23,077 research outputs found

    New Models for Wolf-Rayet and O Star Populations in Young Starbursts

    Get PDF
    Using the latest stellar evolution models, theoretical stellar spectra, and a compilation of observed emission line strengths from Wolf-Rayet (WR) stars, we construct evolutionary synthesis models for young starbursts. We explicitly distinguish between the various WR subtypes (WN, WC, WO), and we treat O and Of stars separately. We provide detailed predictions of UV and optical emission line strengths for both the WR stellar lines and the major nebular hydrogen and helium emission lines, as a function of several input parameters related to the starburst episode. We also derive the theoretical frequency of WR-rich starbursts. We then discuss: nebular HeII 4686 emission, the contribution of WR stars to broad Balmer line emission, techniques used to derive the WR and O star content from integrated spectra, and explore the implications of the formation of WR stars through mass transfer in close binary systems in instantaneous bursts. The observational features predicted by our models allow a detailed quantitative determination of the massive star population in a starburst region (particularly in so-called "WR galaxies") from its integrated spectrum and provide a means of deriving the burst properties (e.g., duration, age) and the parameters of the initial mass function of young starbursts. (Abridged abstract)Comment: Accepted by ApJ Supplements. LaTeX using aasmp4, psfigs macros. 49 pages including 23 figures. Paper (full, or text/figures separated) and detailed model results available at http://www.stsci.edu/ftp/science/starburst/sv97.htm

    Wearable sensors system for an improved analysis of freezing of gait in Parkinson's disease using electromyography and inertial signals

    Get PDF
    We propose a wearable sensor system for automatic, continuous and ubiquitous analysis of Freezing of Gait (FOG), in patients affected by Parkinson's disease. FOG is an unpredictable gait disorder with different clinical manifestations, as the trembling and the shuffling-like phenotypes, whose underlying pathophysiology is not fully understood yet. Typical trembling-like subtype features are lack of postural adaptation and abrupt trunk inclination, which in general can increase the fall probability. The targets of this work are detecting the FOG episodes, distinguishing the phenotype and analyzing the muscle activity during and outside FOG, toward a deeper insight in the disorder pathophysiology and the assessment of the fall risk associated to the FOG subtype. To this aim, gyroscopes and surface electromyography integrated in wearable devices sense simultaneously movements and action potentials of antagonist leg muscles. Dedicated algorithms allow the timely detection of the FOG episode and, for the first time, the automatic distinction of the FOG phenotypes, which can enable associating a fall risk to the subtype. Thanks to the possibility of detecting muscles contractions and stretching exactly during FOG, a deeper insight into the pathophysiological underpinnings of the different phenotypes can be achieved, which is an innovative approach with respect to the state of art

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    VICARED: A Neural Network Based System for the Detection of Electrical Disturbances in Real Time

    Get PDF
    The study of the quality of electric power lines is usually known as Power Quality. Power quality problems are increasingly due to a proliferation of equipment that is sensitive and polluting at the same time. The detection and classification of the different disturbances which cause power quality problems is a difficult task which requires a high level of engineering knowledge. Thus, neural networks are usually a good choice for the detection and classification of these disturbances. This paper describes a powerful system for detection of electrical disturbances by means of neural networks
    corecore