1,251 research outputs found

    Frequency invariant uniform concentric circular arrays with directional elements

    Get PDF
    A new approach for designing frequency invariant (FI) uniform concentric circular arrays (UCCAs) with directional elements is proposed, and their applications to direction-of-arrival (DOA) estimation and adaptive beamforming are studied. By treating the sensors along the radial direction of the UCCA as linear subarrays and using appropriately designed beamformers, each subarray is transformed to a virtual element with appropriate directivity. Consequently, the whole UCCA can be viewed as a virtual uniform circular array (UCA) with desired element directivity for broadband processing. By extending the approach for designing FI-UCAs, the frequency dependency of the phase modes of the virtual UCA is compensated to facilitate broadband DOA and adaptive beamforming. Both the linear array beamformers (LABFs) and compensation filters can be designed separately using second- order cone programming (SOCP). Moreover, a new method to tackle the possible noise amplification problem in such large arrays by imposing additional norm constraints on the design of the compensation filters is proposed. The advantages of this decoupled approach are 1) the complicated design problem of large UCCAs can be decoupled into simpler problems of designing the LABFs and compensation filters, and 2) directional elements, which are frequently encountered, can be treated readily under the proposed framework. Numerical examples are provided to demonstrate the effectiveness and improvement of the proposed methods in DOA estimation, adaptive beamforming, and elevation control over the conventional FI-UCCA design method.published_or_final_versio

    Adaptive beamforming using frequency invariant uniform concentric circular arrays

    Get PDF
    This paper proposes new adaptive beamforming algorithms for a class of uniform concentric circular arrays (UCCAs) having near-frequency invariant characteristics. The basic principle of the UCCA frequency invariant beamformer (FIB) is to transform the received signals to the phase mode representation and remove the frequency dependence of individual phase modes through the use of a digital beamforming or compensation network. As a result, the far field pattern of the array is electronic steerable and is approximately invariant over a wider range of frequencies than the uniform circular arrays (UCAs). The beampattern is governed by a small set of variable beamformer weights. Based on the minimum variance distortionless response (MVDR) and generalized sidelobe canceller (GSC) methods, new recursive adaptive beamforming algorithms for UCCA-FIB are proposed. In addition, robust versions of these adaptive beamforming algorithms for mitigating direction-of-arrival (DOA) and sensor position errors are developed. Simulation results show that the proposed adaptive UCCA-FIBs converge much faster and reach a considerable lower steady-state error than conventional broadband UCCA beamformers without using the compensation network. Since fewer variable multipliers are required in the proposed algorithms, it also leads to lower arithmetic complexity and faster tracking performance than conventional methods. © 2007 IEEE.published_or_final_versio

    Frequency Invariant Uniform Circular Array for Wideband mm-Wave Channel Characterization

    Get PDF

    Beamforming Techniques for Smart Antenna using Rectangular Array Structure

    Get PDF
    In this paper, array theory in general has been discussed. Basic fundamentals of smart antenna and beamforming techniques using rectangular array theory is discussed. Two techniques, Matrix inversion and IDFT method , for their pros and cons were described which were used for beamforming. Both the techniques found to be useful as their areas of application differs on hardware background. The design of a fully spatial signal processor using rectangular array configuration is presented in this paper. It has wideband properties and,hence eliminates the requirement of different antenna spacing. Furthermore,frequency selectivity and rejecting unwanted signals gives the satisfactory performance for practical implementation.DOI:http://dx.doi.org/10.11591/ijece.v4i2.586

    Adaptive beamforming using uniform concentric circular arrays with frequency invariant characteristics

    Get PDF
    This paper proposes a new method for adaptive beamforming using uniform concentric circular array (UCCA) that has nearly frequency invariant (FI) characteristics. The basic principle of FI UCCA is to transform the received signals to the phase mode and compensate for the frequency dependency of the individual phase mode through the use of a digital beamforming network. The far field pattern of the array is then determined by a set of weights and it is approximately invariant over a wide range of frequencies. Therefore, the minimum variance beamforming (MVB) approach can be used to adapt the small set of weights, as if it is a narrowband array, Design examples and simulation are given to demonstrate the usefulness of the proposed FI UCCA in broadband DOA estimation and beamforming. © 2005 IEEE.published_or_final_versio

    Algorithms and Circuits for Analog-Digital Hybrid Multibeam Arrays

    Get PDF
    Fifth generation (5G) and beyond wireless communication systems will rely heavily on larger antenna arrays combined with beamforming to mitigate the high free-space path-loss that prevails in millimeter-wave (mmW) and above frequencies. Sharp beams that can support wide bandwidths are desired both at the transmitter and the receiver to leverage the glut of bandwidth available at these frequency bands. Further, multiple simultaneous sharp beams are imperative for such systems to exploit mmW/sub-THz wireless channels using multiple reflected paths simultaneously. Therefore, multibeam antenna arrays that can support wider bandwidths are a key enabler for 5G and beyond systems. In general, N-beam systems using N-element antenna arrays will involve circuit complexities of the order of N2. This dissertation investigates new analog, digital and hybrid low complexity multibeam beamforming algorithms and circuits for reducing the associated high size, weight, and power (SWaP) complexities in larger multibeam arrays. The research efforts on the digital beamforming aspect propose the use of a new class of discrete Fourier transform (DFT) approximations for multibeam generation to eliminate the need for digital multipliers in the beamforming circuitry. For this, 8-, 16- and 32-beam multiplierless multibeam algorithms have been proposed for uniform linear array applications. A 2.4 GHz 16-element array receiver setup and a 5.8 GHz 32-element array receiver system which use field programmable gate arrays (FPGAs) as digital backend have been built for real-time experimental verification of the digital multiplierless algorithms. The multiplierless algorithms have been experimentally verified by digitally measuring beams. It has been shown that the measured beams from the multiplierless algorithms are in good agreement with the exact counterpart algorithms. Analog realizations of the proposed approximate DFT transforms have also been investigated leading to low-complex, high bandwidth circuits in CMOS. Further, a novel approach for reducing the circuit complexity of analog true-time delay (TTD) N-beam beamforming networks using N-element arrays has been proposed for wideband squint-free operation. A sparse factorization of the N-beam delay Vandermonde beamforming matrix is used to reduce the total amount of TTD elements that are needed for obtaining N number of beams in a wideband array. The method has been verified using measured responses of CMOS all-pass filters (APFs). The wideband squint-free multibeam algorithm is also used to propose a new low-complexity hybrid beamforming architecture targeting future 5G mmW systems. Apart from that, the dissertation also explores multibeam beamforming architectures for uniform circular arrays (UCAs). An algorithm having N log N circuit complexity for simultaneous generation of N-beams in an N-element UCA is explored and verified

    Acoustic Solutions for Door Station

    Get PDF
    This thesis investigates how the audio quality in a door station can be improved by using multiple microphones and implementing beamforming. The concept of beamforming is explained, and two beamforming algorithms are implemented. These are tested with different microphone configurations in both simulated and real environments. Three already implemented solutions for single microphones are also tested. The performance of different microphone configurations is analysed, and the beamforming algorithms are compared to the single microphone solutions. Finally a solution for the application is proposed

    Acoustic Imaging with Circular Microphone Array: a new Approach for Sound Field Analysis

    Get PDF
    Acoustic imaging is powerful in collecting spatial information of acoustic sources into a visual representation. In this paper, we focus on the analysis of the exterior acoustic field captured by a circular array of microphones. With a proper parametrization based on angles, we map the directions of arrival of sources as a function of the microphone locations, thus obtaining an acoustic image called "angular space". Therefore, we introduce a linear transform to enable analysis and synthesis operations for mapping the microphone pressures onto the angular space using local space-time Fourier analysis. We prove the ability of this representation to combine global information coming from multiple arrays in a single acoustic image that can be processed and manipulated. Examples of source localization applications in simulated and measured scenarios show the effectiveness of the proposed method obtaining results comparable with state-of-the- art methods
    • …
    corecore