhao et al (2001) and Niwa et al 

(2003) are comparable to my model with regards to the training set. However, the 

RMSE for my validation set is slightly higher, apart from Niwa et al (2003). Wessel 

et al (1998) achieved small RMSE values of 9.5% and 16% for the 76 and 10 

compounds used in the training and validation sets. Zhao et al (2001) with an r2 

value of 0.83 achieved a RMSE of 14%. However, Zhao et al only had 38 and 131 

compounds in the training and validation sets, respectively. The more recent study 

by Niwa et al (2003) showed that, although a small RMSE value of 6.5% was 

achieved for the training set, a much larger RMSE value of 27.7% was obtained for 

the validation set. The numbers of compounds in the training and validation set were 

67 and 9 compounds, respectively.  

 

The studies mentioned so far have used small datasets, and so it might not be 

suitable to compare some of the models in this chapter with models in those studies. 

Moreover, the comparison of the validation set compounds and distribution of 

compounds in them is not known. In fact, Klopman et al (2002), who used a larger 

dataset with 417 and 50 compounds in training and validation sets, achieving a r2 

value of 0.79 which is comparable to my model, highlighted that the dataset was 

limited and that it covered limited chemical space, even with an increase in the 

number of compounds in the dataset. Therefore, comparing RMSE values without 

considering the number of compounds used is not appropriate, as the chemical space 

of the training set and applicability of the models to a wider variety of chemicals are 
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different (Klopman et al., 2002). Therefore, models reported using small datasets 

may not be as applicable when databases expand further to include new structurally 

diverse compounds of the future. 

 

The more recent studies carried out by Hou et al (2007 and 2009) and Yan et al 

(2008) both used 647 compounds but then excluded the 95 outliers for their work. 

Yan et al (2008) created 3 partial least squares (PLS) models using 380 and 172 

compounds for the training and validation sets. The RMSE value of the best model 

in this study was 18.18%. The best published method is by Hou et al (2007c), which 

achieved r2 values of 0.90 and 0.84 and RMSE values of 7.8% and 11.2% for the 

training and validation sets, respectively, using genetic function approximation 

(GFA). Finally the study by Talevi et al (2011) utilised a balanced training set (n=90 

compounds) to build linear and non-linear models. Upon exclusion of outliers, i.e. 

those undergoing carrier-mediated absorption, they achieved an r2 of 0.663 for the 

training set. Although comparable, this r2 value is much lower than the best results 

obtained in this chapter. 

6.4.2 Classification Analysis 

There are many advantages of using regression models for the prediction of intestinal 

absorption. However, depending on the stage at which the prediction models are 

used, the need for precise values predicted by a regression method may be 

questionable, when classification methods can be used to define which drugs will be 

highly-absorbed and therefore more likely to be orally administered compared with 

those poorly-absorbed compounds which are more likely to be administered via 

other routes due to poor absorption (Suenderhauf et al., 2011). 

For the classification analysis, in order to classify which compounds would be 

grouped as highly-absorbed or poorly-absorbed, a cutoff of 50% of the %HIA value 

was defined. The choice of 50% was arbitrary, although it has also been used in 

previous studies (Niwa, 2003). There have been a number of different HIA cutoffs 

used to group compounds into either highly or poorly-absorbed groups in the 

literature; these range from 30% (Hou et al., 2007c) up to 70% (Xue et al., 2004), 

with no standard defined. One thing to note is that example HIA thresholds used in 
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the literature will result in different ratios of highly and poorly-absorbed compounds 

in dataset. Therefore, there will be separate classification problems, each with a 

different level of difficultly. Therefore, the threshold chosen can significantly affect 

the model results. 

As stated previously, other studies in the literature have compiled summary tables 

that detail the accuracy, specificity and sensitivity of previously published 

classification work (Suenderhauf et al., 2011, Hou et al., 2006, Talevi et al., 2011). 

Overall a similar pattern emerges that the overall accuracy and sensitivity values of 

previous studies are higher than the specificity values obtained. This could be due to 

the low ratio of poorly-absorbed compounds in the training sets. For example, Perez 

et al (2004) used linear discriminant analysis to classify a dataset of 209 compounds 

with training and validation set of 82 and 127 compounds, respectively. This 

research created two models, one which focussed on classification of %HIA using a 

threshold  of  ≤30%  HIA  and  the  other  focussing  on  classification using a threshold of 

>80% HIA. Both training and validation sets are heavily biased towards highly-

absorbed compounds. Higher sensitivity values of 0.955 and 0.835 and much lower 

specificity values of 0.765 and 0.722 were obtained with the threshold  of  ≤30%  and  

>80%, respectively (Perez et al., 2004). An exception to this pattern is the results 

obtained by two studies by Hou et al (2007a,c), where specificity values in the 

validation set were higher than the sensitivity values. For the results presented in this 

chapter, the overall accuracy and sensitivity are comparable or higher than previous 

studies apart from Hou et al (2007c), which used the same dataset but excluded 

carrier mediated and poorly soluble compounds. Additionally, for one study Hou et 

al included the 26 compounds with positively charged nitrogen which are known to 

be poorly-absorbed and predicted readily with a count of positively charged nitrogen 

atoms. This simple rule aided the statistics of their model by increasing the 

specificity (Hou et al., 2007c). Additionally, the use of a 30% HIA threshold to 

define between highly and poorly-absorbed compounds could be an easier 

classification problem to model using the complex non-linear methods of recursive 

partitioning,  genetic function approximation (GFA) and  Support Vector Machines 

(SVM) (Hou et al., 2007a, Hou et al., 2007c).  The study carried out by Perez et al 

(2004) also indicates that using the lower threshold of 30% better model 
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predictability was achieved (Perez et al., 2004). Again, as mentioned earlier, it 

would be risky to take results at face value without considering the real impact of 

information such as the number of compounds in each class in the training and 

validation sets. 

As stated previously in the literature review, according to the literature there is a lot 

of business emphasis on reducing the number of false negatives in drug discovery. 

However, there is also a cost effective incentive to reduce false positives. With this 

in mind, comparing the sensitivity and specificity values reported in Tables 6.5 and 

6.6 for the consistent validation set of 89 compounds (VS3), it can be seen that the 

best specificity is achieved for models developed using the balanced training set TS1 

(Table 6.5) with the highest value obtained using model 3. On the other hand the best 

sensitivity values were obtained using models developed using TS2 (Table 6.6). This 

shows that TS1, the balanced dataset, has a better classification accuracy compared 

with TS2 (unbalanced dataset) for predicting poorly-absorbed compounds, whereas 

TS2 has a better classification accuracy for highly-absorbed compounds due to the 

biased nature of the dataset. In relation to the reduction of false positives and false 

negatives, depending on the priority, the balanced TS1 dataset would aid to reduce 

false positives by increasing specificity and TS2 would increase sensitivity and 

therefore reduce false negatives. In conclusion, if reducing the number of false 

positives is the priority, then under-sampling of the majority class of the highly-

absorbed compounds would lead to more accurate and applicable in silico models for 

use in industry. 

6.5 Conclusion 

In this chapter, the dataset of Hou et al (2007c) was used for the development and 

validation of the models. In order to improve the predictive accuracy for the poorly-

absorbed compounds, the training set was selected by under-sampling the highly-

absorbed compounds. Two types of linear methods were used for the development of 

the models: linear discriminant analysis for the classification and multiple linear 

regression for the regression type analysis.  

 
In terms of the linear regression models, results were conclusive that using the 

balanced dataset with similar proportions of various %HIA ranges leads to more 
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robust models with lower prediction error for the validation set. This is despite the 

lower number of compounds in this training set (N=94), in comparison with the 

randomly selected training set of 496 compounds. It is interesting to note that the r2 

values of this study are comparable to some of the models obtained using a variety of 

more complex techniques such as SVM and GEN feature selection, showing that 

simple regression can obtain just as good r2 and fit for the prediction of %HIA 

(Reynolds et al., 2009, Yan et al., 2008). 

 
The discriminant models for the classification of compounds into high and low 

absorption classes indicated that the use of the balanced training set significantly 

improves specificity of the models, indicating the higher accuracy of the 

classification of poorly-absorbed compounds. However, the sensitivity of the models 

developed using the balanced training set was lower than the sensitivity of the 

models based on the randomly selected training set, which is skewed towards the 

highly-absorbed compounds. Therefore, it can be suggested that, for reducing the 

number of false positives, it is better to use the balanced training set, despite the 

smaller training set size due to the under-sampling of the majority class.  

 
To conclude, this work highlights that, by creating a training set with a balanced 

class distribution, improved models which are also applicable to real life scenarios 

can be achieved for both regression and classification type analyses. It is envisaged 

that this conclusion may be extended to models based on more complex statistical 

techniques such as non-linear methods to improve the predictive accuracy further. 

Even though different models were developed in this chapter, there were particular 

descriptors that were in more than one model. These descriptors help and confirm the 

understanding of the process of oral absorption. Descriptors such as logD, PSA and 

those involving H bonding are all known to have an impact, whether this is 

positively or negatively, on oral absorption. Another significant point that needs to 

be considered in training set selection, in future research, is the impact of solubility 

and the potential distribution of solubility values in real life datasets. Taking this into 

account may lead to even more applicable models, given the increasing number of 

the poorly water-soluble and high molecular weight NCEs. 
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7 Coping with Unbalanced Class Oral Absorption 
Datasets Using Under-sampling and Misclassification 
Costs 

7.1 Introduction 

As previously stated, oral absorption datasets are biased due to the higher number of 

highly-absorbed compounds compared with poorly-absorbed compounds in the 

datasets. In the previous chapter the impact of under-sampling the training set to 

overcome the unbalanced class distribution to produce more accurate, industry-

applicable models was investigated. The problem with under-sampling is the 

reduction in data utilised for model building, therefore there could be a problem with 

generalization to new compound sets. Additionally, in order to assess the 

predictability of the balanced training set fairly, the validation set should also be 

under-sampled to mirror the training set in terms of distribution of the classes, but 

again this reduces the validation set size and could potentially increase the variability 

of the results (Blagus and Lusa, 2010). In spite of this, the models built using this 

balanced class distribution should be better models to predict both poorly and 

highly-absorbed compounds if a big enough dataset is used. 

Another potential resolution to overcome unbalanced class datasets is to increase the 

cost of misclassification of the minority class. Recall the possible outcomes of a 

binary classification, as shown in Figure 7.1a. There are two types of 

misclassification, false positives and false negatives. A poorly-absorbed compound 

misclassified into the highly-absorbed class would be a false positive (FP), and a 

highly-absorbed compound misclassified into a poorly-absorbed class would be a 

false negative (FN).  

The ultimate goal of classification models is to predict correctly which is 

computationally achieved by the algorithms that try to classify in a way that 

minimises the cost arising from misclassifications. By applying a higher 

misclassification cost for false positive or false negatives, a higher cost is then 

associated with the specified misclassification and the algorithm avoids this 

misclassification due to its higher costs. This should result in a higher accuracy for 
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the class whose misclassification was assigned the higher cost and should improve 

overall accuracy. An example of this is shown graphically in Figure 7.1b. 

a)  
Observed 

class  b)  
Observed 

class 

  HIGH LOW    HIGH LOW 

Predicted 
class 

HIGH TP FP  Predicted 
class 

HIGH NO 
COST 2 

LOW FN TN  LOW 1 NO 
COST 

 

Figure 7.1.  a) A binary classification matrix showing predictive outcomes b) Binary 

classification matrix with higher misclassification cost assigned to false positives 

According to Figure 7.1b, if the algorithm attempts to misclassify the poorly-

absorbed compound into the highly-absorbed class (a misclassification at the 

intersection  of  the  ‘HIGH’  row  and  ‘LOW”  column  in  Figure  7.1b),  there  will  be  a  

higher cost associated with this misclassification in comparison with the 

misclassification of a highly-absorbed drug into the poor absorption group. By 

increasing the cost for misclassification in this example to two, the number of false 

positives should be reduced more than the number of false negatives.  

There are numerous oral absorption models in the literature; but the research topic of 

under-sampling and misclassification costs has not been fully explored. This chapter 

investigates the use of under-sampling and higher misclassification costs to 

overcome unbalanced class distributions using decision trees (a type of non-linear 

classification method). Firstly, the use of under-sampling to create a balanced 

training set will be compared with the use of an unbalanced training set, when 

building a model using decision trees. Secondly, the effect of applying higher 

misclassification costs to the balanced and unbalanced datasets will also be 

investigated. Furthermore the unbalanced dataset will have higher misclassification 

costs applied to reduce false positives. Therefore, the aims of this chapter are to see 

the effect of misclassification costs on a balanced training set model and to 

determine if misclassification costs can be helpful in overcoming imbalanced class 

distribution in oral absorption datasets, in order to produce more accurate and more 

applicable models for use in drug discovery. 
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7.2 Methods 

7.2.1 Dataset 

Dataset 1 was utilised for the prediction of oral absorption as  defined  in  the  ‘Dataset  

and   Methods’   section   5.1.1 of this thesis. In this work only the 26 compounds 

containing a quaternary ammonium were removed entirely due to a number of 

missing molecular descriptors significant to absorption, such as logD, for these 

compounds. 

7.2.1 Training and Validation Sets 

Two training sets and corresponding validation sets were selected from this dataset; 

training set 1 (TS1) containing roughly a 50:50 ratio, and training set 2 (TS2) 

containing roughly an 85:15 ratio of highly and poorly-absorbed compounds. The 

same class distribution for the corresponding validation sets was applied to create a 

fairer more controlled validation for the models. The exact compound numbers and 

class distributions are shown in Table 7.1. 

Table 7.1. Compound numbers and class distribution for both training set scenarios 

  

Number of 
Compounds 

Class Distribution           
(Ratio of High/Low 

absorption compounds) 

Dataset Training 
set 

Validation 
set Training set Validation set 

TS1 94 89 50:50 50:50 
TS2 517 102 85:15 85:15 

 

7.2.2 Model Development 

7.2.2.1 Molecular Descriptors 

A total of 215 descriptors were used in this study using a variety of different 

software including TSAR 3D (Accelrys Inc.), MDL QSAR (Symyx Inc.), Kowwin 

(U.S. EPA) and Advanced Chemistry Development ACD Labs/LogD Suite v 12. 
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7.2.2.2 Feature Selection 

For this chapter as well as using all 215 molecular descriptors for development of 

models, the molecular descriptors as selected using stepwise regression analysis 

using  training  sets  TS1  and  TS2  and  molecular  descriptors  derived  from  Lipinski’s  

rule of five plus number of rotatable bonds (four descriptor sets) from chapter 6 were 

used. 

7.2.2.3 QSAR Modelling Techniques 

Classification analysis was carried out using C&RT analysis in STATISTICA v 11 

(StatSoft Ltd). According to observed %HIA values in the dataset, compounds were 

placed  into  either  the  ‘High’  class  if  %HIA  was  equal  to  or  greater  than  50%  or  the  

‘Low’  class,  if  %HIA  was  less  than  50%.   

For this work, HIA Class was set as the dependent categorical variable and all 215 

molecular descriptors were selected as continuous independent variables. 

Furthermore, pre-selected subsets of descriptors were used in the analysis from the 

previous chapter. Molecular descriptors were: 1) those chosen by linear stepwise 

regression for TS1 (also used in Eq. 6.1), 2) those chosen by linear stepwise 

regression for TS1 (also used in Eq. 6.2), 3) those chosen by linear stepwise 

regression  for  TS2  (also  used  in  Eq.  6.3),  and  4)  descriptors  of  Lipinski’s  rule  of  five  

including number of rotatable bonds from the previous chapter (Chapter 6). 

During C&RT analysis, models were created using descriptor sets 1 and 2 for TS1 

and descriptor set 3 for TS2. The validation set was never used at any stage of model 

development and remained intact for the validation for all of the models. Moreover, 

Lipinski’s   ‘rule   of   five   descriptors’  was used in C&RT analysis for both TS1 and 

TS2. 

The stopping factors applied for building models using TS1 and TS2 were minimum 

number of cases (compounds) for splitting the data at 10 and 30, respectively. 

Stopping factors prevent the C&RT method from further splitting the current 

decision tree if there are fewer compounds than the stopping factor specified in the 

node. If there were any trees with only one compound in a terminal node, manual 
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pruning was carried out to prevent over fitting. All other settings used were default 

settings defined by the software. 

7.2.2.4 Misclassification Costs 

By applying higher misclassification costs to certain misclassifications (either false 

positives or false negatives) it is possible to reduce the number of misclassifications 

in the class with the higher cost. This chapter compares the use of the same costing 

with higher costing to reduce either false positives or false negatives. 

The cost assigned to the misclassification can be subjective. However, to assign a 

number objectively, the class distribution of the high and poorly-absorbed 

compounds of the training set should be considered. For TS1, the balanced dataset, a 

misclassification cost of two was applied to either reduce false positives or false 

negatives. As TS2 is unbalanced due to the class distribution of the dataset towards 

the highly-absorbed compounds (85:15), a misclassification cost ratio of 4:1 was 

applied to false positive:false negatives. It must be noted that due to the class 

distributions for TS2 the dataset is already biased towards reducing false negatives, 

as there are more highly-absorbed compounds than poorly-absorbed ones; therefore 

higher misclassification costs do not need to be applied to false negatives, but they 

need to be applied to false positives. 

7.3 Results 

Predictive models for the classification of drug candidates into high and poor 

absorption groups are very useful in drug discovery. Unbalanced distribution of data 

in the available datasets has been a drawback which has traditionally complicated the 

model development activities. In this chapter, two different training sets with 

different data distributions and various misclassification costs were used to develop 

classification trees using the C&RT analysis. In all result tables in this chapter the 

highest SP, SE, SP × SE and the lowest CNMI for the validation sets are highlighted 

in bold. When comparing the models it must be noted that the most significant 

molecular descriptors selected for splitting the data by the C&RT algorithm will be 

affected by the class distribution of the training sets, so for TS1 and TS2 with 

different class distributions different significant descriptors could be picked. 
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Moreover, when comparing models developed using the same training set, CNMI 

maybe a more suitable performance measure since it is normalised for the cost ratios 

of false positives and false negatives. 

7.3.1 C&RT Classification Analysis for TS1 

Classification using C&RT analysis was carried with the same or different 

misclassification costs to reduce either false positives or false negatives for TS1, the 

under-sampled balanced training set. Initially all 215 molecular descriptors were set 

as independent variables and the HIA class was set as the dependent categorical 

variable. In this way the C&RT algorithm selects the most significant descriptor out 

of all 215 for each split. These trees were compared with C&RT trees created by 

using smaller descriptor sets selected previously by stepwise linear regression using 

TS1 (descriptor sets 1 and 2), TS2 (descriptor set 3) or descriptors related to 

Lipinski’s  rule  of  five  plus  number  of  rotatable  bonds  (descriptor  set  4),  as  described  

in the previous chapter. 

Table 7.2 shows the predictive performance measures of the classification trees for 

TS1 obtained with different misclassification costs using all descriptors and 

descriptor sets 1-4. Recall that SE, SP and SP × SE measures should be maximized, 

whilst the CNMI measure should be minimized. 
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Table 7.2. The results of C&RT classification analysis using different descriptor sets 

and misclassification costs ratios for TS1 

Model Cost           
FP:FN 

Descriptor 
Set Set 

n 
validation 

set 
SP × SE SE SP CNMI 

1 

1:1 

ALL 
t 

83 
0.899 0.981 0.917 0.045 

v 0.598 0.733 0.816 0.229 

2 1 
t 

89 
0.939 0.962 0.976 0.032 

v 0.625 0.714 0.875 0.213 

3 2 
t 

89 
0.951 1.000 0.951 0.021 

v 0.657 0.796 0.825 0.191 

4 4 
t 

89 
0.828 0.943 0.878 0.085 

v 0.300 0.857 0.350 0.371 

5 

2:1 

ALL 
t 

83 
0.962 0.962 1.000 0.014 

v 0.404 0.667 0.605 0.352 

6 1 
t 

89 
0.939 0.962 0.976 0.027 

v 0.547 0.592 0.925 0.188 

7 2 
t 

89 
0.981 0.981 1.000 0.007 

v 0.604 0.755 0.800 0.203 

8 4 
t 

89 
0.920 0.943 0.976 0.034 

v 0.597 0.796 0.750 0.217 

9 

1:2 

ALL t 83 0.872 0.981 0.889 0.048 
v 0.635 0.778 0.816 0.223 

10 1 
t 

89 
0.885 0.981 0.902 0.044 

v 0.686 0.857 0.800 0.165 

11 2 
t 

89 
0.951 1.000 0.951 0.015 

v 0.657 0.796 0.825 0.209 

12 4 
t 

89 
0.829 1.000 0.829 0.052 

v 0.438 0.796 0.550 0.295 
FP = False positive; FN = False negative; t-training; v-validation; Sensitivity is equivalent to the number of correctly classified 

highly-absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly 

classified poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-

true negative; FP-false positive; Overall Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x 

SE);  n, validation is the number of validation set compounds that was predicted by the model CNMI = Cost normalised 

misclassification index 

 

In Table 7.2, a cost ratio of 2:1 for FP:FN indicates that a double misclassification 

cost has been applied for the misclassification of poorly-absorbed compounds 

compared with the misclassification of highly-absorbed compounds, and so forth. 

Therefore, in this case, the expectation is a reduction in the number of false positives 

(increased specificity). 
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In order to see the effect of cost ratios, one should compare the performance measure 

values of the models generated using the same descriptor set. It can be seen in Table 

7.2 that when all descriptors were used in the analysis (models 1, 5 and 9), better 

predictive accuracy is obtained when misclassification costs are adjusted to reduce 

false negatives (model 9). In this case the SP × SE increased from 0.598 in model 1 

to 0.635 in model 9 and the sensitivity was the highest at 0.778. The CNMI also 

decreased from 0.229 (model 1) to 0.223 (model 9). This indicates that by applying 

costs to reduce false negatives a more accurate C&RT model has resulted. The 

decrease in false negatives (higher sensitivity value) was expected as 

misclassification costs were adjusted to improve the class prediction of highly-

absorbed compounds; however the specificity decreased. The classification tree 

(model 9) has been presented in Figure 7.2.  

 

Figure 7.2. Tree graph for the best C&RT model selecting all molecular descriptors 

using TS1 training set with misclassification costs applied to reduce false negatives 

(Model 9) 

Tree graph for HIA CLASS
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Furthermore, using Table 7.2 one can compare the above results with the results for 

equal and higher misclassification costs for models built using the molecular 

descriptors chosen by linear stepwise regression for the estimation of %HIA 

(descriptors sets 1  and  2)  and  descriptors  of  Lipinski’s  rule  of  five  including  number  

of rotatable bonds (descriptor set 4). Table 7.2 shows that the model obtained using 

descriptor set 1 is the best model (model 10). The fact that most models that are 

obtained using a pre-selected descriptor set have better predictive accuracy indicates 

that such descriptor selection methods may be better than the embedded descriptor 

selection algorithm in C&RT. Model 10 achieved an SP × SE of 0.686, sensitivity 

value of 0.857 and a specificity value of 0.800 when using a cost ratio of 1:2 for 

FP:FN. This model is shown in Figure 7.3. It is interesting to note in Table 7.2 that 

specificity is much better with the model obtained with higher cost for the false 

positives, using descriptor set 1, which shows that the misclassification costs are 

having the expected effect on the model. 
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Figure 7.3. Tree graph for C&RT analysis using TS1 with misclassification costs 

applied to reduce false negatives using descriptor set 1 (Model 10)  

There is a general pattern when misclassification costs are applied to either reduce 

false positives or false negatives for the majority of models (Table 7.2). When higher 

misclassification costs are applied to reduce false positives, the specificity values are 

higher or equal to models where similar costs are applied, with only a few 

exceptions. On the other hand, false negative values decrease upon assigning higher 

misclassification costs on false negatives, resulting in higher or equivalent sensitivity 

values to models with similar misclassification costs for false negatives and false 

positives.  

7.3.1.1 Interpretation of the Selected Models based on TS1 

In the tree in Figure 7.2, the first split variable is SHHBd, which is the sum of the E-

State indexes for hydrogen bond donors. This molecular descriptor is linked to the 

number  of  hydrogen  bond  donors  highlighted  in  Lipinski’s  rule  of  five   (Lipinski et 
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al., 1997). The cut off point for SHHBd is 7.81, which corresponds to roughly 3 or 

more hydrogen bond donor groups. Compounds with low hydrogen bonding donor 

ability (low SHHBd value) will have poor absorption if ABSQ, the sum of absolute 

values of atomic partial charges of the molecule, is high (node 5 in Figure 7.2). This 

indicates that molecules or compounds with electronegative or positive atoms 

(molecules containing heteroatoms) will be less absorbed through the intestine 

(Gasteiger and Marsili, 1980). This is in agreement with the hydrogen bond acceptor 

factor   in   Lipinski’s   rule   of   five.  The compounds with low number of heteroatoms 

(ABSQ) will have high absorption unless they are highly acidic and have high 

ionization fraction at pH 1 (FiA1 > 0.139). It has been well cited that drugs that are 

unionised will pass better through the intestinal membrane (Lipinski et al., 1997, 

Pang, 2003). 

The next important descriptor selected by C&RT for the partitioning of highly 

hydrogen bond donor compounds is VAMP HOMO, which is the energy of the 

highest occupied molecular orbital calculated by AM1 semi empirical method and 

has been used in previous QSAR models for bioavailability (Turner et al., 2003)  and 

oral absorption (Agatonovic-Kustrin et al., 2001). According to this split, 

compounds  with  HOMO  energy  value  ≤   -9.22 are all poorly-absorbed compounds 

(El-Henawy et al., 2013). These are highly polar molecules containing many 

hydrogen bonding groups (SHHBd) and few or no double bonds – e.g 

bisphosphonates and macrolides. The high HOMO energy group (Node 7) on the 

other hand, consists mainly of compounds of moderate absorption level (HIA of 40-

60%) and, although marked as highly-absorbed, contains more of the poorly-

absorbed compounds to be classified at the next level. These compounds are also of 

polar nature with many hydrogen bonding groups, but they also have planar areas in 

the molecule resulting from aromatic groups or other conjugated double bonds 

(hence high HOMO energy) (Eakins et al., 2011, Agatonovic-Kustrin et al., 2001). 

High HOMO energy compounds at Node 7 will have high absorption provided that 

they have dipole moment > 6.63. An inspection of these compounds at Node 9 

shows that these are mainly natural or semi-synthetic compounds, e.g. contain a 

peptide or a sugar-like fragment in their structure. These compounds may be 

absorbed by carrier systems due to resemblance to natural metabolites. An example 
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of this is the compound oxytetracycline, which contains an aromatic system with 

many oxygen and nitrogen functional groups and is a known substrate of human 

organic anion transporters (Sai and Tsuji, 2004). 

For Figure 7.3 (model 10), although all of the eight descriptors of descriptor set 1 

were used as independent continuous variables in the C&RT analysis, not all of them 

were used to build the tree in Figure 7.3; in fact only six out of the eight were used, 

with SHBin7 and SsCH3 not being selected. Similar to model 9, SHHBd is the first 

split variable in this model. The compounds with high hydrogen bond capacity 

(according to SHHBd) with low absorption (node 3) has been partitioned again 

according to SpcPolarizability, which has replaced VAMP HOMO in the previous 

model (Figure 7.2). SpcPolarizability defines how readily the molecular charge 

distribution on a molecule is affected by external oscillating fields. It can also be 

described as the specific polarizability, which is equal to polarizability/volume. 

Compounds with low SpcPolarizability values have been divided into groups 

according to their SHBint2 values. SHBint2 is the sum of E-state indexes for 

hydrogen bonding groups of path length 2 (Wanchana et al., 2004) and is high in 

compounds like saquinavir and ceftriaxone which contain peptide bonds. If this 

value is high then compounds will be classed into the poor absorption class. 

Compounds with low SHHBd (node 2) have also been partitioned according to 

SHBint2, with chemicals containing a low number of hydrogen bonding groups with 

a bond distance of two showing high oral absorption probability (node 4). 

Compounds   with   high   SHBint2   may   still   have   high   oral   absorption   if   ‘inertia  

moment   2   size’   (a   size   related   descriptor) has a low value and the ACDlogD5.5 

(lipophilicity descriptor) value is high (node 11) and the ACD_Density (molecular 

density) value is small (node 12). Descriptors relating to molecular size have been 

inversely related to intestinal absorption, therefore the larger the molecule the lower 

the absorption (Varma et al., 2010). The relationship with logD (a measure of 

hydrophobicity at a specific pH) is in accordance with previous literature (Varma et 

al., 2010, Zakeri-Milani et al., 2006, Comer, 2003). ACD Density is the mass per 

unit volume of a molecule; density will be high for molecules containing many 

heteroatoms. Compounds with a high density will have low absorption which is also 

true according to this tree (Agatonovic-Kustrin et al., 2001). 



116 
 
 

7.3.2 C&RT Classification Analysis for TS2 

C&RT classification analysis with misclassification costs was also carried out on 

TS2, the unbalanced dataset, to see if false positive error rates could be reduced. As 

there are a larger number of highly-absorbed compounds compared to poorly-

absorbed compounds, the misclassification costs to reduce the number of false 

negatives does not need to be applied as the class distribution of TS2 already favours 

the decrease of false negatives. Therefore, misclassification costs are applied for 

reducing false positives only. The cost of 4 was applied to false positives (keeping 

the baseline cost of 1 for false negatives), as this was considered the most suitable 

number based on the class distribution of roughly 4:1 for high to low absorption 

compounds. The results of the C&RT classification analysis for TS2 are shown in 

Table 7.3. 

Table 7.3. The results of C&RT classification analysis using different descriptor sets 

and misclassification cost ratios for TS2 

Model Cost           
FP:FN 

Descriptor 
Set Set 

n 
Validation 

Set 
SP × SE SE SP CNMI 

13 1:1 ALL 
t 

94 
0.862 0.955 0.903 0.053 

v 0.400 0.880 0.455 0.170 

14 1:1 3 
t 

102 
0.704 0.973 0.724 0.064 

v 0.445 0.954 0.467 0.118 

15 1:1 4 
t 

102 
0.620 0.982 0.632 0.070 

v 0.451 0.966 0.467 0.108 

16 4:1 ALL 
t 

94 
0.861 0.873 0.986 0.033 

v 0.660 0.807 0.818 0.070 

17 4:1 3 
t 

102 
0.879 0.890 0.987 0.028 

v 0.653 0.816 0.800 0.077 

18 4:1 4 
t 

102 
0.855 0.890 0.961 0.033 

v 0.517 0.862 0.600 0.099 
FP = False positive; FN = False negative; t-training; v-validation; Sensitivity is equivalent to the number of correctly classified 

highly-absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly 

classified poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-

true negative; FP-false positive; Overall Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x 

SE);  n, validation is the number of validation set compounds that was predicted by the model CNMI = Cost normalised 

misclassification index 
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Table 7.3 shows that when all descriptors were available to C&RT analysis, the best 

results were achieved when applying misclassification costs to reduce false positives 

(comparing model 13 and 16). As expected, specificity increases and 

misclassification error rate decreases when higher misclassification costs were 

applied to false positives. By applying misclassification costs to increase specificity, 

the sensitivity of the model will decrease (Table 7.3). Figure 7.4 shows the best 

model when all descriptors were supplied and the significant descriptors were 

selected by C&RT analysis (model 16). 

 

 

Figure 7.4.  Tree graph for the best C&RT analysis using TS2 using all descriptors 

with misclassification costs applied to reduce false positives (Model 16)  

As with the TS1 training set, C&RT analysis was also carried out using the pre-

selected molecular descriptors from the previous chapter 6. Table 7.3 shows that the 

best pre-selected descriptor set was descriptor set 3 (model 17) when considering SP 

× SE. The classification tree model 17 is shown in Figure 7.5. With misclassification 

costs to reduce false positives, the tree had the highest specificity (0.800) and also 

the lowest CNMI (0.077). Depending on the use of the model, if the reduction of 
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High    
Low
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false positives (increase of specificity) is the intention, then using misclassification 

costs will increase the specificity for descriptor set 3 from 0.467 to 0.800; however, 

sensitivity decreases from 0.954 to 0.816. 

 

Figure 7.5. Tree graph for C&RT analysis using TS2 with misclassification costs 

applied to false positives (FP:FN 4:1) using descriptor set 3 (Model 17) 

7.3.2.1 Interpretation of Selected Models based on TS2 

Figure 7.4 shows the selected tree when C&RT analysis selected the descriptors 

from all the supplied descriptors (model 16). Similar to models 9 and 10 obtained 

using TS1, this tree involves the hydrogen bond donor descriptor, SHHBd, as the 

first variable. Compounds with high SHHBd values are more likely to have poor oral 

absorption, especially if they are hydrophilic with ACDLogD10 below -0.76; unless 
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their Hmin value is lower than 0.48. A high number of potential H-bond formations 

is detrimental to high oral absorption, which is cited in the literature (Lipinski, 2000, 

Lipinski et al., 1997). Hmin is the minimum hydrogen electrotopological-state value 

for all atoms in the drug molecule and shows the nature of the hydrogen atoms 

attached to the skeleton of the drug molecule and whether they are hydrogen bond 

donors (Wang et al., 2008). Otherwise, if the Hmin value is higher than 0.48, 

compounds with VAMP HOMO higher than -8.56 may still have high oral 

absorption, but the large majority of compounds have a lower HOMO energy value 

and therefore will be expected to be poorly-absorbed through the gastrointestinal 

system (node 14). On the left hand side of the tree (node 2), for compounds with low 

hydrogen  bond  donor  ability  (SHHBd  ≤  6.59),  oral  absorption  is  expected  to  be  high,  

unless ACDlogD7.4 is low and xc3 is high (node 9). The descriptor xc3 is the third 

order cluster chi connectivity index. This Chi index encodes the extent of branching 

of the molecule and in this tree, it indicates that branched molecules (of hydrophilic 

nature) have poor oral absorption (Hall and Kier, 1991). It must be noted in Figure 

7.4 in nodes 9 and 11, for example, that the effect of misclassification costs is 

altering the final terminal class node, showing the misclassification costs applied to 

reduce false positives is working. Moreover, for higher ACDlog7.4 compounds      

(> -1.10) oral absorption would be poor if they have a high number of hydrogen 

bonding groups with a bond distance of three (SHBint3_Acnt). It is interesting to 

note that the nodes in the tree after the first split using SHHBd were both divided by 

logD but measured at different pH values. LogD at different pH values is affected by 

the ionization of the compound and is  related  to  the  compound’s  pKa. For example, 

for logD10, which means the distribution coefficient at pH10, any basic compounds 

at pH10 will be unionized, therefore will have higher logD10 values than acidic 

compounds which will remain ionized due to the higher pH, and in the case of 

intestinal absorption will then be not absorbed. This indicates that the pH-dependent 

lipophilicity measure (logD) at different pH values is important in distinguishing 

between high and low absorption for acidic and basic compounds as well as 

characterizing the lipophilicity. 

In Figure 7.5, all the molecular descriptors have been described previously apart 

from PSA. This descriptor along with lipophilicity has been described as an 



120 
 
 

influential molecular descriptor in predicting passive intestinal absorption and has 

been described on page 97 (van de Waterbeemd and Gifford, 2003, Palm et al., 

1997, Palm et al., 1996). Mass has also been used in this tree and in accordance with 

Lipinski’s  rule  of  five,  but  only with a slightly different cut off point of 537.23 Da  

(Lipinski et al., 1997, Yang et al., 2012). 

7.4 Discussion 

The aim of this chapter was to create classification models that could classify 

compounds into highly and poorly-absorbed classes using two techniques to 

overcome datasets with unbalanced class distribution: under sampling and 

misclassification costs. Firstly, under-sampling was used to create a balanced 

training set to build models to compare with an unbalanced training set using 

decision trees. Secondly, higher misclassification costs were applied to the balanced 

and unbalanced datasets to see the effect the higher misclassification costs have on 

model accuracy and overcoming the dataset with unbalanced class distribution. A 

comparison of models in this chapter as well as previously published oral absorption 

models is discussed. 

7.4.1 Comparison of Models  

As stated in the previous chapter, a direct comparison between models built from the 

two different training sets is not a fair comparison due to the different class 

distributions of TS1, the balanced set, and TS2, the set biased toward highly-

absorbed compounds. Nevertheless, it can be seen that TS1 in the majority of cases 

leads to higher specificity when misclassification costs are equal for FN and FP. TS2 

gave higher sensitivity in all cases, which is expected due to the bias of the training 

set toward highly-absorbed compounds.  It  has  been  cited  that  Lipinski’s  rule  of  five  

can give rise to false positives and could be a possible explanation for the lower 

specificity of this model even with a balanced training set (Lipinski et al., 1997, 

Andrews et al., 2000, Zhu et al., 2011). When misclassification costs are applied to 

either TS1 or TS2 to reduce false positives, specificity improves for both training 

sets. Moreover, it can be seen in Table 7.3 that the use of 4:1 misclassification costs 

for FP:FN leads to improved models for TS2 with better SP × SE values. This 
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finding shows that using misclassification costs can overcome a dataset bias by 

increasing specificity.  

 

Additionally in this chapter, I compared the effect of allowing the software to pick 

the most significant descriptors from all 215 descriptors used or from a smaller 

subset of descriptors previously selected as significant by stepwise regression 

analysis or those  related  to  Lipinski’s  rule  of  five.  For  the  balanced  training  set,  TS1,  

Table 7.2 shows that model 10 achieved the lowest value CNMI of 0.165 and the 

highest SP × SE of 0.686 using descriptor set 1. The next best CNMI was again 

achieved by descriptor set 1 with a value of 0.188 (model 6); this model also 

obtained the highest specificity of 0.925 when misclassification costs were applied to 

reduce false positives. From Table 7.2 it is interesting to see that in several cases the 

CNMI values are higher for C&RT models using all descriptors compared with those 

models using smaller descriptor sets selected by feature selection techniques, 

meaning that there are more errors when allowing the C&RT analysis to pick 

significant descriptors from the 215 available. This could show that using linear 

stepwise regression to select a smaller subset of molecular descriptors significantly 

relevant to intestinal absorption beforehand can be advantageous as often models are 

produced with fewer misclassifications. The most accurate models for TS2 (Table 

7.3) are models 16 and then 17, which were developed using all descriptors or 

descriptor set 3. The fact that using all descriptors works well for TS2, but for TS1 a 

prior descriptor selection is best, suggests that C&RT can be an efficient descriptor 

selection method when a larger dataset is used (517 vs 94 compounds in TS2 and 

TS1, respectively).  

 

In this chapter, TS1 contained 94 compounds with a validation set containing 89 

compounds and was used as this mirrors the balanced data distribution of the training 

set.  By  balancing  the  validation  set  too,  it  gives  a  fair  representation  of  the  models’  

predictive performance. As an additional test, the predictive performance of the 

models was investigated for a new validation set containing all the compounds not 

used in the training set, plus the 89 compounds already in the validation set. It must 

be noted that the additional validation set compounds are all highly-absorbed with 

the exception of two compounds. Therefore this validation set is heavily biased. The 
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results of this work can be found in Table 7.4. According to Table 7.4 the best 

models according to SP × SE were those using descriptor set 1 (models 2, 6, and 10), 

which corresponds to the results seen earlier for the smaller balanced validation set 

(Table 7.4 model 10). The performance on the larger validation can help confirm 

how well the models using the balanced training set perform.  

 

Table 7.4. The validation results of C&RT classification models obtained using TS1 

for all the remaining compounds not used in training 

Model Cost           
FP:FN 

Descriptor 
Set 

n 
validation 

set 
SP x SE SE SP CNMI 

1 

1:1 

ALL 496 0.647 0.869 0.745 0.143 
2 1 521 0.730 0.852 0.857 0.148 
3 2 521 0.728 0.887 0.820 0.119 
4 4 521 0.341 0.898 0.380 0.152 
5 

2:1 

ALL 496 0.510 0.800 0.638 0.131 
6 1 521 0.712 0.775 0.918 0.115 
7 2 521 0.685 0.856 0.800 0.089 
8 4 521 0.654 0.909 0.720 0.072 
9 

1:2 

ALL 496 0.673 0.855 0.787 0.258 
10 1 521 0.701 0.881 0.796 0.214 
11 2 521 0.657 0.887 0.740 0.208 
12 4 521 0.497 0.887 0.560 0.224 

FP = False positive; FN = False negative; t-training; v-validation; Sensitivity is equivalent to the number of correctly classified 

highly-absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly 

classified poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-

true negative; FP-false positive; Overall Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x 

SE);  n, validation is the number of validation set compounds that was predicted by the model CNMI = Cost normalised 

misclassification index 

7.4.2 Discussion of the Related Literature 

As specified in the previous chapter, there are summary tables in the literature that 

detail the accuracy, specificity and sensitivity of classification work carried out by 

previous studies (Hou et al., 2006, Suenderhauf et al., 2011, Talevi et al., 2011). As 

previously stated, the direct comparison of the models presented in this chapter with 

the models in the literature is a very difficult task. In spite of this the comparison of 

those models using similar classification techniques can be discussed in the context 

of the biased dataset problem. 
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The number of compounds in the datasets in the literature should be considered 

when   assessing   the   models’   performances.   Small   datasets   may   achieve   high  

predictive accuracy within the chemical space of the dataset, however this can lead 

to a lack of generalization to new chemical compounds which are likely to be outside 

the domain applicability of such models. In the study by Niwa et al (2003), using 67 

compounds achieved 100% correct classification for the training set, however this 

dropped to 80% for the external prediction set of 12 compounds. It must be 

highlighted that the main misclassification in Niwa et al’s  model  was  for  the  poorly-

absorbed  compounds,  which  were  represented  inadequately  in  Niwa’s  dataset  (Niwa, 

2003). As a result, the overall accuracy of Niwa et al’s  model  as  calculated  using  my 

accuracy measurement (SP × SE) yields a value of 0.667. This is a reoccurring 

problem with the other datasets in the literature that I considered (Wessel et al., 

1998, Zhao et al., 2002, Klopman et al., 2002). Poorly-absorbed compounds are 

predicted better using my models due to the larger representation of this class in my 

TS1 training set and/or the use of varying misclassification costs. 

 

An interesting study carried out by Bai et al using C&RT analysis found that using 

an even distribution of compounds with low, moderate and high absorption resulted 

in similar prediction ability for the test set using an unbalanced dataset. They 

summarised that the training set distribution does not affect how the C&RT 

algorithm performs (Bai et al., 2004); this is contrary to the results obtained in this 

chapter. C&RT can deal with skewed datasets to some extent, but this chapter has 

highlighted that using an unbalanced dataset gives rise to poorer predictive accuracy 

for the under-represented class using the C&RT method. However, the use of 

misclassification costs and under sampling can result in models with higher 

predictive accuracy in general, based on the work in this chapter. 

 

Additionally, Deconinck et al (2005) carried out C&RT analysis using Splus 

software using the 141 compounds from Zhao et al (2001). C&RT models were built 

using different subsets of 2D and 3D molecular descriptors and validated on a small 

validation set of 27 compounds. All of the 27 compounds were highly-absorbed; 

hence, the accuracy measure is really the sensitivity value of 85%. With no poorly-
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absorbed compounds in the validation set, the real predictive ability of the model for 

both classes cannot be confirmed using a suitable external validation set. In spite of 

this, this study highlighted that C&RT is a suitable technique to select important 

molecular descriptors for oral absorption (Deconinck et al., 2005). 

 

As stated in the previous chapter, in most studies the accuracy and sensitivity results 

are higher than the specificity values, due to the under-representation of poorly-

absorbed compounds (Deconinck et al., 2005, Niwa, 2003). The exceptions to this 

were obtained by Hou et al (2007), who obtained higher specificity than sensitivity 

using a validation set of 98 compounds. However, their result was achieved when 

only five of the 98 compounds in their validation set were poorly-absorbed. The two 

papers utilise recursive partitioning (RP), a type of decision tree method, and SVM 

for the prediction of high and low absorption using a threshold of 30% to define the 

boundary between the two classes. On closer inspection of the study using SVM, it 

was highlighted that cost sensitive learning was applied. In other words, higher 

misclassification costs were applied to the minority class. Without higher 

misclassification costs applied to the SVM models, the specificity was lower than the 

sensitivity   and   overall   accuracy,   indicating   that   SVM’s   classification   can   be  

influenced by the unbalanced dataset. 

 

Lipinski’s  rule  of  five  is  a  qualitative  rule-based model which has been explained in 

previous chapters. This rule has been criticised for having a high rate of false 

positives (Zhu et al., 2011, Suenderhauf et al., 2011). With this work, descriptors 

describing   Lipinski’s   rule   of   five   plus   the   number   of   rotatable   bonds   allowed   a  

qualitative evaluation  of  Lipinski’s  rule  of  five  via  C&RT  analysis.  Using  Lipinski’s  

rule of five in its original form (if 2 or more of the 5 rules were violated, this 

indicates poor absorption), specificity was 0.425 and 0.400 for the validation sets of 

TS1 and TS2 respectively. By incorporating these descriptors (descriptor set 4) in 

C&RT, upon using higher misclassification costs to reduce false positives, the 

specificity was 0.750 for TS1 and 0.600 for TS2. Using misclassification costs to 

reduce false positives, an  improvement  to  Lipinski’s  rules  was  made  possible. 
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The descriptors selected in the models can be interpreted according to the known 

mechanisms involved in the absorption process. Table 7.5 gives a summary of all the 

molecular descriptors used in the selected models, 9, 10, 16 and 17. The most 

common molecular descriptors used in the best models were descriptors of hydrogen 

bonding (such as SHHBd, SHBint2); log D at various pH values, which is related to 

lipophilicity and acid/base property; ACD_Density, which is related to the number 

of heteroatoms in the molecules; and PSA, which has been cited as a molecular 

descriptor relating to polarity and size (Hou et al., 2007c, Wegner et al., 2004). 

Other important molecular attributes are size-related parameters. These are in 

agreement with the literature indicating that the molecular descriptors important to 

intestinal absorption are those related to lipophilicity, hydrogen bonding, polarity, 

ionization, and size (Yang et al., 2012, Wegner et al., 2004). Overall, the molecular 

descriptors utilised in the best models in this chapter, no matter what training set 

used, are shown in the literature to be important for intestinal absorption (Deconinck 

et al., 2005) 
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Table 7.5. Molecular Descriptors Used in the Selected Models (9, 10, 16 and 17) 

Type of descriptor Name of descriptor Number of selected models 
containing the descriptor 

Hydrogen bonding 

SHHBd 3 
ABSQ 1 

ACD_Density 2 
SHBint2 1* 

SHBint3_Acnt 1 
Hmin 1 

ACD_PSA 1* 

Lipophilicity 

ACD logD 5.5 2* 
ACD logD 7.4 1 
ACD logD 10 1 
ACD logD 2 1 

Size 

xvch7 1 
Inertia moment 2 (size) 1 

xc3 1 
Mass 1 

Polarity/ polarizability 
VAMP HOMO 2 

Total dipole moment 1 
Spc polarizability 1 

Acidity FiA1 1 
* occurred more than once in a single tree model 

7.5 Conclusion 

Class imbalance occurs frequently in QSAR and drug discovery datasets (Tropsha, 

2010). This could be for a number of reasons; however, in this context it is due to 

lack of publicly available data for the minority class, poorly-moderately absorbed 

compounds, in the literature. The aim of this work was to improve the class 

prediction of poorly-absorbed compounds by the use of varying misclassification 

costs in C&RT analysis. This was analysed using two training sets, the one selected 

by under-sampling the majority class (TS1), or the training set selected randomly 

and hence biased towards highly-absorbed compounds (TS2). The comparison 

between descriptor selection by C&RT and pre-selecting a small subset of molecular 

descriptors using statistical techniques or rule-based models was also considered.  
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Under-sampling the majority class to create a balanced training set produced models 

that had high predictive power for the prediction of poorly-absorbed compounds. As 

expected, the randomly selected training set (TS2) had high predictive power for 

highly-absorbed compounds with high sensitivity values, but this was accompanied 

by low specificity values. This conclusion conforms to the previous work using 

regression and discriminant analysis classification in the previous chapter 

(Ghafourian et al., 2012).  

The use of misclassification costs led to improvements in predictive accuracy. Even 

though there is no general consensus to reduce false positives or false negatives from 

the literature, this work shows that misclassification costs can be applied to reduce 

false positives or false negatives. Other considerations such as poor solubility and 

carrier-mediated transport systems can play a part in misclassification error rates in 

the models (Klopman et al., 2002). For the unbalanced training set containing the 

majority high absorption class, applying higher costs for the misclassification of 

false positives improved specificity in all cases. The unbalanced dataset can be 

utilised without removing compounds as an advantage for improved sensitivity as it 

will already be biased towards high absorption compounds. Therefore, varying ratios 

of misclassification costs can be used as a vital and effective tool to overcome class 

unbalance, which is a recurring problem in drug discovery datasets.  

The comparison between using all descriptors for the C&RT method or to use a 

smaller subset of molecular descriptors suggests that the descriptors selected by 

stepwise linear regression may achieve better prediction. However, this cannot be 

generalized, and descriptor selection by C&RT may work just as well when a large 

training set is used, e.g. TS2. This warrants further investigation. 

In conclusion, reasonably interpretable, user friendly C&RT models that can be 

easily understood and utilised for specific purposes have been obtained by using two 

strategies, under-sampling the majority class of the training set and misclassification 

costs, to overcome class imbalance of oral absorption datasets. 
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8 Pre-processing Feature Selection for Improved C&RT 
Models for Oral Absorption 

8.1 Introduction 

In order to construct a QSAR model, molecular descriptors are calculated in order to 

derive mathematical relationships between the chemical structure and the biological 

activity of compounds. There are a wide variety of molecular descriptors to choose 

from; therefore feature selection techniques can be used to identify the best ones. 

As previously stated in the introduction, feature selection techniques selectively 

minimize the number of molecular descriptors used to accurately describe property 

of interest, in this case %HIA class (Wong and Burkowski, 2011). Therefore, feature 

selection can increase interpretability, predictive accuracy and reduce over fitting for 

subsequent models (Goodarzi et al., 2012). Feature selection can be categorized into 

the two broad categories of data pre-processing or embedded methods. Data pre-

processing feature selection involves reduction of the number of molecular 

descriptors before model building. On the other hand, embedded methods 

incorporate feature selection into the training and building of the final model 

(Goodarzi et al., 2012, Saeys et al., 2007).  

Based on the previous chapters where descriptor subsets were used to create models 

for oral absorption, this chapter investigates five pre-processing filter feature 

selection techniques for selecting subsets of molecular descriptors. The comparison 

of these different feature selection techniques is anticipated to give an idea of the 

relative abilities of the different techniques based on their prediction ability on the 

validation set. Furthermore, I compare two broad approaches for feature selection: 

(1)   a   “two-stage”   feature   selection   procedure,   where   in   the   first   stage   a   pre-

processing feature selection method selects a subset of descriptors, and in the second 

stage classification and regression trees (C&RT), which is itself an embedded feature 

selection method, selects a subset of the descriptors selected by the filter technique to 

build  a  decision   tree;;   (2)  a  “one-stage”  approach  where  C&RT   is  used as the only 

feature selection technique, without using data pre-processing feature selection 

methods (Figure 8.1). 
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Figure 8.1. A comparison of pre-processing and embedded feature selection 

processes for model building 

A comparison between these two approaches in Figure 8.1 could indicate the 

usefulness of pre-processing feature selection for C&RT analysis. Additionally, this 

work utilizes misclassification costs in model building to overcome the problem of 

imbalanced class datasets as used in Chapter 7. Therefore, this section offers an 

investigation of feature selection techniques which reduce the number of molecular 

descriptors, increasing interpretability of resulting models, and combined with this 

the use of misclassification   costs   in   model   development   to   increase   a   model’s  

predictive accuracy when analysing an imbalanced class dataset. Therefore this work 

offers a novel combination of pre-processing feature selection combined with 

misclassification costs to develop models for imbalanced class oral absorption 

datasets. 
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8.2 Methods 

8.2.1 Dataset 

Dataset 2 was utilised for the prediction of oral absorption as  defined  in  the  ‘Dataset  

and  Methods’  section  5.1.2  of  this  thesis.  

8.2.2 Training Sets and Validation Sets 

There were three sets of compounds used in this work: a training set, to train the 

models, a parameter optimisation set, for method optimisation and finally an external 

validation set, to assess the predictive ability of the models produced with an unseen 

validation set. The training set and parameter optimisation set (internal validation 

set) were assigned based on previous chapters using dataset 1. The additional data 

were used as an external validation set and when combined with the compounds 

from dataset 1 resulted in dataset 2. 

All compound sets (training, parameter optimisation and validation sets) had similar 

data distributions to create a fairer more controlled validation of the models. The 

exact number of compounds in the training, parameter optimisation and validation 

set are shown in Table 8.1. 

Table 8.1. Numbers of compounds in the training, parameter optimisation and 

validation sets 

Dataset 
Number of 
compounds (n) 

Training set 534 

Parameter optimisation set 107 

Validation set 48 

 

8.2.3 Model Development 

8.2.3.1 Molecular Descriptors 

A total of 204 descriptors were generated in this study using a variety of different 

software including TSAR 3D (Accelrys Inc.), MDL QSAR (Symyx Inc.), MOE 
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(Chemical Computing Group Inc.) v2010.10 and Advanced Chemistry Development 

ACD Labs/LogD Suite v 12. From the 204 molecular descriptors, 203 were 

continuous and only one was categorical.  

In this work it was noted that compounds that contained a permanent quaternary 

ammonium ion had more missing descriptor values than other compounds in the data 

set. Therefore, an indicator variable that described the permanent positive nitrogen 

(YES/NO) was calculated using the MOE software (v2012). Molecular descriptors 

that are difficult to compute and result in many missing values may not be suitable to 

be used in resulting models as the molecular descriptors may not be able to be 

calculated for new compounds, leading to poor performance of the model for 

classification of these compounds. Therefore, all molecular descriptors that had 10 or 

more missing values based on preliminary work were removed and therefore a final 

number of 204 descriptors were available for feature selection techniques. 

8.2.3.2 Feature Selection 

Feature selection methods were used in the pre-processing step to reduce the number 

of molecular descriptors to smaller subsets that accurately predict the HIA Class. 

The software used for feature selection was STATISTICA v11 and WEKA v 3.6 

(Hall et al., 2009). The pre-processing feature selection techniques used to select 

molecular descriptors for the classification models of oral absorption are shown in 

Table 8.2 and are further described in the general methods section. 

Table 8.2. Pre-processing feature selection methods utilised in this chapter 

 Feature selection method Acronym used 
in this chapter Software used 

1 Predictor importance using random forest  RF STATISTICA 

2 
Predictor importance using random forest with 
higher misclassification costs for false positives*  RF (MC) STATISTICA 

3 Chi-square  CS STATISTICA 
4 Information gain ratio  IGR WEKA 
5 Greedy stepwise  GRD WEKA 
6 Genetic search  GEN WEKA 
*Higher misclassification costs applied 4:1 False Positive: False Negative 
 

The molecular descriptors selected by the pre-processing feature selection techniques 

in Table 8.2 were used as input by C&RT which then performed further (embedded) 
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feature selection (Figure 8.1) in order to build the resulting models. The training set 

was used by all methods; however, for the filter methods CS, IGR, GRD, and GEN, 

the parameter optimization set was combined with the training set to carry out 

feature selection using these techniques. For random forest and C&RT (embedded 

feature selection) the training set was used to train the model, and separately the 

parameter optimization set was used to assess the optimisation of the model 

parameters based on the training set. The top 20 molecular descriptors for methods 

RF, CS, and IGR were selected based on the highest values of the descriptor scoring 

function. Other numbers of selected molecular descriptors were tried; however, 

based on the C&RT analysis results on the parameter optimization set, the top 20 

descriptors gave the highest classification accuracy and this was selected. 

8.2.3.3 QSAR Modelling Techniques 

The categorical prediction of HIA class was carried out using C&RT analysis in 

STATISTICA v 11 (StatSoft Ltd). According to observed %HIA values in the 

dataset,  compounds  were  placed  into  either  the  ‘High’  class  if  %HIA  was  equal  to  or  

greater  than  50%  or  the  ‘Low’  class,  if  %HIA was less than 50%.  

For this work, HIA Class was set as the dependent categorical variable and either all 

203 molecular descriptors or a subset of these selected by various feature selection 

methods in Table 8.2 were selected as continuous independent variables. The 

analyses also included one categorical independent variable, N+ group, the indicator 

variable for presence or absence of quaternary ammonium. If there were any trees 

with only one compound in the terminal nodes, manual pruning was carried out to 

prevent over fitting. In C&RT analysis, the stopping factor was the minimum 

number of compounds for splitting of 30 which was selected based on preliminary 

experiments. All other settings used were default settings defined by the software. 

C&RT carries out embedded feature selection. Therefore the use of feature selection 

methods in a pre-processing phase, before inputting the descriptor subset into C&RT 

can be investigated. By carrying out data pre-processing feature selection the method 

can avoid C&RT’s  drawback  of  ‘data  fragmentation’.  In  other  words,  as  the  decision  

tree is built and compounds split into smaller nodes there are fewer compounds to 

split; therefore, the selection of descriptors in that local node becomes less 
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statistically reliable. Whereas if a statistically significant subset of molecular 

descriptors relating to HIA class has already been selected via pre-processing feature 

selection and then are given to C&RT, the selection of molecular descriptors will be 

more reliable. 

8.2.3.4 Misclassification Costs 

For this chapter, either equal misclassification costs were assigned or a 

misclassification cost ratio of 4:1 was applied to false positive:false negatives based 

on the dataset distribution, as in the previous chapter. This chapter compared the use 

of the same costing with higher costing to reduce false positives as well as 

comparison of the pre-processing and embedded feature selection approaches. 

8.3 Results 

A full list of molecular descriptors selected by each of the feature selection methods 

can be found in Appendix 2, Tables A2.1 and A2.2. As GRD and GEN are not 

ranking feature selection methods, the number of descriptors picked by these 

methods will depend on the technique and the dataset. GRD selected a total of 21 

descriptors and GEN selected 64. Tables 8.3 and 8.4 show the predictive 

performance measures of the classification trees using different sets of molecular 

descriptors selected by the feature selection methods. In Table 8.3 equal 

misclassification costs have been applied to false positives and false negatives for 

C&RT analysis, while in Table 8.4 the ratio of misclassification costs is 4:1 for false 

positives: false negatives. In Table 8.3 and 8.4 the best models are those that have 

the highest SE, SP and SP x SE measures and the lowest CNMI. These have been 

highlighted in bold for the training (t), parameter optimisation (po) and validation 

(v) sets. For the random forest feature selection method there was an option to apply 

misclassification costs. Therefore the descriptor sets selected by RF with equal 

(models 1 and 8) and higher misclassification costs applied to false positives (models 

2 and 9) were used and also compared. All the C&RT decision trees from Tables 8.3 

and 8.4 can be found on the accompanying disk with this thesis. 
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Table 8.3. The results of C&RT classification analysis using different feature 

selection methods with equal misclassification costs applied to the C&RT algorithm 

Model 
Feature 
selection 
Method 

dataset n SP x SE SE SP CNMI  

1 RF 
t 531 0.848 0.950 0.892 0.060 

po 107 0.709 0.930 0.762 0.103 
v 47 0.363 0.816 0.444 0.255 

2* RF (MC) 
t 531 0.884 0.945 0.935 0.056 

po 107 0.757 0.884 0.857 0.121 
v 47 0.453 0.816 0.556 0.234 

3 CS 
t 531 0.777 0.963 0.806 0.064 

po 107 0.576 0.930 0.619 0.131 
v 47 0.187 0.842 0.222 0.277 

4 IGR 
t 531 0.800 0.979 0.817 0.049 

po 107 0.664 0.930 0.714 0.112 
v 47 0.398 0.895 0.444 0.191 

5 GRD 
t 531 0.803 0.970 0.828 0.055 

po 107 0.628 0.942 0.667 0.112 
v 47 0.351 0.789 0.444 0.277 

6 GEN 
t 531 0.839 0.975 0.860 0.045 

po 107 0.673 0.942 0.714 0.103 
v 47 0.398 0.895 0.444 0.191 

7 C&RT 
t 531 0.784 0.959 0.817 0.066 

po 105 0.694 0.942 0.737 0.095 
v 47 0.281 0.842 0.333 0.255 

t-training; po, parameter optimisation; v-validation; Sensitivity is equivalent to the number of correctly classified highly-

absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified 

poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; 

FP-false positive; Overall Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE);  n, is the 

number of compounds that was predicted by the model for the training, parameter optimisation and validation set; CNMI = 

Cost normalised misclassification index;  * misclassification costs applied to feature selection method 

 

Comparing models built with equal misclassification costs (Table 8.3); the best 

overall model to choose would be model 2. This model has the highest SP x SE, plus 

the highest specificity values for the training, parameter optimisation and validation 

sets. However, this model does not achieve the highest SE values, with SE = 0.945, 

0.884 and 0.816 for the training, parameter optimisation and validation sets 

respectively. All other models have better SE than model 2 for the three data subsets; 
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apart from model 1, which has the same SE for the validation set, and model 5 

(GRD), with a lower SE of 0.789. If the aim of the model was to achieve the best 

sensitivity then model 6, using genetic search feature selection, would be the best 

model to use, as it achieved the best sensitivity for the parameter optimisation and 

the highest SE for the training set amongst the three selected models above, along 

with the lowest CNMI for the training set. Model 2 was able to classify correctly all 

the permanent ammonium-containing compounds used in the training and parameter 

optimisation set, and this resulted in the correct prediction of a permanent 

ammonium containing compounds in the validation set. The classification tree using 

the molecular descriptors from this model is shown in Figure 8.2. 

 

Figure 8.2. Tree graph for C&RT analysis using random forest predictor importance 

as feature selection method with equal misclassification costs applied to pre-

processing C&RT (Model 2 in Table 8.3) 

Table 8.4 shows the predictive performance measures from the classification trees 

using different sets of molecular descriptors selected by the feature selection 

methods when the ratio of misclassification costs is 4:1 for false positives: false 

negatives for C&RT analysis. 
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Table 8.4. The results of C&RT classification analysis using different feature 

selection methods with higher misclassification costs applied to false positives to the 

C&RT algorithm (misclassification cost ratio of FP: FN = 4:1) 

Model 
Feature 
selection 
Method 

dataset n SP x SE SE SP CNMI  

8 RF 
t 531 0.887 0.927 0.957 0.026 

po 107 0.725 0.895 0.810 0.068 
v 47 0.675 0.868 0.778 0.081 

9* RF (MC) 
t 531 0.879 0.909 0.968 0.028 

po 107 0.738 0.860 0.857 0.066 
v 47 0.635 0.816 0.778 0.093 

10 CS 
t 531 0.838 0.906 0.925 0.037 

po 107 0.687 0.849 0.810 0.079 
v 47 0.544 0.816 0.667 0.118 

11 IGR 
t 531 0.853 0.934 0.914 0.033 

po 107 0.673 0.884 0.762 0.082 
v 47 0.544 0.816 0.667 0.118 

12 GRD 
t 528 0.892 0.943 0.946 0.025 

po 106 0.654 0.872 0.750 0.085 
v 47 0.725 0.816 0.889 0.068 

13 GEN 
t 531 0.885 0.895 0.989 0.027 

po 107 0.640 0.895 0.714 0.090 
v 47 0.614 0.789 0.778 0.099 

14 C&RT 
t 531 0.911 0.932 0.978 0.020 

po 107 0.726 0.907 0.800 0.066 
v 47 0.544 0.816 0.667 0.118 

t-training; po, parameter optimisation; v-validation; Sensitivity is equivalent to the number of correctly classified highly-

absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified 

poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; 

FP-false positive; Overall Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE);  n, is the 

number of compounds that was predicted by the model for the training, parameter optimisation and validation set; CNMI = 

Cost normalised misclassification index;  * misclassification costs applied to feature selection method 

 

For Table 8.4, based on the SP x SE for the external validation set, the best model is 

model 12 with a SP x SE value of 0.725; but this model also had one of the lowest 

SP x SE for the po set (0.654), which has a higher number of chemicals compared to 

the external validation set. In comparison, models 8 and 9 achieved higher SP x SE 

of 0.725 and 0.738 respectively, where the po set was not used for molecular 

descriptor selection and hence it was also an external set.  From models 8 and 9, 



137 
 
 

model 9 had a similar balance of high estimation of SP and SE compared to model 8, 

which was slightly worse at predicting poorly-absorbed compounds for the po set. 

What was interesting to note about model 9 was the feature selection method using 

predictor importance from random forest, which allowed misclassification costs to 

be applied at the feature selection level. Then the resulting C&RT model (with 

misclassification costs) achieved high predictive accuracy for the unseen validation 

set as well as training and parameter optimisation sets. The C&RT tree for model 9 is 

shown in Figure 8.3. 

 

Figure 8.3. Tree graph for C&RT analysis using random forest predictor importance 

as feature selection method with higher misclassification costs applied to reduce 

false positives (model 9 in Table 8.4) 

8.3.1 Interpretation of the Selected Models (Models 2 and 9) 

Both models 2 and 9 have been developed using the 20 most significant molecular 

descriptors selected by random forest analysis. Although the top 20 molecular 

descriptors were given as input to the C&RT analysis, not all of the molecular 

descriptors were used to build the decision trees. The first split variable in both 

models is ACDLogD7.4; the significance of this descriptor has been described in the 
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previous chapters (see sections 6.4 and 7.3). For compounds to be split into the high 

absorption class, LogD7.4 has to be greater than -1.63 according to both models. For 

compounds  with  low  logD7.4  (≤  -1.63), if they contain more than five oxygen atoms 

they are classed as poorly-absorbed in this terminal node according to both models. 

This molecular descriptor is linked to the number of hydrogen bond acceptors, 

highlighted   in   Lipinski’s   rule   of   five   (Lipinski et al., 1997) which has been 

previously described. Examples of poorly-absorbed compounds classed in this node 

are ceftriaxone and raffinose. 

In both models, the next important descriptor selected for the partitioning of 

compounds with low logD7.4 and less than six oxygen atoms is VAMP HOMO. The 

higher HOMO energy (> -10.18 in the split in the trees) indicates higher absorption 

classification as found in the previous chapter 7 (See section 7.3). Compounds with 

low HOMO values are in the low absorption terminal nodes. The majority of 

compounds with low HOMO energy (< -10.18) according to this split contain a 

permanent quaternary ion such as pralidoxime and bethanechol, which are small 

polar molecules mainly related to the neurotransmitter acetylcholine, or compounds 

such as fosmidomycin and fosfomycin, which contain phosphorus atoms. 

Compounds with a higher HOMO energy are further split with different molecular 

descriptors in the two trees.  

In Figure 8.2, these high HOMO compounds are classed as poorly-absorbed if they 

have  more  than  seven  heteroatoms.  This  corresponds  to  Lipinski’s  rule  of  five,  more  

precisely the number of hydrogen bond acceptors rule. In this node, the majority of 

compounds are antibiotics such as meropenem and imipenem, which are both 

poorly-absorbed. There are also some misclassified antibiotics such as penicillin V 

and amoxicillin, which are highly-absorbed. However, both these compounds have 

been found to be substrates for the oligopeptide transporter, PEPT1 (SLC15A1), 

influx transporter in the small intestine (Brandsch et al., 2008). The remaining 30 

compounds are classed as highly-absorbed if they contain fewer than three OH 

groups (SsOH_Acnt).   

In Figure 8.3 however, such high HOMO compounds are classed as highly-absorbed 

if they have low xp6 values. The descriptor xp6 is the sixth order single path 
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molecular connectivity index (Hall and Kier, 1991), which may be regarded as a size 

descriptor with some shape/connectivity elements.  Examples of compounds in this 

node are those with a small, polar, often peptide like nature with no permanent 

charge and mainly natural or semi-synthetic compounds such as phenylalanine and 

captopril, which may have the possibility to be absorbed using oligopeptide 

transporters (Figure 8.3, Node ID=8).  The remaining 35 compounds are classed as 

poorly-absorbed if they have acidic groups with ionization fraction > 0.000005 at 

pH7.4.  

Highly-absorbed compounds with logD value greater than -1.63 are split differently 

in Figures 8.2 and 8.3. Despite this, the best molecular descriptors for splitting of 

these 427 compounds in both trees are the same, namely polarizability (VAMP mean 

polarizability) and PSA. In both trees, compounds  with  polarizability  values  ≤  2.65  

are poorly-absorbed. This molecular descriptor indicates the distortion of a 

compound’s   electron   cloud   by   an   external   electric   field   (Wang et al., 2007). 

Examples  of  compounds  with  ≤  2.65  polarizability  values  (Node  ID  =  12  in  Figure  

8.2 and 14 in Figure 8.3) are bephenium and vecuronium, both with low 

polarizability due to the permanent quaternary ammonium ion present in the 

molecules. Next, PSA is used in both trees, and in both trees compounds with high 

PSA are poorly-absorbed. In Figure 8.2 a compound is poorly-absorbed if the PSA is 

greater than 139.67Å, which matches the literature threshold value where it was cited 

that a molecule will be poorly-absorbed  (<10%  FA)  if  the  PSA  is  ≥  140Å  (Palm et 

al., 1997, Clark, 1999). In Figure 8.3, a threshold value of 114.19 Å has been used, 

but these high PSA compounds (>114.19) have been partitioned further and those 

with smaller molecular size, as indicated by ka1, and higher logD5.5 values than 

0.275 are classed as highly-absorbed. An interesting feature can be observed in 

Figure   8.2,   where   for   the   compounds   with   PSA   values   ≤139.67   and   low   >CH- 

groups   (SsssCH  ≤   -1.35), if polarizability is too high (VAMP mean polarizability 

>56.363) then oral absorption will be poor. Examples of these drugs are two pro-

drug ACE inhibitors moexipril diacid and fosinopril plus the cardiac glycoside 

cymarin. 
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8.3.2 Chemical Space and Repeating Misclassifications in Models 

There were a few compounds that were continually misclassified by most models for 

the external validation set. The compound lovastatin was misclassified by all models 

and frovatriptan was misclassified by the majority of models. Both of these 

compounds are poorly-absorbed, but the models misclassified them as highly-

absorbed. Lovastatin is a naturally occurring product used to reduce cholesterol; this 

compound has poor solubility issues in aqueous medium (Serajuddin et al., 1991), 

plus it has been identified as heavily undergoing gut metabolism, both of which 

could account for the misclassification (Jacobsen et al., 1999). In addition, this 

compound has been identified as a potential substrate and inhibitor of the efflux 

transporter P-gp (Wang et al., 2001). Frovatriptan, according to the Varma et al 

(2010), has a fraction escaping gut metabolism of 69%; meaning potentially 30% 

could be metabolised by the gut, specifically UDP-glucuronosyltransferases (UGT’s)  

in the gut due to their substrate specificity of the indole group present in frovatriptan 

and the similarity of this compound to serotonin, a UGT substrate. However, there is 

no direct evidence of this in the literature; nevertheless this could explain the 

misclassification by my models (Varma et al., 2010, Krishnaswamy et al., 2003). 

8.4 Discussion 

In this chapter I used various filter feature selection methods for data pre-processing, 

to pick significant descriptors related to intestinal absorption. These descriptor sets 

were used as input for C&RT analysis, which has an embedded feature selection 

method, to classify compounds into high or low absorption in an unbalanced-class 

dataset – sometimes   called   a   “biased”   dataset.   The   application   of   higher  

misclassification costs for false positives to the C&RT analysis was also investigated 

to overcome the problem of biased datasets (which contain many more highly-

absorbed compounds than poorly-absorbed compounds) and to see if models with 

greater predictive accuracy could be achieved.  

The feature selection methods used in this chapter were predictor importance using 

random forest (RF), chi square (CS), information gain ratio (IGR), greedy search 

(GRD) and genetic search (GEN). The feature selection methods were compared 

based on the predictive ability of the C&RT algorithm. There were certain 
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expectations of the feature selection methods based on how they work and their 

advantages and disadvantages. To begin, it was expected that the combination of a 

pre-processing feature selection method and C&RT, which has an embedded feature 

selection, would have higher predictive accuracy when compared to using C&RT 

with no pre-processing feature selection method. This was on the basis that when 

C&RT splits compounds, further down the tree there are fewer compounds in the 

deeper nodes, therefore less statistical support for an effective selection of the best 

descriptor, especially when there are a larger number of molecular descriptors to 

choose from. Therefore, as a result the C&RT algorithm could pick descriptors that 

may be less relevant to molecular descriptors higher up in the tree. However, C&RT 

is a successful technique in its own right with an embedded feature selection 

function which is used in model development for the prediction of oral absorption 

(see chapter 7) (Newby et al., 2013a, Deconinck et al., 2005). The benefits of using 

C&RT are that it can cope with noisy data (to some extent) of moderately sized 

biased datasets and produces models (decision trees) that in principle can be easily 

interpreted (Suenderhauf et al., 2011). In addition, it is less time consuming than pre-

processing the molecular descriptors first. 

The expectations of the feature selection methods themselves can be considered and 

compared to the obtained results in this chapter. The benefits of simple univariate 

filter techniques such as CS and IGR are that they are simple and fast to compute; 

however they fail to take into account molecular descriptor interactions (Saeys et al., 

2007, Guyon and Elisseeff, 2003). This is in contrast to GRD and GEN, which take 

molecular descriptor interactions into account but are more computationally 

expensive. In a comparison of GRD and GEN, due to the way these feature selection 

methods work, GEN should achieve higher accuracy, as it performs a global search 

in the molecular descriptor space, whilst GRD performs a local search in the 

molecular descriptor space. Using the predictor importance in the random forest 

method is computationally expensive. However, there is the added advantage that 

misclassification costs can be applied using the software as well as being applied for 

the C&RT analysis. Finally, based on the previous chapter 7, the application of 

higher misclassification costs to false positives will produce models with increased 
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overall accuracy and reduced false positive misclassifications, therefore overcoming 

the problem of biased datasets compared with equal misclassification costs. 

Overall, one of the best feature selection methods according to the models produced 

in this work was predictor importance using random forest. This was expected for 

this method, as it was possible to apply higher misclassification costs to the feature 

selection technique itself as well as applied to the C&RT analysis. Even when 

misclassification costs were not applied to predictor importance, the produced 

models still had higher overall accuracies over most models. This is down to the 

ensemble nature of this method, which is known to perform better than single tree 

analysis (Dietterich, 2000). In comparison with C&RT, where no pre-processing 

feature selection was utilised, the random forest predictor importance feature 

selection method had higher overall accuracy for the validation set in all cases. The 

high classification accuracy on the training set but low predictive accuracy on the 

validation set could indicate overfitting of the models produced by C&RT even after 

pruning. Models produced by other pre-processing feature selection techniques were 

better compared with models produced by C&RT with no pre-processing feature 

selection on the validation set, except for the models produced by CS feature 

selection. In the majority of the cases, using C&RT alone gave better predictive 

accuracy for the parameter optimisation set compared with IGR, GRD and GEN; 

however, these latter methods had better overall predictive accuracy for the 

validation set. This shows that C&RT without pre-processing can cope with 

redundant and meaningless molecular descriptors; however it is prone to overfitting 

(even with pruning of the trees) and can lack predictive accuracy in the validation 

set. 

Comparing the expectations set out initially, it was found that, comparing univariate 

methods such as CS and IGR with those that take into account molecular descriptor 

interactions (GEN and GRD), there is no clear pattern in the difference between their 

results. However, overall, when equal misclassification costs were applied to the 

C&RT analysis, GEN as expected had better or comparable predictor performance 

relative to CS and IGR. On the other hand, GRD had comparable performance with 

CS and weaker compared with IGR. When misclassification costs were applied to 

C&RT, GEN and GRD models were better than CS and IGR for the training and 
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validation sets; again it is difficult to state which method is better overall. This effect 

is also seen in the next example when comparing GEN and GRD feature selection 

methods based on the predictive accuracy of the C&RT analysis. GEN performs 

better than GRD when equal misclassification costs were used; this matches the 

predictions previously made. This is in some agreement with work using numerical 

regression analysis (Xu and Zhang, 2001). However, upon applying higher 

misclassification costs the molecular descriptors pre-processed by the GRD model 

outperformed the GEN model. This could be due to the correlation-based feature 

selection subset evaluator used by the GEN method not being suitable for use with 

C&RT and misclassification costs, and potentially highlight overfitting by the GEN 

based model. In this chapter the application of higher misclassification costs to false 

positives resulted in better overall accuracy and specificity as expected in the 

majority of cases and confirms the results from the previous chapter 7. 

In this chapter I have shown that for most models using pre-processing feature 

selection does appear to improve classification accuracy compared to the control 

(C&RT using all molecular descriptors) based on predictive accuracy. This agrees 

with work carried out by Xue and co-workers (Xue et al., 2004), who considered 

three different datasets including prediction of oral absorption. They used recursive 

feature elimination (a type of backwards feature elimination) for feature selection 

combined with SVM to classify compounds. They compared the results with and 

without the feature selection method and found that, for oral absorption, improved 

accuracy was obtained when the feature selection method was used. For one of the 

datasets, feature selection gave comparable predictive ability, which with a smaller 

descriptor subset will increase the interpretability of resulting models. It must be 

noted that unlike C&RT employed in this work, SVM does not have an embedded 

feature selection capability. A related work is a study by Suenderhauf et al 

(Suenderhauf et al., 2011) who carried out regression and classification for oral 

absorption using a variety of techniques including C&RT, Support Vector Machine 

(SVM), and chi-squared automatic interactor detector (CHAID). Using these 

classification techniques, they compared the feature selection methods of best first 

feature selection (BFS) using a greedy hill-climbing algorithm, linear correlation 

analysis and decision tree splitting criteria. Suenderhauf utilised the decision trees to 
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pick smaller subsets of molecular descriptors used in the work as input for the model 

development. This is similar idea to the proposed in this thesis of a two-stage pre-

processing feature selection. The best model was produced by CHAID using the 

entire set of original molecular descriptors, which contradicts my results that pre-

processing feature selection gives better accuracy. However, it is interesting to note 

that, out of the feature selection methods that they used, the decision tree splitting 

criteria gave the best results. This research also showed that SVM had poor 

performance when utilised with feature selection methods used in the study (unlike 

the study by Xue et al. 2004), therefore this could indicate that some feature 

selection methods work better than others with SVM. This has been supported by a 

recent study comparing different learners and feature selection methods (Eklund et 

al., 2014). What is apparent with other feature selected QSAR studies in the 

literature is that different feature techniques need to be tested and tried. In particular 

in a recent study, it was shown that modelling methods that cannot handle larger 

numbers of molecular descriptors such as MLR will benefit from feature selection to 

reduce the number of molecular descriptors (Eklund et al., 2014). In this chapter I 

have shown that even though C&RT can handle a large number of features, overall, 

it benefits from using pre-processing feature selection to improve model accuracy. 
 
Although it is difficult to directly compare the different feature selection techniques 

that I used with the literature, the molecular descriptor subsets can be compared. 

Firstly it is interesting to compare in this work the molecular descriptors selected by 

the pre-processing feature selection methods (Appendix 2, Tables A2.1 and A2.2). 

The top molecular descriptors picked by the feature selection methods can be found 

in Table 8.5. This table shows the top molecular descriptors that were picked by 

three or more feature selection methods. The molecular descriptors selected by the 

various feature selection methods were used as input for C&RT analysis, which in 

turn further selected a smaller subset of molecular descriptors to build decision trees.  
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Table 8.5. Molecular Descriptors Selected By Three or More Pre-Processing Feature 

Selection Methods Listed in Table 8.2 

Descriptor Feature selection method  Description 

ACDLogD7.4 RF, RF (MC), CS, IGR, GRD, 
GEN 

Apparent distribution coefficient at 
pH 7.4 calculated by ACD 

ACDLogD10 RF, CS, IGR, GRD, GEN Apparent distribution coefficient at 
pH 10 calculated by ACD 

ACDLogD5.5 RF, RF (MC), CS, GRD, GEN Apparent distribution coefficient at 
pH 5.5 calculated by ACD 

SHHBd CS, IGR, GRD, GEN 
Sum of the hydrogen atom level E-
state values for all hydrogen atoms 
bonded to donating atoms 

O Atoms RF, RF (MC), CS, GRD Number of oxygen atoms in whole 
molecule 

ACD_PSA RF, RF (MC), CS, GRD Polar surface area 
numHBa RF, RF (MC), CS, GEN Number of Hydrogen bond acceptors 

SsOH_acnt RF, RF (MC), CS, GEN Counts of atom-type E-state for 
hydroxyl groups 

VAMP Heat 
of Formation RF, RF (MC), GRD, GEN 

Enthalpy required to form 1 mole of 
compound at 298K calculated by 
VAMP 

ACD_LogP CS, GRD, GEN Octanol/water partition coefficient 
calculated by ACD 

ACDLogD6.5 RF, CS, GRD Apparent distribution coefficient at 
pH 6.5 calculated by ACD 

Heteroatoms RF (MC), CS, GEN Number of atoms that are not carbon 
or hydrogen e.g. nitrogen, oxygen 

ka1 RF, RF (MC), GEN First order kappa alpha shape index 
numHBd RF, CS, GEN Number of hydrogen bond donors 

SdsssP IGR, GRD, GEN 
Sum of atom-type E-state for 
phosphorous atoms with 3 single and 
one double bond 

Sum of E-
State indices RF, IGR, GEN Sum of the E-State values for all the 

atoms in molecule 

VAMP 
HOMO RF (MC), GRD, GEN 

Energy of the highest occupied 
molecular orbital calculated by 
VAMP 

VAMP 
LUMO RF, GRD, GEN 

Energy of the lowest occupied 
molecular orbital calculated by 
VAMP 

 

The top descriptors picked by firstly the pre-processing method and then by C&RT 

analysis are shown in Table 8.6. Table 8.6 also indicates the number of times a 

molecular descriptor was picked by C&RT with or without pre-processing feature 

selection. 
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Table 8.6. The Top Molecular Descriptors Selected by C&RT 

  Number of C&RT models 
Type of descriptor Descriptor Pre-processing No Pre-processing 
Hydrogen bonding ACD_PSA 8 1 

O Atoms 8 1 
SHHBd 8a  

Lipophilicity ACDLogD7.4 10 1 
ACD_LogP 6  
ACDLogD6.5 3 1 

Polarity/ Polarization VAMP LUMO 4a 2 
N+ 5a  
VAMP Mean Polarizability 5a  

Size/Shape VAMP totl Energy 5a  
ka1 3a  
SsssCH 3 1 

aOccurred more than once in a single tree model. 

The top molecular descriptor picked by the majority of feature selection methods 

was the same as the top molecular descriptor then picked by the resulting C&RT 

analysis (ACDLogD7.4). Other studies have identified lipophilicity descriptors, in 

particular logD7.4 as well as logD5.5, logD6.5 and logP, as important for intestinal 

absorption, as picked by various feature selection techniques (Suenderhauf et al., 

2011, Agatonovic-Kustrin et al., 2001, Winiwarter et al., 1998). The next most 

frequently picked molecular descriptors are those relating to hydrogen bonding, in 

particular PSA. The importance of PSA has been emphasised by its constant 

selection throughout the previous chapters of this thesis. This descriptor is used in 

many literature models for oral absorption as well as those studies which focus on 

feature selection methods for oral absorption (Wegner et al., 2004). The other top 

hydrogen bonding descriptors highly ranked are the number of oxygen atoms and 

SHHBd, which is related to the number of hydrogen bond donors in a molecule. 

Both these descriptors were picked by the feature selection models and utilised in the 

C&RT analysis high up near the tree root, indicating the importance of these 

descriptors. Descriptors relating to hydrogen bonding capacity are important in oral 

absorption  modelling   and   are   used   in   the  widely   accepted   filter,   Lipinski’s   rule   of  

five as described in previous chapters (Lipinski et al., 1997). Overall the top 

descriptors picked by the feature selection methods and then utilised by C&RT are 

very similar. Also, the majority of molecular descriptors used by C&RT without any 

pre-processing feature selection match those picked by the pre-processing feature 

selection methods, with a few exceptions. The top descriptors in Table 8.6 are in line 



147 
 
 

with the literature, where among these molecular descriptors related to absorption are 

those that describe lipophilicity, molecular size/shape, polar surface area, hydrogen 

bonding, and similar parameters. 

8.5 Conclusion 

Feature selection is important in its many forms as a way to increase interpretability 

and predictive accuracy, as well as reducing over-fitting of QSAR models. This 

chapter has shown that pre-processing filter feature selection methods can greatly 

improve QSAR models using C&RT analysis. C&RT can be used as an embedded 

feature selection method; however, it can be inadequate since further down the tree, 

there are fewer compounds available for descriptor selection and therefore 

descriptors may be selected which are not optimal. Here, I have used several pre-

processing feature selection methods prior to C&RT and have produced more 

accurate QSAR models for the estimation of oral absorption class, as shown by the 

external sets of compounds. However, examination of the literature reveals that 

different feature selection methods utilised with different classification methods 

should be tried and evaluated. Similar molecular descriptors were picked by the 

different feature selection methods; and those descriptors relate to lipophilicity, 

hydrogen bonding, polarity, size and shape. Higher misclassification costs applied to 

reduce false positives yielded models with better overall predictive accuracy of 

highly and poorly-absorbed compounds. The use of filter pre-processing feature 

selection methods and misclassification costs produce models with better 

interpretability and predictive accuracy that overcome the problem of a biased 

(unbalanced-class) dataset with many more highly-absorbed compounds than poorly-

absorbed compounds, and shows the importance of feature selection in QSAR model 

development. 
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9 Decision Trees to Characterise the Roles of Permeability 
and Solubility on the Prediction of Oral Absorption 

9.1 Introduction 

The fundamental properties that govern intestinal absorption are permeability and 

solubility (Amidon et al., 1995). It is well understood that a compound must be 

soluble in intestinal fluid in order to be absorbed. Therefore, solubility can affect the 

oral absorption of compounds. There are an increasing number of poorly soluble 

compounds that are introduced to the market as new drug candidates; therefore the 

prediction of New Chemical Entities (NCEs) is problematic. In spite of this, there are 

few studies that incorporate both experimental solubility and permeability values 

within one single model, in order to see the effect these two properties have on oral 

absorption (Pade and Stavchansky, 1998, Bergstrom et al., 2003). Instead, most 

studies have removed compounds with solubility issues when modelling oral 

absorption (Zhao et al., 2002, Hou et al., 2007c), which is not ideal due to the 

increasing number of poorly soluble drugs being developed. 

Even if models were to include experimental solubility, another issue here is the lack 

of experimental solubility for drug compounds to be used in oral absorption 

modelling. Solubility itself is a complex parameter and in turn dependent on 

numerous factors. Therefore, it is important to investigate what multiple elements, 

such as those calculated from the molecular structure, may improve understanding of 

this property in relation to absorption. Additionally, it is important to determine 

suitable alternatives for solubility which could act as a surrogate if experimental 

solubility was not available, and their impact on absorption prediction. For example 

there are solubility models calculated via GSE (Jain and Yalkowsky, 2001), melting 

point, dose number and MPbAP (Chu and Yalkowsky, 2009). 

Based on the literature, a large dataset is needed in order to see the effects of 

solubility and permeability on the fraction absorbed. Therefore, the first aim of this 

chapter was to expand the permeability dataset by combining data from Caco-2 and 

MDCK cell lines. By studying the linear relationship and the effect of different 

absorption mechanisms between the two cell lines and from the differences already 
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known between the two cell lines, the justification of combining the datasets can be 

shown. The justification can be confirmed based on the literature utilising (smaller) 

permeability datasets (Irvine et al., 1999). Secondly, the determination of a 

permeability threshold to predict fraction absorbed class using an objective decision 

tree method is tested on an external validation set. This is justified as the majority of 

literature models determine this threshold subjectively (Artursson and Karlsson, 

1991). Using this permeability threshold, experimental and predicted solubility and 

related properties such as dose number and melting point were incorporated, in 

addition to structural molecular descriptors, to build decision tree-based 

classification models to predict HIA class. Based on this chapter, one can obtain an 

increased understanding around the relationship between two popular cell based 

assays and how they can be used to predict absorption class using an objective 

permeability threshold. In addition, the effect of solubility and related properties on 

the models for the prediction of fraction absorbed is explored. 

9.2 Methods 

9.2.1 Dataset 

Dataset 3 (as previously described in the Datasets and Methods section 5.1.3) was 

used for this chapter and contained collected data for %HIA, in vitro apparent 

permeability, aqueous solubility, maximum dose strength and melting point. In 

addition to these collected values from dataset 3, predicted solubility, dose number 

and Melting Point based Absorption Potential (MPbAP) were calculated using the 

equations below.  

9.2.1.1 Predicted Solubility 

Solubility was calculated by the revised general solubility equation (GSE) using 

collected experimental melting point and calculated logP (Jain and Yalkowsky, 

2001) (Equation 9.1). 

Log Solubility (GSE) = 0.5 – 0.01 (MP – 25) –LogP                                        Eq. 9.1  
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9.2.1.2 Dose number 

Dose number is a dimensionless number used to determine high or low solubility in 

the Biopharmaceutical Classification System (BCS) (Amidon et al., 1995). It is 

calculated using the solubility and maximum strength dose (Equation 9.2).  

Do = (Mo /Vo) / S                                                                                                 Eq. 9.2  

Where Do is dose number, Mo is the highest dose strength, Vo is 250ml and S is the 

aqueous solubility (mg/ml). The maximum strength dose was obtained from the 

literature as explained in the Datasets and Methods section 5.1.3.   

9.2.1.3 Melting Point Based Absorption Potential 

The melting point based absorption potential (MPbAP) was derived from the GSE 

but utilising maximum dose as well as melting point (Chu and Yalkowsky, 2009), as 

shown by Equation 9.3. 

MPbAP = 0.5 – 0.01 (MP-25) – log(4 * Maximum Dose)                                Eq. 9.3 

 
9.2.2 Training Sets and Validation Sets 

Using the combined permeability data from the two cell lines yielded an initial 

dataset of 447 compounds. Compounds with MDCK and Caco-2 permeability data 

that differed by more than one log unit and one compound that did not have a 

numerical value for HIA were removed (14 compounds in total). This resulted in a 

dataset of 433 compounds. The 433 compounds were split into a training set and a 

validation set. To ensure a similar distribution of fraction absorbed in these two sets, 

compounds were sorted according to ascending %HIA and then logP values. From 

each group of six consecutive compounds, five were assigned to the training set, and 

one compound was allocated to the validation set randomly. The initial training set 

consisted of 356 compounds and the validation set consisted of 77 compounds.  

For models used to determine the influence of solubility and related parameters, 

compounds that had missing values for solubility, melting point and dose number 

were removed from the initial training and validation sets. The final compound 

numbers for decision tree analysis in this chapter are shown in Table 9.1. 
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Table 9.1. Compound numbers used in the training and validation sets for decision 

tree analysis 

Property Total number 
of compounds 

Training set 
n 

Validation set 
n 

Permeability 433 356 77 
Solubility 296 242 54 

GSE solubility 315 262 53 
Dose number 292 239 53 
Melting point 315 262 53 

MPbAP 308 257 51 
 

9.2.3 Model Development 

9.2.3.1 Molecular Descriptors 

Molecular descriptors were calculated from structures using the software packages 

TSAR 3D v3.3 (Accelrys Inc.), MDL QSAR (Accelrys Inc.), MOE v2010.10 

(Chemical Computing Group Inc.) and Advanced Chemistry Development ACD 

Laboratories/LogD Suite v12. Including the seven descriptors of permeability, 

solubility and related parameters, a total of 220 molecular descriptors were utilised 

for analysis. 

9.2.3.2 Permeability Threshold Determination Using C&RT 

The permeability threshold is the numerical value chosen by C&RT that best predicts 

HIA class. In this chapter several different analyses were performed where high 

absorption compounds were defined as those having HIA values of above 30, 50, 70, 

80 or 90%. Using the training set of 356 compounds, HIA class was used as the 

dependent variable and permeability as the independent variable. The C&RT 

analysis was restricted to only one split to give the permeability threshold. This 

threshold was tested using a validation set of 77 compounds. Due to the class 

imbalance, where there are many more highly-absorbed than poorly-absorbed 

compounds, higher misclassification costs were applied to false positives to 

overcome this class distribution bias. Based on chapters 7 and 8, the use of 

misclassification costs has shown improved model accuracy. The misclassification 

cost values applied depended on the class distribution of the dataset. For instance, 
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when   the  “high  absorption”  class   is  defined  as  having  %HIA  ≥  30%,   the  cost  of  a  

false positive was considered five times the cost of a false negative due to roughly 

five times more highly-absorbed compounds in the dataset. Misclassification costs of 

5, 4, 3, 2.5 and 2 were applied to false positives in the analyses where the high HIA 

class had been defined as those compounds having %HIA values equal or above 30, 

50, 70, 80 and 90%, respectively. 

9.2.3.3 Permeability and Solubility Related Model Analysis for Oral Absorption 

Class Determination 

In this section, models were built using HIA class as the dependent variable where 

high absorption  was  defined  as  HIA  ≥  80%  and  molecular  descriptors  were  utilised  

as  the  independent  variables  for  model  building.  The  HIA  class  definition  of  ≥  80%  

was selected based on preliminary work, where when using a lower HIA class 

definition such as 30-70% only poor models could be achieved, due to the lower 

number of poorly-absorbed compounds. Using a higher threshold of 90% resulted in 

poorer overall accuracy (based on preliminary analysis), and this threshold is too 

high to predict oral absorption class effectively with a high number of false 

negatives. 

In this chapter, permeability was set as the first split variable and two alternative 

approaches were used to choose the remaining split variables. In the first one, the 

C&RT tree was allowed to grow automatically. In the second one, each of the 

solubility and related parameters (dose number and melting point) were manually 

chosen as the second split variables (note that C&RT still chooses the cut-off point 

automatically) and then the tree was allowed to grow automatically. Stopping factor, 

in particular the minimum number of compounds for splitting, were used to prevent 

overfitting of the C&RT trees. This minimum number was set at 11 for the 

permeability only C&RT trees (with additional molecular descriptors but no 

solubility related parameter) and eight for permeability and solubility trees (again 

with additional molecular descriptors).   
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9.2.3.4 Statistical significance of Data and C&RT Models in Chapter 9 

To determine the relationship between Caco-2 and MDCK permeability, MINITAB 

Statistical Software (version 16.1.1.0) and Prism (GraphPad Software, Inc) v.5.02 

were used to carry out linear regression, identify outliers and perform statistical 

significance testing between the different absorption mechanisms. For linear 

regression the parameter reported to assess the fit of the two variables (permeability 

in Caco-2 vs. permeability in MDCK) was the squared correlation coefficient, r2 

forced   through   the   origin.   For   correlation   analysis   the   Pearson’s   correlation  

coefficient (rp) and   the   Spearman’s   ranking   correlation   coefficient   (rs) were 

calculated. It must be emphasised here that r2 based on the regression line forced 

through the origin is not comparable to r2 values where the regression line is not 

forced through the origin (Hahn, 1977). The statistical significance of the 

correlations and regression lines and comparison of the regression lines for different 

absorption mechanisms (using the intercept and the slope values) was depicted by p 

values. P values < 0.05 indicated significance.  

The predictive performance of the classification models built using C&RT was 

measured using the same measures used in chapter 7 and 8 apart from CNMI due to 

the different misclassification costs applied to different parts of the C&RT analysis. 

9.3 Results and Discussion 

In this chapter, in order to investigate the effects of permeability and solubility, a 

large dataset of human intestinal absorption was gathered from the original literature 

and then for the same compounds, Caco-2 and MDCK permabilities, solubility, 

melting point and dose were gathered from the original literature. This dataset was 

collected in order to develop models for predicting high/low oral absorption and to 

explore the suitability of different solubility and permeability measures from 

different sources as descriptors of intestinal absorption.  

In terms of permeability, I have gathered permeability measured in both Caco-2 and 

MDCK cell lines. In vitro permeability through different cell lines is commonly used 

as a high throughput measure of effective intestinal absorption in early drug 

discovery. There have been a few studies which show the linear relationship between 

these cell lines. For example, Braun et al (Braun et al., 2000) studied the relationship 



154 
 
 

between Caco-2 and MDCK cell lines and from 14 compounds achieved an r2 of 

0.86. However, Avdeef and Tam (Avdeef and Tam, 2010) achieved a r2 of 0.90 

using a dataset of 79 compounds.  

9.3.1 Comparison of Caco-2 and MDCK Apparent Permeability as Indicators of 
Intestinal Absorption 

For 185 compounds, the in vitro apparent permeability from both Caco-2 and 

MDCK cell lines was obtained from the literature. By an exhaustive literature search 

possible transport routes were identified for all these compounds. Plotting the 

permeability of these two cell lines on a log scale a linear relationship is shown 

(Figure 9.1) where the transport routes have also been highlighted. Out of 185 

compounds in this figure, 96 compounds were found to be substrates of at least one 

transporter system and 11 compounds have been suggested to be absorbed to some 

extent via paracellular route. 
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Figure 9.1. Linear relationship between Caco-2 and MDCK apparent permeability 

for 185 compounds 
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It can be seen in the plot that Caco-2 and MDCK permeability of the majority of 

compounds correlate well with each other regardless of their absorption routes. 

However, there are compounds that deviate significantly from this line, and the 

removal of 9 outlier compounds (compound names shown in the figure) improves 

the correlation significantly (Table 9.2). Details of the outlier compounds and a 

description of reasons for removal can be found in Appendix 3 (Table A3.1). A 

better linear relationship between the two cell lines is also achieved when only 

compounds undergoing passive transcellular absorption are plotted (Table 9.2). It 

can be noted in Table 9.2 that the correlations between the cell lines are better after 

the removal of 9 outliers than after the removal of all the compounds with a 

transporter effect. It is also noteworthy that not all the outliers were substrates of a 

transporter; examples are phenazopyridine and glipizide, where no transport system 

other than passive-transcellular has been identified. Both these drugs have poor 

solubilities (dissolution limiting solubility) and are classed in Class II of 

Biopharmaceutics Classification System (BCS) (Gao, 2012, Mehramizi et al., 2007). 

Similar conclusions can be made from the results of previous studies where 

transporter mediated effects could not be identified by correlating the permeability 

through different cell lines. Irvine et al (Irvine et al., 1999) compared the apparent 

permeability of 55 compounds using MDCK and Caco-2 cells. This study achieved 

an r2 of 0.79. Irvine identified 12 compounds that were substrates for carrier 

mediated systems. I crossed referenced the remaining compounds used by Irvine 

with my database and identified an additional set of 18 compounds to be substrates 

for carrier mediated systems. Therefore, over half of this original dataset has now 

been found to be affected by a carrier mediated route. The 12 compounds highlighted 

as   undergoing   carrier   systems   in  most   cases  were  within   the   linear   fit   of   Irvine’s,  

with only a few exceptions. The explanation by Irvine of why known P-gp substrates 

were not identified when comparing the two cell lines is not suitable. For the P-gp 

substrates   highlighted   in   Irvine’s work, it was stated the reason they could not be 

identified was due to saturation of the transport mechanism in the assay. However, 

Braun et al (Braun et al., 2000) used the same compounds but at lower 

concentrations, and they were still unable to identify known P-gp substrates. It was 

concluded that using the relationship between MDCK and Caco-2 could not identify 
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P-gp substrates. From this work the correlation between MDCK and Caco-2 

permeability does indicate the same result that compounds with carrier mediated 

mechanisms do not deviate from the correlation between Caco-2 and MDCK 

permeabilities. This is despite the fact that the transporters have different abundance 

levels in these two cell lines.  

Table 9.2. Statistical parameters for the linear relationship between MDCK and 

Caco-2 permeability measured using PRISM 

Datasets r2 (with intercept) r2 (no intercept) Rp Rs 
All compounds (185) 0.63 0.60 0.79 0.79 
Passive transcellular (83) 0.71 0.67 0.84 0.74 

OUTLIERS Removed (9 removed) 
All compounds (176) 0.73 0.72 0.86 0.84 
Passive transcellular (81) 0.75 0.75 0.87 0.76 

 

A table was compiled that compares the cells and small intestine in terms of species 

origin, tightness of the cell junctions and also the transporter and enzyme 

expressions (Appendix 3, Table A3.2). One thing to note is the lack of information 

or evidence in the literature for transporter and enzyme expression, especially for the 

specific strains of the MDCK cell line which is less well studied. For the small 

intestine the expression of transporters and enzyme systems can vary from the three 

sections of the small intestine, as compounds are not just absorbed from one section, 

hence I tried to accommodate an overview of expression from the human small 

intestine (Englund et al., 2006). It can be seen from Table A3.2 in Appendix 3 that 

the main differences between MDCK and Caco-2 cell lines in general are that 

MDCK does not express some transporter types and that MDCK has a lower 

abundance of some of the other transporters compared to Caco-2 cell lines. However 

it must be noted that expression of transporters or enzymes does not necessarily 

correlate with their functionality for affecting the absorption of the compounds 

across different membrane/cell lines (Ungell, 2004, Hilgendorf et al., 2007), and as it 

was shown earlier, most substrates of different transporters do not deviate from the 

correlation between Caco-2 and MDCK permeabilities.  

The different expression levels of metabolising enzymes in the different cell lines 

could also potentially affect the permeability of compounds. The expression and 
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activity of CYP3A4 enzymes in Caco-2 cells are either not present or very weak (Le 

Ferrec et al., 2001, Hayeshi et al., 2008). A recent investigation has found no 

evidence of CYP3A4 expression in MDCK II cells (Quan et al., 2012). 

Unfortunately the lack of information regarding enzymatic activity in the cell lines 

makes it difficult to comprehensively compare and contrast the suitability of these in 

vitro tools as indicators of intestinal absorption. 

Cell based assays, particularly Caco-2, have a reputation for variability. The 

differences can arise from the experimental conditions, which in turn can affect the 

monolayer, those that affect the analysis of samples and also the physioc-chemical 

properties of the compound (Shah et al., 2006). A good example is solubility, which 

depending on experimental conditions can cause variation particularly for 

compounds with low solubility such as the outlier compounds phenazopyridine and 

glipizide (Mehramizi et al., 2007, Gao, 2012) (Figure 9.1). 

The prime purpose of cell based assays such as Caco-2 and MDCK is to study the 

rate of passive permeability rather than other transport routes involving influx and 

efflux transporters. In this dataset, out of the 185 compounds, 96 were identified as 

undergoing transport routes other than passive. In some cases, more than one route 

was identified as being involved for the transport of the compound (Table 9.3). 

Table 9.3. The different identified absorption mechanism of the 185 compounds  

Transport route Number of 
compounds 

Examples 

Passive transcellular (A) 83 sumatriptan, valsartan 
Passive paracellular (B) 6 lucifer yellow, mannitol 
Efflux (C) 62 vinblastine, saquinavir 
Efflux and paracellular (D) 2 famotidine, cimetidine 
Influx (E) 15 amoxicillin, tolbutamide 
Influx and paracellular (F) 2 soltalol, atenolol 
Efflux and influx (G) 14 talinolol, acebutolol 
Influx, efflux & paracellular (H) 1 Ranitidine 
 

From Table 9.3, there are a higher number of compounds identified as carrier 

mediated efflux substrates compared to influx substrates. The majority of 

compounds that were identified as efflux substrates are substrates of the P-gp 

transporter, which is always tested due to the great influence this transporter has on 

reducing absorption of many compounds.  
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I compared the permeability values obtained from Caco-2 and MDCK cell lines for 

all compounds and subgroups of compounds showing specific routes of absorption 

as described in Table 9.5. Two statistical methods were employed; 1) paired student 

t-test to compare MDCK and Caco-2 permeability values of a subgroup of 

compounds, and 2) comparison of the coefficients of the correlation lines of 

subgroups of compounds, e.g. efflux substrates and compounds with passive 

transcellular absorption. The results for subgroups indicated that permeabilities 

through MDCK and Caco-2 cell lines are correlated with similar slopes and 

intercepts for compounds with different absorption mechanisms (Table A3.3 and 

Figures A3.1-A3.7 in the Appendix 3). The only significant difference between the 

correlation lines was the difference between compounds undergoing transcellular 

and paracellular absorption routes (p value 0.0023). However, despite the different 

tightness of the Caco-2 and MDCK cell lines, the observed difference may be due to 

the narrow range of permeability values of the compounds with paracellular 

absorption route resulting in a non-significant correlation between MDCK and Caco-

2 solubility of this subgroup (Figure A3.1 in Appendix 3). This hypothesis is 

supported by the results of a paired student t test between the permeability values of 

the two cell lines for the 11 compounds undergoing paracellular absorption (as a 

main or shared transport route), which showed no significant difference between 

Caco-2 and MDCK permeabilities (p value > 0.05). In addition, paired t tests for all 

different absorption mechanism groups were made and no significant differences 

between the two cell lines for these absorption groups were found. Therefore, it can 

conclude that in general there are no statistically significant differences between the 

two cell lines even when considering separately the compounds with different 

absorption mechanisms. Therefore, the data from both these cell lines can be 

combined into a larger permeability dataset for use in further modelling. 

9.3.2 Determining Permeability Threshold for an Effective Oral Absorption 

In this work I use the large dataset of combined Caco-2 and MDCK permeability and 

a statistical method (C&RT) to identify statistically valid permeability threshold for 

high/low oral absorption. Using C&RT analysis, a permeability threshold value was 

obtained to predict the high or low intestinal absorption (HIA class) using a training 

set of 356 compounds. Several different analyses were performed where high 
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absorption compounds were defined as those having HIA values of above 30, 50, 70, 

80 or 90%. In order to optimise the threshold selection, various C&RT models using 

different misclassification cost ratios for false positives: false negatives (FP:FN) 

were generated. The results show the permeability threshold selected by the C&RT 

analyses and the accuracy, specificity and sensitivity of the class prediction (Table 

9.4). 
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Table 9.4. The permeability thresholds selected by C&RT and HIA class prediction with equal and higher misclassification costs applied to false 

positives when high HIA is defined as higher than 30, 50, 70, 80 and 90% 

Model 

HIA class 
determination 

above or 
below 

Set Misclassification 
Costs (FP:FN) SP X SE  SE SP Log Perm 

Threshold 

Perm 
Threshold 

(cm/s x10-6) 

1 30% t 1:1 0.000 1.000 0.000 -6.11 0.78 v 0.000 0.986 0.000 

2 50% t 1:1 0.626 0.905 0.692 -6.02 0.96 v 0.470 0.939 0.500 

3 70% t 1:1 0.562 0.910 0.618 -5.91 1.23 v 0.522 0.948 0.550 

4 80% t 1:1 0.645 0.745 0.865 -5.15 7.08 v 0.630 0.741 0.850 

5 90% t 1:1 0.565 0.785 0.720 -5.08 8.32 v 0.487 0.762 0.639 

6 30% t 5:1 0.672 0.874 0.769 -5.98 1.05 v 0.800 0.914 0.875 

7 50% t 4:1 0.664 0.803 0.827 -5.64 2.29 v 0.720 0.864 0.833 

8 70% t 3:1 0.645 0.745 0.865 -5.15 7.08 v 0.630 0.741 0.850 

9 80% t 2.5:1 0.645 0.745 0.865 -5.15 7.08 v 0.630 0.741 0.850 

10 90% t 2:1 0.566 0.759 0.745 -5.00 10.0 v 0.533 0.738 0.722 
t-training;  v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly 

classified poorly-absorbed compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall Accuracy of the models was calculated by 

multiplying Specificity by Sensitivity (SP x SE) 
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It can be seen in Table 9.4 that using high ratios of (FP:FN) misclassification costs 

resulted in significantly improved accuracy of the permeability threshold for 

classification of compounds into high or low absorption groups for all definitions of 

HIA class. For example using equal misclassification costs to find permeability 

threshold  for  dividing  compounds  into  ≥  30%  or < 30% HIA was not successful at 

all (Model 1 Table 9.4). On the other hand,  increasing the cost of false positives to 

five times that of the false negatives resulted in a high accuracy of classification and 

a robust threshold of -5.98 (in log units) (model 6) for this classification. It must be 

noted here that different  high/low definitions of HIA resulted in different 

proportions   of   compounds   in   “high”   or   “low”   absorption   classes,   and   hence   the  

choice of misclassification cost ratios to reflect the ratios of highly-absorbed to 

poorly-absorbed compounds as defined in chapters 7 and 8. Therefore by applying 

higher misclassification costs to reduce false positives, this shifted the permeability 

threshold in order to reduce the number of false positives (Figure 9.2). The higher 

misclassification for false positives is justified due to the under representation of the 

poorly-absorbed class. The one exception to this is the 80% HIA class definition, 

where applying misclassification costs had no effect on the permeability threshold. 

In practice, when using the permeability threshold to classify high/low absorption 

compounds, the suitable threshold suggested by models 6-10 can be used for HIA 

class definition. The permeability thresholds determined by C&RT when applying 

higher misclassification costs from Table 9.4 are shown below in Figure 9.2, when 

plotting fraction absorbed against permeability for the training and validation sets. 
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Figure 9.2  Permeability thresholds determined by C&RT analysis with higher 

misclassification costs applied to false positives for different HIA cut offs of 30%, 

50%, 70%, 80% and 90% on  %HIA versus permeability plot including areas of 

pronounced outliers (A= low permeability, high oral absorption; B = high 

permeability, low oral absorption) 

As can be seen in Figure 9.2, there is a correlation between fraction absorbed and 

permeability. It is common in the literature to assume a sigmoid fit to the 

relationship between HIA and permeability (Pham-The et al., 2013b, Tavelin et al., 

2003, Varma et al., 2012). However, there are too few points at the lower plateau 

region to justify fitting a sigmoidal fit from a statistical point of view; in spite of this 

I found a r2 of 0.435 for a sigmoid fit to the whole 433 compounds. The collection of 

more data in the 0-50% region may resolve this problem.  

From Figure 9.2, there are compounds that are highly-absorbed but have 

permeability values below the threshold and vice versa. The most pronounced 

outliers have been shown in Figure 9.2 using boxes A and B. Compounds with low 

A 

B 
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permeability but high fraction absorbed (Region A on Figure 9.2) have been 

identified as mainly highly soluble and substrates for influx carrier mediated 

transporters. Examples of these are ribavirin and lamivudine (Shugarts and Benet, 

2009, Minuesa et al., 2009). Due to the lower levels of these transporters, 

particularly PEPT1 in vitro, the cell permeability underestimates the percentage 

absorbed of this set of compounds. On the other hand, compounds with high 

permeability but low fraction absorbed tend to be those that are susceptible to gut 

metabolism and poorly soluble (Region B on Figure 9.2). Examples of compounds in 

this outlier group are lovastatin and tacrolimus (Hebert, 1997, Jacobsen et al., 1999). 

Although the liver is the main metabolising organ, gut metabolism can contribute 

significantly to overall metabolism and should be considered (Gertz et al., 2010). 

Compounds susceptible to gut metabolism, specifically CYP3A4 substrates, are 

highly permeable in vitro but are poorly-absorbed in vivo. However, there are other 

CYP3A4 substrates in this dataset which do not appear to undergo extensive gut 

metabolism so they are both highly-absorbed and highly permeable. Reasons for the 

absorption of some compounds being affected by gut metabolism and others not, 

even though they are both CYP3A4 substrates, could be the different 

biotransformation rates by this enzyme, solubility/ dissolution rate of the compound, 

passive permeation rate, dose amount and substrate affinity (Fagerholm, 2007, Gertz 

et al., 2010, Lin et al., 1999). A list of these compounds in regions A and B in Figure 

9.2 can be found in the Table A3.4 in Appendix 3. 

9.3.3. Oral Absorption Prediction Using Solubility, Dose Number and Melting 
Point 

From Figure 9.2, I have identified potential outliers in the relationship between oral 

absorption and permeability. Using the models built with permeability and solubility 

parameters and molecular descriptors, these misclassified compounds could be 

classified correctly due to the influence of solubility and other related parameters on 

oral absorption. For example, false positives are highly permeable compounds with 

poor oral absorption. These compounds may be poorly soluble compounds or those 

undergoing gut metabolism. 
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C&RT classification models to predict highly-absorbed or poorly-absorbed class of 

compounds  (HIA  ≥  80  or  <  80%)  were  built  using  the  training  sets  described  in  the  

Methods section 9.2.2.   The   permeability   for   ≥   80%   absorption   (at   -5.15 log scale 

according to Table 9.5) was used to develop the models. The 80% class definition 

was chosen as using lower HIA% values to define high or low absorption led to a 

very low number of poorly-absorbed compounds, compared with highly-absorbed 

compounds which would seriously reduce significance of models.  The HIA 90% 

cut-off for class definition, although used in some previous work, was not chosen in 

this work as (based on my preliminary analysis) that definition resulted in poor 

overall accuracy in the produced models, and the 90% threshold is too high to 

predict oral absorption class effectively. Selected C&RT models produced for the 

prediction of HIA class (HIA > or ≤  80%) using permeability and solubility related 

parameters and molecular descriptors are shown in Table 9.5. Note that for all 

models permeability was always used as the first split variable and the table gives the 

variables used for the second splits. After the second splits, C&RT picks the most 

significant parameter out of all the molecular descriptors and physicochemical 

properties available. In Table 9.5, in model 1 after permeability as the first split 

variable, C&RT automatically builds the rest of the tree by selecting the most 

significant property/molecular descriptor. For models 2-4, solubility or calculated 

solubility (GSE method or melting point based absorption potential (MPbAP)) were 

used on both (high and low permeability) sides of the tree for the second split, and 

after this C&RT automatically built the rest of the tree. Models 5-10 were built using 

different combinations of solubility and related parameters on either the high or low 

permeability side of the trees. Finally, models 11-12 were combinations of the 

molecular descriptors and solubility related parameters in high or low permeability 

sides of the trees.  
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Table 9.5. The  results  of  C&RT  analysis  for  the  best  permeability  and  solubility  related  trees  using  permeability  threshold  for  ≥  80%  or < 80% 
HIA as the first split 

Model   

Parameter used for second split Misclassification cost ratios 
(FP:FN) 

Dataset n SP x SE SE SP High 
permeability 
compounds 

Low 
permeability 
compounds 

High 
permeability 
compounds 

Low 
permeability 
compounds 

1 Molecular 
Descriptorsa 

Molecular 
Descriptorsa 3:1 6:1 t 356 0.720 0.754 0.955 

v 77 0.519 0.593 0.875 

2 Solubility 
(mg/ml) 

Solubility 
(mg/ml) 2:1 10:1 t 241 0.723 0.823 0.879 

v 54 0.618 0.674 0.917 

3 GSE solubility GSE solubility 2:1 1:1 t 261 0.695 0.891 0.779 
v 53 0.638 0.829 0.769 

4 MPbAP  MPbAP 1:1 1:1 t 249 0.753 0.876 0.859 
v 48 0.631 0.757 0.833 

5 Solubility 
(mg/ml) GSE solubility 2:1 10:1 t 200 0.754 0.820 0.920 

v 40 0.583 0.667 0.875 

6 Dose number   MPbAP 2:1 10:1 t 196 0.758 0.791 0.958 
v 40 0.636 0.636 1.000 

7 MPbAP GSE solubility 2:1 1:1 t 256 0.723 0.884 0.818 
v 51 0.667 0.800 0.833 

8 MPbAP Solubility (M)  2:1 1:1 t 197 0.776 0.866 0.896 
v 40 0.697 0.697 1.000 

9 Solubility 
(mg/ml) Solubility (M)  2:1 10:1 t 241 0.754 0.766 0.985 

v 54 0.533 0.581 0.917 

10 GSE solubility Solubility (M)  2:1 1:1 t 201 0.722 0.881 0.82 
v 40 0.663 0.758 0.875 

11 GSE solubility Molecular 
Descriptorsa 2:1 1:1 t 262 0.717 0.887 0.809 

v 53 0.650 0.780 0.833 

12 MPbAP Molecular 
Descriptorsa 2:1 1:1 t 257 0.746 0.880 0.848 

v 51 0.688 0.750 0.917 
a These are the molecular descriptors statistically selected by C&RT out of all the molecular descriptors and solubility parameters. FP: false positive; FN: false negative; GSE: General solubility equation; MPbAP: 
melting point based absorption potential. SP x SE, Overall Accuracy; SE, Sensitivity; SP, Specificity
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From Table 9.5, it is interesting to note which properties were used to build the 

selected models. Note that many combinations of melting point, dose and solubility 

related parameters were tested and Table 9.5 is a selection of the best models based 

on accuracy (SE X SP). Using melting point did not yield high prediction models 

(data not shown). It was thought that due to the relationship between melting point 

and solubility this parameter might be a useful alternative to solubility, as these two 

properties share similar functions such as enthalpy energies which must be overcome 

in order to solubilise or melt. Additionally, dose number was useful only for splitting 

the high permeability compounds and the combination with MPbAP yielded a good 

prediction model (Model 6 in Table 9.5). Dose number is used to define high and 

low solubility for the BCS system (Amidon et al., 1995, CDER/FDA, 2000). By 

definition, increasing the dose or a low solubility will result in a high dose number 

and this is expected to lead to poor oral absorption of highly permeable compounds. 

The majority of the selected models in Table 9.5 incorporate solubility and predicted 

solubility especially for highly permeable compounds. Unlike GSE solubility which 

was used on both sides of the C&RT trees, MPbAP only yielded good models when 

used for splitting on the high permeability compounds. Experimental solubility in 

two units, mg/ml or molar, has been used in models. Solubility in M, which takes 

into account the molecular weight and is smaller for high molecular weight 

compounds, was successful when utilised for splitting of the low permeability 

compounds (Models 8, 9 and 10). 

In terms of the role of solubility in the absorption process, one would expect poor 

absorption of poorly soluble compounds, due to solubility being the rate limiting 

factor in absorption. However, this is not the picture presented by the classification 

trees 1-12 (See Appendix 3, Figures A3.8-A3.19). According to the classification 

tree models, the low permeability and high solubility compounds always have low 

intestinal absorption (< 80%). This is probably due to the highly polar nature of such 

compounds. On the other hand, poorly water soluble compounds of low permeability 

may be highly-absorbed from the small intestine if they have small polar surface area 

(models 3-7) or a low small sum of absolute atomic partial charge, ABSQ (models 2, 

8, 9, 10), which also indicates polarity of molecules. The absorption limiting effect 

of poor aqueous solubility is not seen for highly permeable compounds either. Here, 

highly permeable compounds with poor aqueous solubility are still highly absorbable 
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from GI, with the exception of compounds with high polar surface area, low dipole 

moment (models 2, 5, 9) or small Balaban Topological index which is an indicator of 

molecular shape (models 3, 4, 10, 11). The reason for not observing the limiting 

effect of poor aqueous solubility here could be, firstly, the lack of enough 

representation of these solubility limiting compounds in the dataset, and secondly, 

the effect of formulation of oral dosage forms with measures taken for improved 

dissolution rate (excipients, particle size, etc.), which could mask previous solubility 

limiting effects of such compounds. 

The top molecular descriptors used in models 1-12 in Table 9.6 are PSA and Balaban 

topological index. Both of these descriptors are related to both absorption and 

solubility prediction models (Clark, 1999, Bergstrom, 2005). PSA has been 

described in previous chapters. The Balaban topological index, J, is the average-

distance sum connectivity and relates to the shape of the molecule (Balaban, 1982). 

The next popular descriptors are sum of absolute charges on each atom of the 

molecule (ABSQ) (Gasteiger and Marsili, 1980) and lowest unoccupied molecular 

orbital energy (LUMO) calculated by VAMP. 

9.3.4 Selected C&RT Models 

In order to generally compare models 1-12 from Table 9.6, the compound datasets 

used to build the resulting models should be taken into account. The degree of 

difficulty of the classification model will change depending on the compounds in the 

dataset. The model with the highest SP x SE for the validation set is model 8, with a 

value of 0.697. However, this is based on a training set of only 197 and a validation 

set of 40 compounds, due to the missing experimental solubility or melting point 

values. On the other hand, model 12 has a slightly lower SP x SE of 0.682 for the 

validation set, but it was built using a training set of 257 and assessed using a 

validation set of 51 compounds. Therefore this model compared to model 8 covers a 

wider chemical space so will be able to predict for more compounds without 

extrapolation (higher generalization ability to new compounds). Moreover, the only 

experimental parameter used in this model is melting point, which is used for the 

calculation of MPbAP. I also selected model 7, which has used calculated solubility 

and MPbAP, and model 3, which has used only the calculated solubility to indicate 
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the roles of solubility and absorption potential. The corresponding C&RT models are 

presented in Figures 9.3-9.5.  

 
Figure 9.3. Model 3 - C&RT permeability and predicted solubility (GSE) model 

when higher misclassification costs of two to reduce false positives were applied to 

high GSE solubility node 

In Figure 9.3, Model 3, permeability is used as the first C&RT split variable and then 

calculated solubility from GSE equation on both sides of the tree is used as the 

second split variable. Polar surface area and Balaban index were picked 

automatically by the C&RT analysis. The model shows that highly permeable and 

highly soluble compounds have high intestinal absorption (node 7). Moreover, 

compounds   with   low   predicted   solubility   (≤ -4.74) can still be classed as highly-

absorbed if the Balaban index is > 1.57.  Compounds with a low Balaban index will 

be poorly-absorbed and such examples include mebendazole and ketoconazole. In 

spite of this, there are misclassifications in this node 8 in Figure 9.3; ziprasidone and 

tiagabine are misclassified as poorly-absorbed when   in   fact   they  have  HIA  ≥  80%.  

Balaban topological index, J, a highly discriminant topological descriptor, gives an 

indication of shape including branching and cyclicity of a molecule. A high index 
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can indicate a high number of branches, close proximity of the position of these 

branches, as well as increased number of double bonds on a molecule. A low index 

can indicate a low level of branching as well as a larger number of cyclic groups 

(Balaban, 1982). The relationship between Balaban index and solubility with 

reference to melting point has been shown previously in the literature (Ghafourian 

and Bozorgi, 2010). In spite of this, there is not much difference between the 

calculated GSE solubilities between the two nodes although there is a significant 

difference between the average melting points (222 oC compared with 193 oC in 

nodes 8 and 9 respectively), suggesting a possible effect of melting point on 

absorption.  

Poorly permeable compounds can be highly-absorbed only for compounds with 

predicted   solubility   ≤   -1.12 log unit if the PSA is low. This is a higher solubility 

value than the threshold seen in splitting of node 3, and is not expected to limit the 

intestinal absorption. There are some misclassified compounds in this group, which 

are actually poorly-absorbed despite having a low PSA, but are classified as highly-

absorbed according to this tree. The reasons for misclassifications are mostly due to 

efflux mechanisms reducing the absorption of compounds. Examples include nadolol 

and norfloxacin, which both have low PSA and are classed as highly-absorbed but 

are observed to have poor oral absorption due to transporter effects (Matsson et al., 

2005, Merino et al., 2006). Unlike nadolol, which is classed as highly soluble, 

norfloxacin is considered as a poorly soluble compound in class IV of the BCS 

system. One may speculate that the presence of more such compounds in this dataset 

may have led to further split of this node based on lower solubility cut-offs to class 

compounds with extremely low aqueous solubility as poorly soluble.   
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Figure 9.4. Model 7 - C&RT permeability, predicted solubility (GSE) and MPbAP 

model when higher misclassification costs of two to reduce false positives were 

applied to GSE node 

Model 7 was built using GSE solubility for the second split of the poorly permeable 

compounds (node 2) and MPbAP for the second split of highly permeable 

compounds in node 3. This model was chosen due to high validation SP x SE using a 

larger training and validation sets. The descriptors used in this tree are the same as in 

Figure 9.3. Model 3, however, using the split based on MPbAP, appears to split more 

compounds into node 6 to be classed by Balaban topological index. In this tree a 

lower threshold of 1.54 for Balaban topological index increases the number of 

correctly classified poorly-absorbed compounds when permeability is high. 

Examples of this type of compounds include the BCS class II compounds 

spironolactone and ketoconazole. 
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Figure 9.5. Model 12 - C&RT permeability and MPbAP model when higher 

misclassification costs of two to reduce false positives were applied to permeability 

node 

From Figure 9.5, classification of highly permeable compounds in node 3 is the same 

as Figure 9.4. Poorly permeable compounds with a high number of hydrogen 

bonding donors (SHHBd >6.61) will be poorly-absorbed, which is confirmed by the 

literature   such   as   Lipinski’s   rule   of   five   (Lipinski et al., 1997), which has been 

explained in previous sections of this thesis. Compounds can be misclassified as 

poorly-absorbed based on a higher number of hydrogen bond donor groups mainly 

due to being highly-absorbed due to substrate specificity for influx transporters. 

Examples of misclassified compounds include ribavirin and folinic acid.  

A poorly permeable compound will still be highly-absorbed if HOMO energy is 

greater than -8.76. A comparison of the molecular structures in this node indicates 

that these compounds have more aromatic rings compared with compounds with 
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lower HOMO energy (node ID 8) where the average number of aromatic rings is 

one. In addition, it was also found that a number of low HOMO compounds had a 

permanent quaternary ammonium or ionisable centre, such as trospium and 

neostigmine.  

Even if a poorly permeable compound has a low HOMO energy, it can still be 

classed as highly-absorbed if the compound has few methyl groups (SsCH3  ≤  3.509)  

or log P > 1.239. Compounds with logP < 1.24 are classified as poorly-absorbed, but 

there are false negatives such as orally administered cephradine and baclofen, which 

are both highly-absorbed but are predicted as poorly-absorbed by having a low logP. 

The reason for some of the false negatives in this node is that some of these 

compounds are substrates for influx carrier mediated systems. 

9.3.5 Discussion of Related Literature 

9.3.5.1 Subjective Definition of a Permeability Threshold for Oral Absorption 

Prediction 

Permeability from in vitro cell based assays has been utilised frequently in the 

literature. These thresholds are then used to give an indication of potential oral 

absorption from permeability data. A summary of a few permeability thresholds 

defined by other works is shown earlier in this thesis (Chapter 4, Table 4.1) 

Early permeability thresholds in the literature are commonly based on small 

compound datasets. Artursson et al (Artursson and Karlsson, 1991) set a 

permeability threshold of > 1 x 10-6 for complete absorption based on 20 

compounds. Based on other works in the literature this value is too low to predict 

complete absorption, whereas other works have permeability thresholds one order of 

magnitude higher. For example, Yee et al (Yee, 1997) has stated that a threshold > 

10 x 10-6 permeability is related to absorption > 70%. What is apparent is the 

difference between permeability thresholds from different sources, which is 

dependent on the small number of compounds tested and inter and intra laboratory 

differences (Hou et al., 2007c). In comparison, my permeability thresholds are 

statistically defined by C&RT rather than a subjective determination; the thresholds 

picked by C&RT are similar to those in the literature, especially when high 
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absorption was set at either as > 70%, > 80% or > 90%, indicating that high 

absorption is related to permeability > 7 x 10-6 cm/s. The permeability threshold 

determined by Hou et al (Hou et al., 2007c) of 6 x 10-6 cm/s is based on data from 

numerous sources and is very similar to my 70 - 90% class permeability thresholds.  

Di et al (2011) (Di et al., 2011) used MDCK II cells with low efflux endogenous 

transporter expression (MDCK-LE) to define a threshold of 3 x 10-6 to distinguish 

between low/medium absorbed compounds (< 80% HIA) and highly-absorbed 

compounds. A dataset published by Varma et al (Varma et al., 2012) using the 

MDCK-LE cell line shows that the permeability threshold defined by ROC analysis 

using  this  cell  line  (≥  5.0  x  10-6 cm/s) is similar to Caco-2 thresholds in the literature. 

This value is in agreement with C&RT permeability thresholds in this work. The 

threshold similarity between Caco-2 and MDCK cell lines is expected by the linear 

relationship between these two cell lines shown in this work.  

Finally, more recently Pham-The et al (2013) (Pham-The et al., 2013b) established a 

rank order relationship between Caco-2 permeability and oral absorption for 324 

compounds. The thresholds defined were based on standard compounds from the 

FDA with known fraction absorbed values. For example, for a compound to be 

considered highly-absorbed, it must have an apparent permeability greater than 

metoprolol, a FDA standard compound with known HIA. In this case, Caco-2 

permeability greater than 16 x 10 -6 cm/s, which is 0.8 times the metoprolol 

permeability, was used to take into account the lower HIA threshold of 85% used. 

For the low absorption threshold, an average value of 0.7 x 10 -6 cm/s, based on the 

permeability of mannitol, was used. In this study this threshold was used to define 

compounds with HIA < 30%. However, mannitol has a reported HIA of ~18%, 

therefore the use of this permeability threshold may increase the number of false 

negatives. 

9.3.5.2 The Influence of Permeability and Solubility on Oral Absorption Modelling 

Permeability and solubility are two important factors important for oral absorption. 

Therefore, the effect these two properties have on oral absorption and in turn how 

they influence oral absorption prediction is important to establish. From the 

literature, there is a lot of focus on permeability, and as shown in this work there is a 



174 
 
 

rank order relationship between HIA and permeability. On the other hand, solubility 

seems not to be regarded as important as permeability in relation to oral absorption, 

but as a factor that can lead to poor (solubility limited) absorption in addition to 

other limiting factors, such as transporter and enzyme effects. Furthermore, the 

relative importance of solubility could be dependent on the research organization and 

the mechanistic importance of solubility in regards to oral absorption may not be 

considered (Lipinski, 2000). In spite of this, the main reasons for poor oral 

absorption have been shown to be either poor permeability or poor solubility or both 

(Savjani et al., 2012). 

The results of this work indicate that permeability is the most important parameter 

influencing oral absorption prediction. Permeability was always picked as the top 

molecular descriptor when building C&RT models. In contrast, solubility and the 

related parameters were never picked as the top descriptor or even in the second 

split, unless selected manually at this second level in order to examine if there was 

any influence of solubility on oral absorption prediction. 

It is apparent that solubility can be a rate-limiting step in oral absorption (Zhao et al., 

2002, Sugano, 2011, Amidon et al., 1995). This is based on the principle that a drug 

must be dissolved in the gastrointestinal fluid in order to then permeate the 

membrane to be absorbed. However, formulation development strategies can 

overcome this problem, for example by employing solubilising agents, pH control, 

or complexation (Stegemann et al., 2007). 

In any case, the results obtained here do not directly indicate the poor absorption of 

poorly soluble compounds and the effects of poor solubility in limiting absorption. 

According to this chapter, in general, compounds that are highly permeable but have 

low solubility can be predicted as highly or poorly-absorbed depending on the other 

molecular properties. Moreover, poorly permeable but highly soluble compounds are 

classed as poorly-absorbed, although there are exceptions to this, i.e. the false 

negatives. One important consideration in analysing these results is the threshold of 

solubility in the models. For example, poorly permeable compounds with poor 

solubility may have high oral absorption (see models 3 and 7 for example). 

However, it must be noted here that poor solubility has been defined as < -1.12 log 
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unit, which is quite high when comparing with the threshold values suggested in the 

literature for BCS classes II and IV (Amidon et al., 1995).  A further observation 

from the models could be the poor representation of very poorly soluble compounds 

in the dataset, i.e. those having solubility-limited absorption. As a result, it may not 

be statistically advantageous to further split the classification tree to allocate these 

compounds into a separate terminal node. For example in a large dataset of fraction 

absorbed, 24 were highlighted to have solubility issues out of 647 compounds (Hou 

et al., 2007c). Besides this, the formulation techniques may improve the dissolution 

rate of these compounds and overcome the low solubility issues of compounds in the 

fraction absorbed dataset used in this work. 

It is difficult to directly compare other models in the literature with this work, as 

different datasets and methods have been used. Early oral absorption models which 

use a diverse dataset are too small to represent all the different biological processes 

of absorption and other factors such as solubility. The majority of oral absorption 

models in the literature do not include compounds which have solubility issues 

(Wessel et al., 1998, Bai et al., 2004). Therefore, these and other models may only 

be useful for predicting absorption for compounds with no solubility issues. In 

addition, some of these studies also removed compounds with transporter effects or 

compounds with a permanent charge (Egan et al., 2000, Hou et al., 2007c). This 

simplifies the resulting models by removing the compounds with rate-limiting steps. 

However, the main issue with this is the potential impact on the generalizability of 

the resulting models, which will fail to predict the oral absorption of these excluded 

compound classes, despite the increased need in current drug discovery projects for 

prediction of absorption of the increasingly poorly-soluble compounds.  

In studies by Zhao and co-workers, data with poor solubility and dose dependency 

were highlighted and not used in the majority of the initial models. When these 

compounds were included, the resulting models had higher error (Zhao et al., 2001). 

It was also noted, however, that the more insoluble a compound the lower the 

resulting absorption. In a later study by Zhao, compounds identified with no 

solubility issues were used to build models and some of these resulting models were 

then used to predict absorption for the compounds with dose-limiting and dose 

dependency effects. Overall prediction of absorption of these excluded compounds 
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was in agreement with observed values or the models tended to overestimate 

absorption (Zhao et al., 2002). My oral absorption models are able to predict oral 

absorption class even for majority of compounds with with poor solubility, by 

incorporating molecular descriptors in addition to permeability and solubility into 

the models. From the list of 27 compounds with solubility and related problems 

defined by Zhao et al (Zhao et al., 2002), 14 were utilised in this work with 

experimental permeability and solubility values present. Using the best models 

chosen, 11 out of 14 compounds were predicted correctly by model 3, 12 out of 14 

correct predictions by model 7 and all 14 compounds were predicted correctly using 

model 12.  

With the extended use of BCS classification in drug discovery, the influence of 

solubility and permeability is of great interest (Pham-The et al., 2013a). In work by 

Pham-The et al (2013), oral absorption was predicted taking into account solubility, 

which is a general aim of the BCS. In this study, Pham-The, using a rank order 

relationship, noted that the relationship between permeability and oral absorption is 

less certain for poorly-absorbed compounds, which is a similar observation to my 

results. They also found various contour plots showing that incorporating solubility 

improves classification of HIA based on permeability data by about 10%; therefore 

showing that using solubility in models is potentially advantageous for oral 

absorption prediction. 

From the literature examples, as well as this work, the influence of solubility could 

be included to help predict oral absorption. However, the main issue is the lack of 

experimental solubility for drug compounds to be used in oral absorption modelling. 

The use of experimental solubility data in the prediction of oral absorption alongside 

permeability yields good accuracy to predict oral absorption; however, the lack of 

experimental solubility limits the application for the prediction of new compounds. 

Therefore, according to my results, predicted solubility descriptors such as GSE 

solubility and parameters such as MPbAP can be used successfully instead of 

experimental solubility. These are based on simple properties of lipophilicity, 

melting point and dose. Despite this, melting point alone was not successful in 

providing an adequate alternative to experimental solubility, even though partition 

coefficient was also available to be used concurrently in the same model. Due to the 
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complexity of solubility, it is difficult to find one molecular descriptor to adequately 

describe all the solubility processes. 

9.4 Conclusion 

The two main properties influencing oral absorption are permeability and solubility. 

In order to establish the relationship of these two properties with oral absorption 

classification, firstly, a larger dataset was established from different sources. This 

was made possible through combining Caco-2 and MDCK permeability after 

verifying that there is a linear relationship between these two cell lines, even for 

compounds with different absorption mechanisms.  

Secondly, using the combined permeability dataset, permeability thresholds for 

various levels of oral absorption were investigated using C&RT analysis. Due to the 

larger number of highly-absorbed compounds, misclassification costs were applied 

and improved the threshold definitions statistically. The thresholds obtained from the 

objective C&RT analysis are similar to some of those in the literature using mainly 

subjective methods to determine permeability thresholds.  

Finally, the permeability thresholds were then used to build decision trees with the 

C&RT method, incorporating solubility and related parameters, as well as the 

calculated molecular descriptors to predict oral absorption class.  Melting point is not 

a useful parameter to predict absorption when used stand-alone. However, when 

melting point is utilised to calculate combined parameters such as predicted (GSE) 

solubility and melting point-based absorption potential, it yielded high accuracy 

models compared with experimental solubility. This is due to the possibility of using 

more data for the training of the models when calculated or more easily accessible 

experimental parameters are used. Therefore, models built using predicted values of 

solubility and melting point-based absorption gave rise to better predictive models. 

Molecular descriptors utilised in the models, such as those describing size, shape, 

polarizability and hydrogen bonding, can be related to both permeability and 

solubility, and therefore to oral absorption. These molecular descriptors were shown 

to be necessary for oral absorption models, in order to correctly classify the 

compounds with solubility-limited absorption. The models built in this work are 
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useful for a better mechanistic understanding of the effect of these properties and 

how they contribute to overall oral absorption. 
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10 Comparing Two Multi-Label Classification Methods for 
Provisional Biopharmaceutics Classification System 
(BCS) Class Prediction 

10.1 Introduction  

The Biopharmaceutics Classification System (BCS) classifies orally administered 

compounds into one of four classes based on their permeability, solubility and 

related properties (Amidon et al., 1995, CDER/FDA, 2000). The use of the BCS in 

drug discovery and development can help streamline chemical/formulation 

optimisation to improve solubility and/or permeability (Ku, 2008, Varma et al., 

2012, Pham-The et al., 2013a, Lennernas and Abrahamsson, 2005, Butler and 

Dressman, 2010, Bergstrom et al., 2003). 

The majority of classification algorithms in the literature carry out single label 

classification to create separate models of oral absorption, solubility or permeability. 

However, single label classification cannot take into account the interactions 

between permeability and solubility, therefore multi-label classification can be 

carried out in order to take such interactions into account (Carvalho and Freitas, 

2009, Tsoumakas and Katakis, 2007, Read et al., 2011).  

There are many works in the literature that assign BCS for drug compounds 

(Lindenberg et al., 2004, Takagi et al., 2006, Dahan et al., 2009). In spite of this, 

there are relatively few studies that utilise computational models to predict BCS 

class in a multi-label fashion using large datasets. Therefore, the aim of this work is 

to compare two multi-label methods, namely binary relevance and classifier chain, 

for the prediction of BCS using permeability and solubility as classes. To my best 

knowledge there are no other works in the literature which compare multi-label 

methods for provisional BCS prediction suitable for use in drug discovery. Binary 

relevance is a simple multi-label method; however it has the disadvantage that it 

cannot take into account any interactions between the labels. Based on this, this 

chapter introduces the classifier chain multi-label classification method to the area of 

pharmacokinetics – to the best of my knowledge, this is the first work using 
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classifier chains in pharmaceutical sciences. It is anticipated that, by using this 

method and taking into account the label interactions, more accurate models can be 

produced for provisional BCS prediction. This chapter shows the potential of multi-

label classification methods, which can be used for the future prediction of many 

pharmacokinetic properties in drug discovery and development. 

10.2 Methods 

10.2.1 Dataset 

Dataset 4 (as described in the Datasets and Methods section 5.1.4) was utilised for 

the prediction of BCS class as defined in the main method section of this thesis.  

Based on previous chapter 9, the benchmark threshold to define the boundary 

between high and low permeability for 80% Human Intestinal Absorption (HIA) was 

set at 7.08 x 10-6 cm/s (logPapp of -5.15). Therefore, a compound with in vitro 

permeability < 7.08 x 10-6 cm/s would be defined as poorly permeable and a 

compound   with   permeability   ≥   7.08   x   10-6 cm/s would be defined as highly 

permeable.  

In the BCS, the definition of the boundary between high and low solubility is 

determined using the dose number (Do = (Mo/Vo)/S), where Mo is the highest dose 

strength, Vo is 250ml and S is the aqueous solubility (mg/ml)), compounds with Do ≤  

1 are classed as highly soluble and drugs with Do > 1 are assigned as poorly soluble 

drugs (Amidon et al., 1995, CDER/FDA, 2000). However, in early drug discovery 

the clinical dose is usually unknown; therefore a suitable threshold needs to be 

defined. Additionally, Do is a property of the drug formulation and not a specific 

property of the active compound. For this chapter, a solubility cut off of 0.2 mg/ml 

was  set.  Hence,  any  drug  with  solubility  ≥  0.2  mg/ml  was  defined  as  highly  soluble  

and drugs with solubility < 0.2 mg/ml were classed as poorly soluble. A value of 0.2 

mg/ml was used as, according to Lipinski et al. (Lipinski, 2000), this value is the 

minimum solubility required to get a projected clinical dose of 1 mg/kg for 

compounds with low permeability. This cut-off for solubility has also been used in a 

recent work for BCS using MDCK permeability and solubility (Varma et al., 2012).  
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10.2.2 Training Sets and Validation Sets 

The compounds in each permeability and solubility dataset were sorted based on 

either ascending logPapp or logS (mg/mL) separately (excluding the 127 compounds 

used for the external BCS validation set). For each individual dataset, from each 

group of five consecutive compounds, four were assigned to the training set, and one 

compound was allocated to the validation set randomly. By doing this, a similar 

distribution of values in the training and validation sets was achieved for both 

datasets. The resulting compound numbers in the training and validation sets are 

shown in Table 10.1. 

Table 10.1. Training and validation set compound numbers used in chapter 10 

Type of dataset Training 
n 

Validation 
n 

BCS 
validation 

n 
Permeability 1026 262 127 

Solubility 490 133 127 

The training sets were used to build separate models to predict permeability and 

solubility classes. The individual validation sets for the permeability and solubility 

datasets were used to measure the predictive performance of the individual models 

for the two types of classes. Lastly, in order to compare the two multi-label methods 

for provisional BCS classification, an additional external validation set containing 

127 compounds with known permeability and solubility values was used (BCS 

validation set). 

10.2.2 Model Development 

10.2.3.1 Molecular Descriptors 

Molecular descriptors were calculated using TSAR 3D v3.3 (Accelrys Inc.), MDL 

QSAR (Accelrys Inc.), MOE (Chemical Computing Group Inc.) v2012.10 and 

Advanced Chemistry Development ACD Laboratories/LogD Suite v12. A total of 

492 molecular descriptors were generated and made available to the classification 

algorithm before feature selection.  
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10.2.3.2 Feature Selection 

Firstly, molecular descriptors with more than 10 missing values were removed, so 

that 14 molecular descriptors were removed from each training set and this resulted 

in 478 molecular descriptors available for pre-processing feature selection. 

Based on chapter 8, I used the predictor importance ranking in random forest to 

obtain the top 20 molecular descriptors. (See section 5.4.4 for explanation of this 

method.) Using only the training set, optimisation of the random forest was carried 

out based on the plot of misclassification rate vs the number of trees. Based on this 

plot, the optimum number of trees was selected (106 for the solubility, 109 for the 

permeability). The maximum number of levels for each tree was set to the default 10. 

The top 20 molecular descriptors for each property (solubility and permeability) can 

be found in Appendix 4 (Tables A4.1 and A4.2). 

10.2.3.3 QSAR Modelling Techniques 

STATISTICA v12 (StatSoft Ltd.) software was used for building each classification 

model using C&RT analysis. C&RT analysis is a statistical technique that uses 

decision trees to solve regression and classification problems developed by 

Breinman et al. (Breiman et al., 1984).  

For the binary relevance method, each class – i.e. solubility or permeability variable 

– was set as the dependent variable and binary classification was carried out using 

selected molecular descriptors as the independent variables to create individual 

models for each class label.  

For the classifier chain method, initially individual solubility classification models 

were built using the top 20 molecular descriptors as chosen by feature selection. 

These models were then used to predict the solubility class for the whole 

permeability dataset. The permeability model was then built by setting permeability 

class as the dependent variable, while the predicted solubility and the top 20 

molecular descriptors pre-selected for permeability were set as the independent 

variables. The preliminary results indicated that predicted solubility class (acting as a 

molecular descriptor) would not be used high up in the tree (if at all); therefore 

predicted solubility was selected manually as the first molecular descriptor in the 
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C&RT model for permeability. The rest of the C&RT decision tree was allowed to 

be built automatically. 

For this chapter, the stopping factors used when growing the C&RT tree were the 

minimum number of compounds for splitting. These stopping factors were the 

default values for the software and are based on the number of compounds in the 

dataset. This enables pruning of the tree and prevents over-fitting of the decision 

tree. For the permeability and solubility datasets, stopping factors of 25 and 12 

respectively were used.  

10.2.3.4 Misclassification Costs for Classification Models 

As shown in chapters 7-9, misclassification costs are a useful method to overcome 

the dataset bias of unbalanced class distributions (where one class value is much 

more frequent than another) without reducing dataset size (Newby et al., 2013a, 

Newby et al., 2013b). Even if the dataset has a balanced class distribution, the 

application of higher misclassification cost for a specific class can increase the 

predictive accuracy and reduce misclassification errors of that specific class. 

The solubility and permeability datasets have roughly balanced class distributions, 

therefore misclassification costs can remain as equal (FP:FN of 1:1, where FP:FN is 

the ratio of the number of false positives to the number of false negatives). However, 

usually there is an under-representation of BCS classes 3 and 4 due to the low 

number of poorly permeable compounds and compounds with both poor 

permeability and poor solubility. Therefore, in order to potentially improve the 

predictive accuracy of these under-represented classes, higher misclassification costs 

can be applied to reduce false positives (i.e. the number of compounds in the poor 

solubility and poor permeability classes which are wrongly predicted as having high 

solubility or high permeability), in order to take into account the lack of compound 

representation for these classes when combining the solubility and permeability 

predictions. A higher misclassification cost of 1.5 was applied to the false positive 

class (FP:FN of 1.5:1) based on the data distribution of the permeability and 

solubility datasets. 
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10.3 Results 

10.3.1 Permeability and Solubility C&RT Models 

In this chapter, I have investigating the use of two multi-label classification methods 

to predict provisional BCS class using permeability and solubility from the literature 

and published datasets. Separate models of permeability and solubility were built 

using training sets of 1026 and 490 compounds respectively, using the top 20 

molecular descriptors selected by the random forest-based feature selection method. 

The predictions from the solubility and permeability models were then combined to 

give a provisional BCS class for an BCS validation set of 127 compounds. All the 

C&RT decision trees that produced the results reported in Tables 10.2 and 10.3 in 

this chapter can be found on the accompanying disk with this thesis. In Tables 10.2 

and 10.3, the best models are those that have the highest SP, SE and SP X SE and the 

lowest CNMI. These have been highlighted in bold for the training and validation 

sets in these tables. Firstly, the two solubility models whose results are shown in 

Table 10.2 are models with equal and higher misclassification costs applied to 

reduce false positives – models 1 and 2, respectively. The compound numbers in 

training and validation sets for solubility and permeability for Tables 10.2 and 10.3 

are lower than the original numbers in Table 10.1. This is because for certain 

compounds molecular descriptors could not to be calculated and therefore could not 

be classified in the terminal nodes. Therefore, the compound numbers in Tables 10.2 

and 10.3 represent the compound numbers classified by the models. 

Table 10.2. Results of C&RT Analysis for the Classification of Solubility 

Model 
Misclassification 

cost ratio 
(FP:FN) 

Set n SP X SE SE SP CNMI 

1 1:1 
t 485 0.621 0.784 0.792 0.212 
v 128 0.578 0.795 0.727 0.234 

2 1.5:1 
t 485 0.638 0.706 0.903 0.178 
v 128 0.538 0.658 0.818 0.243 

t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE);  n, is the number of compounds 

that was predicted by the model for the training and validation set; CNMI = Cost normalised misclassification index;  
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Both solubility models from Table 10.2 can be considered the best depending on the 

intended use and purpose of the model. Model 1 has the highest sensitivity for the 

training set and validation set as well as overall accuracy for the validation set. 

Whereas model 2, as expected, has the highest SP for the training and validation set 

due to the application of higher misclassification costs to reduce false positives. 

Therefore, if the aim of the model is to predict poorly soluble compounds, model 2 

would be the best model; but model 1 would be the best to use if the aim was to 

predict highly soluble compounds. Model 1 may be considered as the best C&RT 

model in this work (shown in Figure 10.1), since for the validation set, there is more 

of a balanced prediction for poorly and highly soluble compounds (higher SP X SE). 

Both solubility models were then used to predict solubility for compounds in the 

permeability dataset, which was in turn used as an additional descriptor (independent 

variable or feature) for building permeability model – this process implements the 

classifier chain approach for multi-label classification, discussed earlier. 

The statistical parameters of the permeability models produced in this work are 

shown in Table 10.3. Initially, permeability models were built using only the top 20 

molecular descriptors selected by the random forest-based feature selection method 

(models 1 and 4). Next, permeability models were built using the predicted solubility 

either from the solubility model 1 or from solubility model 2 in Table 10.3 in 

addition to the top 20 molecular descriptors as the independent variables. Again 

models were also built with equal (models 1-3) or higher misclassification costs 

(models 4-6) applied to reduce false positives (FP:FN 1.5:1). 
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Table 10.3. Results of C&RT Analysis for the Classification of Permeability (with 

and without predicted solubility incorporated in the model) 

Model 
Misclassification 

cost ratio 
 (FP:FN) 

Solubility 
Model 

included 
Set n SP X SE SE SP CNMI 

1 

1:1 

none 
t 1016 0.653 0.847 0.771 0.192 
v 261 0.503 0.727 0.692 0.291 

2 1 
t 1016 0.655 0.841 0.778 0.191 
v 261 0.519 0.742 0.699 0.280 

3 2 
t 1016 0.638 0.761 0.838 0.200 
v 261 0.482 0.641 0.752 0.303 

4 

1.5:1 

none 
t 1016 0.659 0.807 0.817 0.188 
v 261 0.484 0.664 0.729 0.298 

5 1 
t 1016 0.630 0.716 0.880 0.185 
v 261 0.489 0.586 0.835 0.265 

6 2 
t 1016 0.625 0.706 0.884 0.187 
v 261 0.489 0.586 0.835 0.265 

t-training; v-validation; Sensitivity is equivalent to the number of correctly classified highly-absorbed compounds and is 

calculated using SE=(TP/(TP+FN)); Specificity is equivalent to the number of correctly classified poorly-absorbed compounds 

and is calculated using SP=(TN/(TN+FP)); TP-true positive; FN-False negative; TN-true negative; FP-false positive; Overall 

Accuracy of the models was calculated by multiplying Specificity by Sensitivity (SP x SE);  n, is the number of compounds 

that was predicted by the model for the training and validation set; CNMI = Cost normalised misclassification index;  

Based on the validation set, the best permeability model to choose would be model 

2. This permeability model was built using the predicted solubility from model 1 in 

Table 10.2 and equal misclassification costs applied. This model achieved the 

highest overall accuracy (SP X SE) and sensitivity for the validation set of 0.519 and 

0.742, respectively. In addition, it also had the second highest SP X SE and SE for 

the training set and the lowest CNMI for the training and validation sets, when 

comparing the other models with equal misclassification costs applied (models 1-3). 

Table 10.3 shows that when equal misclassification costs are applied (models 1-3), a 

higher overall accuracy model (based on the validation set) is produced using 

predicted solubility (from solubility model 1 in Table 10.2) as a molecular descriptor 

to predict permeability class. Although model 3 has a lower overall accuracy, its 

specificity is much higher and this could be due to the influence of the solubility 

model included in the permeability model (solubility model 2). In other words, 
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improving the prediction of poorly soluble compounds resulted in higher predictive 

accuracy for poorly permeable compounds according to Table 10.3. 

When higher misclassification costs are applied to false positives in the permeability 

models, models 5 and 6 have better overall accuracy (SE X SP) for the validation set 

and the lowest CNMI for the training set was obtained by model 5. Overall, the 

application of higher misclassification costs to reduce false positives resulted in the 

increased specificity and lower misclassification errors (CNMI), but overall accuracy 

is lower in models 4-6 in comparison with models 1-3. As expected, model 6, which 

included predicted solubility from model 2 in Table 10.2, had a higher specificity 

due to the higher misclassification costs originally applied to the solubility model – 

which have been utilised to improve predictive accuracy for poorly permeable 

compounds. 

10.3.2 Interpretation of Selected Solubility and Permeability Models 

Solubility classification models were developed using the top 20 molecular 

descriptors. In addition, permeability models were developed using either the top 20 

molecular descriptors (selected using random forest) or the top 20 molecular 

descriptors plus predicted solubility from solubility models built in this work. It must 

be noted that although the top 20 molecular descriptors were given as input to the 

algorithm that builds the C&RT tree, not all the molecular descriptors were used to 

build the decision trees,   since   the   C&RT   also   performs   an   additional   ‘embedded’  

feature selection process, adding to the tree only attributes deemed relevant for class 

prediction by the algorithm (Newby et al., 2013b). Furthermore, some molecular 

descriptors can be used more than once in a C&RT tree, as discussed below. Figure 

10.1 is the selected solubility model 1 based on the classification decision tree. 
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Figure 10.1. Tree graph for C&RT analysis for the prediction of solubility class with 

equal misclassification costs (model 1 in Table 10.2) 

The first split variable in Figure 10.1 is ACDLogD(5.5), the logarithm of the 

apparent distribution coefficient between octanol and water at pH 5.5, a measure of 

hydrophobicity. This descriptor as well as logP has been used in many publications 

for modelling of different properties such as oral absorption (Ghafourian et al., 2012, 

Newby et al., 2013a), permeability (Gozalbes et al., 2011, Pham-The et al., 2013b) 

as well as solubility models (Gozalbes and Pineda-Lucena, 2010, Duchowicz et al., 

2008). The use of logD at pH 5.5, despite solubility being measured at pH 7.4, is 

justified based on the fact that this descriptor indicates not only the effect of 

lipophilicity, but also the effect of acid/base property of the compounds. For 

example, an acidic and a basic compound of similar logP values will have different 

logD at this pH depending on their percentage of ionisation. At pH 5.5, the acidic 

Tree graph for Solubility class (mg/ml)
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compound will be mainly unionised and hence its logD(5.5) will be close to its logP 

value, whereas the basic compound will be highly ionised therefore it will have a 

lower logD(5.5) than its logP value. In relation to solubility, highly lipophilic 

compounds can give rise to poor solubility, as indicated by Figure 10.1. In this 

model compounds are poorly soluble if they have a LogD(5.5) > 1.16 and examples 

of poorly soluble drugs in this node are diclofenac and ibuprofen – both are BCS 

class II compounds (poorly soluble but highly permeable) (Chuasuwan et al., 2009, 

Potthast et al., 2005). There is no further splitting of the highly lipophilic, poorly 

soluble compounds, indicating that this molecular descriptor is useful to define poor 

solubility (< 0.2 mg/mL) in this tree. The less lipophilic compounds   (LogD(5.5)  ≤  

1.16) are further characterised into high/low solubility using LogD(5.5); this time a 

lower threshold of 0.06 is used. In this case both nodes 4 and 5 are associated with 

high solubility; however, compounds that have higher LogD(5.5) (but lower than 

1.16) are poorly soluble only if they have a vertex distance equality index (VDistEq) 

> 3.66.  Computed from a distance matrix, VDistEq is mainly related to the size and 

shape (branching) of a molecule (MOE, 2014). Compounds with larger VDistEq 

tend to be larger and in most cases (less branched) linear molecules. 

 

For compounds with lower LogD(5.5) than 0.06, the next molecular descriptor to 

split the tree is the partial charge descriptor, PEOE_VSA_FPOS. Using PEOE partial 

charge calculation (Gasteiger and Marsili, 1980), PEOE_VSA_FPOS is the sum of 

the van der Waals surface area of positively charged atoms divided by the total 

surface area of the molecule (MOE, 2014). According to Figure 10.1, those 

compounds with a PEOE_VSA_FPOS > 0.67 will be highly soluble, indicating that 

those with more positive partial charges (an indication of higher polarity and 

ionization) will be highly soluble. This is in agreement with the literature, where 

more polar molecules tend to be more soluble in water (Ghafourian and Bozorgi, 

2010).  

However, as depicted by this tree, node 6 (containing less polar compounds with 

PEOE_VSA_FPOS   ≤   0.67)   is   not   pure   at   all   and   needs  more   splitting  with   other  

molecular descriptors; in this case, LogD(7.4) is used twice in the tree for these 

compounds. In Figure 10.1, compounds will be classed as poorly water soluble if 
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 -0.51  <  LogD(7.4)  ≤   -0.16. It must be noted here that all these compounds have a 

LogD(5.5) below 1.155, as a result of division of node 2 and therefore they are 

hydrophilic enough to be classed as water soluble. Examples of these poorly water 

soluble compounds in node 14 are rofecoxib (Davies et al., 2003) and pindolol 

(Gazpio et al., 2005). Overall, from the solubility model, the main molecular 

descriptors used to classify solubility are those related to lipophilicity, ionization, 

polarity, size and shape, which is in accordance with the literature (Bergstrom et al., 

2004, Bergstrom et al., 2002, Ghafourian and Bozorgi, 2010). 

 

The best permeability model selected was model 2 in Table 10.3. Due to the size of 

the tree, in order to facilitate its interpretation the tree has been split into two trees 

(Figures 10.2 and 10.3). Figure 10.2 shows the half of the permeability decision tree 

that is built for those compounds predicted as poorly soluble by the solubility model 

1 in Table 10.2. Figure 10.2 shows half of the C&RT tree for permeability built for 

those compounds predicted as highly soluble from the same solubility model. It must 

be noted that the trees in Figures 10.2 and 10.3 were originally one tree and the 

combined version, as well as all the other C&RT models presented in this work, is 

on the accompanying disk in this thesis. 
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Figure 10.2. Tree graph for C&RT analysis (part of model 2 in Table 10.3) for the 

prediction of permeability class for predicted poorly soluble compounds from 

solubility model 1 (shown in Figure 10.1) 
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Figure 10.3 Tree graph for C&RT analysis (part of model 2 in Table 10.3) for the 

prediction of permeability class with equal misclassification costs for predicted 

highly soluble compounds from solubility model 1 (show in Figure 10.1) 

Comparing Figures 10.2 and 10.3, it is noted that there is a slightly larger number of 

poorly soluble compounds (Figure 10.2) than highly water soluble compounds 

(Figure 10.3) in the permeability dataset and those poorly soluble compounds are 

mainly highly permeable (Figure 10.2) and vice versa. The first split of the tree in 

Figure 10.2 is using the vsurf_W2 molecular descriptor as calculated by MOE 

(MOE, 2012). Vsurf and related molecular descriptors are Volsurf descriptors 

described by Crucciani et al (Cruciani et al., 2000), which describe the size, shape, 

polarity, hydrophobicity and the balance between these properties on molecules. 

More specifically, vsurf_W descriptors describe the volume of hydrophilic regions 

of a molecule, calculated at certain interaction energy levels. In this case vsurf_W2, 

calculated at energy level 0.5 kcal/mol, accounts for the polarizability and dispersion 

forces in the hydrophilic regions of the molecules (MOE, 2012). According to this 

tree, poorly soluble compounds in Figure 10.2 will be classified as highly permeable 

as long as they have small hydrophilic volume (node 2). Compounds with larger 
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hydrophilic volumes in nodes 3 have been divided further according to logD6.5. In 

this case the general trend is that less lipophilic  compounds  (logD6.5  ≤  2.10)  will  be  

mostly poorly permeable (node 4), which matches previous observations in caco-2 

and other in vitro permeability cell lines (Sherer et al., 2012, Newby et al., 2014b). 

For those less lipophilic compounds  (logD6.5  ≤  2.10),   the  descriptor  vsurf_Wp3  is  

used   to   discriminate   between   compounds  with   small   polar   volume   (Vsurf_Wp3   ≤  

103.8) which are highly permeable, and compounds with large polar volume of the 

molecule (node 7). Compounds will be classified as poorly permeable due to their 

large  polar  volume  unless  they  have  smaller  volume  (Vsurf_W2  ≤  987),  but  a  polar  

surface area (PSA) greater than 127.7 (node 13). PSA has been cited to have a 

negative effect on oral absorption and hence permeability; this was also observed in 

previous chapters using oral absorption dataset. However, this is not what is 

presented in Figure 10.2 for the permeability dataset. The maximum PSA in this list 

of compounds (159 Å) is still moderate in comparison with the rest of the dataset. 

On closer inspection, the vast majority of these highly permeable compounds contain 

a sulphonamide or thiazole group. The polarity measure of these sulphur-containing 

functional groups using PSA seems to not correlate with the expected reduced 

absorption of polar compounds. Examples of these highly permeable compounds 

with large PSA values are glipizide and two oxazolidinones, antimicrobial agents 

PNU-182945 and PNU-183981. 

 

For highly lipophilic compounds (logD 6.5 > 2.1) the next descriptor used to 

discriminate between high and low permeability is the relative negative partial 

charge descriptor calculated by PEOE (RPC-). This molecular descriptor is 

calculated by dividing the smallest (most negative) charge by the sum of negative 

charges on the whole molecule. Therefore, a higher number of hydrogen bond 

acceptors such as oxygen atoms in the molecules leads to lower values of RPC-. In 

this   instance,  compounds  with  a   lower   relative  negative  partial  charge   (≤  0.09)  are  

poorly permeable. Compounds with a higher RPC- are mainly highly permeable, but 

can be split further by the molecular descriptor GCUT_ PEOE_0. GCUT descriptors 

are calculated from a modified graph distance matrix using atomic partial charges 

calculated from PEOE method (see MOE helpfile, 2012). A minority of compounds 

with a lower GCUT-PEOE_0 than -0.86 have been classed as highly-absorbed. 
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These are structurally large and complex molecules with many rings and branches, 

mostly belonging to nucleotide based antivirals. Due to similarity of these 

compounds to natural metabolites, it is likely that they may have the possibility of 

being transported by carrier proteins. 

 

Compounds with a higher GCUT_ PEOE_0 are also classified as highly permeable 

unless they have a vsurf_HL2 > 0.086 or, despite a smaller Vsurf_HL2, have 

GCUT_PEOE_0  ≤   -0.856. Vsurf_HL2 describes the hydrophilic-lipophilic balance, 

which is the calculated ratio between the hydrophilic regions measured at 4 kcal/mol 

and the hydrophobic regions measured at 0.8 kcal/mol (MOE, 2012). According to 

the tree in Figure 10.2, compounds are predicted as poorly permeable if they have a 

higher ratio of hydrophilic to lipophilic effect, and examples include bromocriptine 

and lansoprazole. 

 

Figure 10.3 is the permeability model for compounds predicted as highly soluble 

according to solubility model 1. In this figure, the same top molecular descriptor as 

in Figure 10.2 is selected to split the compounds into high/low permeability in node 

1. Compounds with vsurf_W2 values greater than 734.2, i.e. larger hydrophilic 

volume, are more likely to be poorly permeable according to this tree. This is unless 

they have a higher lipophilicity (logD6.5 > 0.01) and lower polar volume, according 

to  vsurf_Wp2  ≤  530.8.  On  the  other  side  of  the  tree,  the  majority  of  compounds  with  

relatively small hydrophilic volume are highly permeable, unless they are relatively 

hydrophilic at  pH5.5  (LogD(5.5)  ≤  -0.66) and have a PSA higher than 52.4. In this 

instance, this PSA threshold is similar to the threshold of 60 Å used for recent 

permeability modelling of Caco-2 permeability (Pham-The et al., 2013b). Based on 

Figures 10.2 and 10.3, it is interesting to note that the hydrophilic volume of a 

molecule is a better measure of permeability than the most widely known parameter, 

partition coefficient. For instance, in Figure 10.3, node 2, it can be seen that a good 

fraction of compounds with LogD(5.5) lower than -0.66 are highly permeable given 

the polar surface area  is  not  too  large  (≤  52.3). 
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10.3.3 Provisional BCS Class Prediction in an External Dataset Using Solubility 
and Permeability Models and Multi-Label Methods 

The permeability and solubility models created previously were used to predict the 

BCS of an external validation set of 127 compounds with known values for both 

properties collected from the literature (BCS validation set). Different combinations 

of permeability and solubility models were tried in order to see what effect this 

would have on the overall results. Table 10.4 shows the results from the different 

combinations of the permeability and solubility models presented in Tables 10.2 and 

10.3. For example, in Table 10.4, model 1 is the combination of the solubility model 

1 (Table 10.2) and permeability model 1 (Table 10.3). 

Recall that the multi-label method, binary relevance (BR), involves the prediction of 

permeability and solubility separately (models 1-2, 7-8 in Table 10.4), therefore it 

fails to take into account the relationship between these interrelated properties. 

Whereas the classifier chain (CC) method, which uses predicted solubility alongside 

structural molecular descriptors to help predict permeability, takes into account the 

label interactions (Models 3-6, 9-12 in Table 10.4). In Table 10.4, the overall 

accuracy (SP X SE) of the permeability and solubility models for the external 

validation set has also been included. In addition, the overall accuracy and geometric 

mean have been calculated alongside the individual class accuracies in order to help 

with interpretation. 
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Table 10.4. Results of the provisional BCS classification of an external validation set (n=127) to compare the binary relevance and classifier 

chain multi-label methods 

Model Multi-label 
method 

Permeability 
Model 
Used  

(Table 10.3) 

Solubility 
model 
Used   

(Table 10.2) 

Permeability 
Accuracy 
(SP X SE) 

Solubility 
Accuracy 
(SP X SE) 

Overall 
Accuracya 

Geometric 
meanb 

Class 1 
accuracy 
(n=53) c 

Class 2 
accuracy 
(n=40) c 

Class 3 
accuracy 
(n=26) c 

Class 4 
accuracy 

(n=8)c 

1 
BRd 1 

1 
0.525 

0.565 0.606 0.000 0.566 0.725 0.692 0.000 
2 2 0.551 0.591 0.496 0.509 0.725 0.653 0.250 
3 

CCe 2 
1 

0.641 
0.565 0.630 0.523 0.585 0.700 0.731 0.250 

4 2 0.551 0.606 0.590 0.528 0.700 0.654 0.500 
5 

CCe 3 
1 

0.642 
0.565 0.598 0.508 0.528 0.625 0.806 0.250 

6 2 0.551 0.575 0.574 0.453 0.625 0.769 0.500 
7 

BRd 4 
1 

0.480 
0.565 0.543 0.000 0.453 0.675 0.692 0.000 

8 2 0.551 0.528 0.456 0.415 0.675 0.615 0.250 
9 

CCe 5 
1 

0.581 
0.565 0.559 0.472 0.604 0.450 0.731 0.250 

10 2 0.551 0.543 0.563 0.547 0.450 0.654 0.625 
11 

CCe 6 
1 

0.587 
0.565 0.559 0.481 0.528 0.500 0.808 0.250 

12 2 0.551 0.528 0.537 0.434 0.500 0.500 0.500 
aOverall accuracy, calculated as correct number of predictions divided by total number of predictions; bGeometric mean, multiplication of all four accuracy measures of classes 1-4 and taking the fourth root of this 
product; cClass accuracy, number of compounds of a specific class that were correctly classified divided by total number of compounds in that specific class; dBR, Binary relevance; eCC, Classifier chain
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From Table 10.4, based on the overall accuracy, i.e. the highest percentage of correct 

predictions, the best model to choose would be model 3. This model had an overall 

accuracy 0.630 (80/127) and was created combining the solubility model 1 and 

permeability model 2 (with incorporated predicted solubility). Although this model 

has the highest number of correct predictions, it has a poorer predictive accuracy for 

class 4. Therefore, using the geometric mean of the accuracy of all four classes, the 

best model would be model 4. This model was created combining the solubility 

model 2 and permeability model 2 (with incorporated predicted solubility). The 

difference between models 3 and 4 in Table 10.4 is the solubility model used with 

permeability model 2 to put compounds into BCS classes. Solubility model 1 from 

Table 10.2 is with equal misclassification costs and solubility model 2 is with higher 

misclassification costs to reduce false positives. Different combinations of the 

permeability and solubility models result in the different models having the best 

accuracy for all four classes. It is difficult to pick the best model based on the 

individual accuracies of the four classes. However, for overall accuracy the best 

model to choose would be either model 3 or model 4.  

Models 1-6 were all derived from permeability models using equal misclassification 

costs applied, whereas Models 7-12 were derived from permeability models with 

higher misclassification costs applied to reduce false positives. Overall the 

application of higher misclassification costs to false positives in the permeability 

models (models 7-12) has led to lower overall accuracy and geometric mean 

accuracy; however, it has also led to the highest class accuracy for class 3 (model 11) 

and class 4 (model 10), due to better prediction of the low permeability compounds 

as expected. 

In order to compare the models built by the two multi-label methods, firstly models 1 

and 2 in Table 10.4 can be compared with models 3-6. Models 1 and 2 were built by 

the binary relevance method, whereas models 3-6 were built by the classifier chain 

multi-label method. Overall, based on the geometric mean, the classifier chain 

method obtained higher predictive ability across all classes. The only exception is 

that although models 5 and 6 have a higher geometric mean, they have a slightly 

lower overall accuracy compared with the binary relevance models 1 and 2. The 

superiority of the classifier chain method can also be seen from the permeability 

accuracy which was higher for the models built by the classifier chain method, 
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indicating that incorporating predicted solubility into models results in higher 

predictive accuracy for permeability. These patterns are also seen when comparing 

models 7-12, where higher misclassification costs have been applied to reduce false 

positives for the permeability models. 

10.4 Discussion 

This chapter has explored attempts to build permeability and solubility models to 

computationally predict a provisional BCS for chemicals in drug discovery by 

comparing two multi-label classification methods. The predictions can be very useful 

in early drug development and can streamline formulation and chemical optimization 

strategies. In addition, the BCS predictions can give insight into the mechanistic 

absorption properties of drugs, such as rate limiting steps like transporter effects or 

dissolution limiting solubility.  

 

This work has involved multi-label classification of in vitro permeability and 

aqueous solubility to provisionally predict BCS classes for new chemical entities 

(NCEs) for early stage drug discovery. In order to compare the two multi-label 

methods, individual permeability and solubility models were built and validated. 

Initially, permeability and solubility models were built using the top 20 molecular 

descriptors as selected via random forest-based feature selection. Our previous study 

shows improved predictive accuracy when a pre-processing feature selection is 

performed prior to C&RT analysis (Newby et al., 2013b). In addition, permeability 

models were also built utilising the predicted solubility alongside the selected 

molecular descriptors to predict permeability class. The use of higher 

misclassification costs for false positives was also investigated to help improve class 

prediction of the poorly permeable and poorly soluble classes. Using the BCS 

validation set with known solubility and in vitro permeability, the predictions of the 

permeability and solubility models were combined and compared to the observed 

experimental BCS class. In this way, I compared two multi-label methods using the 

BCS validation set. Binary relevance involves the combination of separate, 

independently-built solubility and permeability models; however this does not take 

into account the interactions between these two labels. In order to overcome this, I 

compared this method to the multi-label method classifier chain. This method, in 
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relation to this work, involved the incorporation of predicted solubility to build and 

predict permeability class, and in doing so this method takes into account the 

relationship between these properties. Therefore, I am exploring the idea that the 

classifier chain method can help improve permeability class prediction and in turn 

provisional BCS class prediction. 

10.4.1 Individual Permeability and Solubility Models 

Both permeability and solubility are important properties in drug discovery. 

However, both these properties individually are complex and can be difficult to 

model. Lack of high quality datasets for drug-like compounds can contribute to the 

difficulty in predictions. BCS Class prediction can overcome variable permeability 

and solubility data by predicting compounds’ classes rather than specific values as a 

first initial drug screen. However, suitable thresholds for discriminating between 

high and low permeability/solubility must be selected. 

Permeability is the rate of drug absorption through Caco-2 cell line and is highly 

correlated with intestinal absorption (Newby et al., 2014b). Similar to intestinal 

absorption, there are many factors affecting and influencing permeability. According 

to the results of this study using the top 20 molecular descriptors from feature 

selection, permeability classes can be predicted with good accuracy. On the whole it 

is easier to predict the high permeability class than it is to predict the poor 

permeability class when equal misclassification costs were applied on a dataset with 

balanced class distribution (higher sensitivity than specificity values in Table 10.3). 

The same pattern emerges in relation to solubility, where according to this work 

better predictive accuracy is obtained for highly soluble compounds when using 

equal misclassification costs (Table 10.2). Solubility is also another complex 

parameter to predict with many complex interlinking factors (Salahinejad et al., 

2013, Ghafourian and Bozorgi, 2010). 

 

When equal misclassification costs have been applied, using predicted solubility as a 

molecular descriptor alongside the other molecular descriptors to build permeability 

models caused two things: models had better overall accuracy and better accuracy 

for poorly permeable compounds, in comparison with the model not incorporating 
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predicted solubility (see Table 10.3). Therefore, the inclusion of predicted solubility 

in this way increased the predictive accuracy of the poor permeability class. When 

higher misclassification costs were applied to improve the prediction of poorly 

permeable compounds, the specificity of permeability models also increased upon 

incorporating predicted solubility. Therefore, inclusion of predicted solubility into 

permeability models has resulted in better models or those that can predict poor 

permeability class better. This follows on from previous research whereby 

incorporating experimental permeability and experimental and predicted solubility 

into oral absorption models results in higher predictive accuracy (Newby et al., 

2014b). When higher misclassification costs were applied to reduce false positives 

for the permeability models, overall lower predictive accuracy was observed. This 

could be due to the balanced nature of the dataset, containing roughly 50:50 high:low 

permeability compounds. 

 

In terms of chemical space, for the solubility and permeability datasets, there seems 

to be a good overlap between the molecular properties (i.e. the top 20 molecular 

descriptors) for the training sets, individual validation sets and the BCS validation 

set for both these labels. This is indicated by a visual inspection of the scores plots 

from the principal component analysis which can be found in Appendix 4 (Figures 

A4.1 to A4.3).  In addition, the applicability domain of the datasets was defined 

based on the Euclidean distances nodes, using KNIME v 2.9.4 (KNIME.COM AG), 

and showed that for solubility, only one compound was outside the applicability 

domain and none for the permeability dataset. However, more importantly, in this 

chapter, the solubility models were used to predict solubility for the permeability set. 

Therefore, it was important to check that the chemical space for solubility prediction 

of the permeability dataset was within the applicability domain.  For the permeability 

dataset, only 20 compounds were outside the applicability domain of the solubility 

training set. A list of these compounds can be found in Appendix 4 (Table A4.4). 

Out of these 20 compounds, although outside the applicability domain for solubility 

prediction, 80% of these compounds were still classified correctly for permeability 

class using the best binary relevance and classifier chain models from Table 10.4. 
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10.4.2 Comparison of Most Relevant Molecular Descriptors 

It is difficult to directly compare different permeability and solubility models used in 

the literature; however the molecular descriptor subsets used in the models can be 

compared. The top 20 molecular descriptors selected by random forest using 

predictor importance can be found in the Appendix 4 (Table A4.1 and Table A.4.2). 

In addition, the top descriptors chosen from the pool of 20, by the C&RT analysis, 

for the two properties can also be compared to see if there are similarities and/or 

differences, and this can be related back to the property in question. The top 

molecular descriptors selected by the solubility and permeability (C&RT) models are 

shown in Tables 10.5 and 10.6, respectively. The top molecular descriptors are 

counted by how many models they appear in. Also noted in Table 10.5 is if the 

molecular descriptor occurs more than once in the same decision tree. For Table 

10.5, the molecular descriptors from solubility models 1 and 2 (Table 10.2) were 

used to show the top solubility molecular descriptors. For Table 10.6, permeability 

models 1 and 4 and models 2, 3, 5 and 6 (Table 10.3) were used to show the top 

molecular descriptors for the binary relevance and classifier chain methods 

respectively. 

Table 10.5.  The top molecular descriptors selected by C&RT for the prediction of 

solubility class (models 1 and 2 in Table 10.2) 

Type of descriptor Descriptor Number of  
C&RT models 

Model 
(From Table 10.2) 

 Lipophilicity 
LogD(5.5) 4a 1,2 

LogD(7.4) 3a 1,2 

 Size/shape 
VDistEq 3a 1,2 

BCUT_PEOE_0 1 2 

BCUT_SLOGP_2 1 2 

 Polarity/ Polarization 
PEOE_VSA_FPOS 1 1 

PEOE_VSA_POL 1 2 

 Hydrogen bonding MaxHp  1 2 
 aOccurred more than once in a single tree model. 

 

For the solubility models, the top molecular descriptors (Table 10.5) picked by 

C&RT analysis was LogD(5.5). Other studies have identified lipophilicity 
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descriptors relating to LogD(5.5) and LogD(7.4), such as logP, as important for the 

prediction of solubility (Duchowicz et al., 2008, Jain and Yalkowsky, 2001). The 

next most frequently picked molecular descriptor is VDistEq, relating to the size and 

shape of the molecule. Larger molecules in drugs and drug like molecules tend to 

have higher lipophilicity (Ghafourian and Bozorgi, 2010) and additionally require 

higher energy to create a cavity in the solvent and solvate (solvation limiting 

solubility) (Wassvik et al., 2008). Additionally, the size and shape of a molecule can 

result in a rigidity that can cause high crystal lattice energy resulting in poor 

solubility (solid-state limiting solubility) (Wassvik et al., 2008, Ghafourian and 

Bozorgi, 2010). Finally, those descriptors relating to polarity and hydrogen bonding 

are also important for solubility prediction (Ghafourian and Bozorgi, 2010, Nelson 

and Jurs, 1994). Overall, molecular descriptors relating to lipophilicity, size, shape, 

polarity and hydrogen bonding are all important for solubility of drug compounds as 

they relate to the crystal lattice energy, solvent cavity formation energy and solvation 

energy – all important factors for solubility of drug compounds (Ghafourian and 

Bozorgi, 2010, Nelson and Jurs, 1994, Hewitt et al., 2009). 
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Table 10.6.  The top molecular descriptors selected by C&RT for the prediction of 

permeability class for the binary relevance (models 1 and 4, Table 10.3) and 

classifier chain permeability models (models 2, 3, 5 and 6, Table 10.3) 

Type of 
descriptor  Descriptor 

BR permeability 
models 

CC permeability 
models 

Number 
of  

C&RT 
models 

Model 
(From 

Table 10.3) 

Number 
of  

C&RT 
models 

Model 
(From 

Table 10.3) 

Lipophilicity/ 
Hydrophobicity 

LogD(6.5) 3a 1,4 6a 2,3,5,6 

LogD(5.5) 1 1 3 2,3,6 
LogD(10)     3 3,5,6 
LogD(7.4) 2 1,4     
vsurf_HL1 2 1,4     
vsurf_HL2     4 2,3,5,6 
vsurf_CW4 1 1     

Size of 
hydrophilic/polar 
regions 

vsurf_Wp3 2 1,4 7a 2,3,6 

vsurf_W2 1 1 7a 2,3,5,6 

vsurf_W3 1 4 2 5,6 
vsurf_Wp2 1 4 2 2,5 
PEOE_RPC- 1 4 4 2,3,5,6 

PSA     2a 2 

 Size/Shape 

xv2 2a 4     

GCUT_PEOE_0 3a 1,4 8a 2,3,5,6 

chi1_C 2 1,4     

Bascity FIBpH6.5 2a 4     
Hydrogen 
bonding vsurf_HB1 5a 1,4 3a 5 

aOccurred more than once in a single tree model. 

The top molecular descriptors for the permeability models in this work picked by the 

resulting C&RT analysis can be roughly grouped into five groups:  

lipophilicity/hydrophobicity parameters, those describing the size of the hydrophilic 

or polar molecular regions, basicity, hydrogen bonding, and finally size/shape 

parameters (Table 10.6). Overall, there are 25 cases of lipophilicity/hydrophobicity 

parameters used in the permeability models and 30 cases of parameters describing 

the size of the hydrophilic or polar regions of the molecule. These two make up 69% 
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of permeability related features. There are only two instances of the basicity 

parameter, eight cases of hydrogen bond donor effect and 15 cases of molecular 

descriptors relating to size and/or shape utilized in the permeability models. The 

importance of hydrophilic or polar size of the molecule has been seen in previous 

literature. In particular, polar surface area has been cited to be important for 

permeability classification between low, medium and high permeability, and is a 

popular molecular descriptor used in my models (Pham-The et al., 2013b). 

Molecular descriptors relating to hydrogen bonding are also popular in relation to 

permeability (Nordqvist et al., 2004) as well as oral absorption. More specifically, 

hydrogen bonding is two of the descriptors used in the widely accepted filter for 

identifying poorly-absorbed compounds,   Lipinski’s   rule   of   five   (Lipinski et al., 

1997). Molecular descriptors which are important for permeability such as those 

relating to lipophilicity, size/shape, polarity and hydrogen bonding are also 

important for the prediction of oral absorption (Newby et al., 2013a, Newby et al., 

2013b, Ghafourian et al., 2012).  

10.4.3 Comparison with Related Literature 

To my knowledge there are few studies which use QSAR models to predict BCS 

class. However, there are many individual studies that predict either permeability or 

solubility. A related work has been published recently by Pham-The et al. (2013), 

which is different from this study in terms of the methods, parameters used and 

property thresholds. 

As a solubility measure, Pham-The et al. used dose number (Do), defined as the ratio 

of drug concentration following a given dose in the stomach of 250ml volume to the 

saturated solubility. One of the problems with using Do for a provisional prediction is 

that Do is a property of the drug formulation and not a specific property of the active 

compound. Therefore, the maximum dose can depend on many things such as 

formulation type, toxicity and drug target affinity or even different doses of drug 

may be used to treat different disease severities or even different disease states 

(Broccatelli et al., 2012). In terms of future predictions, maximum dose will be 

needed from literature in order to calculate Do. The advantage of my models 
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described here is that they do not need any experimental values such as the drug dose 

for future predictions. 

They also used a permeability threshold of 16 x 10-6 cm/s, based on the permeability 

of metoprolol, a highly-absorbed drug. This threshold is over double the threshold 

that was objectively selected and statistically validated using the correlation between 

oral absorption and in vitro permeability in previous studies (Newby et al., 2014b). 

The individual permeability and solubility models developed by Pham-The et al 

using a dataset of 322 compounds achieved good overall accuracy for the training 

and validation sets (>75%). Due to the different datasets and validation and training 

sets, the accuracy of the models cannot be directly compared. I have used larger 

datasets for model development that cover a large chemical space. In addition, the 

different thresholds used lead to different classification problems, each resulting in 

different levels of difficulty for classification of each property.  

Pham-The et al. (2013) validated the models by using firstly an external validation 

set containing 57 compounds from the WHO (World Health Organization) list of 

essential medicines. Unfortunately, in this validation set there were no experimental 

Caco-2 permeability data to validate the permeability prediction. Furthermore, over 

half of these compounds are assigned into more than one class, which is potentially 

inconclusive. My work involved an validation set to validate permeability and 

solubility models and in addition an BCS validation set where both permeability and 

solubility were known, in order to validate BCS prediction. 

There are studies in the literature that predict BDDCS class (Biopharmaceutics Drug 

Disposition Classification System) (Wu and Benet, 2005) instead of BCS class. The 

BDDCS system classifies compounds into one of the four BDDCS classes based on 

the rate of metabolism, instead of permeability used in the BCS system, and 

solubility (using dose number). There appears to be a correlation between BCS and 

BDDCS classes, but only for passively absorbed compounds (Broccatelli et al., 

2012). With the growing number of compounds being identified as undergoing 

carrier mediated absorption, the comparison of BCS and BDDCS models could be 

complicated.   



206 
 
 

10.4.4 Comparison of BCS Class Assignments with the Literature 

The external validation set of 127 compounds contained both in vitro permeability 

and aqueous solubility collected from the literature. Based on the literature data, an 

observed BCS class was assigned to these compounds using my thresholds for 

permeability and solubility. Searching the literature, I found reported BCS classes 

for 71 of the 127 compounds in the validation set. From these 71, 10 compounds 

were cited in the literature to belong to more than one class and 16 were cited to 

belong to a different class from what I had assigned them based on my solubility and 

permeability thresholds. Different assignments of BCS class to compounds in the 

literature have also been shown in other studies (Bergstrom et al., 2014). 

On closer inspection of these 16 compounds, the main differences between my 

assigned BCS class and the literature-assigned BCS class are the effect of maximum 

dose and pH, which have not been considered in my work. In addition, there are in 

vitro – in vivo differences due to varying levels of transporter expression in cell lines 

and gastrointestinal tract. As a result, some compounds that are poorly soluble and 

poorly permeable or highly permeable but poorly soluble in vitro may not 

necessarily be poorly-absorbed in vivo. Examples include cinacalcet (Class IV), 

which is poorly soluble and poorly permeable but is absorbed >80% and dapsone 

(Class II) which is poorly soluble but has a %HIA of 90%. The external validation 

set with the experimentally (in vitro) assigned and literature assigned compounds can 

be found in Appendix 4.  

Concerning the 10 compounds cited as belonging to more than one class, it is 

interesting to see how the best models (those with the best overall accuracy and 

geometric mean accuracy, i.e. models 3 and 4 in Table 10.4) predicted these 

compounds, as their prediction may give more evidence to the assignment of these 

compounds to that class. For example based on my experimental data, ethosuximide 

is classified as belonging to class I, however the WHO guidelines state that the 

classification of this compound could be either class I or class III due to insufficient 

data on permeability. The models 3 and 4 from Table 10.4 both predict that this 

compound is class I, and this is supported by a %HIA of 93%. For the rest of the 
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compounds, the majority are predicted into either one of the cited classes by models 

3 and 4. 

Using model 4 from Table 10.4, it is interesting to see which class was assigned to 

the compounds in BCS validation set. This can help understand the error rates 

associated with the model and the tendency of the model in relation to BCS class 

prediction. This confusion matrix comparing predicted versus observed BCS classes 

is shown in Table 10.7. 

Table 10.7. Confusion matrix of model 4 from Table 10.4 for the prediction of BCS 

classes for the validation set 

  Predicted 
Class 1 

Predicted 
Class 2 

Predicted 
Class 3 

Predicted 
Class 4 Total  Accuracy 

(%) 
Observed 

class 1 28 15** 6** 4** 53 52.8 

Observed 
class 2 7* 28 1 4** 40 70.0 

Observed 
class 3 4* 1 17 4** 26 65.4 

Observed 
class 4 1* 2* 1* 4 8 50.0 

 Total 
Compounds 40 46 25 16 

  Precision 
(%) 70.0 60.9 68.0 25.0 

*Type I errors 
**Type II errors 
Precision (%) is calculated for each class by adding the number of compounds in the column for that class and dividing by the 

total number of compounds (column total) for that class. Accuracy (%) is calculated by adding the number of compounds for 

each class in the row for that class and divided by the total number of compounds (row total) for that class. 

 

Type I and type II errors were calculated for the values reported in Table 10.7. 

According to Khandelwal et al. (Khandelwal et al., 2007), Type I errors (false 

positive errors) represent those compounds that are either predicted class I when in 

fact they are observed to be BCS classes II-IV or predicted class II or III but are 

actually class IV compounds. Therefore, the predicted class is biopharmaceutically 

more favourable than the observed actual class. Type II errors (false negative errors) 

represent those compounds that are either predicted as class IV but were observed to 

be BCS classes I-III, or are predicted as class II or III but were observed to be class I. 
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In other words, the predicted class is biopharmaceutically less favourable than the 

true class. The % of type I errors was 11.8 % and the % of type II errors was 25.9%. 

The results from a similar study by Pharm-The et al. (Pham-The et al., 2013a) 

calculated type I and type errors II of 10.6% and 14.6% respectively, for their entire 

dataset (training and validation set) of 322 compounds. 

 

It has been proposed that for BCS class prediction type II errors should be kept as 

low as possible (Pham-The et al., 2013a). This is quite obvious given that BCS class 

is used for the decision making regarding biopharmaceuticals experimentations 

required for oral dosage forms. Additionally, it might be more desirable to have good 

precision of class I compounds, rather than good accuracy, as these compounds are 

prioritised for biowaivers (CDER/FDA, 2000). This principle of focussing on 

precision rather than accuracy may be appropriate for class III compounds too, due 

to the increasing evidence for the suitability of class III compounds for biowaivers 

(Crison et al., 2012). As seen in Table 10.7 both of the precision measures for class I 

and III were higher than the respective accuracy measures. Based on this, it is 

interesting to see that, although class III is not the most popular represented class in 

the external validation set compared with classes I and II, it still has high class 

accuracy and precision. 

 

It is important to state that the main difficulty for the models in this work was 

encountered in predicting class IV compounds. This was not entirely unexpected, 

since although the permeability and solubility datasets had balanced class 

distributions, the combination of these resulted in an under-representation of class 

IV. This may not be a major concern for industry; however, from a prediction point 

of view, by not considering the predictive accuracy of all classes can result in a 

higher number of misclassifications, which could prove costly for industry 

(Khandelwal et al., 2007). This could be resolved by balancing all four BCS classes; 

however this can drastically reduce the number of compounds and potentially the 

models’  ability   to  predict  new  compounds.  My work has utilised all data available 

and applied misclassification costs to attempt to overcome the BCS class imbalance. 

However, the poor prediction may not be down to the poor representation of classes 
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and could be also a result of self-association in water, as cited in other research 

(Broccatelli et al., 2012, Ross and Riley, 1990).  

10.5 Conclusion 

The in silico prediction of a provisional BCS class is a challenging task. One of the 

challenging aspects of BCS class predictions is the potential effect of solubility on 

permeability prediction. Separate models of permeability and solubility fail to take 

into account the interactions between the class labels, and modelling each label 

separately reduces the generalisation for new compounds. It is well known in the 

literature that poor solubility can give rise to poor and variable absorption. 

Therefore, permeability prediction should include and so take into account the 

effects of solubility. Hence, using predicted solubility in permeability models 

alongside structural molecular descriptors, as performed in this work using the 

classifier chain multi-label classification method, avoids the disadvantage of other 

modelling methods for BCS prediction, like binary relevance multi-label 

classification.  

This work has shown that the classifier chain multi-label method can greatly 

influence permeability models and hence provisional BCS using C&RT analysis. 

The use of predicted solubility as a descriptor to build and predict permeability, 

using  the  classifier  chain  method,  has  been  shown  to  improve  a  permeability  model’s  

predictive accuracy and in turn final provisional BCS prediction. The molecular 

descriptors used by both solubility and permeability models relate to lipophilicity, 

hydrogen bonding, polarity, size and shape; however their relationship with these 

properties is usually inversely related.  

The benefit of the binary relevance and classifier chain methods over algorithm 

adaption methods is the utilisation of large datasets for permeability and solubility. 

There was no restriction to the dataset just because of missing values, as separate 

models for permeability and solubility were built based on the available data for each 

property. One limitation with this type of protocol is the lack of generalisation for 

the poorly represented class IV compounds. However, this can be improved slightly 

with the application of higher misclassification costs. The literature reveals a lack of 

multi-label classification methods for provisional prediction of BCS class suitable 
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for a drug discovery scenario. Therefore, according to my results, the classifier chain 

method can be used successfully to improve the prediction of permeability class 

using predicted solubility.  

Future extensions to this work would be to utilise more types of multi-label 

classification methods to perform consensus prediction similar to those in the 

literature; however the method must be able to include and use predicted solubility in 

the permeability model.  

In conclusion, this work has highlighted the potential benefit of using the classifier 

chain multi-label method, to predict provisional BCS class prediction for drug 

discovery (Newby et al., 2014a). 
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11 Conclusions 
 
The chapter aims to give a summary of the overall conclusions of this research and 

how the author has contributed to existing knowledge in relation to the aims set at 

the beginning of this thesis.  

With the increase in cost, there has never been a more demanding time in the 

pharmaceutical industry to increase cost effectiveness in drug discovery. In silico 

techniques offer inexpensive methods to assist drug discovery to fail fast and cheaply 

and identify promising compounds. This thesis has covered various aspects of 

Quantitative Structure-Activity Relationship (QSAR) including training set 

selection, model choice, feature selection, model optimisation and appropriate 

statistics for model validation. In this research, QSAR methods were employed to 

model oral absorption and related properties.  

Initially, using a previously published dataset of oral absorption data, two methods 

were utilised to overcome the problem of unbalanced class distribution for oral 

absorption. The methods used to overcome this problem, namely under-sampling of 

the majority class (chapter 6) and higher misclassification costs for the minority class 

(chapter 7), have both been shown to overcome the unbalanced class distribution by 

producing models with higher accuracy and applicable to an industry scenario.  

The impact of under-sampling the majority class in the training set to improve model 

accuracy has been shown to be successful using linear and non-linear techniques for 

numerical and categorical prediction of oral absorption. The use of MLR and LDA 

offered linear methods (chapter 6) and decision trees using C&RT offered a non-

linear method (chapter 7) to indicate the successfulness of the under sampling 

technique using a variety of methods. Although the application of this method for 

oral absorption datasets obtained a positive result, the reduction of data using this 

technique is not ideal and could cause problems with generalization to new 

compound sets, especially for small datasets. 

Therefore, the application of higher misclassification costs for minority class was 

investigated in chapter 7, in order to overcome the biased class distribution of the 

highly-absorbed compounds without data removal. When higher misclassification 
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costs were applied to reduce false positives, higher predictive accuracy models were 

produced, with higher accuracy for the underrepresented poor absorption minority 

class as shown in chapters 7 and 8. The results of these two chapters led to the 

application of higher misclassification to overcome unbalanced class distribution in 

chapter 9, to help elucidate the effect of solubility and permeability on oral 

absorption. Additionally, chapter 7 highlighted the use of higher misclassification 

costs on a dataset with a balanced class distribution. The application of higher 

misclassification costs for either class provides the opportunity to improve the 

predictive accuracy for one class when using a balanced dataset, depending on the 

purpose and motive of the resulting model. This principle was applied to 

permeability and solubility models in chapter 10, which both had balanced datasets. 

Due to the growing number of poorly-absorbed compounds with poor permeability 

and/or poor solubility on the market, there was an incentive to build models with 

higher misclassification costs for these properties even though the dataset was 

balanced. Therefore, application of misclassification costs not only offers a way to 

improve model accuracy by increasing the predictive ability of the minority class but 

also provides the user with the opportunity to apply costs depending on the 

incentives of oral absorption model prediction in drug discovery and development. 

The ultimate goal of QSARs for oral absorption is to provide the most accurate 

prediction of this property by using the most appropriate methods for this particular 

dataset. One approach to achieve this is through optimization of the feature selection 

process to find the most significant molecular descriptors for the prediction of oral 

absorption. Molecular descriptors are the building blocks of QSAR models; hence 

the most important ones need to be selected. There are a large variety of molecular 

descriptors (or features) to choose from; however, the general assumption is that 

feature selection methods reduce the number of molecular descriptors to be used in a 

model and result in models with increased interpretability and predictive power. 

Various feature selection methods were utilised in this thesis. In chapter 6, the use of 

stepwise regression, in order to reduce the number of variables, for numerical 

prediction using MLR, led to some subsets of molecular descriptors, plus other 

subsets  based  on  Lipinski’s  rule  of  five,  being  utilised  in  later  models  in  chapter  7.  

The classification C&RT models built using these subsets of molecular descriptors in 



213 
 
 

chapter 7 overall had similar or higher predictive accuracy and increased 

interpretability due to the reduction of molecular descriptors, compared with models 

built when the C&RT algorithm was able to select from all molecular descriptors 

available. This conclusion was further investigated and confirmed in chapter 8, 

where   five   ‘pre-processing’ filter feature selection methods were utilised to select 

molecular descriptor subsets for oral absorption classification. These subsets of 

molecular descriptors were used to build classification models using C&RT which is 

an embedded feature selection approach in its own right. The resulting models were 

compared with models built with no pre-processing feature selection and relying on 

the embedded feature selection in C&RT. It is apparent from the results of chapters 7 

and 8 that different feature selection methods utilised should be tried and evaluated 

for a given dataset. One important aspect of the feature selection work was the 

combination of feature selection alongside the application of higher misclassification 

costs as utilised in chapter 7. In addition the application of higher misclassification 

costs to one of the feature selection methods, namely variable importance using 

random forest, resulted in high predictive accuracy models that also coped well with 

the class imbalance problem discussed previously. The success of the variable 

importance using random forest gave the justification of using this feature selection 

approach to select molecular descriptor subsets for permeability and solubility 

prediction in chapter 10. 

The remaining chapters focus on oral absorption related to the two fundamental 

properties that govern the rate and extent of oral absorption: permeability and 

solubility. The conclusions from previous chapters influenced the development of 

resulting models such as the application of higher misclassification costs in chapters 

9 and 10 and the application of the pre-processing feature selection method, variable 

importance, utilised in chapter 10 to improve model accuracy based on the results of 

previous chapters. 

The availability experimental data of permeability and solubility in drug discovery is 

growing rapidly, whereas the number of available human intestinal absorption data 

remains mostly unchanged. Based on chapter 6, it was realised that the impact of 

solubility would be an important factor to consider in relation to oral absorption 

prediction. Therefore, it was shown in chapter 9 and 10 that models that utilise high/ 
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moderate throughput data generated in drug discovery can aid in the predictive 

accuracy and interpretation of oral absorption models by utilising the relationship 

these properties share with oral absorption. Permeability was shown to have good 

influence on the prediction of oral absorption. Furthermore, the inclusion of 

experimental permeability and solubility values increased the accuracy of oral 

absorption prediction even more. In spite of this, the interaction between oral 

absorption and solubility in chapter 9 was not as apparent as expected, despite the 

known close relationship between absorption and solubility.  

The results from chapter 9 confirm previous conclusions in the literature where in 

vitro permeability has a good correlation with human oral absorption, despite data 

variation among different laboratories. The relationship between high permeability 

and high absorption was strongest and the relationship between poor absorption and 

poor permeability was less certain. This could be due to lack of poor absorption data 

available in the literature. The application of higher misclassification costs utilised in 

the previous chapters 7 and 8 was shown to improve the predictive ability of an 

objective permeability threshold to predict oral absorption class.  

Using the objective permeability thresholds, oral absorption models were built using 

decision trees, utilising solubility and related parameters, as well as the calculated 

molecular descriptors to predict oral absorption class. Models that utilised predicted 

solubility using the general solubility equation (GSE) and the melting point based 

absorption potential (MPbAP) gave rise to better predictive models and could 

therefore potentially be used if experimental solubility was not available for the 

prediction of oral absorption class. The models developed in chapter 9 extend those 

published in the literature by incorporating all compounds including those with 

solubility issues. Although the lack of negative impact of poor solubility on oral 

absorption was unexpected, these models were able to predict the oral absorption of 

those compounds identified with solubility issues. Therefore the incorporation of 

solubility into oral absorption models alongside permeability can help classify oral 

absorption.  

The relationship between absorption/permeability with solubility was investigated 

further by using multi-label classification for the prediction of BCS 
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(Biopharmaceutics Classification System) class in chapter 10. As the BCS assigns a 

class according to the permeability and solubility and these are considered the 

fundamental properties governing absorption, it seemed fitting to utilise the dataset 

collected in chapter 9 to model these two fundamental properties in a multi-label 

fashion. The multi-label methods introduced in chapter 10 are used to predict 

permeability and solubility models, which in turn will give a provisional BCS class 

prediction to help with formulation and chemical optimisation in drug discovery and 

development.  

In chapter 10, the comparison of two multi-label methods was investigated. The first 

method was binary relevance, which did not take into account the interaction 

between solubility and permeability. The second method was classifier chain, which 

takes into account label interactions between solubility and permeability by 

including predicted solubility as a feature, to build the permeability models in this 

work. The classifier chain method was utilised based on the results of chapter 9, 

where the inclusion of solubility and related parameters help to predict oral 

absorption class. The influence of solubility was shown to impact and improve 

permeability prediction models from the work presented in chapter 10. In this 

chapter, the classifier chain method had higher predictive accuracy for the prediction 

of BCS using an external validation set of 127 compounds.  

Additionally, the use of higher misclassification costs to reduce false positives in this 

chapter 10 yielded results which had lower overall accuracy for solubility and 

permeability models. However, all models with higher misclassification costs 

applied had better predictive accuracy for the poor permeability/solubility classes. In 

spite of the lower accuracy, the classifier chain method still resulted in higher 

geometric mean accuracy compared with the binary relevance method. The use of 

higher misclassification costs for models resulted in higher predictive accuracy for 

the underrepresented classes III and IV in the BCS external validation set. This 

chapter has highlighted the potential benefit of using the classifier chain multi-label 

method to predict provisional BCS class for drug discovery. 

The molecular descriptors utilised in the models throughout this thesis, such as those 

describing size, shape, polarizability and hydrogen bonding, can be related to the 
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known mechanisms of permeability, solubility and oral absorption. The later models 

in chapters 9 and 10 are useful for a better mechanistic understanding of the effect of 

these properties as well as for identifying molecular descriptors that contribute to 

overall oral absorption. 

Based on the current results, it can be concluded that modelling using QSAR can aid 

the understanding and interpretation of the mechanisms involved in the oral 

absorption of drug compounds and with the appropriate data can lead to validated 

models with good predictive accuracy. Furthermore, the in silico modelling 

approaches and models presented in this work can aid a variety of disciplines 

ranging from medicinal chemistry through to drug formulation. It is also expected 

that the modelling approaches used for the prediction of oral absorption could be 

applied for the prediction of other pharmacokinetic properties in the pharmaceutical 

industry in order to build interpretable predictive models analogous to the ones 

presented in this thesis. 
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12 Future Research Directions 

The research presented in this thesis has raised many interesting questions. 

Therefore, there are several lines of research arising from this work which could be 

pursued further. 

Firstly, although all the models presented in this thesis have been externally 

validated, it will be essential to re-validate the models with new compound data 

when available, additionally checking the applicability domain of those new 

compounds to make sure they are not extrapolated based on the chemical area of the 

training set. The lack of experimental data added to oral absorption, permeability and 

solubility datasets could be resolved by using semi supervised learning techniques 

(Chapelle et al., 2006, Li et al., 2008), as well as modelling the data already used in 

this thesis with approaches other than decision tree analysis such as neural networks 

and support vector machine. Furthermore, an ensemble of classifiers could be used in 

order to achieve higher predictive accuracy for the prediction of oral absorption 

based on a multitude of different QSAR methods. 

Overcoming the biased class distributions in oral absorption datasets using the 

approaches presented in this thesis was shown to be successful. In addition to under-

sampling the training set and the application of higher misclassification costs to the 

minority class, a technique called over-sampling could have been carried out to 

overcome the biased class distribution. Over-sampling is similar to the concept of 

under-sampling, but instead of compounds of the majority class being removed to 

create a balanced dataset, the minority class is expanded by duplication of these 

minority compounds to match the number of compounds in the majority class in the 

dataset. Although over-sampling creates a balanced class dataset, it does not add any 

information due to the replication of the minority class compounds. This could result 

in overfitting of models especially with decision tree methods (Barandela et al., 

2004, Zang et al., 2013). In spite of this, this method could be an interesting 

comparison with the methods presented in this work, as it has been suggested that 

over-sampling has similar predictive accuracy to under-sampling and 

misclassification costs in some cases (Zang et al., 2013). 
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In this work there have been several feature selection approaches presented. There 

are still many other feature selection methods that could be explored. In chapter 8, 

filter feature selection methods were compared, however wrapper feature selection 

methods were not considered, so this could offer another angle for molecular 

descriptor selection and model development (Eklund et al., 2014). There are many 

types of methods that could be investigated such as those inspired by nature like 

particle swarm optimisation, ant colony optimisation and reshaped sequential 

replacement method, which has been introduced as a promising method adapted 

from the original sequential replacement method (Grisoni et al., 2014, Correa et al., 

2008). Additionally, there has been work exploring feature selection methods for 

multi-label datasets, therefore this is a promising extension to the multi-label work 

carried out in chapter 10 (Jungjit et al., 2013, Spolaôr et al., 2013). Based on this 

research and the literature, different feature selection methods need to be compared 

for the same dataset (Xue et al., 2004). Moreover, there is scope for the feature 

selection approaches in this thesis to be applied to other pharmacokinetic datasets. 

The impact of solubility on oral absorption model was investigated in chapter 9. 

Experimental aqueous solubility and predicted solubility and related values were 

used in order to help predict oral absorption. Although their impact was not as 

apparent as expected, it would have been interesting to use a number of other 

solubility and related parameters to confirm this observation. Firstly, solubility 

obtained from simulated intestinal and gastric fluid may offer a more real life 

scenario by considering pH and endogenous components, for oral absorption 

prediction. Secondly, the predicted solubility values used in this thesis, namely GSE 

and MPbAP, are both based on experimental melting point values. There are other 

solubility models presented in the literature that use calculated theoretical molecular 

descriptors (Raevsky et al., 2014). Predicted solubility model examples include 

ESOL (Delaney, 2004), SCRATCH (Jain and Yalkowsky, 2010) and GSE using 

TPSA instead of melting point (Ali et al., 2012). All of these examples are purely 

theoretical and not based on experimental data. Therefore, the calculation of 

predicted solubility from some of these equations would be useful for those 

compounds with no melting point available in the literature. However, it has been 

shown that the predicted solubility from the examples mentioned had lower model 
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accuracy compared with GSE which was used in this work. In spite of this, it would 

be potentially useful to see their ability as molecular descriptors for oral absorption. 

Solubility is a complex property which can be described by many different 

properties. It is suggested that a better description of the solid-state properties will 

improve the predictive accuracy of the solubility models; therefore it would be 

interesting to investigate how these properties impact on oral absorption models. 

(Wassvik et al., 2006). A good example of solid state properties relating to solubility 

is melting point, as shown in chapter 9. Even though melting point was not shown to 

be useful on its own, there are potentially other solid state properties of solubility 

such as wettability and density that could be investigated  as estimators of solubility, 

and the their impact on absorption prediction investigated. 

Multi-label classification was introduced in chapter 10. Multi-label classification is a 

relatively new approach in the context of modelling pharmacokinetics properties 

using QSAR; therefore there is plenty of scope to expand this area further. Firstly 

this thesis presented two multi-label methods, binary relevance and classifier chain, 

however there are many more multi-label methods that could be used such as power 

set and algorithm-dependent methods (see below) (Carvalho and Freitas, 2009, 

Tsoumakas and Katakis, 2007). A problem with these methods is the unbalanced 

distribution of class labels, which results in poor accuracy due to under-

representation of many labels. In spite of this, methods such as under sampling, 

oversampling and misclassification costs could be investigated for multi-label 

classification. This would be an interesting route as the power set method takes into 

account label interactions, and if the under-representation was overcome maybe this 

method could be highly predictive for BCS class prediction. 

In addition, this thesis only considered problem transformation multi-label methods, 

i.e., the multi-label problem was converted into a single label problem and then 

modelling was carried out using decision trees. In the data mining literature, there 

are algorithm-dependent multi-label methods which develop models based on the 

multi-label data directly (Clare and King, 2001, Min-Ling and Zhi-Hua, 2005). 

Therefore, another aspect of future work could be the development and utilisation of 

algorithm-dependent methods for provisional prediction of BCS class. The 
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complexity of such a project would be advantageous for comparison with the multi 

label problem transformation approaches in a pharmaceutical sciences context. There 

is growing awareness of multi-label problems, therefore further investigations into 

multi-label classification will be required (Cherkasov et al., 2014). 

Finally, there is great interest in carrier-mediated transporters, particularly those in 

the small intestine. Furthermore, the knowledge of substrate specificity for multiple 

transporters can be useful to help with compound design, chemical optimisation, and 

predicting drug-drug interactions which all can offer a mechanistic understanding of 

the role of intestinal transporters towards oral absorption. Therefore, data mining 

tools that can elucidate which drug compounds are substrates for intestinal 

transporters are highly desirable. 

Carrier-mediated transporters can be categorised into pre-defined family classes 

which are naturally hierarchical. For example, transporters can firstly be classified 

into general types of transporter (e.g. ion channel, active transporter) then further 

classified into more specific gene sub families and so on until classified into a very 

specific individual transporter. Hierarchical classification approaches could be used, 

which would involve building classification models that can predict if drug 

compounds are absorbed via transporters, and if so, also predict the classes of its 

transporter, ranging from generic to very specific transporter classes in a pre-defined 

transporter class hierarchy as described previously. Hierarchical classification 

approaches take into account the similarities and hierarchical relationships among 

transporter classes, exploiting that information to improve predictive accuracy of 

models produced. It has been shown in the data mining area that hierarchical 

classification approaches in general have higher predictive accuracy compared with 

the   conventional   “flat”   classification   approaches   used   in   this   thesis,   as   well   as  

offering more information regarding the hierarchical classes (Silla and Freitas, 2011, 

Cerri et al., 2011). Using the hierarchical classification approach could lead to 

development and optimisation of classifications models using a variety of feature 

selection and classification algorithms (Secker et al., 2010, Costa et al., 2007). 

It is clear from this section that as the data mining community develops and produces 

new techniques, it will not be long before the QSAR community will utilise and 
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adapt them for their own needs. The future of QSAR will involve multidisciplinary 

research, resulting in models with better predictive accuracy and interpretability that 

will hopefully provide a better mechanistic understanding of oral absorption of drug 

compounds. 
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Appendices 

The supporting information directly mentioned in this thesis can be found in the 

appendices below. The supporting information for each chapter has been grouped 

into a single appendix where possible. Supporting information too large and not 

directly mentioned in the main text can be found on the accompanying disk. 

Appendix 1: Supporting Information for Chapters 6 and 7 

Table A1. 1. Summary of molecular descriptors sets used in chapter 6 (Descriptor 
sets 1-5) and molecular descriptors sets (Descriptor sets 1-4) in chapter 7 

Descriptor Model/
Set Description 

aliphatic rings(5) 2 Number of 5 aliphatic rings 
aromatic rings(6) 5 Number of 6 aromatic rings 

ACD_LogP 4 Octanol/water partition coefficient calculated by ACD 
ACDLogD2 3 Apparent Distribution coefficient at PH 2 calculated by ACD 

ACDLogD5.5 1,3,5 Apparent Distribution coefficient at pH5.5 calculated by ACD 
ACDLogD7.4 2 Apparent Distribution coefficient at pH7.4 calculated by ACD 

ACD_Density 1 Mass per unit volume of a molecule calculated by dividing MW by MV calculated by 
ACD 

FiAB1 5 Fraction of drugs ionised as anions 
HBA 4 The total number of hydrogen bond acceptors of the whole molecule 
HBD 4 The total number of hydrogen bonds donors of the whole molecule 

Inertia moment 2 size 1 An estimate of an object resistance to changes in its rotation rate 

Ka3 2 Kappa alpha 3: atom count which quantifies the extent the heteroatom differs from the 
reference atom(carbon sp3) 

Mass 4 The total mass of the whole molecule 
NRo5 3 Number of violations of the rule of five 
PSA 2,3 Polar surface Area 
RB 4 The total number of rotatable bonds of the whole molecule 

SdsssP 3 Sum of atom-type E-state for phosphorous atoms with 3 single and one double bond 
SdsssP_acnt 5 Counts of atom-type E-state for phosphorus atoms with 3 single and one double bond. 

SHBint2 1,2 Sum of E-state descriptors for potent hydrogen bonds of path length 2 
SHBint2_Acnt 2 Counts of internal hydrogen bonds with 3 skeletal bonds between donor and acceptor 

SHBint3 2,5 Sum of E-state descriptors for potent hydrogen bonds of path length 3 
SHBint7 1,5 Sum of E-state descriptors for potent hydrogen bonds of path length 7 
SHBint9 3 Sum of E-state descriptors for potent H2 bonds of path length 9 

SHHBd 1,5 Sum of the hydrogen atom level E-state values for all hydrogen atoms bonded to donating 
atoms. 

SpcPolarizability 1,2 Molecular polarizability calculated on the basis of the addictive approach 
SsCH3 1 Sum of all (-CH3 -) E-state values in molecule 
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Appendix 2: Supporting Information for Chapter 8 

Table A2. 1. Top 20 molecular descriptors picked by feature selection methods, 
IGR, CS, RF and RF (MC) used in chapter 8 

Rank 
Number IGR CS RF  RF (MC) 

1 N+  ACDLogD7.4 ACDLogD10 VAMP HOMO 
2 SHssNH ACDLogD6.5 ACDLogD6.5 ACD_PSA 
3 SssNH SHHBd O Atoms  ACDLogD5.5 

4 Methyl ACD_PSA numHBd VAMP Heat of 
Formation 

5 SHsNH2 ACDLogD5.5 ACDLogD7.4 SsOH_acnt 

6 SdsssP ACD_LogP VAMP Mean 
Polarizability xp6 

7 5-aliphatic rings  ACDLogD10 H-bond Donors  ABSQon 

8 Amino  H-bond 
Acceptors ACD_PSA phia 

9 ACDLogD10 O Atoms ACDLogD5.5 ACDLogD7.4 

10 VAMP totl Energy H-bond 
Donors SHBint9_Acnt FU7.4 

11 ACDLogD7.4 numHBd ka1 Heteroatoms  

12 VAMP Electronic 
Energy numHBa numHBa ka1 

13 SdsssP_acnt SHsOH VAMP Heat of 
Formation k0 

14 Atoms  SHHBa SsOH_acnt SsssCH 
15 SHHBd ABSQ ACD_FRB MaxQp 

16 Sum of E-State 
indices Heteroatoms LogP O Atoms 

17 SssCH2 SsOH_acnt Sum of E-State 
indices FiA7.4 

18 Mass LogP Hmin VAMP Mean 
Polarizability 

19 Randic Topological 
index  ACDLogD2 VAMP LUMO SHother 

20 Wiener Topological 
index  SHBint3_Acnt H-bond Acceptors numHBa 

IGR: Information Gains Ratio; CS: Chi Square; RF: Variable importance using random forest; RF (MC): 
Variable importance using random forest with higher misclassification costs applied to reduce false positives 
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Table A2. 2. Top molecular descriptors picked by feature selection methods GRD 
and GEN used in chapter 8 

GEN GRD 
Inertia Moment 2 Size xvch6 ACDLogD10 N+ FINAL 
Randic Topological 
index ncirc 

Cosmic Total 
Energy Mass 

Balaban Topological 
index  knotp xvch9 O Atoms 
Sum of E-State indices  numHBa xp3 SdsssP 
Heteroatoms numHBd xp4 Dipole 
C Atoms SHHBd xp6 SHHBd 
N Atoms Qv xc4 SHBint3 
5-aliphatic rings k1 xch6 SHBint9_Acnt 
6-aromatic rings ka1 SdCH2 SHssNH 
 4-rings ka3 SaaCH FU7.4 

aliphatics SHBint2 SsssCH 
VAMP totl 
Energy 

aromatics SHBint3 SssNH 
VAMP Heat of 
Formation 

Atoms SHBint4 FiA13 VAMP LUMO 
SdCH2_acnt SHBint5_Acnt FU13 VAMP HOMO 

SsOH_acnt SHsOH 
Shape 
Flexibility index ACD_PSA_1 

SssO_acnt SHsNH2 
VAMP Heat of 
Formation ACD_LogP_1 

SdsssP SHother VAMP LUMO ACDLogD5.5 
ABSQ Gmin VAMP HOMO  ACDLogD6.5 
Dipole xv2 ACD_FRB ACDLogD7.4 
Surface xvp4 ACD_LogP ACDLogD10 

Volume xvch3   
Cosmic Total 
Energy 

ACDLogD7.4 ACDLogD5.5     
Gen: Genetic Search; GRD: Greedy stepwise 
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Appendix 3: Supporting Information for Chapter 9 

Table A3. 1. Compound outliers as highlighted from Figure 9.3 in chapter 9 

Outlier type Name Therapeutic 
indication/Class Transport Route Comments References 

Higher 
permeability in 

caco-2 compared 
to MDCK 

Oseltamivir Antiviral Influx, PEPT1 & 
Efflux, P-gp 

PEPT1 is not detected in MDCK cells; therefore higher permeability for the 
caco-2 cell lines 

(Ogihara et al., 2009) 

Loperamide Opioid/gastrointestinal Efflux, P-gp 

In this case the MDCK permeability is lower compared to caco-2 permeability 
due to the strain of MDCK used which over expresses the p-gp transporter 
therefore would expect lower permeability in MDCK-MDR1 cells compared to 
caco-2 

(Varma et al., 2005, Troutman 
and Thakker, 2003) 

Amitriptyline Antidepressant  Efflux, P-gp 

In this case the MDCK permeability is lower compared to caco-2 permeability 
due to the strain of MDCK used which over expresses the p-gp transporter 
therefore would expect lower permeability in MDCK-MDR1 cells compared to 
caco-2 

(Faassen et al., 2003, Troutman 
and Thakker, 2003) 

Phenazopyridine  Analgesic Passive 
Transcellular Poor solubility (dissolution limiting) - BCS class 2 compound (Gao, 2012) 

Higher 
permeability in 

MDCK compared 
to caco-2 

Sotalol Antiarrhythmic Paracellular & influx 
transporter OATP-A 

OATP-A is expressed in caco-2 but not determined in MDCK II. In addition 
MDCK II cells are leakier compared with caco-2 hence both reasons could 
contribute to higher absorption through the MDCK cell line 

(Liu et al., 2012) 

Dicloxacillin Antibiotic Influx, PEPT1 & 
Efflux, P-gp 

Higher expression of p-gp in caco-2 and higher efflux of dicloxacillin by this 
transporter than uptake by PEPT1 could explain higher permeability in MDCK 
cell line.  

(Luckner and Brandsch, 2005, 
Susanto and Benet, 2002) 

Levodopa  Psychoactive Influx, LNAA 

Higher abundance of LNAA in MDCK cells compared with caco-2, in addition 
the possibility of paracellular absorption has been proposed and based on the 
MDCK cell line which is leakier both could explain the higher permeability in 
MDCK compared to caco-2 

(Putnam et al., 2002, Lennernas 
et al., 1993) 

Sildenafil 
Erectile dysfunction 
and pulmonary arterial 
hypertension 

Efflux, P-gp & 
BCRP 

BCRP transporter was not determined in MDCK II cells indicating that the 
combined efflux effect of p-gp and BCRP transporters in caco-2 reduce the 
permeability more compared to the single efflux transporter in the MDCK cell 
line hence the higher permeability in the MDCK cell line 

(Choi and Song, 2012, Di et al., 
2011) 

Glipizide   Anti-diabetic Passive 
Transcellular Poor solubility (dissolution limiting) - BCS class 2 compound 

(Mehramizi et al., 2007) 

 

.
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Table A3. 2. Comparison of small intestine and in vitro cell   lines;;   ‘y’   indicates  
transporter and enzyme expression; Bold text indicates high expression; italic 
indicates moderate, normal text indicates low expression according to the literature 
from chapter 9 

Cell line Small 
intestine Caco-2 MDCK References 

Species Human Human Canine (Volpe, 2008, Cho et al., 1989) 

Tissue Small 
intestine 

Colon 
adenocarcinoma Kidney (Volpe, 2008, Cho et al., 1989) 

Culture time 
(days) N/A 21a 3-5 (Volpe, 2008, Cho et al., 1989) 

TEER (Ω.cm2) 25-40 300-500 

Parental MDCK <200 
MDCK I >1000 
MDCK II <300 

MDCK-MDR1 1000-
10000 

(Dukes et al., 2011, Braun et al., 2000, 
Volpe, 2008, Putnam et al., 2002, Quan et 

al., 2012, Balimane and Chong, 2005, Irvine 
et al., 1999, Soldner et al., 2000, Cho et al., 

1989) 
 

Unstirred water 
layer (UWL) 
thickness (µm) 

<100 1000-2500 NF 
(Lennernas, 1998, Hilgers et al., 1990, 

Karlsson and Artursson, 1992, Hidalgo et 
al., 1991) 

Transporter 
expression 

Transporter expression is highest in small intestine (area dependent) compared to cell lines in most cases. 
Transport expression is lower in MDCK cells compared to Caco-2 cells(Braun et al., 2000) 

MDR1(P-gp) y y 
y 

y MDCK II 
y MDCK-MDR1 

(Braun et al., 2000, Kuteykin-Teplyakov et 
al., 2010, Balimane et al., 2007, Seithel et 
al., 2006, Maubon et al., 2007, Hayeshi et 

al., 2008, Quan et al., 2012, Di et al., 2011) 

MDR3 y y y MDCK II (Quan et al., 2012, Hilgendorf et al., 2007, 
Hayeshi et al., 2008) 

HPT1  y y NF (Hilgendorf et al., 2007, Behrens et al., 
2004, Sun et al., 2002, Hayeshi et al., 2008) 

PEPT1 y  y ND MDCK II 

(Hilgendorf et al., 2007, Englund et al., 
2006, Balimane et al., 2007, Seithel et al., 

2006, Sun et al., 2002, Maubon et al., 2007, 
Hayeshi et al., 2008, Quan et al., 2012) 

PEPT2 ND ND y MDCK II 
(Leibach and Ganapathy, 1996, Balimane et 
al., 2007, Hilgendorf et al., 2007, Hayeshi et 

al., 2008, Quan et al., 2012) 

OCTN1 y y NF (Sun et al., 2002, Maubon et al., 2007, 
Hilgendorf et al., 2007, Hayeshi et al., 2008) 

OCTN2 y y NF 
(Hilgendorf et al., 2007, Volpe, 2008, 

Seithel et al., 2006, Maubon et al., 2007, 
Hayeshi et al., 2008) 

MCT1 y y y MDCK II (Deora et al., 2005, Hilgendorf et al., 2007, 
Seithel et al., 2006, Maubon et al., 2007) 

MCT2 ND y NF (Morris and Felmlee, 2008, Halestrap and 
Meredith, 2004, Lin et al., 1998) 

MCT3 y y ND MDCK II (Sun et al., 2002, Deora et al., 2005, Hayeshi 
et al., 2008) 

MCT4 y y y MDCK II 
(Deora et al., 2005, Morris and Felmlee, 

2008, Halestrap and Meredith, 2004, Gill et 
al., 2005, Hayeshi et al., 2008) 

MCT5 y y NF (Hilgendorf et al., 2007, Hayeshi et al., 
2008) 

IBAT y y NF (Hilgendorf et al., 2007, Putnam et al., 2002, 
Hayeshi et al., 2008) 

OAT1 ND ND ND MDCK II 
(Quan et al., 2012, Zalups and Ahmad, 2005, 
Hilgendorf et al., 2007, Seithel et al., 2006, 

Hayeshi et al., 2008) 
OAT2 y y NF (Hilgendorf et al., 2007, Seithel et al., 2006) 

OAT3 ND ND NF (Hilgendorf et al., 2007, Hayeshi et al., 
2008) 

OAT4 ND y NF (Hilgendorf et al., 2007, Whitley et al., 
2006, Hayeshi et al., 2008) 

OATP-A y y ND MDCK II 
(Hilgendorf et al., 2007, Maubon et al., 

2007, Glaeser et al., 2007, Quan et al., 2012, 
Goh et al., 2002) 
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Cell line Small 
intestine Caco-2 MDCK References 

OATP-B y y NF 
(Englund et al., 2006, Seithel et al., 2006, 
Maubon et al., 2007, Glaeser et al., 2007, 

Hayeshi et al., 2008) 

OATP-C ND ND ND MDCK II 
ND* 

(Hilgendorf et al., 2007, Goh et al., 2002, 
Hayeshi et al., 2008) 

OATP-D y y NF (Hilgendorf et al., 2007, Hayeshi et al., 
2008, Sai et al., 2006) 

OATP-E y y NF (Hilgendorf et al., 2007, Hayeshi et al., 
2008, Sai et al., 2006) 

OATP-F y ND NF (Hilgendorf et al., 2007, Hayeshi et al., 
2008) 

OATP-H y y ND* 
ND MDCK II 

(Hilgendorf et al., 2007, Hayeshi et al., 
2008, Mikkaichi et al., 2004, Kuo et al., 

2012) 

OATP8 y ND ND MDCK II (Hilgendorf et al., 2007, Glaeser et al., 2007, 
Hayeshi et al., 2008, Quan et al., 2012) 

BCRP  y y ND* 
ND MDCK II 

(Quan et al., 2012, Englund et al., 2006, Xia 
et al., 2005, Seithel et al., 2006, Maubon et 
al., 2007, Hayeshi et al., 2008, Kuteykin-
Teplyakov et al., 2010, Di et al., 2011) 

MRP1 y y 
y* 

y MDCK II 
y MDCK-MDR1 

(Maubon et al., 2007, Hayeshi et al., 2008, 
Hilgendorf et al., 2007, Di et al., 2011, Goh 

et al., 2002, Kuteykin-Teplyakov et al., 
2010) 

MRP2 y y 
ND* 

y MDCK II 
y MDCK-MDR1 

(Englund et al., 2006, Quan et al., 2012, 
Seithel et al., 2006, Maubon et al., 2007, 

Hayeshi et al., 2008, Hilgendorf et al., 2007, 
Goh et al., 2002, Kuteykin-Teplyakov et al., 

2010) 

MRP3 y y y MDCK II (Hilgendorf et al., 2007, Quan et al., 2012, 
Seithel et al., 2006, Maubon et al., 2007) 

MRP5 y y y MDCK II 
y MDCK-MDR1 

(Quan et al., 2012, Sun et al., 2002, 
Hilgendorf et al., 2007, Di et al., 2011, 

Kuteykin-Teplyakov et al., 2010) 
MRP6 y y NF (Maubon et al., 2007) 

OCT1 y y NF (Seithel et al., 2006, Hilgendorf et al., 2007, 
Maubon et al., 2007, Hayeshi et al., 2008) 

OCT2 ND ND y MDCK II (Shu et al., 2001, Quan et al., 2012, 
Hilgendorf et al., 2007, Hayeshi et al., 2008) 

OCT3 y y ND MDCK II (Seithel et al., 2006, Maubon et al., 2007, 
Hayeshi et al., 2008, Quan et al., 2012) 

ENT1 y y y MDCK II (Quan et al., 2012, Sun et al., 2002, Hayeshi 
et al., 2008, Hammond et al., 2004) 

LNAA 
(LAT1/LAT2) y y y* (Putnam et al., 2002, Rossier et al., 1999) 

PHT1 y y y MDCK II (Quan et al., 2012, Herrera-Ruiz et al., 2001) 

LRP y NF NF (Hilgendorf et al., 2007, Taipalensuu et al., 
2001) 

Cycloph A y NF NF (Hilgendorf et al., 2007) 

CNT3 ND y ND* (Hilgendorf et al., 2007, Hayeshi et al., 
2008, Errasti-Murugarren et al., 2007) 

Enzyme 
expression Enzymes expressed in the small intestine have higher abundance compared to the cell lines.  

CYP3A4 y y (very low) ND* 
(Braun et al., 2000, Sun et al., 2002, Paine et 
al., 2006, Borlak and Zwadlo, 2003, Kwatra 

et al., 2012) 

CYP2D6 y y (very low) NF (Paine et al., 2006, Hayeshi et al., 2008, 
Borlak and Zwadlo, 2003) 

CYP2C9 y y NF (Sun et al., 2002, Paine et al., 2006, Hayeshi 
et al., 2008, Borlak and Zwadlo, 2003) 

CYP2C19 y y NF (Sun et al., 2002, Paine et al., 2006, Hayeshi 
et al., 2008, Borlak and Zwadlo, 2003) 

CYP1A1 y y NF (Paine et al., 2006, Borlak and Zwadlo, 
2003) 

CYP2J2 y y ND MDCK II (Sun et al., 2002, Paine et al., 2006, Borlak 
and Zwadlo, 2003, Quan et al., 2012) 

CYP3A5 y y NF (Paine et al., 2006, Hayeshi et al., 2008, 
Borlak and Zwadlo, 2003) 
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Cell line Small 
intestine Caco-2 MDCK References 

UGT y y NF (Sun et al., 2002) 

GST y y y* (Sun et al., 2002, Volpe, 2008, Bohets et al., 
1996) 

ST y y y MDCK II (Sun et al., 2002, Volpe, 2008, Ng et al., 
2003) 

AT y y NF (Sun et al., 2002) 

AcyT y y NF (Sun et al., 2002) 
awhen P-gp expression is at its maximum(Braun et al., 2000); NF- not found in the literature; ND - not detected in experimental 
assay; MDR - multi drug resistant protein; HPT1 - human oligopeptide transporter;  PEPT- peptide transporter; OCTN - 
organic cation transporter; MCT- monocarboxylate transporters; IBAT - ileal sodium-dependent bile acid transporter/ intestinal 
bile acid transporter; OAT - organic anion transporter; OATP - Organic anion-transporting polypeptide; BCRP - Breast cancer 
resistance protein; MRP - multidrug resistance associated protein; OCT - organic cation transporter; ENT - equilibrative 
nucleoside transporter; LNAA/ LAT - Large neutral amino acids; LRP - lipoprotein transporter; Cycloph A - cyclophilin A/ 
Peptidyl-prolyl Isomerase A, CNT - Concentrative nucleoside transporter; CYP - Cytochrome P450 enzyme; UGT- Uridine 5'-
diphospho-glucuronosyltransferase; GST - glutathione S-transferase;  ST- sulfotransferase; AT - N-acetyltransferase; AcyT – 
acyltrtransferase 
*Note: A generic term MDCK is used unless specific information regarding the transporter in a specific strain is known. 
Therefore MDCK could indicate that the parietal MDCK has been used or that the strain was not specified in the study 
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Comparison of absorption through MDCK and Caco-2 cell lines using different 

mechanisms/ routes 

The statistical significance of the regression lines (slope and intercept) of the 

absorption mechanisms highlighted in Table 9.3 (in chapter 9) was tested and the 

results are shown in Table A3.3 As some of the compounds undergo more than one 

absorption mechanism (Groups D, F, G and H in Table 9.3), the significance was 

also tested in either mechanism. For example, for group D (efflux and paracellular) 

this was tested with all these compounds classed as efflux or classed as paracellular. 

P values < 0.05 indicate that there is a significant difference between the intercept 

and slope of the lines of the absorption groups being studied.  

Table A3. 3. Linear regression results and significance of the different absorption 
transport routes from Table 9.3 in Chapter 9 (First absorption mechanism is 
dominant for that set) 

Model Description N Slope  Slope p 
value 

Intercept Intercept p 
value 

1* Paracellular (B, D ,F ,H) Vs 
Transcellular (A) 

11 
83 

-0.191 
-0.874 

0.0023** -7.370 
-0.688 

n/a 

2 Carrier mediated (C-H) Vs 
Passive (A, B) 

96 
89 

0.777 
0.880 

0.297 -1.239 
-0.663 

0.525 

3 Efflux (C, D, G, H) Vs  
Passive (A, B) 

79 
89 

0.787 
0.880 

0.355 -1.194 
-0.663 

0.479 

4 Influx (E, F, G, H) Vs  
Passive (A, B) 

32 
89 

0.673 
0.880 

0.132 -1.899 
-0.663 

0.326 

5 Efflux (C, D, G, H) Vs  
Influx (E, F) 

79 
17 

0.787 
0.750 

0.867 -1.194 
-1.376 

0.895 

6 Influx (E, F, G, H) Vs  
Efflux (C, D) 

32 
64 

0.673 
0.795 

0.498 -1.899 
-1.113 

0.338 

7 Influx (E, F) Vs  
Efflux (C, D) 

17 
64 

0.750 
0.795 

0.844 -1.376 
-1.113 

0.915 

* Paired t tests were carried out on the smaller group of permeability values to test the significance between the two cell lines of 

the group of compounds. In addition paired t tests were also carried out for all the groups in models 1-7 to test for significance 

between the cell lines. All tests revealed not significant differences between the two cell lines. 

**indicates statistical significance between the groups 
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Figures A3.1-7: Figures showing the relationship between the different transport 
mechanisms (defined in Table 9.3 and Table A3.3) between the 185 compounds for 
caco-2 and MDCK permeability 
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Figure A3. 1. Comparison of regression between compounds transcellular and 
paracellular (model 1 Table A3.3). 
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Figure A3. 2. Comparison of regression between carrier mediated transport and 
passive absorption compounds (model 2 Table A3.3) 
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Figure A3. 3. Comparison of regression between compounds identified as carrier 
mediated efflux transport and passive absorption (model 3 Table A3.3) 
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Figure A3. 4. Comparison of regression between compounds identified as carrier 
mediated influx transport and passive absorption (model 4 Table A3.3) 



257 
 
 

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5
-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

Efflux

Influx

Transport Route

Log Caco-2 Papp (cm/s)

Lo
g 

M
DC

K 
Pa

pp
 (c

m
/s

)

 
Figure A3. 5. Comparison of regression between carrier mediated efflux and influx 
transport (model 5 Table A3.3) 
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Figure A3. 6.  Comparison of regression between carrier mediated efflux and influx 
transport (groups C-F Table 9.3) Model 6 in Table A3.3 
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Figure A3. 7.  Comparison of regression between carrier mediated influx (groups E, 
F Table 9.3) and efflux transport (groups C,D Table 9.3) Model 7 in Table A3.3 
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Table A3. 4.  Potential Outliers in Sections of A and B in Figure 9.2 in chapter 9 

Outlier type Name Therapeutic 
indication/Class 

Carrier 
mediated Gut met Water 

solubility Comments References 

POTENTIAL FALSE 
NEGATIVES  

High fraction absorbed 
Low cell permeability  

Folinic Acid Oncology Influx, RFC   Sparingly 
soluble Dose dependent absorption 

(Matherly and Goldman, 2003, 
Balamurugan and Said, 2006, 
Dollery, 1999, O'Neil et al., 
2001) 

Ribavirin Antiviral Influx, CNT2   Soluble   (Shugarts and Benet, 2009, 
O'Neil et al., 2001) 

Amoxicillin Antibiotic Influx, PEPT1   High solubility   
(Estudante et al., 2013, O'Neil et 
al., 2001, Osol and Hoover, 1976) 
AQUASOL database 6th edition 

Loracarbef Antibiotic Influx, PEPT1   High solubility Review article assigned compound into highly soluble 
group 

(Hu et al., 1994, Benet et al., 
2011) 

Baclofen 
Gamma-
aminobutyric acid 
agonist 

Influx, Amino 
acid 
transporter 

  Slightly soluble   
(Thwaites et al., 2000) 
Drugs@FDA, Product label 

Lamivudine Antiviral Influx, OCT3, 
Efflux, BCRP   High solubility   

(Estudante et al., 2013, Minuesa 
et al., 2009, O'Neil et al., 2001) 

Floxuridine Oncology CNT3   High solubility 
Possible influx substrate CNT3 nucleosides specificity 
however abundance of apical side of membrane is not 
certain 

(Ritzel et al., 2001, Osol and 
Hoover, 1976) 
US EPA; Estimation Program 
Interface (EPI) Suite. Version 
3.12 

Acetazolamide Carbonic anhydrase 
inhibitor     Slightly soluble   (Budavari et al., 1996) 

Zolmitriptan Serotonin receptor 
agonist 

Influx, SERT 
Efflux, P-gp   High solubility 

Possible influx substrate SERT serotonin specificity. 
Review article assigned compound into highly soluble 
group 

(Benet et al., 2011, Martel et al., 
2003) 

Diphenoxylate Opioid     high/low 
solubility? 

High logP ~ 5.66, interactions with the unstirred water 
layer in the in vitro assay? 
Conflicting sources state different solubilities 

(Nguyen et al., 2012, WHO, 
2006) 
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Table A3.4 (Cont): Potential Outliers in Sections of A and B in Figure 9.2 in chapter 9 

Outlier type Name Therapeutic 
indication/Class 

Carrier 
mediated Gut met Water 

solubility Comments References 

POTENTIAL FALSE 
POSITVES 

 Low fraction absorbed 
High cell permeability 

Mebendazole Anti parasitic Efflux, P-gp CBRs,  Low solubility  
(Varma et al., 2010, Varma et al., 
2005, Nishimuta et al., 2013) 

Albendazole Anti parasitic   CYP3A4 and 
FMOs Low solubility  

(Redondo et al., 1999) 
Drugs@FDA Product information 

Cephalothin Antibiotic   Esterases and 
endopeptidases 

Moderate/High 
solubility 

Classed as moderately soluble: >0.01mg/ml <1mg/ml 
Gut metabolism tested using Porcine 

(Gozalbes and Pineda-Lucena, 
2010, Sarti et al., 2011) 
 

Tacrolimus Immunosuppressant Efflux, P-gp CYP3A4 Low solubility Review article assigned compound into poorly soluble 
group 

(Estudante et al., 2013, Benet et 
al., 2011, Varma et al., 2010, 
Hebert, 1997) 

Lovastatin Statin   Yes, CYP3A4 Low solubility  

(Varma et al., 2010, Jacobsen et 
al., 1999, Kato, 2008, O'Neil et 
al., 2001) 

Bromocriptine Dopamine agonist Efflux, P-gp Yes, CYP3A4 Low solubility   
(Vautier et al., 2006, Fagerholm, 
2007, Yap and Chen, 2005) 
Norvartis product label 

RFC: Reduced folate carrier; CNT2/3: Concentrative nucleoside transporter 2/3; PEPT1: Peptide transport protein; OCT3: Organic cation transporter; BCRP: Breast cancer resistance protein; SERT: Neuronal serotonin 
transporter; P-gp: P-Glycoprotein; CBR: Carbonyl reductases; FMO: Flavin-containing monooxygenases; CYP3A4: Cytochrome P450 3A4 
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Figures A3.8-19. C&RT model analysis from Table 9.5 from Chapter 9 
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Figure A3. 8 Model 1; C&RT permeability model when higher misclassification 
costs of three and six were applied to reduce false positives for the highly and poorly 
permeability nodes. 
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Figure A3. 9. Model 2; C&RT permeability and experimental solubility (logS 
mg/mL) model when higher misclassification costs of two and ten to reduce false 
positives were applied to high and low permeability compound nodes 
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Tree graph for 80.000000
Num. of non-terminal nodes: 5,  Num. of terminal nodes: 6

Model: C&RT
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Figure A3. 10. Model 3; C&RT permeability and predicted solubility (GSE) model 
when higher misclassification costs of two to reduce false positives were applied to 
high GSE solubility node 
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Figure A3. 11. Model 4; C&RT permeability and melting point based absorption 
potential (MPbAP) model when equal misclassification costs were applied to both 
nodes 
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Tree graph for 80.000000
Num. of non-terminal nodes: 9,  Num. of terminal nodes: 10
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Figure A3. 12. Model 5; C&RT permeability, predicted solubility (GSE) and 
experimental solubility (LogS mg/mL) model when higher misclassification costs of 
two and ten to reduce false positives were applied to the high logS (mg/mL) node 
and low GSE solubility node respectively 
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Tree graph f or 80.000000

Num. of  non-terminal nodes: 7,  Num. of  terminal nodes: 8
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Figure A3. 13. Model 6; C&RT permeability, melting point based absorption 
potential (MPbAP) and log Dose number (LogDN) model when higher 
misclassification costs of two and ten to reduce false positives were applied to the 
high logDN node and low MPbAP node respectively 
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Tree graph for 80.000000
Num. of non-terminal nodes: 5,  Num. of terminal nodes: 6

Model: C&RT
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Figure A3. 14. Model 7; C&RT permeability predicted solubility (GSE) and melting 
point based absorption potential (MPbAP) model when higher misclassification costs 
of two were applied to the high MPbAP node only 
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Figure A3. 15. Model 8; C&RT permeability experimental solubility (logS M) and 
melting point based absorption potential (MPbAP) model when higher 
misclassification costs of two were applied to the high MPbAP node only 
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Tree graph for 80.000000
Num. of non-terminal nodes: 9,  Num. of terminal nodes: 10

Model: C&RT
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Figure A3. 16. Model 9; C&RT permeability and experimental solubility (logS in M 
and mg/mL) model when higher misclassification costs of two and ten to reduce 
false positives were applied to high logS (mg/mL) node and low logS (M) solubility 
node respectively 
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Figure A3. 17. Model 10; C&RT permeability, experimental solubility (logS M) and 
predicted solubility (GSE) model when higher misclassification costs of two to 
reduce false positives were applied to high GSE solubility node only 
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Tree graph for 80.000000
Num. of non-terminal nodes: 7,  Num. of terminal nodes: 8
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Figure A3. 18. Model 11; C&RT permeability and predicted solubility (GSE) model 
when higher misclassification costs of two to reduce false positives were applied to 
high GSE solubility node only 
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Figure A3. 19. Model 12; C&RT permeability and melting point based absorption 
potential (MPbAP) model when higher misclassification costs of two to reduce false 
positives were applied to high MPbAP solubility node 
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Appendix 4: Supporting Information for Chapter 10 

Table A4. 1. The top 20 molecular descriptors selected by variable importance using 
random forest for solubility class 

Descriptor Description 
LogD(2) Apparent distribution coefficient at pH 2 calculated by ACD 
LogD(6.5) Apparent distribution coefficient at pH 6.5 calculated by ACD 
LogD(5.5) Apparent distribution coefficient at pH 5.5 calculated by ACD 

PEOE_VSA_POL Total polar van der Waals surface area using calculated partial charges by 
PEOE 

PEOE_VSA_HYD Total hydrophobic van der Waals surface area using calculated partial charges 
by PEOE 

FIBpH6.5 Fraction of drug ionised as bases as pH 6.5 

BCUT_PEOE_0 The BCUT descriptors are calculated from the eigenvalues of a modified 
adjacency matrix  using calculated partial charges by PEOE 

LogD(7.4) Apparent distribution coefficient at pH 7.4 calculated by ACD 

PEOE_VSA_FPOS Fractional positive van der Waals surface area using calculated partial charges 
by PEOE 

FIBpH5.5 Fraction of drug ionised as bases as pH 5.5 

BCUT_SLOGP_2 The BCUT descriptors are calculated from the eigenvalues of a modified 
adjacency matrix using atomic contribution to logP instead of partial charge.  

vsurf_Wp4 Polar volume 
b_single Number of single bonds (including implicit hydrogens). 
FIBpH2 Fraction of drug ionised as bases as pH 2 
VDistEq VDistEq is related to the size and shape of a molecule. 

GCUT_PEOE_3 The GCUT descriptors are calculated from the eigenvalues of a modified 
graph distance adjacency matrix using calculated partial charges by PEOE 

PEOE_VSA_FHYD Fractional hydrophobic van der Waals surface area 
FCASA- Fractional  negative charge weighted surface area 
rgyr Radius of gyration 
MaxHp Largest positive charge on a hydrogen atom 
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Table A4. 2. The top 20 molecular descriptors selected by variable importance using 
random forest for permeability class 

Descriptor Description 
LogD(6.5) Apparent distribution coefficient at pH 6.5 calculated by ACD 
vsurf_CW4 Capacity factor 
LogD(5.5) Apparent distribution coefficient at pH 5.5 calculated by ACD 
vsurf_HB1 H-bond donor capacity 
LogD(10) Apparent distribution coefficient at pH 10 calculated by ACD 
xv2 Valence chi 2 index 
vsurf_W3 Hydrophilic volume 
chi1_C Carbon connectivity index (order 1) 
FIBpH7.4 Fraction of drug ionised as base as pH 7.4 
vsurf_HL2 Hydrophilic-Lipophilic balance 
PEOE_RPC- Relative partial charge calculated using PEOE 
LogD(7.4) Apparent distribution coefficient at pH 7.4 calculated by ACD 
vsurf_Wp2 Polar Volume 
vsurf_HL1 Hydrophilic-Lipophilic balance 
PSA Polar Surface area 
vsurf_W2 Hydrophilic volume 
FIBpH6.5 Fraction of drug ionised as bases as pH 6.5 

GCUT_PEOE_0 The GCUT descriptors are calculated from the eigenvalues of a modified 
graph distance adjacency matrix using calculated partial charges by PEOE 

vsurf_Wp3 Polar Volume 

FIAB_6.5 Fraction of drug ionised as base multiplied by fraction ionised as anion 
calculated at pH 6.5 
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Table A4. 3. Experimental and literature Biopharmaceutics Classification System (BCS) class comparison for external validation set (n=127) in 
chapter 10 

# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

1 Praziquantel 0.4 -4.357 (Gonzalez-Esquivel et al., 
2005) 1 2 

(WHO, 2006 (accessed December 19, 
2013)) 
 

Large maximum dose causes a large dose number and 
therefore low solubility definition according to FDA 
guidelines 

2 Verapamil 0.7205 -4.438 
(Varma et al., 2005, Polli 
et al., 2001, Skolnik et al., 
2010) 

1 2 
(WHO, 2006 (accessed December 19, 
2013)) 
 

Large maximum dose causes a large dose number and 
therefore low solubility definition according to FDA 
guidelines 

3 Acetazolamide 0.7112 -6.678 (Granero et al., 2008, 
Crowe and Teoh, 2006) 3 2/4 

(WHO, 2006 (accessed December 19, 
2013)) 
 

Large maximum dose causes a large dose number and 
therefore low solubility definition according to FDA 
guidelines 

4 Gemfibrozil >0.5 -4.407 (Huang et al., 2010) 1 2 (Bergman et al., 2010) 
Large maximum dose causes a large dose number and 
therefore low solubility definition according to FDA 
guidelines 

5 Biperiden 0.01 (PI) -4.081 (Abalos et al., 2012) 2 1/3 (WHO, 2006 (accessed December 19, 
2013), Cao et al., 2012) 

The WHO BCS class assignment was on the basis on 
insufficient permeability data based on permeability data can 
now be assigned either 1/2 due to differences in free base and 
hydrochloride salt formulation 

6 Paricalcitol 0.01 (PI) -5.103 (Palaparthy et al., 2007) 2 4 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2005/021606s000_ClinPharmR.
pdf (Accessed 5 Jan 2014) 

Permeability is close to cut off threshold so with variability of 
caco-2 data could therefore be classed as poorly permeable, 
also HIA is less than 90% could explain why BCS assignment 
is wrong if based on in vivo data 

7 Doxepin 0.03157 -4.266 (Varma et al., 2005) 2 1 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2010/022036Orig1s000ClinPha
rmR.pdf (accessed 18 December 2013) 

Based on HCl salt assigned BCS class 1, solubility value 
based on free base 

8 Vardenafil 0.11 -5.252 (Choi and Song, 2012) 4 2 

http://www.ema.europa.eu/docs/en_GB/do
cument_library/EPAR__Assessment_Rep
ort__Variation/human/000475/WC500097
073.pdf (Accessed 5 Jan 2014) (Choi and 
Song, 2012) 
 

Low permeability (in Caco-2) due to efflux effects by multiple 
transporters where as in MDCK-MDR1 higher permeability, 
differences between in vitro/in vivo. Based on %HIA of 90% 
this compound would be classed as highly-absorbed (Choi and 
Song, 2012) 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

9 Pregabalin 32.1 -5.928 (Jezyk et al., 1999) 3 1 (Cook et al., 2008) 

Substrate for a Ltype uptake transporter therefore differences 
could be due to IVIV transporter expression. The literature 
states that caco-2 is not a suitable model for highlighting the 
effect of transporter mediated transport for this compound. 
(Jezyk et al., 1999, Su et al., 2005) 

10 Aspirin 4.46 -5.319 (Irvine et al., 1999) 3 1 (Dressman et al., 2012, Lindenberg et al., 
2004) 

A weak acid and is absorbed in lower part of the intestine (pH 
5.4), permeability carried out at pH 7.4 therefore possibly 
explains low experimental permeability (Levitt, 2013) 

11 Cefixime 1 (SS) -5.921 (Balimane et al., 2007) 3 2/4 
(WHO, 2006 (accessed December 19, 
2013)) 
 

pH dependent solubility and literature states ionized at 
physiological pH therefore solubility could be lower as 
suspension pH is low Based on solubility definition according 
to FDA across a wide pH range could explain difference in 
solubility. Evidence suggests this compound is substrate for a 
influx carrier mediated transporter in the small intestine 
therefore difference could also IVIV differences 
(Tsuji et al., 1987, Wenzel et al., 2002) 
(http://products.sanofi.ca/en/suprax.pdf (Accessed 5Jan2014)). 

12 Abacavir 1.68E-06 -5.463 (Shaik et al., 2007) 4 3 

(WHO, 2006 (accessed December 19, 
2013)) 
http://www.accessdata.fda.gov/drugsatfda
_docs/label/2013/020977s026,020978s030
lbl.pdf (Accessed 7 Jan 2014) 

Experimental solubility value from free base of compound. 
However sulfate of compound is highly soluble (77mg/ml) and 
this could be why compound is classed as BCS class 3. In 
addition this compound is a substrate for pgp and this could 
explain the low permeability in the MDCK-MDR1 cell line 
http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/02
0977s026,020978s030lbl.pdf (Accessed 6Jan 2014) 
(Shaik et al., 2007) 

13 Venlafaxine <0.1 -4.666 (Wager et al., 2010, Feng 
et al., 2008) 2 1 (Ramirez et al., 2010) 

Martindale states FS for hydrochloride salt, free base much 
lower solubility compared with marketed product 
(hydrochloride salt 572 mg/ml). Therefore BCS differences 
due to formulation (Martindale, 2009) 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

14 Acetaminophen 14.475 -4.448 (Sherer et al., 2012, Chen 
et al., 2005) 1 3 

(WHO, 2006 (accessed December 19, 
2013), Kalantzi et al., 2006) 
 

Based on other in vitro/in situ tests compounds classed as 
poorly permeable in addition literature stated that in vivo 
absorption could be higher than 80% therefore differences 
between in vitro/in vivo and the thresholds used and the 
uncertainty surrounding this compounds assignment (Kalantzi 
et al., 2006) 

15 Sertraline 
hydrochloride 4.24 -5.629 (Feng et al., 2008, Ingels, 

2004) 3 1 

http://www.accessdata.fda.gov/drugsatfda
_docs/label/2013/019839s079,020990s038
lbl.pdf (Accessed 7 Jan 2014) 
(Ramirez et al., 2010) 

Compound is stated to be absorbed but very slowly therefore 
this could explain difference between classes; in addition this 
compound can inhibit certain transporters. Literature indicated 
compound (as hydrochloride salt) is slightly soluble. Inhibitor 
of pgp, PAT1(non competitive). Evidence suggests a pgp 
substrate and inhibitor (Nielsen et al., 2013, Wang et al., 
2008) 

16 Paroxetine 6.213 -5.456 
(Wager et al., 2010, Feng 
et al., 2008) 3 1 

http://www.hma.eu/fileadmin/dateien/pipa
r/dk233paroxetinhexal/mod5_par_dk233_
03_04_paroxetin_hexal_20060620.pdf 
(Accessed 13 Jan 2014) 

Strong inhibitor of pgp and SERT, Conflicting literature 
stating whether or not this compound is a pgp substrate 
however efflux ratios collected from the literature seem to 
indicate it is a substrate and also a inhibitor. (Loscher and 
Potschka, 2005, Wager et al., 2010, Maines et al., 2005, 
Kikuchi et al., 2013) 

17 Mirtazapine 0.01 (PI) -4.587 
(Wager et al., 2010) 

2 1/2 
(Ramirez et al., 2010) 
http://www.pfizer.ca/en/our_products/prod
ucts/monograph/320 

Indicated pH dependent solubility, high pH becomes less 
soluble. Could be highly soluble if used label information 
(slightly soluble 1mg/ml) compared with Martindale (PI 
0.01mg/ml) which would be poorly soluble- we took solubility 
for the worse possible scenario therefore 0.01mg/ml was used. 
http://www.mhra.gov.uk/home/groups/l-
unit1/documents/websiteresources/con2032430.pdf (accessed 
15 Jan 2014)(Martindale, 2009) 

18 Isoniazid 122.8 -4.664 (Ranaldi et al., 1992) 1 1/3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

19 Ethosuximide 190 -4.572 (Feng et al., 2008) 1 1/3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

20 Clomipramine 100 (FS) -4.433 (Varma et al., 2005) 1 1/3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

21 Furosemide 0.0062 -6.235 
(Varma et al., 2012, Irvine 
et al., 1999, Rege et al., 
2001) 

4 2/4 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

22 Amoxicillin 4 -6.475 (Sherer et al., 2012, Irvine 
et al., 1999) 3 1/3 

(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

23 Antipyrine 637 -4.312 

(Varma et al., 2012, Varma 
et al., 2005, Gres et al., 
1998, Hilgendorf et al., 
2000, Yamashita et al., 
2000, Garberg et al., 2005, 
Jung et al., 2006) 

1 1/2 
http://www.fda.gov/downloads/Drugs/.../G
uidances/ucm070246.pdf (accessed 19 
December 2013) 

x 

24 Rilpivirine 0.01 (PI) -4.924 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
011/202022Orig1s000Clin
PharmR.pdf 

2 2 (Mathias et al., 2012) x 

25 Cinacalcet <0.001 -5.237 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
004/21-
688.pdf_Sensipar_BioPhar
mr.pdf 

4 4 

http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2004/21-
688.pdf_Sensipar_BioPharmr.pdf 
(Accessed 7 Jan 2014) 

x 

26 Metronidazole 10.3 -4.735 (Varma et al., 2012) 1 1 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

27 Voriconazole 0.1 (VSS) -4.551 (Damle et al., 2011) 2 2 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2003/021630s000_Vfend_Clin
Pharm.pdf (Accessed 19 December 2013) 

x 

28 Ethambutol 649 -6.097 (Varma et al., 2012) 3 3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

29 Pyridostigmine 1000 (VS) -5.991 (Varma et al., 2005) 3 3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

30 Ascorbic_Acid 249 -5.143 (Lu et al., 2010, Luo et al., 
2008) 1 1 

(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

31 Propranolol 360 -4.480 

(Varma et al., 2005, 
Skolnik et al., 2010, Mahar 
Doan et al., 2002) 
 

1 1 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

32 Ranitidine 550 -6.258 (Varma et al., 2012, Rege 
et al., 2001) 3 3 

(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

33 Atenolol 26.5 -6.097 

(Jung et al., 2006, 
Artursson and Karlsson, 
1991, Irvine et al., 1999, 
Varma et al., 2012, Varma 
et al., 2005, Yamashita et 
al., 2000, Hilgendorf et al., 
2000, Stenberg et al., 2001, 
Nordqvist et al., 2004, 
Yazdanian et al., 1998, 
Aungst et al., 2000, Collett 
et al., 1996) 
 

3 3 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

34 Dapsone 0.15 -4.957 (Monteiro et al., 2012) 2 2 
(WHO, 2006 (accessed December 19, 
2013)) 
 

x 

35 Diethylcarbamazi
ne 1000 (VS) -4.881 (Kogan et al., 2008) 1 1 (Lindenberg et al., 2004) x 

36 Pramipexole >10 -4.893 (Wager et al., 2010) 1 1 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2010/022421s000chemr.pdf 
(accessed 19 December 2013) 

x 

37 Theophylline 7.55 -4.505 (Sherer et al., 2012, Varma 
et al., 2012) 1 1 (Lindenberg et al., 2004) x 

38 Glimepiride >0.0736 -4.517 (Frick et al., 1998) 2 2 
(Taupitz et al., 2013, Nagpal et al., 2012) 

x 

39 Perphenazine 0.02828 -4.516 (Varma et al., 2005) 2 2 
(Baboota et al., 2013) 

x 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

40 Enzalutamide 0.002 -4.509 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
012/203415Orig1s000Clin
PharmR.pdf 

2 2 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2012/203415Orig1s000ClinPha
rmR.pdf (Accessed 19Dec2013) 

x 

41 Clonazepam 0.1 -4.507 (Wager et al., 2010) 2 2 
(Subramanian et al., 2012, Nainar et al., 
2012) x 

42 Loratadine 0.01 -4.429 (Varma et al., 2005, Khan 
et al., 2004) 2 2 (Khan et al., 2004, Ramirez et al., 2010). x 

43 Carbamazepine 0.15 -4.341 

(Varma et al., 2012, Varma 
et al., 2005, Skolnik et al., 
2010) 
 

2 2 (Kovacevic et al., 2009) x 

44 Lercanidipine 0.005 -7.301 
US Patent 2006/0073200 
A1, Serial number 
EP1807059 A1  

4 4 (Granero et al., 2010) x 

45 Trospium 500 -6.830 (Langguth et al., 1997) 3 3 (Radwan et al., 2012) x 

46 Crizotinib <0.1 -5.170 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
011/202570Orig1s000Clin
PharmR.pdf 

4 4 

http://www.ema.europa.eu/docs/en_GB/do
cument_library/EPAR__Public_assessmen
t_report/human/002489/WC500134761.pd
f (Accessed 19 December 2013) 

x 

47 Caffeine 21.6 -4.420 

(Feng et al., 2008, Varma 
et al., 2012, Yazdanian et 
al., 1998, Garberg et al., 
2005, Jung et al., 2006, 
Gres et al., 1998, Yee, 
1997, Chong et al., 1996) 
 

1 1 (Wu and Benet, 2005, Smetanova et al., 
2009) x 

48 Memantine 38.6 -4.363 (Beconi et al., 2011) 1 1 

http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2003/21487_namenda_bioeqr_
p1.pdf (Accessed 19 December 2013) 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2005/021627s000_namenda_cli
npharmr.pdf (Accessed 13 January 2014) 

x 
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# Compound 
Name 

Solubility 
(mg/mL) 

Log 
Papp Permeability Reference 

Exp 
BCS 
class 

Lit 
BCS 
class 

Literature BCS References Differences between literature and experimental BCS class 
assignment 

49 Gliclazide 0.025 -4.602 (Smetanova et al., 2009) 2 2 (Benet et al., 2011, Grbic et al., 2011) x 

50 Cimetidine 9.3 -5.911 
(Varma et al., 2012, Varma 
et al., 2005, Skolnik et al., 
2010) 

3 3 (Jantratid et al., 2006) x 

51 Clopidogrel 
bisulfate 0.01 -4.896 (Ki et al., 2008) 2 2 (Ramirez et al., 2010, Lassoued et al., 

2011) x 

52 Nalidixic_Acid 0.1 -3.844 (Ranaldi et al., 1992) 2 2 (Katdare and Chaubal, 2006) x 

53 Glyburide 0.031 -4.614 (Varma et al., 2012, 
Zerrouk et al., 2006) 2 2 (Wei and Lobenberg, 2006) x 

54 Quinine 0.5497 -4.498 (Crivori et al., 2006) 1 1 (WHO, 2006 (accessed December 19, 
2013), Lindenberg et al., 2004) x 

55 Metoprolol 43 -4.677 
(Varma et al., 2012, Varma 
et al., 2005, Skolnik et al., 
2010) 

1 1 (Tsume and Amidon, 2010) x 

56 Ruxolitinib 2.7 -4.668 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
011/202192Orig1s000Clin
PharmR.pdf 

1 1 

http://ec.europa.eu/health/documents/com
munity-
register/2012/20120823123254/anx_1232
54_en.pdf (Accessed 2 January 2014) 

x 

57 Itraconazole 0.004 -4.824 (Varma et al., 2012) 2 2 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2010/022484Orig1s000ClinPha
rmR.pdf (Accessed 2 Jan 2014) 

x 

58 Nimodipine 0.003055 -4.812 (Wager et al., 2010) 2 2 (Papageorgiou et al., 2009) x 

59 Galantamine 
Hydrobromine 31 -4.807 (Wager et al., 2010) 1 1 

http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2001/21-
224_REMINYL_biopharmr.pdf (accessed 
13 Jan 2014) 

x 

60 Norfloxacin 0.19 -5.627 (Skolnik et al., 2010) 4 4 (Breda et al., 2009) x 

61 Phenylbutazone 0.034 -4.998 (Khan et al., 2011) 2 2 (Bhakay et al., 2013) x 

62 Amphotericin_B 0.003 -6.921 (Skolnik et al., 2010) 4 4 (Wu and Benet, 2005, Yanez et al., 2011) x 

63 Milnacipran 100 (FS) -5.051 (Dyck et al., 2008) 1 1 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2009/022256s000_CDTLMemo
.pdf(accessed 19 December 2019) 

x 
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(mg/mL) 
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class 
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BCS 
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Literature BCS References Differences between literature and experimental BCS class 
assignment 

64 Quetiapine 0.4 -4.662 (Wager et al., 2010) 2 2 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2007/022047Orig1s000ChemR.
pdf (Accessed 2 Jan 2014) 

x 

65 Hydrocodone 33 (S) -4.606 (Wager et al., 2010, Feng 
et al., 2008) 1 1 (Hemmingsen et al., 2011) x 

66 Olanzapine 0.01 (PI) -4.726 (Wager et al., 2010) 2 2 (Thakuria and Nangia, 2011, Dixit et al., 
2011) x 

67 Rivaroxaban 0.01 (PI) -5.092 (Gnoth et al., 2011) 2 2 
http://www.accessdata.fda.gov/drugsatfda
_docs/nda/2011/202439Orig1s000ClinPha
rmR.pdf (Accessed 5 Jan 2014) 

x 

68 Citalopram 
Hydrobromide 100 (FS) -4.814 

(Wager et al., 2010, Feng 
et al., 2008) 
http://www.acrossbarriers.e
u/uploads/media/FCT02-I-
0305_BCS.pdf 

1 1 (Ramirez et al., 2010) x 

69 Cefotaxime 100 (FS) -5.807 (Raeissi et al., 1999) 3 3 (Sharma et al., 2005) x 

70 Methylphenidate 100 (FS) -4.577 (Wager et al., 2010, Feng 
et al., 2008) 1 1 

http://www.ema.europa.eu/docs/en_GB/do
cument_library/Referrals_document/Meth
ylphenidate_Hexal/WC500156885.pdf 
(Accessed 13 Jan 2014) 

x 

71 Indomethacin 0.002 -4.377 
(Varma et al., 2012, Varma 
et al., 2005, Sherer et al., 
2012) 

2 2 (ElShaer et al., 2011, Clarysse et al., 
2009) x 

72 Tiagabine 10 (SPS) -4.684 (Wager et al., 2010) 1      

73 Ribavirin 142 -6.745 (Li et al., 2006) 3      

74 Atazanavir sulfate 4.5 -5.921 (Kis et al., 2013) 3      

75 Mexiletine 100 (FS) -3.916 (Catalano et al., 2012) 1      

76 Mefloquine 1.806 -5.027 (Milner et al., 2010) 1      

77 Acamprosate 100 (FS) -5.986 (Zornoza et al., 2004) 3      

78 Selegiline 100 (FS) -4.153 (Varma et al., 2005) 1      

79 Cefamandole 
Nafate 100 (FS) -5.650 (Raeissi et al., 1999) 3      
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80 Doxapram 10 (SPS) -4.346 (Varma et al., 2005) 1      

81 Methysergide 1 (SS) -4.759 (Varma et al., 2005) 1      

82 Dofetilide 0.1 (VSS) -4.804 (Singleton et al., 2007) 2      

83 Zonisamide 0.8 -4.536 (Wager et al., 2010) 1      
84 Ramelteon 0.21 -4.476 (Wager et al., 2010) 1      

85 Trimipramine 0.0048 -4.393 (Varma et al., 2005) 2      

86 Tacrine 0.92 -4.583 (Varma et al., 2005, Kuo et 
al., 2012) 1      

87 Darifenacin 
hydrobromide 6.03 -4.721 (Skerjanec, 2006) 1      

88 Flumazenil 0.1 (VSS) -4.224 (Varma et al., 2005) 2      

89 Piperacillin 100 (FS) -7.488 (Violette et al., 2008) 3      

90 Naltrexone 100 (FS) -4.558 (Varma et al., 2005, 
Kanaan et al., 2009) 1      

91 Cefadroxil 1 (SS) -5.056 (Raeissi et al., 1999) 1      

92 Dolasetron 100 (FS) -4.889 (Dow et al., 1996) 1      

93 Reboxetine 250 -4.914 (Wager et al., 2010) 1      

94 Oseltamivir 
phosphate >500 -5.209 (Oo et al., 2003) 3      

95 Rivastigmine 1000 (VS) -4.564 (Wager et al., 2010) 1      

96 Riluzole 0.1 (VSS) -4.517 (Wager et al., 2010) 2      

97 Zaleplon 0.01 (PI) -4.431 (Wager et al., 2010) 2      

98 UK-294,315  0.74 -4.951 (Harrison et al., 2004) 1      

99 Nalbuphine 
hydrochloride 35.5 -4.854 (Varma et al., 2005) 1      
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100 Prazosin 0.0032 -5.019 
(Di et al., 2011, Skolnik et 
al., 2010, Varma et al., 
2005) 

2      

101 Minocycline 52 -5.310 (Varma et al., 2012) 3      

102 Ropinirole 
Hydrochloride 133 -4.570 (Wager et al., 2010) 1      

103 Cephalothin 0.457 -5.349 (Raeissi et al., 1999) 3      

104 Norethindrone 0.00633 -4.770 (Faassen et al., 2003, Kim 
and Benet, 2004) 2      

105 Propoxyphene 0.0037 -4.660 (Feng et al., 2008) 2      
106 Flurazepam 500 -4.152 (Varma et al., 2005) 1      
107 Cefaclor 10 -5.824 (Balimane et al., 2007) 3      

108 Terbutaline 90 -5.772 (Skolnik et al., 2010, 
Irvine et al., 1999) 3      

109 Maprotiline 0.000833 -4.342 (Varma et al., 2005) 2      

110 Oxycodone 142.9 -4.638 (Wager et al., 2010, 
Hassan et al., 2007) 1      

111 Pheniramine 11.05 -4.754 (Varma et al., 2005, 
Marasanapalle et al., 2009) 1      

112 Cilostazol 0.000101 -4.699 (Young et al., 2006) 2      

113 Methimazole ~200 -4.319 (Skold et al., 2006) 1      

114 Famciclovir 20 -5.148 (Varma et al., 2005) 1      

115 Nitrazepam 0.043 -4.410 (Varma et al., 2005) 2      

116 Hydroxyzine 100 (FS) -5.035 (Feng et al., 2008, Laitinen 
et al., 2003) 1      

117 Oxybutynin 0.8 -4.456 (Callegari et al., 2011) 1      

118 Gemifloxacin 0.35 -4.921 (Jin et al., 2013) 1      
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119 Indacaterol 
maleate 0.1 (VSS) -4.703 

http://www.accessdata.fda.
gov/drugsatfda_docs/nda/2
011/022383Orig1s000Clin
PharmR.pdf (accessed 5 
Jan 2014) 

2      

120 Vildagliptin >50 -5.824 (He et al., 2009) 3      

121 Atomoxetine 27.8 -4.777 (Wager et al., 2010) 1      

122 Fluvoxamine 14.869 -4.499 (Varma et al., 2005) 1      

123 Pergolide 
Mesilate 1 (SS) -5.013 (Wager et al., 2010) 1      

124 Procyclidine 0.001055 -4.153 (Varma et al., 2005) 
 2      

125 Nortriptyline 0.025 -4.472 (Varma et al., 2005) 2      

126 Methyl 
phenobarbital 0.15 -4.387 (Behrens et al., 2001) 2      

127 Diphenoxylate 0.8 -6.699 (Crowe and Wong, 2003) 3      

Exp; experimental BCS class using collected data and thresholds defined in chapter 10; Lit: Literature cited BCS class. FR: freely soluble; PI: practically insoluble; SS: slightly soluble; SPS: 
sparingly soluble; VS: very soluble; VSS: very slightly soluble 
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Figures A4.1 – 3 Scatterplots between the first and second principal 
components of PCA for the solubility and permeability datasets 

 

Figure A4. 1. The scatterplot between the first and second principal components of 
PCA for the solubility dataset 

 

Figure A4. 2. The scatterplot between the first and second principal components of 
PCA for the permeability dataset 
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Figure A4. 3. The scatterplot between the first and second principal components of 
PCA for the permeability dataset using the solubility training set and top 20 
molecular descriptors 
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Table A4. 4. List of 20 compounds plus SMILES in the permeability dataset 
determined to be outside the applicability domain for the solubility training set 

Compound Name Permeability 
dataset SMILES 

PAMAM-NH2 (G1) t 
O=C(NCCN(CCC(NCCN)=O)CCC(NCCN)=O)CCN(CCC(NCC
N(CCC(NCCN)=O)CCC(NCCN)=O)=O)CCN(CCC(NCCN(CCC(
NCCN)=O)CCC(NCCN)=O)=O)CCC(NCCN(CCC(NCCN)=O)C
CC(NCCN)=O)=O 

Ardeparin t 
CC(NC1C(O)C(OC2C(OS(=O)(O)=O)C(O)C(OC3C(NS(=O)(O)=
O)C(OS(=O)(O)=O)C(OC4C(OS(=O)(O)=O)C(O)C(O)C(C(O)=O
)O4)C(CO)O3)C(C(O)=O)O2)C(COS(=O)(O)=O)OC1O)=O 

Phenazopyridine t 
CCC(C1C(NC(CCC(N)=O)C(NC(CC(N)=O)C(NC(C(N2CCCC2
C(NC(C(NCC(N)=O)=O)CCC/N=C(N)\N)=O)=O)CSSCC(N)C(N
C(CC3=CC=C(O)C=C3)C(N1)=O)=O)=O)=O)=O)C 

Vasopressin V 
CCC(C1C(NC(CCC(N)=O)C(NC(CC(N)=O)C(NC(C(N2CCCC2
C(NC(C(NCC(N)=O)=O)CCC/N=C(N)\N)=O)=O)CSSCC(N)C(N
C(CC3=CC=C(O)C=C3)C(N1)=O)=O)=O)=O)=O)C 

Arginine-vasopressin 
(AVP) t 

O=[C@@]([C@@H]1CSSC[C@H](N)C(N[C@H](CC2=CC=C(
O)C=C2)C(N[C@H](CC3=CC=CC=C3)C(N[C@H](CCC(N)=O)
C(N[C@@H](CC(N)=O)C(N1)=O)=O)=O)=O)=O)N4[C@@H]([
C@@](N[C@H](C(NCC(N)=O)=O)CCC/N=C(N)/N)=O)CCC4 

Deamino Arginine 
Vasopressin (dDAVP) t 

O=[C@@]([C@@H]1CSSCCC(N[C@@H](CC2=CC=C(O)C=C
2)C(N[C@H](CC3=CC=CC=C3)C(N[C@@H](CCC(N)=O)C(N[
C@@H](CC(N)=O)C(N1)=O)=O)=O)=O)=O)N4[C@H]([C@@](
N[C@@H](C(NCC(N)=O)=O)CCC/N=C(N)/N)=O)CCC4 

Desmopressin t 
O=C(C1CSSCCC(NC(CC2=CC=C(O)C=C2)C(NC(CC3=CC=CC
=C3)C(NC(CCC(N)=O)C(NC(CC(N)=O)C(N1)=O)=O)=O)=O)=
O)N4C(C(NC(C(NCC(N)=O)=O)CCC/N=C(N)\N)=O)CCC4 

DALDA t CC1=C(C[C@H](N)C(N[C@@H](CCCNC(N)=N)C(NC(CC2=C
C=CC=C2)C(NC(CCCCN)C(N)=O)=O)=O)=O)C(C)=CC(O)=C1 

Human Beta-
casomorphin-7 (Tyr-
Pro-Phe-Val-Glu-Pro-
Ile) 

t 
O=C(NC(C(N[C@@H](C(N1C(C(N[C@H]([C@@H](C)CC)C(O
)=O)=O)CCC1)=O)CCC(O)=O)=O)C(C)C)[C@@H](NC(C2N(C(
[C@H](N)CC3=CC=C(O)C=C3)=O)CCC2)=O)CC4=CC=CC=C4 

7 t 
NC([C@@H](NC([C@H](CC1=CNC2=C1C=CC=C2)NC([C@@
H]3N(C([C@H](CC4=CC=C(O)C=C4)NC(CCC(C[C@H]5[C@H
]([C@H]([C@H](O)C(CO)O5)O)O)=O)=O)=O)CCC3)=O)=O)CC
6=CC=CC=C6)=O 
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Compound Name Permeability 
dataset SMILES 

Rebaudioside A t 

C[C@@]12CCC[C@@](C)(C(OC3[C@@H](O)[C@H](O)[C@
@H](O)[C@H](CO)O3)=O)[C@@]1([H])CC[C@@]45C2CC(O[
C@@H]6[C@@H](O[C@@H]7[C@@H](O)[C@H](O)[C@@H]
(O)[C@H](CO)O7)C(O[C@@H]8[C@@H](O)[C@H](O)[C@@
H](O)[C@H](CO)O8)[C@@H](O)[C@H](CO)O6)[C@H](C(C5)
=C)C4 

Leuprolide t 
CCNC(C1CCCN1C(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(N
C(C2CCC(N2)=O)=O)CC3=CN=CN3)=O)CC4=CNC5=CC=CC=
C54)=O)CO)=O)CC6=CC=C(O)C=C6)=O)CC(C)C)=O)CC(C)C)
=O)CCC/N=C(N)\N)=O)=O 

Buserelin t 

O=C1N[C@H]([C@](N[C@H](C(N[C@@H](CC2=CNC3=C2C=
CC=C3)C(N[C@@H](CO)C(N[C@H](C(N[C@H](COC(C)(C)C)
C(N[C@@H](CC(C)C)C(N[C@@H](CCC/N=C(N)/N)C(N4CCC
[C@H]4[C@@](NCC)=O)=O)=O)=O)=O)CC5=CC=C(O)C=C5)
=O)=O)=O)CC6=CN=CN6)=O)CC1 

Amphotericin_B BCS Val 

C[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@@H](C[C@
H]2[C@@H]([C@H](C[C@](O2)(C[C@H](C[C@H]([C@@H](
CC[C@H](C[C@H](CC(=O)O[C@H]([C@@H]([C@@H]1O)C)
C)O)O)O)O)O)O)O)C(=O)O)O[C@H]3[C@H]([C@H]([C@@H]
([C@H](O3)C)O)N)O 

10 t 
O=C(N[C@@H]1O[C@@H]([C@@H](O)C(O)C1O)C(N)=O)[C
@@H](NC([C@H](CC2=CNC3=C2C=CC=C3)NC([C@@H]4N(
C([C@H](CC5=CC=C(O)C=C5)N)=O)CCC4)=O)=O)CC6=CC=
CC=C6 

12 t 
O=C(NC(C(N)=O)CCCCCC)[C@@H](NC([C@H](CC1=CNC2=
C1C=CC=C2)NC([C@@H]3N(C([C@H](CC4=CC=C(O)C=C4)
NC(CCC(N[C@H]5[C@H]([C@H]([C@H](O)C(CO)O5)O)O)=O
)=O)=O)CCC3)=O)=O)CC6=CC=CC=C6 

11 t 
O=C(N[C@@H]1O[C@@H]([C@@H](O)C(O)C1O)C(N)=O)[C
@@H](NC([C@H](CC2=CNC3=C2C=CC=C3)NC([C@@H]4N(
C([C@H](CC5=CC=C(O)C=C5)NC(C(N)CCCCCC)=O)=O)CCC
4)=O)=O)CC6=CC=CC=C6 

Ginsenoside Rb1 
(Rb1) V 

O[C@H]1[C@H](OC(CC/C=C(C)/C)([C@H]2CC[C@@]3(C)[C
@]4(C)CC[C@@]5([H])C(C)(C)[C@@H](OC6O[C@H](CO)[C
@@H](O)[C@H](O)[C@H]6O[C@H]7O[C@H](CO)[C@@H](
O)[C@H](O)[C@H]7O)CC[C@]5(C)[C@@]4([H])C[C@@H](O
)[C@]23[H])C)O[C@H](COC8O[C@H](CO)[C@@H](O)[C@H]
(O)[C@H]8O)[C@@H](O)[C@@H]1O 

Actinomycin t 

CC1C(NC(C2=C3C(OC4=C(C)C(C(N)=C(C(NC5C(C)OC(C(C(C
)C)N(C)C(CN(C)C([C@@H]6CCCN6C([C@@H](C(C)C)NC5=
O)=O)=O)=O)=O)=O)C4=N3)=O)=C(C)C=C2)=O)C(N[C@H](C
(C)C)C(N7CCC[C@H]7C(N(C)CC(N(C)C(C(C)C)C(O1)=O)=O)
=O)=O)=O 

14 t 
NC([C@@H](NC([C@H](CC1=CNC2=C1C=CC=C2)NC([C@@
H]3N(C([C@H](CC4=C(C)C=C(O)C=C4C)NC(C(N)CCCCCC)=
O)=O)CCC3)=O)=O)CC5=CC=CC=C5)=O 

T: training set, V: validation set, BCS Val: BCS external validation set 
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