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Abstract. Autonomous agents operating in a dynamic environment need con-
stantly to reason about actions in pursuit of their goals, while taking into con-
sideration possible norms imposed on those actions. Normative practical reason-
ing supports agents decision making about what is best for an agent to do in a
given situation. What makes practical reasoning challenging is the conflict be-
tween goals that the agent is pursuing and the norms that the agent is trying to
uphold. We offer a formal model that allows the agents to plan for conflicting
goals and norms in presence of durative actions that can be executed concur-
rently. We compare plans based on decision-theoretic notions (i.e. utility) such
that the utility gain of goals and utility loss of norm violations are the basis of
this comparison. The set of optimal plans consists of plans that maximise the
overall utility, each of which can be chosen by the agent to execute. The formal
model is implemented computationally using answer set programming, which in
turns permits the statement of the problem in terms of a logic program that can be
queried for solutions with specific properties. We demonstrate how a normative
practical reasoning problem can be mapped into an answer set program such that
the optimal plans of the former can be obtained as the answer sets of the latter.

1 Introduction

Norms define an ideal behaviour for an autonomous agent in an open environment.
However, having individual goals to pursue, self-interested agents might not want or be
able always to adhere to the norms imposed on them. Depending on the way they are
given a computational interpretation, norms can be regarded as soft or hard constraints.
When modelled as hard constrains, norms are regarded as regimented, in which case the
agent has no choice but blindly to follow the norms [12]. Although regimentation guar-
antees norm compliance, it greatly restricts agent autonomy. Conversely, enforcement
approaches in which norms are modelled as soft constraints, leave the choice of obeying
or disobeying the norms to the agent. However, in order to encourage norm compliance,
there are consequences introduced in terms of punishment in case the agent violates the
norm [25, 29]. Moreover, in some enforcement approaches [1] the agent is rewarded for
complying with a norm. The enforcement approaches can be broadly divided in two cat-
egories. In the utility-based approaches [1, 2, 26] there is a utility gain/loss associated
with respecting norm or not, whereas in the pressured norm compliance approaches



[25], violating a norm or not is determined by the interference of the norm in satisfying
or hindering the agent goals. Gaining better utility or not losing utility is the basis of
normative reasoning in the former category, while in the latter it is the potential conflicts
between norms and agent goals. If there is no such conflict, the agent only complies with
a norm if there are goals that are hindered by punishment of violation, and violates the
norms otherwise. On the other hand, if there is a conflict, the agent does not comply
unless the goals hindered by punishment are more important than goals facilitated by
compliance.

Existing work on normative practical reasoning using enforcement have consid-
ered different phases of the practical reasoning process, such as plan generation and
plan selection. In [27] norms are taken into account in the agent’s plan generation
phase, whereas [26] takes norms into consideration when deciding how to execute a
pre-generated plan with respect to the norms triggered by that plan. There is also a
substantial body of work on integration of norms into the BDI architecture [30]. The
BOID architecture [7] extends BDI with the concept of obligation and uses agent types
such as social, selfish, etc. to handle the conflicts between beliefs, desires, intentions
and obligations. Another extended BDI architecture is proposed in [9], which focusses
on norm recognition and considering them in agent decision making processes. More
recently, [2] proposed a novel way of utilising permission norms in a BDI agent when
the agent does not have complete information about the environment it operates in.

In this paper we define an approach for practical reasoning that considers norms in
both plan generation and plan selection. We extend the current work on normative plan
generation such that the agent attempts to satisfy a set of potentially conflicting goals
in the presence of norms, as opposed to conventional planning problems that gener-
ate plans for a single goal [26, 27]. Additionally, since in reality the actions are often
non-atomic, the model allows for planning with durative actions that can be executed
concurrently. Durative actions reflects the real time that a machine takes to execute
certain actions, which is also known as “real-time duration” of actions [6]. More impor-
tantly, another contribution of this paper is introducing an enforcement approach that is
a combination of utility-based and pressure-based compliance methods mentioned ear-
lier. In order to do so, we first extend the notion of conflict defined in [25] by allowing
conflict between norms as well as between norms and goals. We then define a penalty
cost for norm violation, regardless of the existence of conflict. Whenever a norm is trig-
gered, both outcomes of norm compliance and violation and their impacts on hindering
or facilitating other goals and norms, are generated and compared according to their
utility. Moreover, in those cases that there are no conflicts and no goals or norms hin-
dered by the punishment of violation: loss of utility drives the agent toward compliance.
Regarding plan selection, generated plans are compared based on the utility of the goals
satisfied and cost of norms violated in the entire plan. Both plan generation and plan
selection mechanisms proposed here are implemented using Answer Set Programming
(ASP) [15].

ASP is a declarative programming paradigm using logic programs under the answer
set semantics. In this paradigm the user provides a description of a problem and ASP
works out how to solve the problem by returning answer sets corresponding to prob-
lem solutions. The existence of efficient solvers to generate the answers to the provided



problems has increased the application of ASP in different domains of autonomous
agents and multi-agent systems such as planning [24] and normative reasoning [8, 28].
Several action languages (e.g. event calculus [21],A [14] and its descendants (e.g. B, C
[14]), Temporal Action Logics (TAL) [11]) have been implemented in ASP [22, 23],
which indicates that ASP is an appropriate tool for reasoning about actions. We there-
fore, propose an implementation of STRIPS [13] as an action language in ASP.

This paper is organised as follows. The formal model and its semantics are proposed
in Section 2, followed by the computational implementation of the model in Section 3.
Section 4 provides an example that illustrates the main features of the model in action.
Finally, after the discussion of related work in Section 5, we conclude in Section 6.

2 A Model for Normative Practical Reasoning

This section introduces a formal model and its semantics for normative practical rea-
soning in the presence of durative actions. The foundation of this model is classical
planning in which an agent is presented with a set of actions and a goal. Any sequence
of actions that satisfies the goal is a solution to the planning problem. In section 2.1 we
extend the classical planning problem by substituting a single goal with a set of poten-
tially inconsistent goals G and a set of norms N . A solution for such a problem is any
sequence of actions that satisfies at least one goal. The agent has the choice of violating
or complying with triggered norms, while satisfying its goals.

2.1 Syntax

A normative planning system is a tuple P = (FL,∆,A,G,N) where FL is a set of
fluents, ∆ is the initial state, A is a set of durative STRIPS-like [13] actions, G denotes
the set of agent goals and N denotes a set of norms imposed on the agent that define
what an agent is obliged or forbidden to do under certain conditions. We now describe
each of these in more details.

Fluents: FL is a set of domain fluents that accounts for the description of the domain
the agent operates in. A literal l is a fluent or its negation i.e. l = fl or l = ¬fl for some
fl ∈ FL. For a set of literals L, we define L+ = {fl|fl ∈ L} and L− = {fl|¬fl ∈ L}
to denote the set of positive and negative fluents in L respectively. L is well-defined if
there exists no fluent fl ∈ FL such that fl ∈ L and ¬fl ∈ L, i.e. if L+ ∩ L− = ∅.

The semantics of the model are defined over a set of states Σ. A state s ⊆ FL is
determined by set of fluents that hold true at a given time, while the other fluents (those
that are not present) are considered to be false. A state s ∈ Σ satisfies fluent fl ∈ FL,
denoted s |= fl, if fl ∈ s. It satisfies its negation ¬fl if fl 6∈ s. This notation can
be extended to a set of literals as follows, set X is satisfied in state s, s |= X , when
∀x ∈ X · s |= x.

Initial State: The set of fluents that hold at the initial state is denoted by ∆ ⊆ FL.



Actions: A is a set of durative STRIPS-like actions, that is actions with preconditions
and postconditions that take a non-zero duration of time to have their effects in terms
of their postconditions. A durative action a = 〈pr, ps, d〉 is composed of well-defined
sets of literals pr(a), ps(a) ⊆ FL to represents a’s preconditions and postconditions
and a positive number d(a) ∈ N for its duration. Postconditions are further divided
into a set of add postconditions ps(a)+ and a set of delete postconditions ps(a)−. An
action a can be executed in a state s if its preconditions hold in s (i.e. s |= pr(a). The
postconditions of a durative action are applied in the state s at which the action ends
(i.e. s |= ps(a)+ and s 6|= ps(a)−) .

The model does not allow parallel actions, since it is not realistic to assume that a
single agent initiates several actions at the exact same point in time. Concurrency how-
ever, is allowed unless there is a concurrency conflict between actions, which prevents
them from being executed in an overlapping period of time. The definition of concur-
rency conflict is adopted from [4] as follows: two actions a1 and a2 are in a concur-
rency conflict, if the preconditions or postconditions of a1 contradict the preconditions
or postconditions of a2.

Goals: G denotes a set of (possibly inconsistent) goals. Goals identify the state of
affairs that an agent wants to satisfy. Each goal g = 〈r, v〉 is defined as a set of well-
defined literals r, that are requirements that should hold in order to satisfy the goal and
a positive integer v ∈ N that shows the value or utility gain of the agent upon satisfying
this goal. Goal g’s requirements and value are denoted r(g) and v(g), respectively. Goal
g is satisfied in the state s when s |= r(g).

Norms: N denotes a set of event-based norms to which the agent is subject. Each norm
is a tuple of the form n = 〈d o, a1, a2, dl, c〉, where

– d o ∈ {o, f} is the deontic operator determining the type of norm, which can be an
obligation or a prohibition. The agent is assumed to be operating in a permissible
society, hence what is not prohibited is permitted.

– a1 ∈ A is the action that counts as the norm activation condition.
– a2 ∈ A is the action that is the subject of the obligation or prohibition.
– dl ∈ N is the norm deadline relative to the activation condition, which is the com-

pletion of execution of a1.
– c ∈ N is the penalty cost that will be applied if the norm is violated.

An obligation expresses that taking action a1 obliges the agent to take action a2 within
dl time units of the end of execution of a1. Such an obligation is complied with if the
agent starts executing a2 before the deadline and is violated otherwise. A prohibition
expresses that taking action a1 prohibits the agent from taking action a2 within dl time
units of the end of execution of a1. Such a prohibition is complied with if the agent does
not start executing a2 before the deadline and is violated otherwise.

2.2 Semantics

Let P = (FL,∆,A,G,N) be a normative planning problem. A plan is represented by
a sequence of actions taken at certain times, denoted as: π = 〈(a0, t0), · · · , (an, tn)〉.
(ai, ti) means that action ai is executed at time ti ∈ Z+ s.t. ∀i < j we have ti < tj .



The total duration of a plan,Makespan(π), is calculated by the relation:Makespan(π)
= max(ti + d(ai)). The evolution of a sequence of actions for a given starting state
s0 = ∆ is a sequence of states 〈s0, · · · sm〉 for every discrete time interval from t0 to
m, where m = Makespan(π). The transition relation between two states is defined
by Equation 1 below. If an action aj ends at time ti, state si results from removing all
delete postconditions and adding all add postconditions of action aj to state si−1. If
there is no action ending at si, it remains the same as si−1.

∀i > 0 : si =

{
(si−1 \ ps(aj)−) ∪ ps(aj)+ i = tj + d(aj)

si−1 otherwise
(1)

A sequence of actions π satisfies a goal, π |= g, if there is at least one state si in the
sequence of states caused by the sequence of actions such that si |= g. An obligation
n1 = 〈o, ai, aj , dl, c〉 is complied with in plan π (i.e. π |= n1), if the action that is
the norm activation condition has occurred ((ai, ti) ∈ π), and the action that is the
subject of the obligation occurs ((aj , tj) ∈ π) between when the condition holds and
when the deadline expires (tj ∈ [ti + d(ai), dl+ ti) + d(ai)). If ai has occurred but aj
does not occur at all or occurs in a period other than the one specified, the obligation
is violated (i.e. π 6|= n1). In the case of prohibition n2 = 〈f, ai, aj , dl, c〉, compliance
happens if the action that is the norm activation condition has occurred ((ai, ti) ∈ π)
and the action that is the subject of the prohibition does not occur in the period between
when the condition holds and when the deadline expires ( 6 ∃(aj , tj) ∈ π s.t. tj ∈ [ti +
d(ai), dl + ti + d(ai)). If ai has occurred and aj occurs in the specified period, the
prohibition is violated (i.e. π 6|= n2). The set of satisfied goals, norms complied with
and norms violated in plan π are denoted as Gπ , Ncmp(π) and Nvol(π), respectively.

In classical planning, any sequence of actions that satisfies the goal is a solution to
the planning problem. Extending a planning problem to cater for conflicting goals and
norms requires considering different types of conflicts as follows:

Conflicting Actions Actions ai and aj have a concurrency conflict iff the precon-
ditions or postconditions of ai contradict the preconditions or postconditions of aj .

cf action = {(ai, aj) s.t. ∃r ∈ pr(ai) ∪ ps(ai),¬r ∈ pr(aj) ∪ ps(aj)} (2)

Conflicting Goals Goal gi and gj are in conflict iff satisfying one requires bringing
about a state of affairs that is in conflict with the state of affairs required for satisfying
the other.

cf goal = {(gi, gj) s.t. ∃r ∈ gi,¬r ∈ gj} (3)

Conflicting Norms Obligations n1 = 〈o, a1, a2, dl, c〉 and n2 = 〈o, b1, b2, dl′, c′〉
are in conflict in the context of plan π iff: (i) their activation conditions hold, (ii) the
obliged actions a2 and b2 have a concurrency conflict and (iii) a2 is in progress during
the entire period over which the agent is obliged to take action b2. The set of conflicting



obligations is formulated as:

cfπoblobl = {(n1, n2) s.t. (a1, ta1), (b1, tb1) ∈ π; (a2, b2) ∈ cf action;

ta2 ∈ [ta1 + d(a1), ta1 + d(a1) + dl);

[tb1 + d(b1), tb1 + d(b1) + dl′) ⊆ [ta2 , ta2 + d(a2))} (4)

On the other hand, an obligation n1 = 〈o, a1, a2, dl, c〉 and a prohibition n2 =
〈f, b1, a2, dl′, c′〉 are in conflict in the context of plan π iff: (i) their activation conditions
hold and (ii) n2 forbids the agent to take action a2 during the entire period over which
n1 obliges the agent to take a2. The set cf πoblpro denotes the set of conflicting obligations
and prohibitions as below:

cf πoblpro = {(n1, n2) s.t. (a1, ta1), (b2, tb2) ∈ π;
[ta1 + d(a1), ta1 + d(a1) + dl) ⊆

[tb2 + d(b2), tb2 + d(b2) + dl′)} (5)

The entire set of conflicting goals and norms is defined as:

cf πnorm = cf πoblobl ∪ cf πoblpro (6)

Conflicting Goals and Norms An obligation n = 〈o, a1, a2, dl, c〉 and a goal g
are in conflict, if taking action a2 that is the subject of the obligation, brings about
postconditions that are in conflict with the requirements of goal g. The set of conflicting
goals and obligations is formulated as:

cf goalobl = {(g, n) s.t. ∃r ∈ r(g),¬r ∈ ps(a2)} (7)

In addition, a prohibition n = 〈f, a1, a2, dl, c′〉 and a goal g are in conflict, if the
postconditions of a2 contribute to satisfying g, but taking action a2 is prohibited by
norm n.

cf goalpro = {(g, n) s.t. ∃r ∈ r(g), r ∈ ps(a2)} (8)

The entire set of conflicting goals and norms is defined as:

cf goalnorm = cf goalobl ∪ cf goalpro (9)

A sequence of actions π is a plan for P , if all the fluents in ∆ hold at time t0
and for each i, the preconditions of action ai hold at time ti, as well as through the
execution of ai, and a non-empty subset of goals is satisfied in the path from initial state
s0 to the state holding at time tm, where m = Makespan(π). Furthermore, extending
the conventional planning problem by multiple potentially conflicting goals and norms
requires defining extra conditions that makes a plan a valid plan and a solution for P .
Plan π is a valid plan for P iff:
1. all the fluents and only those fluents in ∆ hold in the initial state: s0 = ∆
2. the preconditions of action a1 holds at time ta1 and throughout the execution of a1:

∀k ∈ [ta1 , ta1 + d(a1)), sk |= pr(a1)



3. the set of goals satisfied by plan π is a non-empty consistent subset of goals:

Gπ ⊆ G and Gπ 6= ∅ and 6 ∃gi, gj ∈ Gπ s.t. (gi, gj) ∈ cf goal

4. there is no concurrency conflict between actions that are executed concurrently:

6 ∃(ai, tai), (aj , taj ) ∈ π s.t. tai ≤ taj < tai + d(ai), (ai, aj) ∈ cf action

5. there is no conflict between norms complied with.

6 ∃ni, nj ∈ Ncmp(π) s.t. (ni, nj) ∈ cf πnorm

6. there is no conflict between goals satisfied and norms complied with:

6 ∃g ∈ Gπ and n ∈ Ncmp(π) s.t. (g, n) ∈ cf goalnorm

Let satisfied(π) and violated(π) be the set of satisfied goals and violated norms
in plan π. The utility of a plan π is defined by Equation 10 where Value is a function
that returns the value of goals being satisfied and Cost returns the penalty cost of norms
being violated in that plan. The set of optimal plans,Opt, are those plans that maximise
the utility.

Utility(π) =
∑

gi∈satisfied(π)

V alue(gi)−
∑

nj∈violated(π)

Cost(nj) (10)

3 An Answer Set Programming Implementation

Encoding a practical reasoning problem as a declarative specification makes it possible
to reason computationally about agent actions, goals and norms. This enables an agent
to keep track of actions taken, goals satisfied and norms complied with or violated at
each state of its evolution. More importantly, it provides the possibility of querying
traces that fulfil certain requirements such as satisfying some specific goals. Conse-
quently, instead of generating all possible traces and looking for those ones that satisfy
at least one goal, only those ones that do satisfy at least one goal are generated.

ASP programs consist of a finite set of rules formed from atoms. Atoms are the
basic components of the language that can be assigned a truth value (true or false).
Literals are atoms or negated atoms. Atoms are negated using classical negation (¬) or
negation as failure (not). The former states that something is false, whereas the latter
states something is assumed false since it cannot be proven true. The general rule syntax
in ASP is: l0 ← l1, · · · , lm, not lm+1, · · · , not ln., in which li is an atom (e.g. a) or
its negation (e.g. ¬a). l0 is the rule head and l1, · · · , lm, not lm+1, · · · , not ln are the
body of the rule. The above rule is read as: l0 is known/true, if l1, · · · , lm are known/true
and none of lm+1, ln are known. If a rule body is empty, that rule is called a fact and
if the head is empty, it is called a constraint indicating that none of the answers should
satisfy the body.



3.1 Translating the Model into ASP

In this section, we demonstrate how a planning problem P = (FL,∆,A,G,N) can
be mapped into an answer set program such that there is a one to one correspon-
dence between solutions for the planning problem and the answers of the program. The
mapping uses the following atoms: state(s) for denoting the states; time(t, s)
to indicate the time at state s; holdsat(x, s) to express fluent x is true in state s;
occurred(a,s) to encode action a occurs at state s. There are additional atoms
used in Figures 2–6, that will be discussed in their respective sections. Please note that
the variables begin with capital letters in ASP.

Time and Initial State (Figure 1) The facts produced by Line 1 provide the program
with all available states, while Line 2 defines the order of states. The maximum number
of states, q, results from sum of duration of all actions: q =

∑n
i=1 d(ai). The final state

is therefore stated as sq in Line 3. Line 4 illustrates the initial time that increases by one
unit from one state to the state next to it (Line 5). Finally, Line 6 encodes the fluents
that hold at initial state s0.

∀ k ∈ [0, q]

1 state(sk).

∀ k ∈ [0, q − 1]

2 next(sk, s(k + 1)).

3 final(sq).

4 time(t, s0).
5 time(T+1,S2) :- time(T,S1), next(S1,S2), state(S1;S2).

∀ x ∈ ∆

6 holdsat(x, s0).

Fig. 1. Rules for Time Component (Lines 1–5) and Initial State (Line 6)

Actions (Figure 2) Each durative action is encoded as action(a, d) (Line 7), where
a is the name of the action and d is its duration. Recalling from Section 2, the precondi-
tions pr(a) of action a hold in state s if s |= pr(a). This is expressed in Line 8, where
pr(a)+ and pr(a)− are positive and negative literals in pr(a). In order to make the
coding more readable we introduce the shorthand EX(X,S) where X is a set of fluents
that should hold at state S. For all x ∈ X, EX(X,S) is translated into holdsat(x,S)
and for all ¬x ∈ X, EX(¬X,S) is translated into not EX(x,S) using negation as
failure. The agent has the choice to take any of its actions in any state (Line 9), how-
ever, the preconditions of a durative action should be preserved when it is in progress.



∀a ∈ A s.t. d(a)

7 action(a, d).
8 pre(a,S) :- EX(pr(a)+,S), not EX(pr(a)−,S), state(S).

9 {occurred(A,S)} :- action(A,D), state(S).
10 inprog(A,S2) :- occurred(A,S1), action(A,D), time(T1,S1),
11 time(T2,S2), state(S1;S2), T1<=T2, T2<T1+D.
12 :- inprog(Act,S), action(Act,D), state(S), not pre(Act,S).
13 :- inprog(Act,S), action(Act,D), state(S), final(S).
14 :- occurred(A1,S), occurred(A2,S), A1!=A2,
15 action(A1,D1), action(A2,D2), state(S).

ps(a)+ = X ⇔ ∀x ∈ X·

16 holdsat(x,S2) :- occurred(a,S1), action(a, d), state(S1;S2),
17 time(T1,S1), time(T2,S2), T2=T1+d.

ps(a)− = X ⇔ ∀x ∈ X·

18 terminated(x,S2) :- occurred(a,S1), action(a, d), state(S1;S2),
19 time(T1,S1), time(T2,S2), T2=T1+d-1.

20 holdsat(X,S2) :- holdsat(X,S1), not terminated(X,S1),
21 next(S1,S2),state(S1;S2).

Fig. 2. Rules for Translating Actions

A durative action is in progress, inprog(A,S), from the state in which it begins to
the state in which it ends at (Line 10 to 11). Then, Line 12 rules out the execution of
an action, when the preconditions of the action do not hold during its execution. In ad-
dition there should not be any action in progress in the final state (Line 13). Another
assumption made in Section 2, is the prevention of parallel actions, which prevents the
agent from starting two actions at the same time (Line 14 to 15). Once an action starts in
one state, the result of its execution is reflected in the state where the action ends. This
is expressed through (i) Line 16 to 17 that allow the add postconditions of the action
to hold when the action ends, and (ii) Line 18 to 19 that allow the termination of the
delete postconditions. The termination happens in the state before the end state of the
action. The reason for this is that all the fluents that hold in a state, hold in the next state
unless they are terminated (Line 20 to 21). Since the delete postconditions of an action
are terminated in the state before the end state of the action, they will not hold in the
following state, in which the action ends (i.e. they are deleted from the state).

Goals (Figure 3) Line 22 encodes goal g with value of v. From Section 2, we have
goal g is satisfied in state s if s |= r(g). This is expressed in Line 23, where r(g)+ and
r(g)− are the positive and negative literals in r(g).

Norms (Figure 4) The conditional event-based norms that are the focus of this re-
search are discussed in the previous section. Line 24 encodes norm n with penalty



∀g ∈ G

22 goal(g, v).
23 satisfied(g,S) :- EX(r(g)+,S), not EX(r(g)−,S), state(S).

Fig. 3. Rules for Translating Goals

cost of c upon violation. Lines 25–39 deal with obligations and prohibitions of form:
n = 〈d o, a1, a2, dl, c〉. In order to implement the concepts of norm compliance and
violation described in Section 2.2, we introduce normative fluents o(n, a2, dl′) and
f(n, a2, dl

′) that first hold in the state in which action a1’s execution ends. An obliga-
tion fluent o(n, a2, dl′) denotes that action a2 should be brought about before deadline
dl′or be subject to violation, whereas prohibition fluent f(n, a2, dl′) denotes that action
a2 should not be brought about before deadline dl′ or be subject to violation. If a1 with
duration d1 occurs at state S, where time is T , the agent has dl units time starting from
end of action a1 (T2=T1+d1) to comply with the norm imposed on it. Lines 25–26 and
32–33 indicate the establishment of obligation and prohibition fluents.

In terms of compliance and violation, the occurrence of an obliged action before the
deadline expires, counts as compliance (Line 27 to 28) and the absence of such an occur-
rence before the deadline is regarded as violation (Line 30). Atoms cmp(o|f(n, a,DL)
,S) and vol(o|f(n, a,DL),S) are used to indicate compliance or violation of norm
n in state S. In both cases of compliance and violation, the norm is terminated (Lines 29
and 31). On the other hand, a prohibition is complied with if the forbidden action does
not happen before the deadline (Line 34 to 35) and is violated if it does happen before
the deadline (Line 37 to 38). As with obligations, after being complied with or violated,
the prohibitions are terminated (rules 36 and 39).

3.2 Mapping of Answer Sets to Plans

In Section 2.2 we defined the criteria for a sequence of actions to be identified as a
valid plan and solution for P = 〈FL,∆,A,G,N〉. Figure 5 provides the coding for
the criteria. The rule in Line 41 is responsible for constraining answer sets to those that
fulfil at least one goal by excluding answers that do not satisfy any goals. The input for
this rule is provided in Line 40. Line 42 prevents satisfying two conflicting goals, hence
guaranteeing the consistency of satisfied goals in a plan. Preventing the concurrency
of conflicting actions, is implemented using Line 43–44, by expressing that such two
actions cannot be in progress together. Lines 45 and 46 provides the input for Lines 47
and 48, which exclude the possibility of satisfying a goal and complying with a norm
that are conflicting. Note that the implementation prevents complying with conflicting
norms automatically: (i) since it is not possible to execute two conflicting actions con-
currently, if two obligations would require that, one of them has to be violated, while
(ii) regarding conflicting obligation and prohibition, by definition, taking the obliged
action by the agent and hence complying with the obligation causes the violation of the
other norm that enforces the prohibition of taking the very same action, and vice versa.



∀n = 〈o|f, a1, a2, dl, c〉 ∈ N

24 norm(n, c).

25 holdsat(o(n, a2, dl+T2),S2) :- occurred(a1,S1), action(a1, d1),
26 time(T1,S1), T2=T1+d1, time(T2,S2), state(S1;S2).
27 cmp(o(n, a,DL),S) :- holdsat(o(n, a,DL),S),occurred(a,S),action(a, d)
28 state(S), time(T,S), T!=DL.
29 terminated(o(n, a,DL),S) :- cmp(o(n, a,DL),S), state(S).
30 vol(o(n, a,DL),S) :- holdsat(o(n, a,DL),S), time(DL,S), state(S).
31 terminated(o(n, a,DL),S) :- vol(o(n, a,DL),S), state(S).
32 holdsat(f(n, a2, dl+T2),S2) :- occurred(a1,S), action(a1, d1),
33 time(T1,S1), T2=T1+d1, time(T2,S2), state(S1;S2).
34 cmp(f(n, a,DL),S) :- holdsat(f(n, a,DL),S), action(a, d),
35 time(DL,S), state(S).
36 terminated(f(n, a,DL),S) :- cmp(f(n, a,DL),S), state(S).
37 vol(f(n, a,DL),S) :- holdsat(f(n, a,DL),S), occurred(a,S),
38 state(S), time(T,S), T!=DL.
39 terminated(f(n, a,DL),S) :- vol(f(n, a,DL),S), state(S).

Fig. 4. Rules for Translating Norms

Theorem 1. Let program Πbase consist of Lines 7 – 48. Given a planning problem
P = (FL, ∆,A,G,N), for every answer set Ans of Πbase the set of atoms of the form
occurred(a, s)1 in Ans encodes a solution to the planning problem P . Conversely,
each solution to the problem P corresponds to a single answer set of Πbase.

Proof (sketch). The proof can be obtained through structural induction. Line 9 gener-
ates all sequences of actions. Line 6 ensures that all fluents in ∆ hold at t0. Line 12
guarantees that the precondition of an action hold all through its execution. Line 41
indicates that a non-empty subset of goals has to be satisfied in a plan, while Line 42
ensures the consistency of the goals satisfied. Preventing the concurrency conflict is pro-
vided in Lines 43–44. Finally, Lines 47–48 eliminate the possibility of conflict between
goals satisfied and norms complied with. This implies that the sequence of actions that
is part of the answer set satisfies the conditions to be a solution to the encoded plan-
ning program. Conversely, each solution satisfies all the program’s rules in a minimal
fashion.

3.3 Optimised Plans

In order to find optimal plans, in Figure 6 we show how to encode the utility function
defined by Equation 10. The sum of values of goals satisfied in a plan is calculated in

1 In the formal model a plan/solution π for problem P is defined as a set of action, time
pairs (e.g. (ai, ti)), whereas in the answer sets a plan is expressed by action, state pairs (e.g.
occurred(a, s)). Action, state pairs can easily be mapped to action, time pairs by replacing
the state with the time that holds in that state.



40 satisfied(g) :- satisfied(g,S), state(S).
41 :- not satisfied(g1), ... , not satisfied(gm).

∀ (g1, g2) ∈ cf goal

42 :- satisfied(g1),satisfied(g2).

∀ (a1, a2) ∈ cf action

43 :- inprog(a1,S), inprog(a2,S), action(a1, d1),
44 action(a2, d2), state(S).

45 complied(n) :- cmp(o(n, a,DL),S), state(S).
46 complied(n) :- cmp(f(n, a,DL),S), state(S).

∀(g, n1) ∈ cf goalobl

47 :- satisfied(g), complied(n1).

∀(g, n2) ∈ cf goalpro

48 :- satisfied(g), complied(n2).

Fig. 5. Solutions for Problem P

49 value(TV) :- TV = #sum [satisfied(G) : goal(G,V) = V].
50 violated(n) :- vol(o(n, a,DL), state(S).
51 violated(n) :- vol(f(n, a,DL),S), state(S).
52 cost(TC) :- TC = #sum [violated(N) : norm(N,C) = C].
53 utility(TV-TC) :- value(TV), cost(TC).
54 #maximize [Utility(U)=U].

Fig. 6. Optimised Solutions for P

Line 49. The sum of costs of norms violated in a plan is calculated in Line 49, by first
providing the input for this line in Lines 50 and 51. Having calculated value(TV)
and cost(TC), the utility of a plan is denoted in Line 53, which is subject to the
optimisation statement in the final line.

Theorem 2. Let program Π = Πbase ∪ Π∗, where Π∗ consists of Lines 49 – 54.
Given a planning problem P = (FL,∆,A,G,N), for every answer set Ans of Π the
set of atoms of the form occurred(a, s) in Ans encodes an optimal solution to the
planning problem P . Conversely, each optimal solution for the problem P corresponds
to a single answer set of Π .

Proof (Sketch). Theorem 1 ensures that all solutions are represented by answer sets
and vice versa. The optimality of solutions is guaranteed in this program. Line 54 en-
sures optimal solutions that maximise utility, which is in turn defined in Line 53 as the
difference between the cost of violation (Line 52) and goal values (Line 49).



4 Illustrative Example

In this section, we provide a brief example that highlights the most important features
of the proposed model. Let us consider an agent with the durative actions presented in
Table 1. The agent has three goals presented with their requirements and two different
set of values in Table 2. The first goal is to get some certificate that requires the agent
to take some test, but in order to be able to attend the test, the agent first needs to pay
the fee for the test. The second goal is to make a submission of some marking that
needs to be done in the office and the last goal is to go on strike, for which the agent
needs to be a member of union, not to go to office nor to attend any meeting on behalf
of the company. In addition, one of the agent’s action, comp funding, has a normative
consequence captured in a norm that states that if company funds are used to pay the
fee for the test, the agent is obliged to attend a meeting on behalf of the company within
1 time unit of end of action comp funding, which results in the payment of the fee
for the test. If the agent uses the funding, but does not attend the meeting before the
deadline, it is entitled to the penalty cost of 4 units.

n = 〈o, comp funding, attend meeting, 1, 4〉
Table 3 shows the corresponding ASP code for this example based on the code in Sec-
tion 3. For spacial reasons, only those rules that need instantiation are provided. For ease
of reference, rules instantiated in each part of the code are titled by their corresponding
figures in Section 3. Moreover, only one action, drive, and one goal, certificate, are
encoded. The rest of the actions and goals can be coded in the same way.

Following Theorem 2, we obtain a one-to-one correspondence between the answer
sets of the program in Table 3 and optimal plans for the agent to execute such that
the agent utility is maximised. Table 4 illustrates the optimal plans (as translations
of the answer sets) based on two different set of values in Table 2. Plan π1 satisfies
goals certificate and strike, however due to the conflict between strike and norm
n, the norm is inevitably violated. Additionally, the conflict between goal strike and
submission, makes it impossible for the agent to satisfy submission. Since the sum of
utility loss of violating n and not satisfying submission, is still less that the utility gain
of satisfying strike, the agent prefers the former to the latter. On the other hand, in plan
π2 satisfying submission is preferred over satisfying strike, although they have the
same utility gain. However, satisfying strike would have implied violating n, and thus
incurring the penalty cost of 4. Therefore, in pursuit of maximising the utility, the agent
prefers satisfying submission and complying with n to satisfying strike and violating
n, which was the case in plan π1.

5 Related Work

The interaction between an agent’s individual goals and social norms has been dis-
cussed in a number of works. Some such as [26, 27] use utility measurement to enforce
norm compliance. In contrast, in [25] norm compliance relies on the explicit interac-
tion between goals and norms, but if the norm compliance or violation does not hinder
any goals there is no connection and hence no computational mechanism in place that
enforces the norms. From a planning perspective, norms are taken into account in plan



Table 1. Agent Actions

Preconditions (Action,Duration) Postconditions
¬office (drive, 1) office
¬marking done, office (marking, 2) marking done
¬test done, fee paid (attend test, 1) test done
¬fee paid (comp funding, 1) fee paid
¬meeting attended, fee paid (attend meeting, 2) meeting attended
¬union member (join union, 1) union member

Table 2. Agent Goals

Goals Requirements Value1 Value2

certificate fee paid, test done 8 5
submission office,marking done 3 7
strike union member,¬office,¬meeting 9 7

generation [27] and in plan selection [20, 26]. In [27] the normative state of the agent
is checked by a planner after each individual action is taken, which depending on the
number of actions, imposes a high computational cost on the step-by-step generation
of plans. It is the utility of individual actions here that determines norm compliance.
On the other hand, [20, 26] consider norms as part of plan selection, starting from the
assumption that the agent has access to to a library of pre-generated plans. In contrast
to all of [20, 26, 27], our work deals with both plan generation and plan selection while
taking account of norms, and like [26] we focus on the utility of the entire plan, unlike
[27] which only considers the constituent actions in sequence.

Some works [32, 19] focus on interaction between an agent’s goal and its commit-
ments, where commitments are made by agents to one another in order to support the
realisation of their goals. Our approach is different from these approaches for two main
reasons: (i) commitments are deliberately made by the agent, whereas norms are exter-
nally imposed to the agent; and (ii) commitments are made to support satisfying goals,
while imposed norms might be in conflict with the agent’s goals and consequently, hin-
der some of them.

The Event Calculus (EC) [21] forms the basis for the implementation of some nor-
mative reasoning frameworks, such as [2, 3]. Our proposed formal model is independent
of language and could be translated to EC and hence to a computational model, but the
one-step translation to ASP is preferred because the formulation of the problem is very
similar to the computational model, thus there are no conceptual gaps to bridge. Further-
more, the EC implementation language is Prolog, which although syntactically similar
to ASP, suffers from non-declarative functionality in the form of the cut operator, which
results in a loss of completeness. Furthermore, its query-based nature that focusses on
one issue at a time, makes it cumbersome to reason about all plans.

A final point is that the norm representation and implementation proposed here is
expressive and realistic in respect of time and duration: specifically, since the formal
model and ASP implementation handle time explicitly, it is straightforward to represent
the norm deadline as a future time instant, rather than a state to be brought about.



Table 3. Instantiated ASP Code

Fig. 1.
state(s0; s1; s2; s3; s4; s5; s6; s7; s8).
next(s0, s1). next(s1, s2). next(s2, s3). next(s3, s4).
next(s4, s5). next(s5, s6). next(s6, s7). next(s7, s8).
final(s8).
time(0,s0).

Fig. 2.
action(drive,1).
pre(drive,S) :- not holdsat(office,S), state(S).
holdsat(office,S2) :- occurred(drive,S1),action(drive,1),time(T1,S1),

time(T2,S2), state(S1;S2), T2=T1+1.
Fig. 3.

goal(certificate,8).
satisfied(certificate,S) :- holdsat(fee paid,S), holdsat(test done,S),

state(S).
Fig. 4.

norm(n, 4).
holdsat(o(n, attend meeting,1+T2),S2) :- occurred(comp funding,S1),

time(T1,S1),action(comp funding,1),T2=T1+1,
time(T2,S2),state(S1;S2).

cmp(o(n, attend meeting,DL),S) :- holdsat(o(n, attend meeting,DL),S),
occurred(attend meeting,S),action(attend meeting,2),

state(S),time(T,S), T != DL.
terminated(o(n, attend meeting,DL),S) :- cmp(o(n, attend meeting,DL),S),

state(S).
vol(o(n, attend meeting,DL),S) :- holdsat(o(n, attend meeting,DL),S),

time(DL,S),action(attend meeting,2), state(S).
terminated(o(n, attend meeting,DL),S) :- vol(o(n, attend meeting,DL),S),

state(S).
Fig. 5.

satisfied(certificate) :- satisfied(certificate,S), state(S).
:- not satisfied(submission), not satisfied(certificate),

not satisfied(strike).
:- satisfied(strike), satisfied(submission).
:- inprog(comp funding,S), inprog(attend test,S), state(S)

action(comp funding,1), action(attend test,1).
:- inprog(comp funding,S), inprog(attend meeting,S), state(S),

action(comp funding,1), action(attend meeting,2).
complied(n) :- cmp(o(n, attend meeting,DL),S), state(S).
:- satisfied(strike),complied(n).

Fig. 6.
violated(n) :- vol(o(n, attend meeting,DL),S), state(S).

6 Conclusions, Discussion and Future Work

An agent performing practical reasoning in an environment regulated by norms, needs
constantly to weigh up the importance of goals satisfied and norms complied with



Table 4. Optimal Plans

Goal
Values Plans Goals Norms Utility

Value1
π1 =〈(comp funding, 0),

(union, 1), (attend test, 2)〉
certificate, strike violated(n) 13

Value2

π2 =〈(drive, 0), (marking, 1),
(comp funding, 2),

(attend meeting, 3),

(attend test, 4)〉

submission, certificate complied(n) 12

against goals not satisfied and norms broken. This comparison is possible when the
agent has access to all possible plans, such that the decision of which goals to pursue
and which norms to respect is made based on their impact on the entire plan. We show
how this impact can be captured in a utility function that permits the agent to execute a
plan that maximises the utility.

The focus of plan selection in this paper is on maximising the agent utility by con-
sidering the value of goals and penalties for norm violation. While these are sensible
criteria, there are others that can be taken into account. Given that actions modelled in
this approach are durative, one such criterion is the duration of the entire plan. Since
durative actions that do not have concurrency conflicts can be executed concurrently,
there might exist some plans with the exact the same utility while one takes longer than
another. We intend to extend the plan selection mechanism with additional criteria by
using the existing multi-criteria optimisation mechanisms in ASP.

Just like norms, in real scenarios, goals often have a deadline before which they
should be satisfied [18]). Temporally extended goals[17] are discussed in detail in agent
programming languages such as GOAL[5], however they are not commonly used in
practical reasoning frameworks. Substituting achievement goals with temporally ex-
tended goals increases the expressiveness of the model. It also allows defining conflict
within goals and between goals and norms temporally and which results in enriching
the concept of conflict in the model.

Incorporation plan revision is also an avenue for future work. As presented here,
a plan once selected is acted out until its conclusion, but it is of course necessary to
incorporate plan revision in order to handle the inevitable dynamic environment.

Another area of improvement is to extend the normative reasoning capability of the
model by extending it for state based norms in addition to event-based norms. Such
an extension would allow the expression of obligations and prohibitions to achieve or
avoid some state before some deadline. A combination of event and state based norms
[10] enriches the norm representation as well as normative reasoning.

Lastly, we intend to build on the current ASP implementation to provide justification
for why a certain plan maximises the utility considering the goals and norms it satisfies
against those it does not. A potential starting point is [31], where it is possible to explain
why certain literals are part of an answer set of a program and why others are not.
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[25] Fabiola López y López, Michael Luck, and Mark d’Inverno. “A Normative Frame-
work for Agent-Based Systems”. In: Normative Multi-Agent Systems (NORMAS).
2005, pp. 24–35.

[26] Nir Oren, Wamberto Vasconcelos, Felipe Meneguzzi, and Michael Luck. “Act-
ing on Norm Constrained Plans”. In: CLIMA. Ed. by João Leite, Paolo Torroni,
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