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Abstract. The study of the quality of electric power lines is usually known as 
Power Quality. Power quality problems are increasingly due to a proliferation 
of equipment that is sensitive and polluting at the same time. The detection and 
classification of the different disturbances which cause power quality problems 
is a difficult task which requires a high level of engineering knowledge. Thus, 
neural networks are usually a good choice for the detection and classification of 
these disturbances. This paper describes a powerful system for detection of 
electrical disturbances by means of neural networks. 

1   Introduction 

Power Quality (PQ) has been a research area of exponential increasing interest 
particularly in the last two decades [1]. It is defined as the study of the quality of 
electric power lines and has recently sharpened because of the increased number of 
loads sensitive to power quality and become tougher as the loads themselves become 
important causes of the degradation of quality [2].Thus nowadays, customers demand 
higher levels of PQ to ensure the proper and continued operation of such sensitive 
equipment.  

The poor quality of electrical power is usually attributed to power line disturbances 
such as waveshape faults, overvoltages, capacitor switching transients, harmonic 
distortion and impulse transients. Often the greatest damage from these disturbances 
lies in the loss of credibility of the power utilities on the side of their customers. The 
classification and identification of each one of the disturbances is usually carried out 
from standards and recommendations depending on where the utilities operate (IEEE 
in the United States, UNE in Spain, etc). Our own classification, based on these 
standards and recommendations, is given in Table 1. 
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Table 1. Types of disturbances 

Range Type of 
disturbance 

 Subtype of disturbance Time 

Min. value  Max. value 

Slight deviation 49.5 Hz. 50.5 Hz 
Frequency Severe deviation 

10 s 
47 Hz. 52 Hz. 

Average voltage 10 min 0.85 Un 1.1 Un 
Flicker - - 7 %  

Short 10 ms-1s
Long 1s-1min

Sag Long-time 
disturbance 

> 1min 0.01 U 0.9 U 

Short < 3 min Under- 
voltage Long > 3 min 0.01 U 

Temporary Short 10 ms – 1s 
Temporary Long 1s - 1min 
Temporary Long-
time disturbance > 1 min

1.5 KV 

Voltage 

Swell 

Over-voltage < 10 ms

1.1 U 

6 KV 
Harmonics - THD > 8 % Harmonics and 

other information 
signals 

Information signals - Included in the other 
disturbances 

2   Artificial Intelligence on Power Quality 

New and powerful tools for the analysis and operation of power systems, as well as 
for PQ diagnosis are currently available. The new tools of interest are those of 
artificial intelligence (AI) [1], including expert systems, fuzzy logic and artificial 
neural networks (ANNs) [3]. 

For the case of electrical disturbances, all the factors that make ANNs a powerful 
tool are present. We get information which is massive – electrical signals are 
constantly received – and distortioned – there is an important noise component. 

In addition, the signal must be pre-processed to get a feature extraction by means 
of wavelet transform and other mathematical techniques which provide a unique 
characteristic which can represent every single PQ disturbance. It is carried out by 
means of a different resolutions analysis using the technique called multi-resolution 
signal decomposition or multi-resolution analysis. In multi-resolution analysis the 
signal is decomposed in a set of approximation wavelet coefficients and another set of 
detail wavelet coefficients.  

The detail coefficients of the lowest levels store the information from the fastest 
changes of the signal while the highest ones store the low-frequency information. 
Thus, with the help of these new mathematic tools the detection of the electrical 
disturbances has tended to be easy but their classification is still a difficult task in 
which ANNs play an important role [4-11].  



3   Neural Network Real-Time Classifier 

We have developed a prototype of a real-time system for the detection and 
classification of electrical disturbances. The system is a detector of power line 
disturbances whose detection kernel is based on artificial intelligence techniques (in 
particular, a first version based on ANNs). The system consists of a PC application 
which includes the AI kernel and an acquisition card. 

A. Environment

The environment of the application shows the information which is acquired and 
registered by the system. It consists of several windows where the acquired signal is 
represented by means of the VRMS of the three signal phases, and a neutral. Other 
windows show the last detected disturbance, a bar diagram that reports the number 
and the type of detected disturbances and a window with a historic which registers the 
date and time of the different events. 

We also have more options like a bar diagram reporting a temporal graphic view of 
the disturbances, a more detailed representation of the last detected disturbance or a 
triphasic diagram and representation of the signal. 

The acquisition card obtains 640 samples every 100 milliseconds.  These samples 
are shown on the chart and processed by the AI kernel. When one or more 
disturbances are detected in the 100 milliseconds, the corresponding registers are 
updated, changing the corresponding windows for the last disturbance, the bar 
diagrams and the historic. 

B. Kernel

In order to train the ANN, we have to generate the maximum possible number of 
signals representing patterns of electrical signals which include all the above-
mentioned disturbances, so we have designed a signal generator with this aim. In fact, 
we have generated over 27,000 signals including one-disturbance signals and two-
disturbance signals. The detection system uses Wavelet transform of the acquired 
signal for the generation of signal features [4-10]. The aim of feature extraction by 
Wavelet transforms is to provide a unique characteristic which can represent every 
single PQ disturbance.   

The input vectors of the ANN are generated carrying out a number of operations on 
the Wavelet transform.  It is known that the Wavelet transform detects better the low-
frequency components in the last detail levels and fast variations in first levels. Thus, 
our solution is based on the concept that the amplitude disturbances would be better 
detected in the first levels of Wavelet transform while the frequency disturbances 
would be better detected in the last levels. Therefore, we decided to use parallel 
neural networks as it is shown on Figure 1. 

The signal is pre-processed using the wavelet transform as it has been said above. 
The result of this are the inputs for all the ANNs. First of all, these inputs are given to 
the disturbance detector ANN, which output is either 0 - no disturbance - or 1 -
disturbance -. If there is a disturbance, the ANN inputs are given to another three 
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Fig. 1. Block diagram 

ANNs, each one specialized in the detection of a different type of disturbance. In the 
same way, the outputs for these ANNs are 0 or 1, depending on the fact that there is or 
not that kind of disturbance. These types are, according to Figure 1 above, voltage 
disturbances – sags, swells, undervoltages and overvoltages -, frequency disturbances – 
slight and severe deviations – and harmonics disturbances. 

The existence of a disturbance detector ANN previous to the other ANNs is due to 
the greater importance of the detection of disturbances compared with the classification 
of them. Besides, the disturbance ANN acts as a filter for the next ANNs. Some of the 
possible mistakes committed by the three parallel specific neural networks are 
eliminated by the disturbance detector ANN. The reason for using several ANNs and 
not only one is that a unique ANN with seven outputs – one for every type of 
disturbance – needs too many neurons to work properly and, consequently, more 
memory resources. 

C. Neural Network building

To be able to train each neural network, firstly we must decide the convenient learning 
method. There are basically two learning methods mainly used, supervised learning 
and self-organised learning. The first one gets input data and associates them with a 
determined output while the second one makes its own input data classification. For 
our case, we want a different output according to the existence or not of a disturbance 
or its type, depending on the chosen neural network. That is the reason why a 
supervised learning works better. Besides, we have to choose a particular type of 
supervised learning. The best option is the backpropagation (BP) learning method 
using the multilayer perceptron due to its better rate between simplicity and efficiency. 

Important features of the neural networks are the study of the necessary input 
values, the neural network structures, transfer functions and learning algorithms. 

In particular, we have used the following values as input vector of the amplitude 
neural network: the VRMS of the signal, the integral, the maximum and the VRMS of the 



detail wavelet coefficients of 1, 2 and 3 level. In order to get a faster convergence and 
better results these data were scaled so that minimum is -1 and maximum is 1. 

The chosen kind of ANN is a multilayer perceptron with 3 hidden layers with 
different number of neurons, depending on the ANN and its number of outputs. The 
output functions of the layers have been chosen with a logarithmic sigmoid transfer 
function for all the layers.  

All the inputs, structures, functions and training algorithms have been reached after 
testing with different ones. The best results until now have been obtained for neural 
networks shown in Table 2. 

Table 2. Neural Network structure 

Neural 
Network type 

Number of hidden 
neurons 

Number 
of outputs 

Transfer functions Training algorithm 

Disturbance 20, 14 & 8 1 logarithmic sigmoid Levenberg-Marquardt 
Voltage 12, 9 & 6 4 logarithmic sigmoid Levenberg-Marquardt 
Frequency 16, 12 & 7 2 logarithmic sigmoid Levenberg-Marquardt 
Harmonics 20, 14 & 8 1 logarithmic sigmoid Levenberg-Marquardt 

D. Programming Tasks

For programming tasks we have used the MATLAB tool to test the different 
possibilities in the pre-processing of the signal and in the structure of the kernel. We 
used this tool due to the powerful toolboxes with specialized functions contained in it 
utilizing the signal and the wavelet toolboxes for the pre-processing task and the 
neural networks toolbox for the design of the kernel [11].    

Once we carried out the test and found a good code for the pre-processing and the 
AI kernel, we programmed them in C++ language in order to optimize the execution 
time. The tests carried out in execution time about the pre-processing time are around 
the 0.1 milliseconds for the wavelet transform.  

For the design and programming of the tool environment the selected tool has been 
Borland C++ Builder 5 which is a powerful tool for the development of visual 
applications as well as a robust C++ compiler.   

4   Results 

Before embedding the kernel in the classifier tool we selected the best training 
method for the configuration of ANNs. Thus, for the training of the networks we used 
80% of the generated signals as training patterns and 20% as test patterns. On the 
other hand, thresholds were defined in the ANN outputs in order to distinguish if a 
particular output value may be considered as a disturbance or not. The defined 
thresholds were 0.3 and 0.7 and thus, output values above 0.7 were considered as 
disturbances and below 0.3 ideal signals. Values found between 0.3 and 0.7 were 
taken as errors in the detection of the input pattern.  The distance between the output 
network and the desired value was defined as a safety coefficient in the detection. 



We are going to consider two different kinds of results: the general ones, it is to 
say, the percentage of success in every ANN – see Table 3 - , and the particular ones, 
which are more intuitive and consider some particular cases of failure in one of the 
neural networks. In addition, we have the results for only one disturbance signals and 
the results for two-disturbance signals which include the one-disturbance signals too.  

Table 3. One-disturbance signal results 

Type of ANN 
Number of 
outputs 

Test 
signals 

Number of 
errors 

Correctly 
detected %  

Disturbance 1 334 1 99.70
Voltage 4 334 20 94.01

Harmonics 1 334 1 99.70
Frequency   2 334 5 98.50

The first conclusion we obtain is that the higher number of ANN outputs we use, 
the higher number of errors we get. This is due to the higher complexity introduced 
by the necessity of fixing all the outputs at the same time. The second conclusion is 
related to the influence of these errors. As said above, the most important ANN is the 
one which detects disturbances – the existence or not of a disturbance is much more 
important than its type – so we have focused our efforts on its correct working. On the 
one hand, we must say that these percentages are referred to all the testing signals but 
we also have to bear in mind that some of the signals that fail are filtered by the 
disturbance ANN. On the other hand, we have to analyze what kind of signals tend to 
fail. To illustrate this point we have considered some of the signals that fail in the 
voltage ANN –table 4-. 

Table 4. Errors in analysis 

Real signal Detected event 
Ideal signal with a small 9% sag Sag 

10.8% and 11 ms overvoltage Swell 
99.7% and 35 ms undervoltage Sag 

98% and 10 ms sag  Undervoltage 
Ideal signal with a small 8% overvoltage Overvoltage 

80% Swell and 9 ms Overvoltage 
97% and 10 ms sag Ideal signal 

Analogously, results are similar for other signals and other ANNs. We observe that 
the signals which fail are near the limit of a disturbance, so it is not a big mistake to 
consider them as the neural network tells us. 

In table 5, we have the results obtained for two-disturbance signals, with 
approximately 27700 signals, about 5500 for the test and the rest for training. 
Training performance of the disturbance ANN is shown in Figure 5. 



Table 5. Two-disturbance signal results 

Type of ANN 
Number of 
outputs 

Test signals 
Number of 
errors 

Correctly 
detected %  

Disturbance 1 5523 70 98.73
Voltage 4 5523 575 89.58

Harmonics 1 5523 57 98.97
Frequency   2 5523 278 94.97

Conclusions are similar to the ones we have achieved for one-disturbance signals. 
Results are slightly worse due to the greater complexity of the signals. 

5   Conclusions 

What we have developed is a real-time system for the detection of electrical 
disturbances based on artificial neural networks. With this system we are capable of 
detecting the existence or not of disturbances and their type with a very high 
possibility of success and bearing in mind that most of the mistakes are committed 
with not very common signals in real life – those in the edge of a disturbance. 

The use of C++ language makes it possible to achieve the objective of making our 
system a real-time one. This may allow electrical companies to detect disturbances 
with time enough to find possible troubles and take steps to avoid further problems. 

Our current work is focused on carrying out tests with the system working in real 
time in the power line in order to improve our results with real signals. Another line 
of our investigation is the study of the utilization of different structured parallel 
networks of the same type using a voting system which will allow us to achieve better 
results. 
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