220 research outputs found

    Application of adaptive antenna technology to third generation radio architectures

    Get PDF

    Network planning for third-generation mobile radio systems

    Get PDF

    WCDMA downlink capacity of cigar-shaped microcells using soft hand-over with SIR-based power control for over-ground train service

    Get PDF
    In this paper, the downlink sector capacity of a cigar-shaped microcells using wideband code-division multiple-access (WCDMA) with soft hand-over (SHO) mode is analyzed. The two-slope propagation loss with log-normal shadowing is used in the analysis where a model of eight cigar-shaped microcells is utilized to calculate the downlink sector capacity. The performance of the downlink is studied for different sector radii, standard deviations of the shadowing and propagation exponents. It is found that, for a sector range higher than 940 m, increasing the sector range will reduce the downlink sector capacity. Also it is found that increasing the value of the propagation parameters will reduce the downlink sector capacity. In many cases, the downlink sector capacity will be code limited since the theoretical downlink sector capacity is higher than the number of codes assigned to each sector. The high theoretical downlink sector capacity is due to the low value (0.06–0.1) of the WCDMA orthogonality factor of rural zone microcells

    WCDMA multiclass downlink capacity and interference statistics of cigar-shaped microcells in highways

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11277-013-1048-5In this paper, the multiclass downlink capacity and the interference statistics of the sectors of a cigar-shaped microcells using wideband code-division multiple-access with soft handover mode are analyzed. The two-slope propagation model with log-normal shadowing is used in the analysis where a model of 8 cigar-shaped microcells is utilized. The performance of the downlink is studied for different [sector range R, standard deviation of the shadowing (σ1 and σ2) and propagation exponents (s1 and s2)]. It is found that increasing the sector range from 500 to 1,000 m will increase the sector downlink capacity. Also, it is found that increasing the value of the propagation parameters (σ1 and σ2) will reduce the downlink sector capacity. It is noticed that, the effect of changing the propagation exponent s1 is null while increasing the propagation exponent s2 will increase the downlink capacit

    WCDMA uplink capacity of highways cigar-shaped microcells with incorporated HSUPA service

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11277-011-0229-3The multi-service (voice, data and HSUPA) uplink capacity and the interference statistics of the sectors of the cigar-shaped WCDMA microcell are studied using a model of 5 highway microcells. The two-slope propagation loss model with lognormal shadowing is used in the analysis. It is concluded that the voice and data service are significantly affected by HSUPA users and sector capacity decreases dramatically when one of these users gets connected to a given sector or to one next to it. Also it has been concluded that the capacity decrement is highly sensitive to the location of the HSUPA users. Thus, no more than one HSUPA with a process gain of 16 can be connected to a given base station. In this case, the HSUPA user should interrupt its transmission when it is near to the sector border. No more than one HSUPA user with a process gain of 8 is permitted in a given sector and the sector next to it. When the HSUPA user is at the sector border, its transmission should be disabled

    Propagation measurements to support third generation mobile radio network planning

    Get PDF

    Modeling and characterization of urban radio channels for mobile communications

    Get PDF
    Results of this thesis contribute in modeling and characterization of radio channels for future mobile communications. The results are presented mainly in three parts: a) modeling of propagation mechanisms, b) methodology of developing a propagation model, c) characterization of urban radio channel. One of the main propagation physical phenomena that have an important role in diverting signals to non line of sight scenarios is the diffraction process. This thesis proposes diffraction coefficients that have better agreement with finite difference time domain solution and rigorous diffraction theory than the coefficient commonly used in propagation predictions for mobile communications. The importance of diffuse scattering has also been investigated and showed that this physical process may have a key role in urban propagation, with a particular impact on the delay spread and angular spread of the signal at the receiver. This thesis proposes wideband propagation models for main and perpendicular streets of urban street grids. The propagation models are ray-based and are given in explicit mathematical expressions. Each ray is characterized in terms of its amplitude, delay, and angle of arrival, angle of departure for vertical and horizontal polarizations. Each of these characteristics is given in a closed mathematical form. Having wideband propagation model in explicit expression makes its implementation easy and computation fast. Secondary source modeling approach for perpendicular streets has also been introduced in this thesis. The last part of the thesis deals with characterization of urban radio channels for extracting parameters that help in successful design of mobile communication systems. Knowledge of channel characteristics enables reaching optimum trade off between system performance and complexity. This thesis analyzes measurement results at 2 GHz to extract channel parameters in terms of Rake finger characteristics in order to get information that helps to optimize Rake receiver design for enhanced-IMT2000 systems. Finger life distance has also been investigated for both micro- and small cell scenarios. This part of the thesis also presents orthogonality factor of radio channel for W-CDMA downlink at different bandwidths. Characterization of dispersion metrics in delay and angular domains for microcellular channels is also presented at different base station antenna heights. A measure of (dis-) similarity between multipath components in terms of separation distance in delay and angular domains is introduced by the concept of distance function, which is a step toward in development of algorithm extraction and analysis multipath clustering. In summary, the significant contributions of the thesis are in three parts. 1) Development of new diffraction coefficients and corrections of limitations of existing one for accurate propagation predictions for mobile communications. 2) Development of wideband propagation models for urban street grid. The novelty of the model is the development in explicit mathematical expressions. The developed models can be used to study propagation problem in microcellular urban street grids. 3) Presenting channel parameters that will help in the design of future mobile communication systems (enhanced-IMT2000), like number of active fingers, finger life distance, and orthogonality factors for different bandwidths. In addition, a technique based on multipath separation distance is proposed as a step toward in development of algorithms for extraction and analysis of multipath clusters.reviewe

    Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Get PDF
    The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB) channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband) model presented here (especially in the case of multiband UWB frequency synchronization) is more accurate than using frequency offset estimate obtained from narrowband models
    corecore