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ABSTRACT

The performance of different direction finding algorithms
for the circular arrays is investigated in this paper. Several
direction estimation algorithms are studied with their pros
and cons discussed. Special consideration is given to the
necessary conditions needed prior to applying the
algorithms in order to guarantee high accuracy in the
field. Their performance is evaluated based on a simplified
data model with some further assumptions, and followed
by a top level comparison between each of the algorithms.
The on-going research shows that the performance of the
SAGE is superior to any of the other algorithms considered
here when applied to a circular array.

I. INTRODUCTION

Numerous research activities have focused on
evaluating the spatial characteristics of the radio
channel such that antenna array based systems can be
optimised during design. One of the major
parameters available from the spatial domain is that
of directional information, thus estimating the
direction-of-arrival (DoA) or direction-of-departure
(DoD) of multipaths has received considerable
attention.

Different direction finding techniques and algorithms
have been developed leading to significant
improvements in DoA estimation over the last
decade. However, to date, most of the reported
algorithms are based on the uniform linear array
(ULA) and the uniform rectangular array (URA)
architectures, and very little attention has been given
to the circular array topologies despite of their ability
to offer a number of advantages. A uniform circular
array (UCA) is able to provide 360º azimuthal
coverage and a certain degree of source elevation
information (depending on its element beampattern).
Note that a URA with non-omnidirectional elements
is not able to provide full azimuthal coverage due to
the directional beampattern of its elements. In a
beamforming application, the directional patterns of
a UCA can be electronically rotated throughout the
azimuth without significant change in the beam
shape. All elements on the UCA will exhibit
identical beampattern since the UCA has no edge

elements and is less sensitive to the mutual coupling
effects (compared to ULA and URA).

In terms of radio propagation, especially in a
multipath-rich environment, the signals will arrive at
the mobile terminal potentially from any azimuth
direction. Using a ULA in a channel sounding
campaign in this case will restrict the azimuth field
of view to less than 180º (typically 120º). A short-
term solution to this is to use several ULAs arranged
in a triangular or rectangular shape (Figure 1), or to
rotate the ULA a few times in order to cover the full
azimuth spread. However, the drawback for the
former solution is the requirement of using several
ULAs (hence increasing the cost) as well as
collecting additional data. While in latter solution,
the time for recording the full azimuth responses will
be more than the coherence time of a non-stationary
channel. Obviously, the problem becomes more
complicated in a double-directional measurement
needed to simulate the ad-hoc channel where each
mobile terminal will also act as a basestation and full
azimuthal coverage is required at both ends.

Figure 1 Triangular and rectangular arrangement of the ULAs,
each covering 120º and 90º field of view

Therefore, the UCA plays an important role and its
application in direction finding is investigated in this
paper. Part I of this paper is organised as follows. A
brief study on the UCA phase-mode excitation is
given in Section 2. Section 3 investigates the pros
and cons of several DoA estimation algorithms,
followed by the general discussions on various issues
in Section 4. Finally, Section 5 concludes Part I.  In
Part II [1], we evaluate the performance of the
Space-Alternating Generalised Expectation-
maximisation (SAGE) algorithm with real
measurement data using different UCAs.
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II. PHASE-MODE EXCITATION1

Since the beampattern of the UCA is periodic in
azimuth, it can be broken down into different Fourier
harmonics by using the Fourier analysis. Each of
these Fourier harmonics is termed a phase-mode of
the UCA [2]. The phase-mode excitation is able to
transform the UCA array manifold (in the element
space) into the ULA-like manifold in the UCA’s
phase-mode space [3]. Thus, most of the normal
ULA signal processing methods (e.g. Butler
beamforming matrices) can be applied to the UCA in
the phase-mode domain provided certain conditions
are met.

Figure 2 Uniform circular array geometry

Figure 2 shows the geometry of an N-element omni-
���������	
����������� n =2πn/N, θ and φ are the
source polar and azimuth angles measured from the y
and x axis, respectively. Taking the centre of the
UCA as reference, the phase shift experienced by the
n-th element caused by a far field source is given by

( ) ( )10 cossin −−=Θ nrjk
n ea γφθ (1)

n ∈ [1,N], and the array steering vector is

( ) ( ) ( ) ( )[ ]T
Naaaa ΘΘΘ=Θ ,,, 21 �� (2)

where T denotes the vector transposition, r is the

UCA radius, λ
π2

0 =k , λ is the wavelength of the

radiated signal, and ( )φθ ,=Θ .

The UCA can be excited with m-th phase-mode by
using a m-th phase-mode beamforming vector, wm:
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The resulting m-th phase-mode array beampattern is
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1 The concept of the phase-mode excitation of a UCA was

introduced in the 1960s and had been studied in great depth by
Davies [2][3].

where H denotes the Hermitian transpose operator.
Using the theorem of the Bessel function,
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where Jm( ) denotes a Bessel function of the first
kind of order m with argument , (4) can be rewritten
as
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where g = Nq-m and h = Nq+m.

Note that the original work in phase-mode excitation
was based on a circular array with continuous
aperture and its m-th phase-mode beampattern is
given by (6) without the distortion term. For the case
of a UCA with discrete elements, since only the first
term in (6) is useful, every effort has been made to
minimise the distortion term (7) and this has imposed
some restrictions in the direction finding algorithms
based on the phase-mode excitation.

Two important rules of thumb when applying phase-
mode excitation to an N-element UCA:

1. From the property of the Bessel function (Figure
3), Jm( ) has a small value when |m|� . In order
to excite the UCA with a reasonable strength
using the highest mode M, M must
be [ ]rkrkM 00 ,0sin ∈≈ θ  and the maximum

mode is given by the smaller integer that is
closer to or equal to rk0 . Hence, the modes that

can be excited are [ ]MMm ,−∈ .

Figure 3 Bessel function of the first kind

2. From the spatial Nyquist sampling theorem, the
UCA circumferential sampling rate should be at
least twice the highest spatial frequency present
in the array excitation [2]. Therefore, in order to
reproduce all the spatial harmonics that are
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excited, the number of elements in the UCA
must satisfy MN 2≥ .

Note that these two conditions decide the appropriate
radius and number of elements of the UCA, and thus
set the largest circumferential spacing between the

adjacent UCA elements to be 2
λ , and 

π
λ

4max

N
r = .

III. INVESTIGATION INTO DIFFERENT
DIRECTION FINDING ALGORITHMS

This section investigates several direction finding
algorithms using a UCA. To aid the following
discussions, we begin by constructing a common
narrowband signal model used in the estimation
algorithms. Assuming a total of K sources impinging
on an N-element omni-directional UCA, the array
response can be represented by

( ) ( )tAstx = (8)

where ( ) ( ) ( )[ ]KaaaA ΘΘΘ= ����� 21  is the array

response matrix, and ( ) ( ) ( ) ( )[ ]T
K tstststs ,,, 21 ��=

represents the K far field sources. In order to simplify
the studies, it is assumed that the number of sources
is known, the sources are uncorrelated, the channel is
noiseless, and the sources lie in the azimuth plane,
i.e. θ = 90º and �≡ φ.

A number (p) of array snapshots are collected within
the coherence time of the channel and the data matrix
is given by

( ) ( ) ( )[ ]ptxtxtxX ����� 21= (9)

The expected covariance matrix, R, is thus defined as

HXX
p

R
1= (10)

A. The Classical Beamforming Method (CBM)

The CBM is the simplest direction finding algorithm.
It estimates the DoA of the signals by scanning a
beam throughout the azimuth, and the DoAs are
located by the peaks in the power azimuth spectrum,
PCBM(φ), given by

( ) ( ) ( )φφφ RaaP H
CBM = (11)

Similar to the ULA’s case, the performance of CBM
is limited by the Rayleigh resolution and is not able
to resolve the closely spaced signals.

B. Capon’s Beamforming Method (Min-Variance)

The Capon’s Beamforming [4] method is also known
as the Minimum Variance Distorsionless Response
(Min-Variance). It is similar to the CBM, with an

additional feature of minimising the power
contributed by signals from other direction while
maintaining a fixed gain in the look direction.
Although its resolution is better than CBM, it is still
dependent upon the number of elements and the
signal-to-noise ratio (SNR) of the channel. Its power
azimuth spectrum is given by

( ) ( ) ( )φφ
φ

aRa
P

HMV 1

1
−

(12)
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 ——— Min-Variance (sources are coherent)

16-element omni-directional UCA, r=λ

Figure 4 Power spectrums of the CBM and
 Min-Variance algorithm

Figure 4 (details in caption) demonstrates the poor
resolution of the CBM that is not able to resolve
closely spaced sources. The high sidelobes of the
CBM also leads to misleading results. Although Min-
Variance has high-resolution, it fails when the
sources are coherent.

C. MUltiple SIgnal Classification (MUSIC)
C.1. Conventional MUSIC in element space

Although the element space MUSIC algorithm
introduced by Schmidt [5] has been widely used with
a ULA, it can also be used with a UCA, provided
that the sources are uncorrelated and the knowledge
of array manifold is available. Using the eigen-
decomposition procedure explained in [5], the
MUSIC spectrum is given by

( ) ( ) ( )φφ
φ

aEEa
P HHMU

1= (13)

where E is the noise subspace of R in (10), and ( )φa

is defined in (2).

C.2. MUSIC in phase-mode space

When the sources are coherent, the covariance matrix
R is rank deficient and spatial smoothing technique

a  b
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must be applied prior to applying any eigen-
decomposition based algorithm. However, the
original development of the spatial smoothing
technique [6] was based on the Vandermonde
structure in the steering vector of a ULA. UCA
phase-mode excitation provides a means to restore
the Vandermonde structure in the UCA steering
vector (2), with the penalty of reduced aperture size
in the phase-mode space.

C.2.1. Standard implementation

The element space data matrix, X, can be
transformed into the phase-mode space by

XJFX H
pm = (14)

where

( )










=
rkJjN

diagJ
m

m
0

1 [ ]MMm ,−∈ (15)

and [ ]MM wwwF �������� 0−=  (16)

is the phase-mode beamforming matrix. At this
stage, the UCA spatial smoothing [7] technique can
be applied to the new phase-mode space data (14).

For simplicity, without applying the phase-mode
spatial smoothing, the MUSIC spectrum is given by

( ) ( ) ( )φφ
φ

pm
H
pmpm

H
pm

pm
aEEa

P
1= (17)

where Epm is the phase-mode space noise-subspace,

and ( ) ( )φφ aJFa H
pm =  is the phase-mode steering

vector that exhibits the Vandermonde structure.

Note that the Bessel function term, Jm(.), has been
included in the computation of J in (15), since we
have assumed θ = 90º here. However, as θ ≠ 90º in
practice, Jm(.) would not be included in (15) so that θ
can be estimated as well.

C.2.2. UCA-RB-MUSIC

The UCA Real Beamspace MUSIC (UCA-RB-
MUSIC) introduced by Mathews and Zoltowski [8]
transforms the data matrix and the array manifold
into their real-valued counterparts in phase-mode
space by using a unitary matrix W (refer to [8] for the
construction of W). Due to the property of W, UCA-
RB-MUSIC effectively works with a forward-
backward averaged covariance matrix. Hence, its
performance is more robust when dealing with two
correlated sources. However, when more than two
sources are correlated, spatial smoothing [7] must be
applied. In addition, in the case of estimating both θ
and φ, the speed of locating the peaks in its 2-D
spectrum can be accelerated with the aid of a FFT
process (more details in [8]).

C.2.3. Unitary UCA-MUSIC

Note that the noise subspace in the UCA-RB-MUSIC
is determined from the real part of the calculated
covariance matrix. This is rather confusing since the
computation in UCA-RB-MUSIC is accomplished in
real-valued space. The authors [8] had claimed that
the UCA-RB-MUSIC is implemented in real-valued
since its imaginary part is nearly zero, i.e. almost
real. In order to fully eliminate the imaginary part to
facilitate the real-valued eigen-decomposition, the
authors had ignored the ‘nearly-zero’ imaginary part
of the covariance matrix. To some small extent, this
leads to minor leakage of some useful information
associated with the imaginary part.

Enhancement can be made by using the unitary left
���	
� �	����� �������� ��� ���� �� �Q’, to convert the

complex-valued data matrix into its real-valued
counterpart in phase-mode space. Hence, the eigen-
decomposition of the covariance matrix in Unitary
UCA-MUSIC can be performed in a true real-valued
domain. Similarly, the forward-backward averaging
process has been incorporated in this process and
hence, the Unitary UCA-MUSIC is also robust in
resolving two correlated sources.

C.3. Simple demonstration on MUSIC
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a – spectrum of UCA-RB-MUSIC
b – spectrum of Unitary UCA-MUSIC

c – spectrums of phase-mode space MUSIC
d – spectrums of Unitary UCA-MUSIC

16-element omni-directional UCA, r = λ
——— without smoothing, ——— with smoothing

a, b – 3 equipower uncorrelated sources at -10º, 110º, 130º
c, d – 3 equipower coherent sources at -10º, 110º, 130º

Figure 5 Spectrums of various MUSIC algorithms

From the spectrums of UCA-RB-MUSIC and
Unitary UCA-MUSIC algorithms shown in Figures
5a and 5b respectively (details in caption), the
performance of UCA-RB-MUSIC is inferior to that

a  b

c  d
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of Unitary UCA-MUSIC since the latter has a lower
noise floor. Nevertheless, both algorithms have
successfully produced the correct estimates and the
peaks corresponding to the three sources can be
easily located. The total failure of the algorithms
without spatial smoothing shown in Figures 5c and
5d demonstrates that spatial smoothing process must
be performed when the sources are coherent.

D. Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT)

One strict condition imposed by ESPRIT [10] is the
presence of two identical, translationally invariant
subarrays. Although we can define two such
subarrays from a UCA, Swindlehurst [11] showed
that the original ESPRIT [10] algorithm applied to
UCA fails when more than one source is present.
Therefore, special modifications must be performed
if ESPRIT were to be used with a UCA.

D.1. UCA-ESPRIT

Mathews and Zoltowski [8][12] had proposed the
UCA-ESPRIT algorithm based on the concept of
recursive relationship of the Bessel functions:

( ) ( ) ( )β
β

ββ mmm J
m

JJ
2

11 =+ +− (18)

Although its implementation is a little different from
the original ESPRIT, it is similar in the sense that a
Least Squares solution must be performed on a set of
overdetermined equations before the signal
parameters are obtained from its eigenvalues. The
main advantage of UCA-ESPRIT is its ability to
provide automatically paired θ and φ as a closed-
form solution. However, in a non-coherent case, the
maximum number of sources that can be resolved is
M-1, i.e. less than half of the resolution of MUSIC.
Moreover, its estimates are also a little biased.
Hence, the authors had proposed to use the UCA-
ESPRIT to provide a coarse estimate to initialise the
search function of the MUSIC in order to increase
the convergence speed of the MUSIC’s peak-
searching routine.

Table 1 shows the results of UCA-ESPRIT under
different conditions (details in caption). The number
of sources that can be resolved by UCA-ESPRIT
when N = 8 is 2, since M(N=8) = 3. By using a UCA
with more elements, the number of resolvable
sources can be increased and the estimates are also
more accurate, since the degree of freedom is higher.
This is shown in Table 1 where the estimated results
when N = 16 are more accurate. In addition, by using
a UCA with its radius smaller than the upper bound
limit stated in Section 2, i.e. circumferential spacing
between adjacent elements of less than λ/2, the
accuracy of the estimates can also be improved.

N r [λ]
(θ1, φ1) = (75º, 110º)
(θ2, φ2) = (90º, 130º)

0.63 e1 = (45º, 108.7º)
e2 = (90º, 125.5º)

8

0.50 e1 = (72º, 105.0º)
e2 = (90º, 126.6º)

1.27 e1 = (69º, 108.7º)
e2 = (90º, 135.5º)

16

1.00 e1 = (78º, 110.8º)
e2 = (90º, 131.3º)

N-element omni-directional UCA with r radius [in terms of λ]
2 equipower uncorrelated sources at (75º, 110º) and (90º, 130º)
Estimated direction is shown in third column by e1 and e2

Table 1 Estimated results using UCA-ESPRIT

D.2. Unitary UCA-ESPRIT in phase-mode space

Similar to the UCA-RB-MUSIC, the process of
eigen-decomposition of the covariance matrix in
UCA-ESPRIT has ignored the ‘nearly-zero’
imaginary part of its covariance matrix. In order to
facilitate a true real-valued computation, and to
improve the resolution of UCA-ESPRIT, the Unitary
UCA-ESPRIT in phase-mode space is proposed here.

The implementation of Unitary UCA-ESPRIT is
based on the combined concept of phase-mode
excitation and Unitary ESPRIT [9] algorithm.
Similar to the Unitary UCA-MUSIC algorithm, the
new introduced step in Unitary UCA-ESPRIT
involves the transformation of the phase-mode space
data matrix (14) from its complex space to its real-
�	
���� ��������	��� ��� � ��!� ���� ����	��� 
���� ���	

matrix defined in [9] – ‘Q’, and followed by the
ordinary Unitary ESPRIT procedure in the
subsequent steps. This results in increased accuracy
compared to UCA-ESPRIT, and increased number of
resolvable uncorrelated sources from M-1 to 2M.

However, since the θ-dependent term, i.e. the Bessel
function, has been eliminated by J (15) in Xpm (14),
only azimuth angle can be estimated using the
Unitary UCA-ESPRIT algorithm. This also suggests
a degradation in the performance of Unitary UCA-
ESPRIT if θ ≠ 90º, and from the extensive simulation
results, Unitary UCA-ESPRIT fails when θ < 70º.
This implies that although the performance of
Unitary UCA-ESPRIT is superior to UCA-ESPRIT
when θ = 90º, UCA-ESPRIT would still be the
preferred choice since θ ≠ 90º in practice.

D.3. CUBA-ESPRIT

The CUBA-ESPRIT [13] was specially developed
for direction finding using a circular uniform beam
array [14] (CUBA). Its implementation requires that
the element beampattern of the array exhibit a sinc(x)
function, or more precisely the beam spectrum must
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be bandlimited. Figure 6 shows the beampattern of
an 8-element CUBA and one of its elements. Due to
the unique feature of this sinc(x)-shape pattern, the
CUBA element space data can be transformed into a
virtual aperture domain by an FFT process, in which
the shift invariance property of the ESPRIT is fully
restored, and the spatial smoothing process can thus
be applied. This advantage is achieved at a cost of a
smaller virtual aperture size and hence a reduction in
the total number of resolvable sources.

CUBA Beampattern
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Figure 6 CUBA beampattern

For the case of a UCA, if the beampattern does not
exhibit the appropriate sinc(x) function, a sinc(x)
beamforming procedure can be performed prior to
implementing the CUBA-ESPRIT. However, due to
all sorts of array imperfections, a perfect sinc(x)-
shape beampattern could not be synthesised even
after the beamforming procedure and this leads to
increased bias and errors in the estimation.

In addition, CUBA-ESPRIT assumes that there is no
additional phase shift at the element-outputs, i.e. a
common phase centre for all elements. This implies
that the UCA must have very small diameter (ideally
zero) like that of a CUBA, which is practically
impossible for a normal UCA. Although CUBA-
ESPRIT has been proven to be very efficient and
robust, it is only suitable for a CUBA but not for
other ordinary UCAs, especially for those with
directional element beampattern.

E. Space-Alternating Generalised Expectation-
maximisation (SAGE)

Similar to the Expectation-Maximisation (EM)
algorithm [15], the SAGE algorithm [16][17] is a
maximum-likelihood (ML) based algorithm and its
implementation is very different from the
aforementioned algorithms that rely on eigen-
decomposition. Neither does SAGE need to fulfill
the rotational invariance characteristic of ESPRIT,
nor to exploit the array Vandermonde structure, since
spatial smoothing process is not required in SAGE
even when the sources are correlated. The principal
advantage of SAGE is its flexibility in any array
geometry and hence can be applied to any arbitrary

array (in theory), provided the knowledge of the
array manifold is fully available. However, one
major drawback is its slow convergence since it is
iterative in nature.

The objective of the SAGE algorithm is to maximise
the correlation function, defined as

( ) ( )φφ axxc H
kk =, (19)

where xk is the complete data [15][16] of the k-th
source. The peak in ck corresponds to the location of
the estimated parameter of the k-th source. Figure 7
shows the correlation functions of the SAGE (details
in captions). Since this is a 1-D estimation process,
the Serial Interference Cancellation (SIC) technique
proposed in [17] cannot be used, especially in a case
where the sources are closely spaced apart. Here, we
have used the conventional Parallel Interference
Cancellation (PIC) technique [16].
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a – 8-element omni-directional UCA, r=λ/2
b – 16-element omni-directional UCA, r=λ

3 equipower coherent sources at -10º, 110º, 130º
——— correlation function for the 130º source
——— correlation function for the -10º source
——— correlation function for the 110º source

Figure 7 Correlation functions of the SAGE with PIC technique

As shown here, SAGE is able to cope with the
coherent sources and spatial smoothing is not
required. The convergence speed of SAGE depends
on the degree of separation between the paths, and
the number of elements used in the array, since the
number of samples required in the correlation
increases (more samples can enhance the accuracy of
the correlation) as the number of elements increases.
For a 16-element UCA, the SAGE has converged
after 3 iterations, giving the correct estimates at -10º,
110º, and 130º (Figure 7b). However, for the 8-
element UCA, after 3 iterations, the estimated results
are -9º, 114º, and 125º (Figure 7a) and thus more
iterations are needed to achieve convergence
especially for the 2 sources at 110º and 130º. Note
that in practice, more iterations might be needed
since we have assumed a simplified model here. In

a

b

a
b
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any event, as the number of samples grows, the
computational load of the SAGE increases
exponentially especially in a multi-dimensional case.

F. UCA-to-ULA mapping technique

The so-called ‘mapping’ technique proposed by
Hyberg [18] can transform the UCA data, in a Least
Squares sense, into that of a virtual ULA, by a
transformation matrix - Tk. The computation of Tk

requires a large amount of measured array manifold
data and can only map a small sector (typically 30º
as recommended) of a UCA data onto the virtual
ULA each time.

After the UCA-to-ULA mapping, both the θ and φ
are estimated using the normal ULA-type algorithms
separately in the transformed elevation and azimuth
domains, respectively. As a result, a separate
procedure must be developed to pair up both the θ
and φ. In addition, Hyberg also reported that biased
errors occur in the estimated results using this
technique.

In spite of all these problems, Hyberg has claimed
that using the similar mapping technique to
transform a UCA data into that of a smaller virtual
UCA can improve the resolution of the UCA-
ESPRIT algorithm.

IV. GENERAL DISCUSSIONS

The effectiveness and performance of the estimation
algorithms mainly depend on the array geometry.
Most of the array signal processing techniques are
based on the ULA since the important criterions
needed by the algorithms can be easily fulfilled with
a ULA. As such, many researchers have attempted to
adapt the ULA’s signal processing techniques to the
UCA, with some extra procedures like the phase-
mode excitation. This causes the original information
associated with the UCA  to be modified into another
domain. However, not all information can be
preserved and this leads to degradation in
performance. This can be clearly observed in the
estimated results of UCA-ESPRIT which is inferior
to that of the UCA-MUSIC, where the performance
of ESPRIT in ULA is supposed to be superior to
MUSIC.

Phase-mode excitation in UCA signal processing is
important because it allows the spatial smoothing
process to be performed in MUSIC, and the
rotational shift invariance property to be restored in
ESPRIT. However, the phase-mode excitation for a
UCA with discrete elements is distorted by the
residue term (7) due to finite sampling around the
circular aperture. As the mode being excited
becomes larger, the effects caused by the distortion
term (7) become more apparent. This is shown in
Figure 8 for the 2nd and 7th modes of a 16-element

UCA, where the contribution from the distortion
term can be clearly seen in the responses of the 7th

mode.
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a – phase response of the 7th mode
b – phase response of the 2nd mode

c – amplitude response of the 7th mode
d – amplitude response of the 2nd mode

—— actual mode response, —— assumed ideal mode response

Figure 8 Responses of the phase-mode excitation of 16-element
omni-directional UCA

In general, using a UCA with N = 2M + 6 elements
will virtually eliminate the distortion, where M is the
maximum mode to be excited [12]. This implies that
in order to achieve better accuracy, the
transformation from the element space into the
phase-mode space has further reduced the aperture
size of the data, and hence reducing the maximum
number of resolvable sources. This introduces further
constraints to the algorithms that a large number of
elements is required so that the estimated results will
be reliable.

On the other hand, although the SAGE algorithm is
computationally expensive (especially in multi-
dimensional parameters estimation), it has
demonstrated its suitability and excellent
performance when applied to a UCA. Chan [19] and
Wax [7] showed that the maximum-likelihood
algorithms (like SAGE) have better performance
than MUSIC. Note that as long as the knowledge of
the array manifold is available, SAGE will produce
reliable results. The performance of other algorithms
considered in this paper is inferior to that of SAGE
even when the sources are uncorrelated and the
channel is noiseless.  One would appreciate further
merits on SAGE when the simulation includes highly
correlated sources, bad SNR in the channel, and by
using a non-ideal UCA with directional beampattern
and mutual coupling. Under such conditions, we
would expect a total failure in other algorithms but it
is very likely that SAGE will survive.

 a  b

 c  d
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V. CONCLUSION

In this paper, the pros and cons of several direction
finding algorithms with a UCA are investigated. The
conditions that govern the performance of the
algorithms are stated. The analysis shows that the
SAGE algorithm is superior to other algorithms
when applied to a UCA, and should be the preferred
choice when the number of elements is small. Other
algorithms are suitable only when the number of
elements on the UCA is large, and appropriate spatial
calibration algorithm must be performed to eliminate
the mutual coupling effects and any array
imperfection on the UCA – a process that is essential
especially if ESPRIT were to be applied with a UCA.
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ABSTRACT

The application of different circular arrays in direction
finding or directional channel sounding is investigated
experimentally in this paper. The optimised design of the
geometry of a circular array that can enhance the
performance of the SAGE algorithm in direction finding is
presented. In particular, several circular arrays with
different element types are considered, and their impact on
data quality in directional channel estimation is studied
through numerous test measurements conducted within an
anechoic chamber. Our studies show that the performance
of the SAGE algorithm varies between different arrays
structures despite its freedom and flexibility in any
arbitrary array geometry.

I. INTRODUCTION

In recent years several measurement techniques have
been proposed in order to obtain channel information
that enable the extraction of the direction-of-arrival
(DoA) and direction-of-departure (DoD) information
[1]. In order to retrieve the directional information
from the measured data efficiently, the measurement
equipment and post-processing tools must support
the antenna arrays. Here, a state-of-the-art wideband
vector channel sounder described in [2] suits this
purpose well.

When a full 360º azimuth field of view is required, a
uniform circular array (UCA) should be employed
such that the full 360º channel responses can be
recorded within the coherence time of the channel.
This ensures that the instantaneous DoAs or DoDs of
the multipaths at a particular time instant from all
directions can be resolved within a measurement
snapshot. Sub-optimal methods based on the linear
arrays do not support this principle, since the real
channel is multipath-rich and non-stationary [3]. If
both the azimuth and elevation information are
important, a 3-D array such as the spherical array
proposed in [4] should be used. Since the main
objective of this work is to study the performance of
the Space-Alternating Generalised Expectation-
Maximisation (SAGE) [5] algorithm using different
UCAs, only the azimuth information is considered
here.

In Part I [3], we show that the performance of the
SAGE algorithm when applied to a UCA is superior
to other algorithms, and this is justified analytically
by means of comparison between the performance of
several algorithms using a simplified data model.
Potentially, the choice of the UCA used plays an
important role in determining the actual performance
of the SAGE when applied to real measured data
from a real environment. From the mathematical and
theoretical point of view, SAGE should work with
any array configuration consisting of any arbitrary
architecture as long as the exact array manifold
knowledge is available. But, this is not always true
since the performance of the SAGE relies on the
array manifold pattern as well as the choice of the
array element type. This constitutes the main reason
that SAGE behaves differently with different arrays
of the same geometry and dimension.

Having justified SAGE as the preferred algorithm for
the UCA case in Part I [3], we investigate its
performance with different UCAs in this paper – Part
II. The organisation of Part II is follows. A study of
the optimised array design that can improve the
performance of SAGE is given in Section 2. Section
3 describes the different UCAs as well as the test
procedure and the measurement setup for the
experiments Section 4 discusses the initial
measurement results produced by SAGE. Finally,
Section 5 concludes this paper.

II. ENHANCING THE PERFORMANCE
OF SAGE

First, we develop a simple narrowband data model
and review the basic philosophy of the SAGE
algorithm [5] as a precursor to the following
discussions. Assuming a total of K signals from far
field impinge on an N-element UCA, the UCA
response is given by:

( )[ ] ( )[ ] ( )[ ]∑
=

+=
K

k

NxNx
k

Nx tntstx
1

111 σ (1)

where ( )[ ] ( ) ( )[ ]11 Nx
kk

Nx
k atts Θ= γ (2)
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is the k-th signal component, k(t) is the complex
path weight of the k-th signal at time t, ( )ka Θ is the

���������	
�����������������
����
������	���	�
� k

= (θk,φk) and is defined in eq. 2 in Part I [3], n(t) is
the complex noise that is independently and
identically normal distributed with a standard
deviation , and the superscript [·] denotes the
dimension of the vector.

The basic principle of the SAGE algorithm is to
minimise the following cost function:

( ) ( )( ) ( )( )Θ−⋅Θ−=Θ sxsxx H,2ξ (3)

where ( ) ∑
=

=Θ
K

k
kss

1

is the summation of all the K

signal components, and H denotes the Hermitian
transpose operator. Minimising the cost function is a
non-convex minimisation problem, since the cost
function has one global minimum and several local
minima. In the case of using the vector channel
sounder as described in [2], some of the signals will
be coherent, i.e. the signals impinge on the UCA are
correlated as they are emitted from the same source
�
�� �	���� ����� ����� �	�	���� � �������� ���

coherent signals are present, the cost function (3) is
likely to converge to its local minimum as a solution
to the minimisation problem. This causes SAGE to
produce the wrong estimates for the virtual paths
(which are in fact non-existent).

The implementation of the SAGE is based on
locating the peak in the correlation function:

( ) ( )Θ=Θ axxc H
kk , (4)

where xk is the complete data of the k-th path [5]
which is obtained in the expectation step (E-step) of
the SAGE algorithm. The location of the peak
corresponds to the value of the parameter of interest
and is estimated in the maximisation step (M-step) of
the SAGE algorithm. Note that this is the same
principle as that in the EM algorithm [6]. However,
for an m-dimensional (m-D) estimation problem, EM
algorithm has to perform K optimisation processes in
the m-D space, whereas SAGE just has to perform
m*K optimisation processes separately in 1-D space.

The shape of the correlation function (4) depends on
the nature of the k-th complete data, xk, and the array
pattern (i.e. the structure of the UCA). In the
implementation of SAGE, xk is computed in the E-
step by using either the Parallel Interference
Cancellation (PIC) or the Serial Interference
Cancellation (SIC) technique, represented by (5) and
(6), respectively:

∑
≠
=

−=
K

kl
l

lPICk sxx
1

, ˆ (5)

∑
−

=

−=
1

1
, ˆ

k

l
lSICk sxx (6)

where lŝ is the estimated signal copy of the l-th path.

Note that since lŝ is only the estimated value, not all

the contributions from the previous estimated paths
are subtracted from x. Hence, xk contains the wanted
information of the k-th path as well as the unwanted
residue information from other paths.
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Figure 1 Correlation function for the k-th path
φk = 0º, 8-element omni-directional UCA, r = rmax

Figure 1 shows the correlation function for the k-th
path, φk = 0º. When the residue terms from -15º and
60º are not fully removed from xk. ck peaks at -5º
with a high sidelobe at -175º. When the residue terms
are fully removed, ck peaks at 0º and the sidelobe
level is lower. In the worst case, if the sidelobes
corresponding to the k-th path and the residue
components are higher (due to constructive
superposition) than the main lobe, a wrong estimate
will be produced.

Since it is unlikely that all the residue components
from other paths to be fully removed from xk in an
estimation process, we can minimise the probability
of estimating the wrong results by reducing the
sidelobe level in the correlation function. This can be
achieved by using a UCA with a radius smaller than
its maximum value (7) [3]

π
λ

4max

N
r = (7)

where λ is the wavelength. Through extensive
numerical simulations, the optimum radius that can
enhance the performance of SAGE is found to be

max16
r

N
ropt <≈ λ

(8)

such that the corresponding mainlobe and the
sidelobes in ck have the largest separation.

Figure 2 shows the ck function for φk = 0º and for
different radius (details in caption). In general, ck

should decrease monotonically and r<rmax serves this
purpose well. Clearly, the sidelobes when r<rmax are
lower than that of r=rmax. The problem becomes
worse when the spatial Nyquist sampling theorem is
violated when r=2λ>rmax. Figure 3 shows the
improvement achieved when r=ropt is used for the
same problem associated with the discussion in
Figure 1.
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Figure 2 Correlation functions for the k-th path
φk = 0º, 16-element omni-directional UCA
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Figure 3 Correlation function for the k-th path
φk = 0º, 8-element omni-directional UCA, r = ropt

In addition, further enhancement can be made by
using the directional elements. This is shown in
Figure 4 where the sidelobes are further attenuated
monotonically. In this case, the probability of
producing an estimation error due to the
contributions of the residue components in xk is
greatly minimised.
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Figure 4 Correlation function for the k-th path, φk = 0º, N = 16
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Thus, with an optimised array geometry, its resultant
optimised beampattern will produce a more ‘well-
shaped’ pattern in the correlation function and can
maximise the probability of the cost function (3)
converging to its global minimum, and the
probability of estimating the virtual paths can be
further reduced.

III. DESCRIPTIONS OF THE UCAs AND
MEASUREMENT PROCEDURE

A. Different UCAs used in the experiments

In order to evaluate the performance of SAGE on
different UCAs in a more realistic way, several 8-
element UCAs of the same radius1, r = 0.64λ,  with
different element types were constructed. The UCAs
were designed to operate in the 5.2 GHz band. Figure
5 shows the pictures of:
a. Vertical polarisation uniform circular monopole

array (UCMA)
b. Dual polarisation uniform circular patch array

 i. Horizontal polarisation (HP-UCPA)
 ii. Vertical polarisation (VP-UCPA)

c. Horizontal polarisation uniform circular dipole
array (HP-UCDA)

d. Vertical polarisation uniform circular dipole
array (VP-UCDA)

 

 

a - 8-element vertical polarisation monopole array (UCMA)
b – 8-element dual-polarisation patch array

horizontal polarisation (HP-UCPA)
vertical polarisation (VP-UCPA)

c – 8-element horizontal polarisation dipole array (HP-UCDA)
d – 8-element vertical polarisation dipole array (VP-UCDA)

Figure 5 Pictures of different UCAs

                                                
1 These UCAs were constructed at the beginning of this project

and hence the radius had been designed to be equal to rmax in
(7). However, if any new UCA were to be constructed for
directional channel sounding purpose in future, we would
prefer to use ropt in (8) instead of rmax in (7).

  r = 0.5λ r = ropt = λ

   r = rmax   r = 2λ

a b

c d
 r = ropt  r = rmax
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The length of the monopoles in the UCMA is λ/4.
The elements used in the patch array are the dual-
polarised circular stacked patch antennas [7], and for
that in the HP-UCDA and VP-UCDA are the printed
dipoles of length equal to λ/2. All elements in the
arrays (except UCMA) are mounted in the middle of
a cylindrical ground plate. The length of both the
upper and lower parts of the cylindrical ground plate
was chosen to be 5λ in order to minimise the
undesirable edge fringing effect. Each of the printed
dipoles is displaced by λ/4 from the cylindrical
ground plate (figure 6) to reduce the destructive
superposition of the impinging waves – Image theory
[8].

Figure 6 The dimension of the printed dipole
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a – UCMA,   b – HP-UCPA,   c – VP-UCPA
d – HP-UCDA,   e – VP-UCDA

——— co-polarised pattern (left vertical axis)
 ——— cross-polarised pattern (right vertical axis)

Figure 7 Measured beampatterns for an example element on the
UCAs, all plots are normalised to the peak in the co-polarised gain

Figure 7 (details in caption) shows the co-polarised
and cross-polarised radiation patterns for an example
element on the UCAs, measured in an anechoic
chamber using the Wiltron Network Analyser. The
radiation patterns are asymmetric due to the effects
of mutual coupling and the array imperfections, since
spatial calibration process (similar to that in [9]) has
not been applied to the UCAs as yet. It can also be

seen that surface waves exist on the UCAs (except
UCMA) and propagate round the cylindrical ground
plate since the responses are not zero when the
orientation of the UCAs (except UCMA) is at –180º
(or 180º). The 10λ long cylindrical ground plate for
the vertically polarised arrays has caused their
elements to exhibit a wider co-polarised beamwidth.

B. Measurement setup

The measurements were conducted in an anechoic
chamber at 5.2 GHz using a Medav RUSK BRI
channel sounder (similar to that in [2]). All the UCAs
were set to be the receiver. The transmitter was a
dual-polarised commercial horn antenna. At 5.2
GHz, its gain was 11.5 dBi and its 3-dB beamwidth
in the E-plane and H-plane was 40º and 35º,
respectively. The transmitted periodic multi-
frequency test signal had a bandwidth of 120 MHz
�	������� �������	�	�
����	����	
������
������������
be co-polarised with the UCA under consideration.
The tests2 that were conducted are as follows.

a. 2 coherent sources tests

 

UCArotated from
-50º to 50º

First element at 0º

2 coherent sources

moved forward
and backward a

few times by
fractions of a
wavelength

static at all
times

Source 1 Source 2

Figure 8 Sketched plan for the 2 coherent sources test

The UCA was fixed in the middle and its orientation
was rotated from -50º to 50º in 10º steps. The 2
coherent sources were placed at an angle equally
away from both sides of the UCA centre axis, i.e. 1=

2. The first coherent source was static at all times,
while the second one was moved forward and
backward by a small fraction of a wavelength several
times for each of the UCA’s orientations. The reason
for this was to collect a few samples in which the
phase offset for the 2 coherent sources was different
in each sample. In all measurements, the UCA and
the 2 coherent sources were set  the same height.

Figure 9 The 2 coherent sources test

                                                
2 Due to limited time constraints, not all tests were performed

using all UCAs.

 λ/2

 λ/4

Ground plate
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b. LOS measurement with different TX-RX heights

The purpose of this test is to evaluate the impact of
neglecting the elevation angle in direction finding.
Both the TX and the UCA were set at different
heights and directly faced each other. Measurements
were taken for each UCA’s orientation from -180º to
180°.

 

 
Figure 10 The elevation test

IV. PERFORMANCE EVALUATION

One of the most useful tests to determine the
effectiveness and robustness of the algorithm is the
coherent source test. Although the UCAs have the
similar geometry, their results behave differently in
the presence of coherent sources. The performance of
the SAGE algorithm on different UCAs is evaluated
in this section, based on the initial results obtained so
far. Since this is a wideband measurement and the
measurement data was stored as the complex
frequency response, we have used the 2-D SAGE
algorithm to estimate the DoA and the time-delay-of-
arrival (TDoA) together. Due to space constraint, not
all results are shown here.
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           a – Ideal  monopole, N = 8, r = rmax,              b - UCMA
c – HP-UCPA d – VP-UCPA
e – HP-UCDA f – VP-UCDA

Figure 11 Correlation functions for the UCAs, φ = 0º

First, we examine the correlation function of the
UCAs when φ = 0º (Figure 11). As mentioned in
Section 2, by using the elements with directional
beampattern, the sidelobe level in the correlation
function can be further reduced. This observation is
confirmed by comparing the real correlation
functions of different UCAs (except UCMA) with
that of an ideal omni-directional UCA. By
inspection, we would expect the performance of the
VP-UCPA to be superior to others since its
correlation function is the most ‘well-shaped’ here.
The sidelobes of other correlation functions do not
roll off monotonically and this might affect the
accuracy of the estimated results. But this is
inconclusive at this stage and further tests must be
performed to confirm this.

The correlation functions are very different to each
other since the elements of each UCA are different.
Moreover, they are not symmetrical partly due to the
different degrees of mutual coupling and array
imperfections within themselves, as well as
(possibly) minor technical faults occurred during the
measurements (e.g. the vertical axis of the UCAs was
not exactly aligned with the axis of rotation of the
mounting device in the anechoic chamber). In the
following sections, the DoAs were estimated using
the measured array manifold in the 2-D SAGE
correlation process, and no spatial calibration has
been applied as yet. The resolution of the spatial
sampling grid of the measured array manifold is 1º.
Thus, the following estimation is performed by using
the discrete data model at a correlation grid of 1º.
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Figure 123 Estimated DoA (a) and TDoA (b) results using the UCMA

                                                
3 All the estimated DoA results are plotted after normalising their

absolute values to the UCA orientation with respect to the
���������	
���	�������� 	��������� �����
�	������ 1����� 2 values
are plotted here.
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Figure 12a shows the estimated DoAs for the 2
coherent sources separated by (approximately) 40º
using the UCMA. Most of the times the 2 coherent
sources are separable but SAGE produces some
wrong estimates for the virtual paths occasionally.
The main reason for this is due to the bad
constellation of the path weights of the 2 coherent
sources that results in constructive superposition of
the sidelobes and destructive superposition in the
actual mainlobe in the correlation function. Since one
of the coherent sources was moved forward and
backward within fractions of a wavelength in each
experiment sequence (Figure 8), different samples of
path weights constellation were obtained since the
phase difference between the paths was different.
Unreliable estimates will be obtained when the
critical path weights constellation occurs. However,
the estimated TDoA (Figure 12b) is very accurate
since it relies on the temporal correlation function
which exhibits a much better behaviour than the
spatial correlation function (due to the large
sounding bandwidth of 120 MHz).

In addition, using the UCMA of this type in
directional channel sounding has one major
disadvantage compared to other UCA topologies.
When the sources are not co-planar with the UCMA,
the ground plate of the UCMA will act as a reflector
to the impinging waves (i.e. scattering on the ground
plate) and causes the array response to be distorted.
The degree of distortion determines the degree of
modification on the phase shift between the elements
needed in the DoA estimation process. A wrong
estimate will be produced when SAGE is not able to
cope with the distortion that has corrupted the phase
shift information on the UCMA. This effect is not
observable here since the UCMA and the coherent
sources were co-planar, i.e. at the same height.

Figure 13 shows the estimated DoAs of the 2
coherent sources separated by 40º with the HP-
UCDA (a) and HP-UCPA (b). The results are a little
biased (for Source 2) and wrong estimates occur
occasionally (for HP-UCDA). We believe this is
caused by the bad path weights constellation of the
two sources. Better improvement could be achieved
if the reference data (the measured manifold) has a
better resolution, i.e. the step size of the spatial
correlation sampling grid is less than 1º. In a coherent
case, the degree of accuracy also depends on the
degree of separation between the sources. This is
demonstrated in Figure 14 where the estimated
results with HP-UCDA (a) and HP-UCPA (b) are
better when the sources were separated by 50º.
Results also show that the HP-UCPA is superior to
HP-UCDA since the latter produced estimation errors
occasionally.

Table 1 shows the standard deviation of the estimated
DoAs of the 2 coherent sources without including the
wrong estimates. The standard deviation for Source 1

is always lower than that for Source 2 since Source 1
was static at all times and Source 2 was moved
forward and backward several times for each UCA
orientation (Figure 8). Results from HP-UCPA have
a smaller standard deviation than that of HP-UCDA,
and the standard deviation is also smaller when the
sources were separated further apart.
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Figure 133 Estimated DoA results for the 2 coherent sources
separated by 40º using the HP-UCDA (a) and HP-UCPA (b)
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Figure 143 Estimated DoA results for the 2 coherent sources
separated by 50º using the HP-UCDA (a) and HP-UCPA (b)
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Standard deviation
UCAs

Coherent
sources

separation Source 1 Source 2

UCMA 40º 0.8º 1.9º

HP-UCDA 40º 3.3º 4.9º

HP-UCDA 50º 3.0º 3.5º

HP-UCPA 40º 1.2º 2.7º

HP-UCPA 50º 0.8º 1.4º

VP-UCPA 40º 0.9º 1.3º

VP-UCPA 50º 0.6º 1.0º

Source 1 refers to α1  in Figure 8 (the upper part of the estimated
DoA graphs), Source 2 refers to α2 in Figure 8 (the lower part of

the estimated DoA graphs).

Table 1 Standard deviation of the estimated DoAs of the 2
coherent sources (without including the virtual paths)
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Figure 153 Estimated DoA results of the 2 coherent sources
separated by 40º (a) and 50º using the VP-UCPA

Figure 15 shows the estimated DoA results for the 2
coherent sources separated by 40º (a) and 50º (b)
with the VP-UCPA. In contrast to the previous
estimation, the results obtained using the VP-UCPA
were produced with a spatial correlation sampling
grid of 0.5º. Amongst all the UCAs, VP-UCPA
seems to produce the best results. The estimated
results are consistent and have the smallest standard
deviations. Results of Source 2 seem to be a little

‘oscillatory’ since it was moved forward and
backward several times for each UCA orientation (so
that different phase offsets of the signals can be
obtained). The fluctuation in the DoA results
corresponding to Source 2 has demonstrated some
sort of periodicity and this implies that the SAGE is
able to track little changes in the DoA when Source 2
was moved in that manner. The improvement
presented in Figure 15 is achieved since the reference
data of the VP-UCPA has a better resolution (0.5º)
compared to the reference data of other UCAs (1º
grid).

All the estimated results shown above do not match
the expected angular displacement of the 2 sources
(40º or 50º) hints that the sources are not separated
by exactly 40º or 50º apart during the measurement.
This is inevitable although every effort has been
made to minimise any source of errors during the
experiments. Moreover, the path weights
constellation in all experiments is also different since
the exact positions of the sources were altered
whenever a new experiment was conducted. The
number of SAGE iterations used here is between 5-
50 times. Note that as the separation distance of the
sources decreases, more iterations will be needed to
achieve convergence. A reference data with a smaller
sampling grid (ideally continuous) should be used if
better accuracy were to be achieved.

Figure 16 shows the results of the elevation test
using the VP-UCPA. The single source was elevated
at an angle of about 12º from the azimuth plane and
the results were produced by neglecting the elevation
angle. It shows that the performance of the SAGE is
unaffected at this elevation angle since the estimates
are very accurate. However, we would expect the
results to be more biased as the elevation angle of the
source increases. Due to the limited physical size of
the anechoic chamber, not much elevation tests (for a
source at far field) could be performed to confirm
this. Although the UCA is able to produce some sort
of elevation angle information, it might not be
reliable due to the limited beamwidth of the elements
on the UCA. In order to obtain both azimuth and
elevation angles properly, a 3-D array such as that
proposed in [4] should be used.
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V. CONCLUSION

The performance of the SAGE algorithm using
different UCAs is evaluated based on different
experiments conducted in an anechoic chamber.
Since the results corresponding to different UCAs
vary among themselves, it can be concluded that the
measurement outcome is dependent on the array
choice. Although no further conclusion on the ‘best
array element choice’ can be drawn as yet but the
work presented here provides a good indication that
the VP-UCPA is able to produce the best estimation
results. It is expected that the performance of the
SAGE algorithm using the optimum array design
discussed in Section 2 would further enhance the
performance.

Results show that in the presence of the coherent
sources, UCMA is not able to provide reliable DOA
estimates. Improvement could be obtained if the
optimum array radius (ropt) is used. However, the
ground plate of the UCMA might cause wrong
estimation results when the sources are not co-planar
with the array – a phenomena that is unavoidable in
real environment. This implies that the UCMA is not
suitable in directional channel sounding. On the other
hand, the TDoA estimates are very accurate in all
cases since it is unaffected by the array structure.

Note that the work presented so far has not excluded
the effects of the mutual coupling in the UCAs. It is
expected that by performing the spatial calibration
process (similar to that in [9]) prior to applying the
algorithm would further enhance the performance.
With that, a smaller sampling grid in the correlation
process can be used and the results will be more
accurate. Research is now on-going to develop a
calibration algorithm that is suitable for the UCAs.

Since the performance of SAGE varies between
different arrays and it is important to exclude any
effect of the antenna from the propagation channel
[1], a proper array that is suitable for directional
channel sounding must be carefully chosen.
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