180 research outputs found

    Industrial Symbiotic Networks as Coordinated Games

    Get PDF
    We present an approach for implementing a specific form of collaborative industrial practices-called Industrial Symbiotic Networks (ISNs)-as MC-Net cooperative games and address the so called ISN implementation problem. This is, the characteristics of ISNs may lead to inapplicability of fair and stable benefit allocation methods even if the collaboration is a collectively desired one. Inspired by realistic ISN scenarios and the literature on normative multi-agent systems, we consider regulations and normative socioeconomic policies as two elements that in combination with ISN games resolve the situation and result in the concept of coordinated ISNs.Comment: 3 pages, Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018

    Implementation of normative practical reasoning with durative actions

    Get PDF

    Model checking degrees of belief in a system of agents

    Get PDF
    In this paper we present a unified framework to model and verify degrees of belief in a system of agents. In particular, we describe an extension of the temporal-epistemic logic CTLK and we introduce a semantics based on interpreted systems for this extension. In this way, degrees of beliefs do not need to be provided externally, but can be derived automatically from the possible executions of the system,thereby providing a computationally grounded formalism.We leverage the semantics to (a) construct a model checking algorithm, (b) investigate its complexity, (c) provide a Java implementation of the model checking algorithm, and(d) evaluate our approach using the standard benchmark of the dining cryptographers. Finally, we provide a detailed case study: using our framework and our implementation,we assess and verify the situational awareness of the pilot of Air France 447 flying in off-nominal conditions

    Model checking degrees of belief in a system of agents

    Get PDF
    In this paper we present a unified framework to model and verify degrees of belief in a system of agents. In particular, we describe an extension of the temporal-epistemic logic CTLK and we introduce a semantics based on interpreted systems for this extension. In this way, degrees of beliefs do not need to be provided externally, but can be derived automatically from the possible executions of the system,thereby providing a computationally grounded formalism.We leverage the semantics to (a) construct a model checking algorithm, (b) investigate its complexity, (c) provide a Java implementation of the model checking algorithm, and(d) evaluate our approach using the standard benchmark of the dining cryptographers. Finally, we provide a detailed case study: using our framework and our implementation,we assess and verify the situational awareness of the pilot of Air France 447 flying in off-nominal conditions

    Fostering Cooperation in Structured Populations Through Local and Global Interference Strategies

    Get PDF
    We study the situation of an exogenous decision-maker aiming to encourage a population of autonomous, self-regarding agents to follow a desired behaviour at a minimal cost. The primary goal is therefore to reach an efficient trade-off between pushing the agents to achieve the desired configuration while minimising the total investment. To this end, we test several interference paradigms resorting to simulations of agents facing a cooperative dilemma in a spatial arrangement. We systematically analyse and compare interference strategies rewarding local or global behavioural patterns. Our results show that taking into account the neighbourhood's local properties, such as its level of cooperativeness, can lead to a significant improvement regarding cost efficiency while guaranteeing high levels of cooperation. As such, we argue that local interference strategies are more efficient than global ones in fostering cooperation in a population of autonomous agents.</p
    corecore