24,897 research outputs found

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Dynamic pricing with constant demand elasticity

    Get PDF
    The model of Gallego and van Ryzin (1994) is specialized to the case of constant elasticity of demand. A closed form is developed, which has an even simpler form than that arising with exponential demand, and possesses an excellent approximation. It is shown in this environment that monopoly is efficient, which means that all the behavior usually attributed to monopoly pricing is actually a consequence of efficient pricing and would arise even in a perfectly competitive environment. If the initial supply is not too large, it is shown that consumers have no incentive to delay their purchases in order to get a lower price at the average inventory prevailing at any time

    Loss systems in a random environment

    Full text link
    We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove an if-and-only-if-condition for a product form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, e.g. from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, e.g. of queueing-inventory processes. We investigate further classical loss systems, where due to finite waiting room loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise. We further investigate the embedded Markov chains at departure epochs and show that the behaviour of the embedded Markov chain is often considerably different from that of the continuous time Markov process. This is different from the behaviour of the standard M/G/1, where the steady state of the embedded Markov chain and the continuous time process coincide. For exponential queueing systems we show that there is a product form equilibrium of the embedded Markov chain under rather general conditions. For systems with non-exponential service times more restrictive constraints are needed, which we prove by a counter example where the environment represents an inventory attached to an M/D/1 queue. Such integrated queueing-inventory systems are dealt with in the literature previously, and are revisited here in detail

    Locating emergency services with priority rules: The priority queuing covering location problem

    Get PDF
    One of the assumptions of the Capacitated Facility Location Problem (CFLP) is that demand is known and fixed. Most often, this is not the case when managers take some strategic decisions such as locating facilities and assigning demand points to those facilities. In this paper we consider demand as stochastic and we model each of the facilities as an independent queue. Stochastic models of manufacturing systems and deterministic location models are put together in order to obtain a formula for the backlogging probability at a potential facility location. Several solution techniques have been proposed to solve the CFLP. One of the most recently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, is implemented in order to solve the model formulated. We present some computational experiments in order to evaluate the heuristics’ performance and to illustrate the use of this new formulation for the CFLP. The paper finishes with a simple simulation exercise.Location, queuing, greedy heuristics, simulation

    An ESPC algorithm based approach to solve inventory deployment problem

    Get PDF
    Global competitiveness has enforced the hefty industries to become more customized. To compete in the market they are targeting the customers who want exotic products, and faster and reliable deliveries. Industries are exploring the option of satisfying a portion of their demand by converting strategically placed products, this helps in increasing the variability of product produced by them in short lead time. In this paper, authors have proposed a new hybrid evolutionary algorithm named Endosymbiotic-Psychoclonal (ESPC) algorithm to determine the amount and type of product to stock as a semi product in inventory. In the proposed work the ability of previously proposed Psychoclonal algorithm to exploit the search space has been increased by making antibodies and antigen more cooperative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results obtained, are compared with other evolutionary algorithms such as Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained, and convergence time required to reach the optimal /near optimal value of the solution
    corecore