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Abstract. We analyze a discrete-time queue with variable service ca-
pacity, such that the total amount of work that can be performed during
each time slot is a stochastic variable that is geometrically distributed.
We study the buffer occupancy by constructing an analogous model with
fixed service capacity. In contrast with classical discrete-time queueing
models, however, the service times in the fixed-capacity model can take
the value zero with positive probability (service times are non-negative).
We study the late arrival models with immediate and delayed access,
the first model being the most natural model for a system with fixed
capacity and non-negative service times and the second model the more
practically relevant model for the variable-capacity model.

1 Introduction

In this manuscript, we are interested in the study of a discrete-time queue with
variable service capacity. In classical discrete-time queueing systems, the service
capacity is fixed, equal to 1 in single-server models (e.g. [1, 2]), and larger than 1
in multiserver models (e.g. [3, 4]). Furthermore, service capacity is expressed in
number of customers that can be served simultaneously. Therefore, the service
time, the number of time slots a customer is effectively being served, is equal to
the service requirement, the total amount of work units his service requires. In
the current model, however, a variable number of work units can be executed
by the server in one time unit, and this in a purely FCFS (First Come First
Served) manner, resulting in a service time that can be different from the service
requirement of a customer. We assume the service capacity to be geometrically
distributed, independent from slot to slot.

This paper is a follow-up paper to [5], where the unfinished work and the
customer delay were analyzed for the same model. The buffer occupancy, how-
ever, was only obtained in case of geometric service requirements, as difficul-
ties in analyzing the buffer occupancy were observed when service requirements
have a general distribution. We here solve this latter problem, by looking at
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the problem from a different angle. We first construct an analogy with a fixed
service-capacity model with non-negative service times. We further show that,
for the latter model, the same formulas can be found for the probability gen-
erating functions (pgfs) of buffer occupancy and customer delay as in a model
with strictly positive service times, a model that is commonly adopted (see e.g.
[2]). Therefore, a remarkable side result of our analysis is that the adoption of
non-zero service times seems to be an unnecessary assumption in discrete-time
queueing analyses (although analyses are usually heavily based on it).

The model we study is relevant in many application areas. We illustrate
this through discussion of two important example domains. First, it is closely
related to the ‘effective bandwidth’ or ‘effective capacity’ concepts in telecom-
munication networks, to model the time-varying capacity of stations in wireless
networks/LANs [6–8]. A wireless station can indeed be regarded as a server with
varying capacity, due to rate fluctuations of the physical channel or at the MAC
layer. A second potential application domain is the modeling of varying produc-
tion capacity of a production system with a single product line [9–11], in order
to estimate the influence of this variability on the holding times.

The remainder of this paper is composed as follows. In section 2, the model is
introduced in detail. The translation to a fixed service-capacity model is tackled
in section 3. Next, we calculate the pgf of the buffer occupancy in section 4,
and analyze moments and asymptotic probabilities in section 5. In section 6,
we shortly comment on the customer delay, which although retrieved in full in
[5], can also be found more elegantly with our approach. Some conclusions are
drawn in section 7.

2 Model

We review the model of [5] in this section. We consider a discrete-time queueing
system with infinite waiting room and a server which can deliver a variable
amount of service as time goes by, called the service capacity. We assume that
all events (arrivals and departures) occur at the end of slots. The arrival process
of new customers in the system is characterized by means of a sequence of i.i.d.
(independent and identically distributed) non-negative discrete random variables
with common probability mass function (pmf) a(n) and common probability
generating function (pgf) A(z) respectively. More specifically,

a(n) , Pr[n customer arrivals in one slot], n ≥ 0,

A(z) ,
∞∑

n=0

a(n)zn.

The mean number of customer arrivals per slot is given by

λ , A′(1).

The service process of the customers is described in two steps. First, we
characterize the demand that customers place upon the resources of the system,
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by attaching to each customer a corresponding service requirement (or service
demand), which indicates the number of work units required to give complete ser-
vice to the customer at hand. The service requirements of consecutive customers
arriving at the system are modeled as a sequence of i.i.d. positive discrete ran-
dom variables with common pmf s(n) and common pgf S(z) respectively. More
specifically,

s(n) , Pr[service demand equals n work units], n ≥ 1,

S(z) ,
∞∑

n=1

s(n)zn.

The mean service demand of the customers is given by

1

σ
, S′(1).

Next, we describe the (variable) resources of the server, by attaching to each
time slot a corresponding service capacity, which indicates the number of work
units that the server is capable of delivering in this slot. We assume that ser-
vice capacities are nonnegative random variables, independent from slot to slot
and geometrically distributed, with common pmf r(n) and common pgf R(z)
respectively. More specifically,

r(n) , Pr[service capacity equals n work units]

=
1

1 + µ

(
µ

1 + µ

)n

, n ≥ 0, (1)

R(z) ,
∞∑

n=0

r(n)zn

=
1

1 + µ− µz
. (2)

The mean service capacity of the system (per slot) is given by

µ = R′(1).

3 Translation to a fixed-capacity model

Up to now, we have not yet defined the concept service time of a customer, the
number of slots a customer resides in the server. We have not even elaborated
on the concept ‘the server’. We note that this can be done in different ways. For
instance, we could assume that all customers that are (partly) served during a
slot are residing in the server during that slot; this slot would then count as a slot
of the service times of all these customers and these service times would hence
be overlapping. We opt here for a different approach. We assume that customers
are served one by one and that the service time of a customer is the number
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of slots it resides in the server. Service times of consecutively served customers
are therefore non-overlapping, as in a regular single-server model. Note that we
assumed that all events occur at the end of the slots. Thus, in order to be able to
model the fact that more than 1 customer can end service in the same slot, we
have to assume that service times can be equal to zero slots. We clarify this with
an example. Say that three customers are in the system in a given slot and that
the remaining service requirement of the first customer equals 3 work units, while
the service requirements of the other two equal 5 and 4 work units respectively.
The slot then counts as a slot of the service time of the first customer only,
regardless of the service capacity in that slot. If the service capacity in the slot
is higher than 7, both the first and second customer leave the system at the
end of the same slot, and the service time of the second customer is therefore
assumed to be zero.

As said, service times of different customers are non-overlapping. Due to the
i.i.d. service capacities and the memoryless nature of the geometric distribution,
service times of consecutively served customers are also independent. Indeed,
when a customer departs at the end of slot k (say), the remaining service ca-
pacity in slot k is spent on serving the following customer (and possibly even
other customers). The remaining part of a random variable with a geometric
distribution is independent of the elapsed part, and has the same distribution
as the random variable itself. Furthermore, service capacities in later slots are
independent of the service capacity in slot k, and therefore the actual service
time of the second customer is independent of that of the first customer.

We now calculate the pgf of the service time v of a random customer, i.e.,
the required number of slots to serve a customer completely. Assume a random
customer. Since the service capacity is geometrically distributed with parameter
µ/(1 + µ) (as in (1)), the service time of this customer can be written as

v =

s∑
i=1

vi, (3)

with s the service requirement of the tagged customer and vi the number of slots
required to process the i-th work unit of this customer. Due to the geometric
distribution of the service capacity (and its memoryless property), the service
capacity in a slot has expired with probability 1/(1 +µ), or, capacity of at least
one work unit remains with probability µ/(1 + µ), irrespective of the elapsed
part of the service capacity. Therefore, the vi’s are independent and are all
geometrically distributed with parameter 1/(1 + µ):

Pr[vi = n] =
µ

1 + µ

(
1

1 + µ

)n

, n ≥ 0,

Vi(z) , E[zvi ]

=
µ

1 + µ− z
.
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Since the vi’s are independent of s as well, (3) leads to

V (z) = S

(
µ

1 + µ− z

)
. (4)

We may conclude that our queueing system is equivalent to a discrete-time
single-server system with a fixed service capacity of one work unit per slot, with
the (uncommon) characteristic that service times can be zero, as the pgf of the
service times is given by (4); specifically, the probability that the service time is
zero equals

V (0) = S

(
µ

1 + µ

)
.

For further use, we also define the mean service time:

ν = V ′(1) =
1

σµ
. (5)

The analysis in the remainder makes extensive use of this analogy, in contrast
with the analysis in [5]. In [5], first the unfinished work at random slot boundaries
was analyzed, and from this unfinished work, buffer occupancy and customer
delay were investigated. This is a primarily complex-analytic analysis and the
analysis of the buffer occupancy is restricted to geometric service requirements
(in addition to geometric service capacities). Here, we resort to a more intuitive,
stochastic and direct analysis of the buffer occupancy and customer delay, for a
general service-requirement distribution.

4 Buffer Occupancy

From the previous section, we conclude that we can resort to the analysis of
a regular discrete-time single-server model with non-negative service times, the
latter variable’s distribution being characterized by a general pgf V (z). Substi-
tution of (4) in the resulting expressions will then finally deliver results for the
variable service-capacity model.

The fact that service times might be zero is a complication. For instance in
[2], the positiveness of the service times is explicitly used in the analysis, which
makes those results invalid for our model. However, we will retrieve the same
results for non-negative service times, through a different analysis.

We first analyze the buffer occupancy in the late arrival model with imme-
diate access [12, 13], which is from a theoretical point of view the most natural
model for a fixed service-capacity queueing system with non-negative service
times (we will comment on this later). In a second model, we then adopt the
model with delayed access, as in the variable service-capacity model of [5], which
is a more practically-oriented model. We will use results of the first model in the
analysis of the latter.
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4.1 Immediate Access

We assume the following order of events at the end of each slot: first (i) customers
arrive, then (ii) customers leave and finally (iii) we observe the buffer occupancy.
Customers that have just arrived might depart directly, thus leading to zero
customer delays. We first analyze the buffer occupancy as seen by a departing
customer. We then relate this to the buffer occupancy as seen by an arriving
customer and conclude with the analysis of the buffer occupancy at a random
slot mark.

Denote the buffer occupancy seen by the k-th departing customer as b̃k,
k ≥ 1. Note that, if customer k + 1 departs at the same time as customer k, we
count customer k+1 as part of b̃k. The service time of customer k equals vk and
the number of customers arriving in the same batch as customer k is denoted by
ãk. The number of customer arrivals during the i-th slot of the service time of
customer k is given by ãk,i, k ≥ 1. We then obtain following system equation:

b̃k+1 =

{
b̃k − 1 +

∑vk+1

i=1 ãk+1,i if b̃k > 0

ãk+1 − 1 +
∑vk+1

i=1 ãk+1,i if b̃k = 0
, (6)

k ≥ 1. This is identical to equation (1.41) in [13], and thus the pgf of the steady-
state buffer occupancy seen by a random departure equals (1.43) in the same
book:

B̃(z) =
1− λν
λ

· (A(z)− 1)V (A(z))

z − V (A(z))
. (7)

In a second step, we relate the pgfs of the buffer occupancies as seen by
departing and arriving customers. As for the departures, we will assume that,
if more than one customer arrives at the same time, there is a precise order in
the arrival sequence. So, if the k-th and (k + 1)-st arriving customers arrive at
the same epoch, the (k + 1)-st customer sees the k-th customer as part of the
buffer occupancy upon arrival, while the opposite is not true. Since we therefore
look at the buffer occupancy as left by departing customers and as seen by
arriving customers (rather than at arrival and departure epochs), we can regard
the system as a single-arrival, single-departure system (see [14] for a similar
observation). For this type of systems, it holds that buffer occupancies as seen
by departing and arriving customers are identically distributed (see [15]), and
thus

B̂(z) = B̃(z), (8)

with B̂(z) the pgf of the buffer occupancy as seen by an arriving customer.

Finally, we connect the pgfs of the buffer occupancies as seen by an arriving
customer and at random slot boundaries. We can write

b̂ = b+ f, (9)
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with b̂ the buffer occupancy as seen by a random arriving customer, b the buffer
occupancy at the preceding slot boundary and f the number of customers arriv-
ing at the same epoch as the randomly selected customer and buffered ‘before’
him. It is clear that b and f are independent random variables. Since the pgf
F (z) of f is well-known (see e.g. [1]),

F (z) =
A(z)− 1

λ(z − 1)
, (10)

we find

B(z) =
B̂(z)

F (z)

=
λ(z − 1)B̂(z)

A(z)− 1

=
λ(z − 1)B̃(z)

A(z)− 1

= (1− λν)
(z − 1)V (A(z))

z − V (A(z))
, (11)

where we consecutively used (9), (10), (8) and (7). Substitution of (4) in (11)
yields the pgf of the steady-state buffer occupancy for the varying service-
capacity model with immediate access:

B(z) = (1− λν)

(z − 1)S

(
µ

1 + µ−A(z)

)
z − S

(
µ

1 + µ−A(z)

) .

We remark that the final expression (11) is the same expression as the one
of the pgf of the buffer occupancy in a discrete-time GeoX/G/1 queue with
pgf A(z) for the number of arrivals at a slot boundary, V (z) the pgf of strictly
positive service times (V (0) = 0) and delayed access, see e.g. [2]. Therefore, in our
opinion, the latter case can be regarded as special case of the system analyzed
in this subsection. In fact, we regard the term ‘late arrival with delayed access’
wrongly chosen in fixed service-capacity systems, as the late arriving customer
can in fact enter the service unit immediately to start service, only his service
time is at least one. Therefore, it would be better to use the terms ‘systems with
positive service times’ or (the more general) ‘systems with non-negative service
times’ instead.

4.2 Delayed Access

Here, we return to the model of [5]. In the model with delayed access, customers
cannot leave the system immediately upon arrival. Therefore, we change the
order of arrivals and departures (departures now occur just before new customers
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arrive, and then the system is observed), so that new arrivals have to wait at least
one slot for the next service opportunity. In this model, the delay of customers
is at least one slot, which is a natural assumption in practice (in contrast with
the model with immediate access). This does not mean that service times of
customers are at least one slot as well. Multiple customers can still leave at
a particular slot boundary and the service times of all but the first are then
equal to zero. For this reason, the delayed-access model is not as natural as
the immediate-access model, from a single-sever fixed-capacity point of view. It
also complicates the analysis slightly, but the system can still be regarded as
a discrete-time fixed service-capacity system, only it is a model with delayed
access.

We take the same approach as in previous subsection; we analyze the buffer
occupancy respectively as seen by departing customers, as seen by arriving cus-
tomers and at slot boundaries. In fact, the same system equations (6) for and pgf
(7) of the buffer occupancy as seen by departing customers, and the same rela-
tion (8) between the distributions of the buffer occupancy as seen by departing
and by arriving customers hold. The only difference is the relation (9) between
the buffer occupancy as seen by arriving customers and the buffer occupancy at
the preceding slot boundary. For the current model, we find

b̂ = b− c+ f,

with b̂ the buffer occupancy as seen by a random arrival, b the buffer occupancy
at the previous slot boundary, f the number of arrivals at the arrival epoch of
the customer and admitted before the tagged arrival, and c the total number of
departures directly preceding these arrivals. The term −c is thus the difference
with the previous model (see (9)). Note that c and b are not independent which
complicates analysis. We have

B̂(z) = E
[
zb−c

]
F (z). (12)

We calculate E
[
zb−c

]
. We can write

b∗ = b− c+ a, (13)

with b the buffer occupancy at a random slot boundary, and c, a and b∗ the
number of departures, arrivals and customers in the system at the following slot
boundary. Since b∗ is also distributed as the buffer occupancy at a random slot
boundary, we may write, from (13),

B(z) = E
[
zb−c

]
A(z). (14)

Using (14), (12), (8), (7) and (10), we obtain the pgf B(z) of the buffer occupancy
at random slot boundaries as

B(z) = (1− λν)
A(z)(z − 1)V (A(z))

z − V (A(z))
. (15)
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Substitution of (4) in (15) yields the pgf of the steady-state buffer occupancy
for the varying service-capacity model with delayed access:

B(z) = (1− λν)

A(z)(z − 1)S

(
µ

1 + µ−A(z)

)
z − S

(
µ

1 + µ−A(z)

) . (16)

For the special case of geometric service requirements, we obtain the same result
as in [5].

5 Performance Measures and Discussion

In this section, we calculate and discuss some performance measures. We con-
centrate on the model with delayed access. In the discussion, we will focus on the
influence of the mean service capacity µ, while keeping the mean service time
ν constant (i.e., by scaling the mean service demand 1/σ accordingly, see (5)).
If feasible, we also assume the normalized moments (such as the coefficient of
variation and skewness) of mean number of per-slot arrivals and service demand
to be constant.

5.1 Moments

First, the mean buffer occupancy is found by taking the first derivative of (16)
in z = 1:

E[b] = B′(1) = λ+
λν
[
1 + λ

(
C2

A + 1
)

+ λν
(
C2

S − 1
)]

2(1− λν)
+

λ2ν

2(1− λν)µ
, (17)

where we introduced the coefficients of variation CA and CS of the number of
per-slot arrivals and the service demands respectively. From this formula, we can
conclude that if the service capacity µ goes to infinity (while scaling the mean
and variance of the service demand in order to keep the mean service time ν per
customer and the coefficient of variation CS of the service demand constant), the
mean buffer occupancy tends to a constant. This constant depends on the mean
service time, the arrival rate and the coefficients of variations of the numbers of
arrivals per slot and the service demands. If the mean service capacity goes to 0,
the mean buffer occupancy tends to infinity, even though the service demand is
scaled accordingly, and this according to a 1/µ-rule with a prefactor depending
on both the arrival rate and the mean service time.

Higher moments of the buffer occupancy can be calculated by taking higher
derivatives of B(z) in 1. The expression for the variance, for instance, contains a
constant term, a term in 1/µ and a term in 1/µ2. The constant term depends on
the mean value, the coefficient of variation and the skewness of both the number
of arrivals per slot and the service demand. The term in 1/µ only depends on the
mean values and coefficients of variations, while the term in 1/µ2 only depends



10 Joris Walraevens, Herwig Bruneel, Dieter Claeys, and Sabine Wittevrongel

on the mean values. For reference, we give the latter as it is the dominant term
for the mean service capacity µ going to 0:

Var[b] ∼ λ3ν(8− 5λν)

12(1− λν)2µ2
,

for µ→ 0.

5.2 Asymptotic Probabilities

Asymptotics of probabilities Pr[b = n], n→∞ can be calculated by investigation
of the dominant singularity of the pgf B(z) (i.e. the singularity of lowest norm)
and the behavior of B(z) in the neighbourhood of this dominant singularity [16,
17]. This dominant zero is real and bigger than or equal to 1. The position of
the dominant singularity is dependent on complete distributions, i.e., of A(z)
and S(z). We will therefore investigate a special case instead of analyzing it
in full generality. We consider the case that the functions A(z) and S(z) are
meromorphic.

The dominant singularity z0 of B(z) is a single zero of the denominator, i.e.,

z0 = S

(
µ

1 + µ−A(z0)

)
, (18)

and the corresponding probabilities decay geometrically

Pr[b = n] ∼ (1− λν)
A(z0)(z0 − 1)

S′
(

µ

1 + µ−A(z0)

)
µA′(z0)

(1 + µ−A(z0))2
− 1

z−n0 .

We now investigate the decay rate z0 in terms of µ. We vary µ, while scaling σ
in order to keep a constant mean service time ν. Since z0 has to be calculated
numerically, in general, cf. (18), we look at the following illustrative example.
Assume Bernoulli arrivals, i.e., in each slot one customer arrives with probability
λ and no customers arrive with complementary probability 1−λ. The distribution
of the service demand is chosen such that we can model deterministic as well as
bursty demands, namely we assume that the service demand is either 1 slot or
s slots, respectively with probability p and 1− p. The arrival rate λ is equal to
0.8, while the mean service time ν is equal to 0.5. Then µ varies linearly with s
according to following relation:

µ =
p+ (1− p)s

ν

In table 1, we list the values of z0 for several combinations of p and s.
For s = 1, deterministic service demands of 1 slots each are required. In this

case the probabilities decay with factor 2.5. This can be taken as reference case,
as it is also the decay rate of a more general geometric distribution of the ser-
vice demands. From [5], it is known that z0 is indeed independent of the actual
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s 1 2 3 4 5

p = 0 2.5 3.2087 3.6117 3.8705 4.0505

p = 0.3 2.5 2.9542 3.1771 3.3093 3.3970

p = 0.6 2.5 2.7155 2.7621 2.7655 2.7580

p = 0.9 2.5 2.5254 2.4387 2.3203 2.2103

Table 1. Asymptotic decay rate z0 of probabilities Pr[b = n]

value of µ, as long as ν = 1/µσ is fixed, in case of geometric service demands.
Therefore, for increasing s, we can conclude on the impact of ’burstiness’ (or
lack thereof) on the decay rate of the mass function of the buffer occupancy, by
comparing with the constant rate 2.5 of this geometric distribution. We see that
for small p, the decay rate increases with s meaning that the probabilities decay
faster for higher s. For p = 0, the service demand is not bursty at all, as it is
deterministically equal to s. Higher service demands and service requirements
are in this case advantageous. For higher p, one can see the impact of burstiness.
For p = 0.6, the decay rate is almost constant, as is the case for the geometric
distribution. For even higher p (and high s) the decay rate decreases for increas-
ing s, which means that the probability tail decreases less fast. Therefore, lower
service demands and service requirements are advantageous in this case. An-
other way to look at it is the following: if we assume that geometric capacity is
perfectly fitted to geometric demands, we can conclude that geometric capacity
is not fitted well to either smoother (too much capacity at times) or burstier
(too less capacity at times) service demands.

6 Customer Delay

Let us now briefly turn to the customer delay. We assume a FCFS (First Come
First Served) scheduling discipline. Customer delay is defined as the number
of slots a customer sojourns in the system. The pgf of the customer delay was
calculated in [5] for the model with delayed access, by means of an elaborate
algebraic analysis (first the unfinished work was analyzed and customer delay
was then related to the unfinished work). We here present a stochastic analysis
by making use of the analogy with a fixed service-capacity model (see section
3). We first discuss the model with immediate access and then come back to the
model with delayed access.

6.1 Immediate Access

Denote the customer delay of the k-th arriving customer as dk, k ≥ 1. Then the
following Lindley-type equation is easily constructed:

dk+1 = [dk − tk]+ + vk+1, (19)
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with tk the number of slots between the arrivals of customers k and k + 1, vk+1

the service time of the (k + 1)-st customer and [.]+ shorthand for max(., 0).
This is the same (Lindley-type) system equation as in the common discrete-time
single-server queue with non-zero service times and thus the pgf D(z) of the
delay of a random customer is also the same [1], in this case,

D(z) =
1− λν
λ

· (z − 1)V (z) [A (V (z))− 1]

[z −A (V (z))] [V (z)− 1]
. (20)

Substitution of (4) results in the pgf of the customer delay in the variable service-
capacity system:

D(z) =
1− λν
λ

·
(z − 1)S

(
µ

1 + µ− z

)[
A

(
S

(
µ

1 + µ− z

))
− 1

]
[
z −A

(
S

(
µ

1 + µ− z

))][
S

(
µ

1 + µ− z

)
− 1

] .

6.2 Delayed Access

Now, we assume that arrivals occur after departures at a slot boundary, leading
to a minimal delay of 1 slot for each customer. The system equation for the
customer delay then reads

d̃k+1 =

{
d̃k − tk + vk+1 if d̃k > tk
1 + vk+1 if d̃k ≤ tk

, (21)

with d̃k the delay of customer k in this model with delayed access, and the other
variables as defined in the former subsection. The difference with the Lindley-
equation (19) is the term ‘1’ on the second line. We transform the system equa-
tion (21) as follows

d̃k+1 − 1 =

{
(d̃k − 1)− tk + vk+1 if d̃k > tk
vk+1 if d̃k ≤ tk

,

which can be rewritten as

(d̃k+1 − 1) = [(d̃k − 1)− tk]+ + vk+1.

From this equation and (19), it is easily seen that {dk}k≥1 and {d̃k−1}k≥1 obey
the same system equations and thus

D(z) =
D̃(z)

z
,

with D̃(z) the pgf of the customer delay in the model with delayed access. Using
(20), we finally retrieve

D̃(z) =
1− λν
λ

· z(z − 1)V (z) [A (V (z))− 1]

[z −A (V (z))] [V (z)− 1]
.
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Substitution of (4) results in the pgf of the customer delay in the variable service-
capacity system:

D̃(z) =
1− λν
λ

·
z(z − 1)S

(
µ

1 + µ− z

)[
A

(
S

(
µ

1 + µ− z

))
− 1

]
[
z −A

(
S

(
µ

1 + µ− z

))][
S

(
µ

1 + µ− z

)
− 1

] ,

which yields the expression obtained in [5].

7 Conclusions

In this paper, we studied a discrete-time queue with variable (geometric) ser-
vice capacity. The analysis is heavily based on inventive stochastic arguments
rather than heavy algebraic calculations. Indeed, we showed how this system
is identical to a fixed service-capacity system with non-negative service times.
The buffer occupancy was analyzed by connecting the buffer occupancy as seen
by departing customers, the buffer occupancy as seen by arriving customers
and the buffer occupancy at slot boundaries. The natural single-server model
with non-negative service times is a late arrival system with immediate access,
and therefore we studied this first. However, service requirements in the original
model are strictly positive and a late arrival system with delayed access is more
natural in that context. Therefore, we extended the fixed service-capacity anal-
ysis to this system. In future work, we plan on tackling non-geometric service
capacities. However, the service times in the analog single-server system are then
correlated, which is expected to greatly complicate the analysis.
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