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A new approach for designing frequency invariant (FI)

uniform concentric circular arrays (UCCAs) with directional

elements is proposed, and their applications to direction-of-arrival

(DOA) estimation and adaptive beamforming are studied.

By treating the sensors along the radial direction of the

UCCA as linear subarrays and using appropriately designed

beamformers, each subarray is transformed to a virtual element

with appropriate directivity. Consequently, the whole UCCA can

be viewed as a virtual uniform circular array (UCA) with desired

element directivity for broadband processing. By extending the

approach for designing FI-UCAs, the frequency dependency of

the phase modes of the virtual UCA is compensated to facilitate

broadband DOA and adaptive beamforming. Both the linear

array beamformers (LABFs) and compensation filters can be

designed separately using second-order cone programming

(SOCP). Moreover, a new method to tackle the possible noise

amplification problem in such large arrays by imposing additional

norm constraints on the design of the compensation filters

is proposed. The advantages of this decoupled approach are

1) the complicated design problem of large UCCAs can be

decoupled into simpler problems of designing the LABFs and

compensation filters, and 2) directional elements, which are

frequently encountered, can be treated readily under the proposed

framework. Numerical examples are provided to demonstrate the

effectiveness and improvement of the proposed methods in DOA

estimation, adaptive beamforming, and elevation control over the

conventional FI-UCCA design method.
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I. INTRODUCTION

Broadband beamforming has been successfully

applied to many fields, including wireless

communications, radar, radio astronomy,

sonar, navigation, tracking, rescue, and other

emergency-assistance devices. Hence, the theoretical

as well as applied aspects of broadband beamforming

have received great research interest during the last

decades [1, 2]. One of the most popular approaches

for adaptive broadband beamforming is to employ

tapped-delay lines or linear transversal filters

with adaptive coefficients to generate appropriate

beampatterns for the suppression of undesirable

interference. Since the response of the array is

frequency dependent, the number of coefficients of

the tapped-delay lines required will increase with the

signal bandwidth, which implies high complexity

for broadband adaptive processing. To tackle this

problem the subband decomposition technique, partial

adaptation, and frequency invariant beamformers

(FIBs) have been proposed to reduce either the

frequency band to be adapted or the length of the

adaptive transversal filters [3—10] to be employed.

In FIB a fixed beamforming network is used

to compensate for the frequency dependency of

the array and to achieve beampatterns which are

approximately invariant over the frequency band of

interest. For instance, in [6], the array aperture is

discretized to obtain FIBs with fixed beampatterns

using the scale-frequency relationship of an array

aperture. The design and implementation of such FIBs

for linear arrays have been reported in [7], and its

application to direction-of-arrival (DOA) estimation

using a beam-space processing approach has been

studied in [8]. Because of the discretization process,

the positions of the sensor elements are usually

nonuniform. In [9] and [10] it is observed that the

design of FIBs for uniform linear arrays (ULAs)

is equivalent to the design of a 2D fan filter with

different orientations. By using a set of fixed FIBs that

covers different spatial angles of a ULA, broadband

interferences can be suppressed using conventional

beamforming methods. Most of the abovementioned

works focus on linear arrays.

On the other hand it is known that circular arrays

possess important advantages such as electronic

steering and broadband processing, including

beamforming and DOA estimation, etc. In [11]

an electronic steerable uniform circular array

(UCA) in the digital domain with approximately

frequency invariant (FI) characteristics was proposed.

Compensation filters, which can be optimally designed

using second-order cone programming (SOCP), were

introduced to suppress the frequency variations. The

possibility of using compensation filters in UCAs

has also been experimentally demonstrated for sonar

applications in [12]. More recently uniform concentric
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Fig. 1. UCCA composed of M linear arrays, each with N

elements.

circular arrays (UCCA) were extensively studied

in [13]—[15] and the related references therein. It

is found that FI characteristics over a much larger

bandwidth can be achieved by using UCCAs instead

of UCAs for omnidirectional sensors.

It is worth noting that the methods mentioned

above are usually based on omnidirectional elements

[16—18]. Motivated by the important advantages

of UCCAs and by the directivity of the sensor

elements commonly encountered in circular arrays, we

propose, in this paper, a new approach to the design

of FI-UCCAs with directional elements, as shown in

Figs. 1 and 2. More specifically we treat the sensors

along the radial direction on the sensor plane as linear

subarrays. Each subarray is transformed to a virtual

element with appropriate directivity by means of

an appropriately designed linear array beamformer

(LABF). Consequently, the whole UCCA can now

be viewed as a virtual UCA with suitable element

directivity for broadband processing. By extending

the approach in [17], the frequency dependency of

the phase modes of the virtual UCA, which are the

inverse discrete Fourier transform (IDFT) of the

subarray outputs, is compensated in order to facilitate

broadband DOA and adaptive beamforming. Both

the LABFs and compensation filters can be designed

separately using SOCP, which can be efficiently and

optimally solved. The advantages of this approach

are 1) the complicated design problem of a UCCA

can now be decoupled into the simpler problems of

designing the LABFs and compensation filters for

the UCA, and 2) directional elements, which are

frequently encountered, can be treated readily under

the proposed framework. In particular it is simpler to

determine the locations of the sensors than a general

UCCA with a lot of sensors. This simplicity, however,

will also impose some limitations to the ultimate

performance of the array as a tradeoff.

Fig. 2. Block diagram of proposed UCCA-FIB.

In the design of a UCCA with a large number

of elements and wide bandwidth, the beamforming

network or compensation filters may lead to

coefficients with large amplitude and, hence, sensor

noise amplification. To address this problem we

propose imposing additional norm constraints on

the filter coefficients so as to restrict the amplitude

of the filter coefficients and, hence, possible sensor

noise amplification. The resultant problem can also be

solved using the SOCP.

Moreover, the proposed UCCA-FIB is exploited

for broadband DOA estimation and adaptive

beamforming. Different from most traditional

FIB-based DOA methods, which usually require

additional beam-space processing, we propose

applying directly conventional narrowband methods

for ULAs such as MUSIC [19] to phase modes since

the steering vector of our virtual FI-UCA has the

same form as a narrowband ULA. This considerably

simplifies the implementation and allows other,

more-sophisticated methods that have been developed

for ULAs to be applied. With the incorporation of

norm constraints, it is found from simulation results

that the proposed constrained UCCA-FIB offers

satisfactory performance for both DOA and adaptive

beamforming with very few variable beamformer

weights and simple operation.

The rest of the paper is organized as follows.

In Section II the basic structure of the UCCA

with directional elements and the proposed digital

broadband UCCA-FIB are presented. The design of

the compensation filters for the FIB is described in

Section III. Section IV is devoted to the extension of

the proposed UCCA-FIB with elevation beampattern

control. The proposed broadband DOA estimation

and adaptive beamforming algorithms that use the

proposed UCCA-FIB are presented in Section V.

Design examples are given in Section VI to illustrate
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the effectiveness of the proposed method. Finally,

Section VI concludes the paper.

II. DESIGN OF FIB FOR UCCA

The UCCA studied in this paper is shown in

Fig. 1. It is assumed that the UCCA is composed

of N rings, each of which is a UCA with M sensor

elements. Alternatively, the UCCA can also be viewed

as an M ¡ element UCA with each sensor element
consisting of a linear array, each with N sensor

elements. Therefore, the steering vector of the mth

linear array can be given by

a(m)(f,μ,Á)

= fE(m)1 (μ,Á¡'m)exp[j¯r1 sinμcos(Á¡'m)],
E(m)2 (μ,Á¡'m)exp[j¯r2 sinμ cos(Á¡'m)], : : : ,
E(m)N (μ,Á¡'m)exp[j¯rN sinμcos(Á¡'m)]gT

where ¯ = 2¼f=c, f 2 [fL,fU] is the frequency within
the desired range, c is the propagation velocity, and

rn denotes the radius of the nth ring. μ and Á are

the elevation angle and azimuth angle, respectively.

'm = 2¼(m¡ 1)=M represents the angular position

of the mth linear array. E(m)n (μ,Á) is the element

pattern of the nth element in the mth linear array. In

particular, E(m)n (μ,Á) = 1 denotes an omnidirectional

element. In this paper we mainly focus on the design

at the elevation angle of μ = ¼=2, i.e., the horizontal

plane. However, we later show that a limited range

of the elevation spatial pattern around the horizontal

plane can also be controlled by using the proposed

method.

Figure 2 shows the structure of the proposed

FIB for UCCAs. The basic principle is to transform

each linear subarray of the UCCA to an equivalent

element with an appropriate directional pattern.

Consequently, a virtual UCA consisting of these

desirable directional elements with a radius of rV is

obtained. Let x(m)n [t,Á] be the output of the nth element

of the mth linear array. It is first passed through a

filter h(m)n [t] with frequency response H(m)
n (f). Then,

all filter outputs are summed to give the output of

each linear subarray as

ym[t,Á] =

NX
n=1

x(m)n [t,Á] ¤h(m)n [t] (1)

where ¤ denotes discrete-time convolution. The filters
H(m)
n (f), n= 1, : : : ,N, form the LABF of the mth

linear subarray. By applying the discrete-time Fourier

transform (DTFT) to (1), one gets the spectrum of

ym[t,Á] as

Ym(f,Á) =

NX
n=1

X(m)n (f,Á)H(m)
n (f) (2)

where X(m)n (f,Á) and H(m)
n (f) are the DTFT of

x(m)n [t,Á] and h(m)n [t], respectively.

Assuming that the source s[t] with spectrum S(f)
impinges on the array from angle Á, we then have
X(m)n (f,Á) = S(f)E(m)n (Á¡'m)exp[j¯rn cos(Á¡'m)].
By substituting this back into (2), one gets

Ym(f,Á) = S(f)Gm(f,Á) (3a)

where

Gm(f,Á) =

NX
n=1

E(m)n (Á¡'m)exp[j¯rn cos(Á¡'m)]H(m)
n (f)

(3b)
is the spatial response of the mth linear array.
Alternatively, the UCCA can now be viewed as a
UCA with directional elements having an element
response of Gm(f,Á). As pointed out in [17], a UCA
with suitable directional elements can effectively
synthesize wide-bandwidth array patterns. We discuss
the choice of this element pattern for the proposed
virtual UCA later in this section. If the LABFs
H(m)
n (f) are designed so that each linear subarray
behaves like a directional element being placed at a
UCA with radius rV, then it is possible to synthesize
an FI wideband UCA. In other words we wish the mth
linear array response Gm(f,Á) in (3b) to approximate
the mth element response of a virtual UCA with
radius rV

Gm(f,Á)¼G(Á¡'m)exp[j¯rV cos(Á¡'m)] (4)

where G(Á¡'m) denotes the desired beampattern
of the mth virtual element and rV is chosen to lie
in [r1,rN]. Consequently, the design of a UCCA
with a large number of directional elements can be
decoupled into the individual design of the LABF
and an FI-UCA. For the latter we first note that the
steering vector of the virtual UCA with M directional
elements is given by

aV(f,Á) = fG(Á¡'1)exp[j¯rV cos(Á¡'1)],
G(Á¡'2)exp[j¯rV cos(Á¡'2)], : : : ,
G(Á¡'M)exp[j¯rV cos(Á¡'M)]gT:

One of the attractive features of circular arrays is that
the directional pattern formed can be readily rotated
in the azimuth direction without much variation by
controlling the excitation or amplification of the phase
modes. In fact, the design, analysis, and beamforming
of UCA can be conveniently carried out by means of
the phase mode [13—18], which can be obtained by
taking the IDFT of each snapshot of the UCA to form
a set of Fourier coefficients, each of which is called a
phase mode. More precisely the pth-order phase mode
of our ideal, virtual UCA, as given by the right hand
side of (4), can be written as

G̃p(f,Á) =
1

M

MX
m=1

G(Á¡'m)exp[j¯rV cos(Á¡'m)]ejp'm

(5)

where p=¡P, : : : ,P, and hence, the number of phase
modes is 2P+1.
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As mentioned earlier G(Á) is the desired

element pattern of the virtual UCA, and it should

be designed according to the specifications of the

target applications. In the context of wideband FI

beamforming, the choice of G(Á) would be crucial

to the resulting performance of the virtual UCA. For

example, if G(Á) is chosen to be omnidirectional, the

amplitudes of the modes at some frequencies may

vanish so that it would be difficult to compensate the

frequency response over a large bandwidth by using

the compensation filter H̄p(f) at the next stage. An

interesting element pattern G(Á) proposed in [17]

is 1+cosÁ, which yields non-zero modes over a

wide frequency range. Alternatively, one may use

another form of G(Á), provided that it possesses a

similar non-zero amplitude characteristic as 1+cosÁ.

Since the pattern G(Á) = 1+cosÁ gives satisfactory

performance, as demonstrated in Section VI, we focus

on this pattern throughout this paper.

We now determine the condition of the FIB to

achieve FI spatial beampatterns. First of all we note

that the element pattern G(Á) of the virtual UCA is

a periodic function with period 2¼. Hence, it can be

written in a Fourier series as

G(Á) =

KX
k=¡K

Cke
jkÁ (6)

where Ck denotes the kth Fourier coefficient which

can be computed as Ck = (1=2¼)
R 2¼
0
G(Á)e¡jkÁdÁ.

In principle, the value of K depends on the

function G(Á), and it can be infinity. In practice, a

sufficient number of terms are chosen to give a good

approximation. For instance, K = 1 when G(Á) is

chosen as 1+cosÁ. By using the above property in

(6), (5) can be further written as

G̃p(f,Á) =
1

M

MX
m=1

KX
k=¡K

Cl exp[jk(Á¡'m)]exp[j(¯rV cos(Á¡'m) +p'm)]

= ejpÁ
KX

k=¡K
Ck

(
1

M

MX
m=1

exp[j((k¡p)(Á¡'m) +¯rV cos(Á¡'m))]
)
: (7)

For sufficiently large values of M, the sum inside

the square bracket of (7) can be approximated by an

integral, as follows

1

M

MX
m=1

exp[j((k¡p)(Á¡'m) +¯rV cos(Á¡'m))]

¼ 1

2¼

Z 2¼

0

exp[j((k¡p)(Á¡') +¯rV cos(Á¡'))]d'

=
1

2¼

Z 2¼

0

exp[j((p¡ k)('¡Á) +¯rV cos('¡Á))]d('¡Á)

= jp¡kJp¡k(¯rV) (8)

where Jp¡k(¯rV) is the Bessel function of the first kind
of order p¡ k. Consequently, using (8), (7) can be
simplified to

G̃p(f,Á)¼ Bp(f)ejpÁ (9)

where

Bp(f) =

KX
k=¡K

Ckj
p¡kJp¡k(¯rV): (10)

It can be seen from (9) that the phase mode is

frequency dependent due to the presence of Bp(f).

Hence, to achieve a FI beampattern, each phase mode

has to pass through an additional filter H̄p(f), called

the compensation filter, to remove this frequency

dependency. Therefore, the ideal response of H̄p(f)

should satisfy

Ḡp(f) = G̃p(f)H̄p(f) = Bp(f)e
jpÁH̄p(f) = e

jpÁ (11)

or equivalently

H̄p(f) = B
¡1
p (f): (12)

After compensation the steering vector of the phase

modes is now given by

aPM(Á) = [Ḡ¡P(f),Ḡ¡(P¡1)(f), : : : ,ḠP(f)]
T

¼ [e¡jPÁ,e¡j(P¡1)Á, : : : ,ejPÁ]T: (13)

It can be seen that if the LABF and compensation

filters are properly designed, then the steering vector

is approximately FI. Furthermore, the above steering

vector has the same form as a (2P+1)¡ element
ULA. Consequently, all conventional DOA estimation

and adaptive beamforming algorithms for ULAs can

be seamlessly applied to provide the corresponding

broadband processing using the proposed UCCA.

For instance, let the beamforming weight vector be

w= [w¡P ,w¡(P¡1), : : : ,wP]
T, then the spatial response

of the final beamformer is

F(Á)¼wTaPM(Á) =
PX

p=¡P
wpe

jpÁ: (14)

This considerably simplifies broadband DOA
estimation and adaptive beamforming as we illustrate
further in Section V.

III. DESIGN OF LABFS AND COMPENSATION
FILTERS FOR FIB

As mentioned in previous sections, the design
of the proposed UCCA-FIB with directional
elements can be decoupled into the design of LABFs
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Hm(f) = [H
(m)
1 (f), : : : ,H(m)

N (f)]T for constructing

the virtual UCA and compensation filters H̄(f) =
[H̄¡P(f), : : : ,H̄P(f)]

T for shaping the desired pattern

using the directional elements. Both of which should

be designed appropriately to give an FI characteristic

in the frequency band of interest.

By extending the approach in [13], we now

formulate these design problems as SOCP problems,

which can be optimally solved. The main difference

between the proposed approach and the one in

[13] is that additional norm constraints on the filter

coefficients are imposed since the sensor noise may be

amplified by the filtering network in large UCCAs or

broadband applications where coefficients with large

amplitude will be encountered.

We first start with the design of the LABFs. The

frequency response of the filter H(m)
n (f) is given by

H(m)
n (f) =

LX
l=1

h(m)n,l exp[¡j2¼(l¡ 1)f=fs] (15)

for n= 1, : : : ,N, where fs denotes the sampling

frequency, L is the number of taps, and h
(m)
n,l is the

lth impulse response coefficient of the nth filter.

For simplicity, we assume that each filter H(m)
n (f)

is composed of L taps. We know that the filters

Hm(f) = [H
(m)
1 (f), : : : ,H

(m)
N (f)]T have to be chosen

to satisfy the approximation in (4) 8Á 2 [¡¼,¼] and
8f 2 [fL,fU], where fL and fU are, respectively, the
lower and the upper frequencies of interest. Hence,

using (15), Gm(f,Á) can be rewritten as

Gm(f,Á) =

NX
n=1

LX
l=1

h(m)n,l E
(m)
n (Á¡'m)

£ exp[j(¯rn cos(Á¡'m)¡ 2¼(l¡ 1)f=fs)]
(16)

and its desired response is G(Á¡'m)exp[j¯rV
¢cos(Á¡'m)] as mentioned in (4). The filter
coefficients h(m)n,l can be determined by minimizing the

L2 norm of the resultant approximation error. This can

be formulated as the following optimization problem

min
h
(m)

n,l

°°°°°
NX
n=1

LX
l=1

h(m)n,l E
(m)
n (Á¡'m)

£ exp[j(¯rn cos(Á¡'m)¡ 2¼(l¡ 1)f=fs)]

¡G(Á¡'m)exp[j¯rV cos(Á¡'m)]
°°°°°
2

(17)

for Á 2 [¡¼,¼], f 2 [fL,fU], which can be further
rewritten in the following matrix form as

min
hm,"

"

s.t. kcTm(f,Á)hm¡ gm(f,Á)k2 · "
Á 2 [¡¼,¼], f 2 [fL,fU]

(18)

where

hm = [h
(m)
1,1
, : : : ,h

(m)
1,L
,h
(m)
2,1
, : : : ,h

(m)
2,L
, : : : ,h

(m)
N,1
, : : : ,h

(m)
N,L
]T

cm(f,Á) = [Ē
(m)
1,1
, : : : , Ē

(m)
1,L
, Ē
(m)
2,1
, : : : , Ē

(m)
2,L
, : : : , Ē

(m)
N,1
, : : : , Ē

(m)
N,L
]T

Ē
(m)
n,l
= E(m)n (Á¡'m)exp[j(¯rn cos(Á¡'m)¡ 2¼(l¡ 1)f=fs)]

gm(f,Á) =G(Á¡'m)exp[j¯rV cos(Á¡'m)]:

By discretizing the constraints densely in f 2 [fL,fU]
and Á 2 [¡¼,¼], (18) can be expressed as a standard
SOCP problem. It can be solved efficiently with

complexity O((NL)3:5 + JfJÁ(NL)
2:5) using an

optimization toolbox such as CVX [20], where Jf and

JÁ are the total numbers of the discretization points in

f 2 [fL,fU] and Á 2 [¡¼,¼], respectively.
Similarly, the coefficients of the compensation

filter H̄p(f) in (12), p=¡P, : : : ,P, can be designed
by solving the following problem

min
h̄p,l

°°°°°°
L̄X
l=1

h̄p,l exp[¡j2¼(l¡ 1)f=fs]¡B¡1p (f)
°°°°°°
2

for f 2 [fL,fU] (19)

where h̄p,l is the lth filter coefficient of the pth phase

mode and L̄ is the number of filter taps. The above

problem can again be reformulated in matrix form as

min
h̄p,"

"

s.t. kc̄T(f)h̄p¡B¡1p (f)k2 · "
f 2 [fL,fU]

(20)

where h̄p = [h̄p,1, : : : , h̄p,L̄]
T and c̄(f) = f1,e¡j2¼f=fs , : : : ,

exp[¡j2¼(L̄¡ 1)f=fs]gT. Likewise, by discretizing the
constraints densely in f 2 [fL,fU], the complexity of
solving the SOCP problem in (20) is O(L̄3:5 + JfL̄

2:5).

Since filter coefficients with large amplitudes may

lead to sensor noise amplification, the performance

of the designed FIB in DOA estimation and adaptive

beamforming may be considerably degraded. To

address this problem we propose imposing norm

constraints on the filter coefficients so as to limit the

white-noise gain. Consequently, the problems (18) and

(20) are, respectively, modified to

min
hm,"

"

s.t. kcTm(f,Á)hm¡gm(f,Á)k2 · "
khmk2 · ´, Á 2 [¡¼,¼], f 2 [fL,fU]

(21)

and
min
h̄p,"

"

s.t. kc̄T(f)h̄p¡B¡1p (f)k2 · "
kh̄pk2 · », f 2 [fL,fU]

(22)
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where ´ and » are the upper bounds of the norms

of the coefficient vectors, and they can be chosen

according to the specification at hand. As shown by

the design examples in Section V, the norm constraints

can effectively prevent the noise from amplifying. For

the sake of presentation, the proposed FIB that uses

(18) and (20) is referred to as the unconstrained-FIB,

whereas the one that uses (21) and (22) is referred to

as the constrained-FIB.

IV. DESIGN OF UCCA-FIB WITH ELEVATION
CONTROL

In previous sections we mainly focused on the

design of UCCA-FIBs at the horizontal plane. In

this section we show that the proposed method can

be extended to provide an FI characteristic within a

limited elevation range around the horizontal plane.

To start with let the desired elevation region

be £ = [μL,μU], where μL and μU are the lower

and upper bounds of the region, respectively. The

desired element pattern of the virtual UCA is denoted

by G(μ,Á), which is given according to the target

applications. For simplicity the desired element

pattern is assumed to be separable, and hence, it

can be written as G(μ,Á) =GE(μ)GA(Á), where

GE(μ) and GA(Á) denote the elevation and azimuth

patterns, respectively. Moreover, we assume that

the azimuth pattern GA(Á) of the virtual UCA is a

periodic function, with period 2¼ as defined in (6).

For simplicity the desired mth element response

of the virtual UCA around the horizontal plane is

chosen as G(μ,Á¡'m)exp[j¯rV cos(Á¡'m)] so
that similar design procedure in (4)—(14) can be

directly applied by treating GE(μ) as a constant.

Then, with appropriate design of LABFs, the mth

element response of the virtual UCA is approximately

given by

Gm(f,μ,Á)¼GE(μ)GA(Á¡'m)exp[j¯rV cos(Á¡'m)]
(23)

and the pth phase model of the virtual UCA is

G̃p(f,μ,Á)¼ Bp(f)GE(μ)ejpÁ: (24)

Moreover, the spatial response of the final

beamformer is F(μ,Á) =wTaPM(μ,Á) =GE(μ)
PP
p=¡P

¢wpejpÁ,where aPM(μ,Á) = [GE(μ)e¡jPÁ,GE(μ)e¡j(P¡1)Á,
: : : ,GE(μ)e

jPÁ]T.

To obtain Gm(f,μ,Á) in (23), the design problem

of the LABF H(m)
n (f) is modified to (c.f. (18))

min
hm,"

"

s.t. kcTm(f,μ,Á)hm¡ gm(f,μ,Á)k2 · ",
Á 2 [¡¼,¼], μ 2 [μL,μU], f 2 [fL,fU]

(25)

where hm and cm(f,μ,Á) are defined as in (18) except

that Ē
(m)
n,l = E

(m)
n (μ,Á¡'m)exp[j(¯rn sinμcos(Á¡'m)

¡2¼(l¡ 1)f=fs)] and gm(f,μ,Á) =G(μ,Á¡'m)
¢exp[j¯rV cos(Á¡'m)]. If noise amplification is a
problem, an additional norm constraint khmk2 · ´
can be imposed. Furthermore, from (24), we see

that the design of compensation filter H̄p(f) will

not be influenced by the elevation pattern because

of the separable phase model response. Hence, the

methods developed in Section III for designing these

filters can be directly adopted. Simulation results

presented in Section VI show that this proposed

method performs well and that FI characteristic in

a prescribed elevation region around the horizontal

plane can also be accomplished.

It is worth noting that the elevation control

here utilizes the directivity of the sensor elements,

and hence, only a limited elevation region can be

controlled. It has been shown in [21]—[23] that arrays

with elements placed in the elevation direction, e.g.,

uniform concentric spherical arrays, can be utilized to

achieve full elevation control. Interested readers are

referred to [21]—[23] and to the references therein.

V. DOA ESTIMATION AND ADAPTIVE
BEAMFORMING

In this section the UCCA-FIB designed previously

is employed for broadband DOA estimation and

adaptive beamforming. For the sake of simplicity, we

only consider the plane at μ = ¼=2 here. Assuming

that D broadband signals impinge on the UCCA at

angles ©= fÁ1,Á2, : : : ,ÁDg, respectively, the output
signal at each element of the array can be written as

x(m)n [t,©] =

DX
i=1

si[t¡ ¿ (m)n (Ái)] + v
(m)
n [t] (26)

where n= 1, : : : ,N, m= 1, : : : ,M, si[t] is the ith signal

that impinges the array at angle Ái and ¿
(m)
n (Ái) =

rn cos(Ái¡'m)=c denotes the propagation delay to the
nth element of the mth linear array associated with the

ith source. v(m)n [t] is the additive white Gaussian noise

at the nth element of the mth linear array. Hence, the

vector xm[t,©] = [x
(m)
1 [t,©],x(m)2 [t,©], : : : ,x(m)N [t,©]]T

is the snapshot of the mth linear array at sampling

instance t. The frequency response of the array output

xm[t,©] can be written as

Xm(f,©) =Am(f,©)S(f) +Vm(f) (27)

where Am(f,©) = [a
(m)(f,Á1), : : : ,a

(m)(f,ÁD)] is the

N £D source direction matrix for the mth linear array,

a(m)(f,Ái), i= 1, : : : ,D, is the steering vector of the

mth linear array that corresponds to the ith signal,

S(f) = [S1(f), : : : ,SD(f)]
T is the D£ 1 source signal

spectrum vector, and Vm(f) = [V
(m)
1 (f), : : : ,V(m)N (f)]T

is the frequency response of the sensor noise vector

of the mth linear array. Each output X(m)n , (f,©) is first

filtered by the LABF Hn(f), and the N outputs are
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summed to obtain the output of the mth element of the

virtual UCA

Ym(f,©) =H
T
m(f)Xm(f,©)

=HTm(f)Am(f,©)S(f) +H
T
m(f)Vm(f)

= ĀTm(f,©)S(f) + V̄m(f) (28)

where the mth LABF Hm(f) = [H
(m)
1 (f), : : : ,H(m)

N (f)]T

is designed to satisfy (4) using SOCP, as described in

Section III

Ām(f,©) =H
T(f)Am(f,©)

¼ fG(Á1¡'m)exp[j¯rV cos(Á1¡'m)], : : : ,
G(ÁD¡'m)exp[j¯rV cos(ÁD ¡'m)]gT

and V̄m(f) =H
T
m(f)Vm(f). Consequently, the frequency

response of the virtual UCA outputs Y(f,©) =

[Y1(f,©), : : : ,YM(f,©)]
T can be rewritten more

compactly in matrix form as

Y(f,©) = Ā(f,©)S(f) + V̄(f) (29)

where

Ā(f,©) = [Ā1(f,©), : : : ,ĀM(f,©)]
T

= [aV(f,Á1), : : : ,aV(f,ÁD)]

is the steering matrix of the virtual UCA and V̄(f) =

[V̄1(f), : : : ,V̄M(f)]
T denotes the frequency response of

the additive noise vector. After transforming (29) to

phase modes by IDFT, the output of the pth phase

mode becomes

Zp(f,©) =W
T
pY(f,©)

=WT
pĀ(f,©)S(f) +Qp(f) (30)

where Wp =M
¡1[ejp'1 ,ejp'2 , : : : ,ejp'M ]T and

Qp(f) =W
T
pV̄(f) is the noise of the pth phase mode.

Moreover, according to (5)—(9), it is known that

WT
pĀ(f,©) =W

T
p[aV(f,Á1), : : : ,aV(f,ÁD)]

¼ Bp(f)[ejpÁ1 , : : : ,ejpÁD ]: (31)

To remove the frequency dependency, each phase

mode, i.e., Zp(f,©), should be filtered by H̄p(f),

which should be designed to approximate B¡1p (f) by
using SOCP. Therefore, one gets the compensated

output as

Z̄p(f,©) = H̄p(f)Zp(f,©)

¼ B¡1p (f)WT
pY(f,©)

=

DX
i=1

ejpÁiSi(f)+B
¡1
p (f)Qp(f): (32)

The vector of these compensated phase modes can be

written as

Z̄(f,©) = [Z̄¡P(f,©), Z̄¡(P¡1)(f,©), : : : , Z̄P(f,©)]
T

=APM(©)S(f) + Q̄(f) (33)

where APM(©) = [aPM(Á1), : : : ,aPM(ÁD)] and Q̄(f) =

[B¡1¡P(f)Q¡P(f),B
¡1
¡(P¡1)(f)Q¡(P¡1)(f), : : : ,B

¡1
P (f)

¢QP(f)]T. Finally, by taking the inverse Fourier
transform (FT) of (33), the output of the virtual UCA

in time domain becomes

z̄[t,©]¼APM(©)s[t] + q̄[t]: (34)

It can be seen that the outputs of the UCCA are

first transformed by LABF Hm(f) to those of a virtual

UCA. Moreover, the frequency dependency in the

frequency band of interest is compensated by the

proposed FIB network. The resultant outputs fall

into the form of ULAs, as shown in (34). Hence,

conventional methods of DOA estimation and

beamforming for narrowband signals can be directly

applied.

We now proceed to estimate the DOAs by using

the conventional MUSIC algorithm based on the

output z̄[t,©]. First, we note that the covariance matrix

of the output is

Rz̄ = Efz̄[t,©]z̄H[t,©]g=APM(©)RsAHPM(©) +Rq̄
(35)

where Ef¢g denotes mathematical expectation. Rs =
Efs[t]sH[t]g is the signal covariance matrix, and
Rq̄ = Efq̄[t]q̄H[t]g is the noise covariance matrix. In
the finite sample case, Rz̄ can be estimated as

R̂z̄ =
1

T

TX
t=1

z̄[t,©]z̄H[t,©] (36)

where T is the total number of snapshots.

In order to estimate the DOAs, we denote the

eigendecomposition of (Rz̄,Rq̄) as Rz̄E= ¤Rq̄E,

where ¤ is a diagonal matrix of sorted eigenvalues

E= [ES j EN], and ES and EN are the eigenvectors of
the signal and noise subspaces, respectively. Then,

similar to the conventional MUSIC algorithm, the

source directions can be determined by searching

for the D peak positions of the following spatial

spectrum

PFIB-MUSIC(Á) =
aHPM(Á)aPM(Á)

aHPM(Á)ENE
H
NaPM(Á)

: (37)

Furthermore, broadband beamforming can be

performed to enhance the signal at a desired angle,

say Ád. The conventional beamforming techniques

such as the minimum variance distortionless response

(MVDR) beamforming can be employed to suppress

the interferences. The resultant beamformer weight
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Fig. 3. (a) Spatial-frequency response of proposed unconstrained-FIB with omnidirectional elements (example 1). (b) Beampatterns of

proposed unconstrained-FIB over normalized frequency fN 2 [0:1,0:3] with omnidirectional elements (example 1). (c) Desired
beampattern with omnidirectional elements (example 1).

vector of the MVDR is

wFIB-MVDR =
R̂¡1z̄ aPM(Ád)

aHPM(Ád)R̂
¡1
z̄ aPM(Ád)

: (38)

From the simulation results presented in the next

section, broadband interferences can be successfully

suppressed using the designed FIB and MVDR

beamformer in (38).

VI. DESIGN EXAMPLES AND SIMULATION RESULTS

In this section a six-ring UCCA is considered.

Each ring is composed of 20 elements. Moreover,

each linear subarray of the UCCA is assumed to be

a ULA with an inter-element spacing of d = ¸min=4,

where ¸min = c=fU is the minimal wavelength of

the signals. The frequency band of interest of the

UCCA-FIB is assumed to be fN 2 [fL,fU]=fs =
[0:1,0:3], which is normalized by the sampling

frequency fs. The radius of each ring is assumed to

be rn = (n+4)d, and the virtual radius is set to be

rV = 6d. From our simulation results in example 2

presented later, it should be found that rV should be

chosen in the range [r1,rN], which, in this example,

is equal to [5d,10d]. In all simulations the number

of filter coefficients is L= L̄= 20, and the number of

phase modes is chosen to be nine. The element pattern

of the virtual UCA considered is G(Á) = 1+cosÁ,

except example 3. The beamforming weight vector

w for the desired beampattern is obtained using the

CFIRPM command in Matlab.

EXAMPLE 1 UCCA with Omnidirectional Elements

In this example we illustrate the FI characteristic

of the proposed UCCA-FIB with omnidirectional

elements by designing a beampattern with the main

beam targeted at 0±. The resultant spatial response
of the designed unconstrained-FIB based on (18)

and (20) is shown in Fig. 3(a). Moreover, the spatial

responses for 21 uniformly spaced frequency points

in fN 2 [0:1,0:3] are plotted together in Fig. 3(b)
to illustrate the FI property of the FIB. It can be

seen that the frequency spectrum is approximately

invariant over the desired bandwidth and that it is
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Fig. 4. (a) Spatial-frequency response of proposed unconstrained-FIB with directional elements (example 2). (b) Beampatterns of

proposed unconstrained-FIB over normalized frequency fN 2 [0:1,0:3] with directional elements (example 2). (c) Desired beampattern
with directional elements (example 2).

nearly identical to the desired beampattern as shown

in Fig. 3(c).

EXAMPLE 2 UCCA with Directional Elements

Instead of omnidirectional elements we proceed

to illustrate the FI characteristic of the proposed

UCCA-FIB with directional elements in this example,

and the main beam of the desired beampattern is

targeted at 50±. For illustration purposes we assume
that the element pattern of each sensor element

is E(m)n (Á) = 1+0:5cosn¡1(Á), n= 1, : : : ,N and,

hence, that each ring is composed of identical sensor

elements. Figures 4(a) and (b) show the resultant

beampatterns of the proposed unconstrained-FIB.

It can be seen that the frequency spectrum is

approximately invariant over the desired bandwidth,

even though the elements are directional. Moreover,

the frequency spectrum is approximately identical to

the desired one shown in Fig. 4(c). Comparing the

proposed method with results shown in Example 1,

it is found that the proposed method still performs

quite well in the case of directional elements. We now

test the performance of the proposed constrained-FIB

based on (21) and (22). For illustration purposes

we choose ´ = 2 and » = 5. Figures 5(a) and (b)

show the spatial-frequency response of the proposed

constrained-FIB with directional elements. We notice

that the constrained-FIB still offers FI characteristic

over the desired bandwidth. Comparing it with the

unconstrained-FIB, the beampatterns exhibit slightly

increased variations since the filter coefficients,

and hence sensor noise amplification, are bounded

by the norm constraints. Therefore, the bound

values of ´ and » should be chosen to balance the

beampattern variations and noise amplification.

However, in practical applications, the constrained-FIB

is preferred since its performance in DOA estimation

and adaptive beamforming is much better than

the unconstrained-FIB as we illustrate further in

example 4.

In order to study the effect of the virtual radius rV
on the performance of the proposed FIB, Fig. 6 shows
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Fig. 5. (a) Spatial-frequency response of proposed constrained-FIB with directional elements, ´ = 2 and » = 5 (example 2).

(b) Beampatterns of the proposed constrained-FIB over normalized frequency fN 2 [0:1,0:3] with directional elements, ´ = 2
and » = 5 (example 2).

Fig. 6. Beampatterns with different virtual radius rV (only response of fN = 0:1, 0.2, and 0.3 are shown in each figure). (a) rV = 3d.

(b) rV = 8d. (c) rV = 12d (example 2).
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Fig. 7. Beampatterns at different elevation angles over normalized frequency fN 2 [0:1,0:3]. (a) μ = 80±. (b) μ = 85±. (c) μ = 90±
(example 3).

the beampatterns designed with different values of rV.

It can be found experimentally that the performance

may degrade significantly when rV is outside the range

[r1,rN]. When rV is chosen in this range, the obtained

and desired (ideal) beampatterns are nearly identical.

This suggests that the desired pattern of each linear

array can be obtained by choosing a radius rV within

the range [r1,rN], otherwise, performance degradation

may be experienced.

EXAMPLE 3 Elevation Control To illustrate the

capability of the proposed method of offering

FI characteristics at elevation angles around the

horizontal plane, we follow the array settings given

in example 2 and assume that the element pattern of

each sensor element is E(m)n (μ,Á) = 1+ sinμcosn¡1Á,
n= 1, : : : ,N and that the desired element pattern

of the virtual UCA is G(μ,Á) =GE(μ)GA(Á) =

sinμ(1+cosÁ). The elevation region to be controlled

is [μL,μU] = [4¼=9,5¼=9]. Figure 7 depicts the

beampatterns at different elevation angles using

the proposed nconstrained-FIB. It can be seen that

the response within the prescribed elevation region

is approximately FI. The results demonstrate that

the proposed method can be utilized to control the

elevation spatial pattern around the horizontal plane.

However, as discussed in Section IV, the FI property

will be degraded for larger elevation angles since only

a limited elevation region can be controlled due the

limitation of the array geometry.

EXAMPLE 4 Broadband DOA Estimation and

Beamforming In this example the effectiveness of

the proposed FIB for broadband DOA estimation

and beamforming is evaluated using the UCCA with

directional elements described in example 2. For

comparison we apply the proposed method with norm

constraint to a UCA with element pattern 1+cosÁ

directly. First, the performance of the proposed

FIBs for DOA estimation is tested. Two broadband
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Fig. 8. Spatial spectra using phase model based MUSIC

algorithm, ´ = 2 and » = 5 (example 4).

Fig. 9. RMSEs of DOA estimation using constrained-FIB with

different filter coefficient vector bounds (example 4).

incoherent signals with equal power impinge on the

array from angles Á1 = 0
± and Á2 = 50

±, respectively.
The normalized bandwidth of the signals is assumed

to be [0:1,0:15] and [0:2,0:25], respectively. Let

the signal-to-noise ratio (SNR) be 0 dB. Figure 8

shows the MUSIC spatial spectrum computed by

(37) for DOA estimation using the proposed FIBs.

It can be seen that the unconstrained-FIBs just

marginally resolve the two DOAs due to the fact

that the noise is considerably amplified by the FIB

networking with large filter coefficients. On the

other hand the DOAs can be correctly estimated

using the constrained-FIB since the noise is well

controlled by restricting the filter coefficients. The

reason is that the noise is considerably amplified by

the FIB networking with large filter coefficients, and

hence, the SNR is this case is significantly reduced.

However, since the filter coefficients are bounded

Fig. 10. Response of MVDR beamformer, desire signal Ád = 0
±,

interferences Á1 =¡30±, Á2 = 120±, ´ = 2 and » = 5 (example 4).

as in (21) and (22), the noise amplification can be

effectively suppressed. Figure 9 shows the root mean

square error (RMSE) of estimating the DOA of the

two broadband signals versus input SNRs using

the proposed constrained-FIB with different filter

coefficient bounds. The result at each SNR is obtained

from 200 independent simulations. We can notice

that for small bounds, the proposed constrained-FIB

can offer quite good performance even at lower SNR

levels, whereas when the bounds become larger,

the performance tends to degrade. We now test the

effectiveness of the proposed constrained-FIB for

broadband beamforming. More precisely the desired

signal is assumed to impinge on the array at an angle

of 0±, while two interferences are from angles of

¡30± and 120±. The SNR of the desired signal is
0 dB, and the SNRs of the interferences are 30 dB.

The beamforming weight vector is obtained using

the MVDR algorithm as shown in (38), and the

resultant spatial response for interference rejection is

shown in Fig. 10. It can be seen that the interferences

can be successfully suppressed with the proposed

constrained-FIB using the MVDR beamformer in (38).

However, the interferences are not completely rejected

by the unconstrained-FIB due to the amplification of

noise. Finally, it can be noticed from Figs. 8—10 that

our proposed method with norm constraints that use

UCCAs can offer comparable performance to the FI

UCAs with ideal element pattern 1+cosÁ.

VII. CONCLUSIONS

A new, decoupled approach for designing FI

UCCAs with directional elements and its applications

to DOA estimation and adaptive beamforming have

been presented. By using appropriately designed

beamformers, each subarray along the radial direction

of the UCCA is transformed to an element with

appropriate directivity. Consequently, the whole

UCCA can be viewed as a virtual UCA with a desired
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directivity element pattern. By extending the approach

for designing FI-UCAs, the frequency dependency

of the virtual UCA is compensated to facilitate

broadband DOA and adaptive beamforming. The

LABFs and compensation filters can be designed

separately, and the problems are formulated as

SOCP programming problems, which can be solved

optimally and efficiently. Additional norm constraints

on the coefficients of the LABFs and compensation

filters are also incorporated to address the possible

noise amplification problem in large UCCAs.

Numerical examples are provided to demonstrate

the effectiveness and improvement of the proposed

methods in DOA estimation, adaptive beamforming,

and elevation control over the conventional FI-UCCA

design method.
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