504 research outputs found

    Surface Constraint of a Rational Interpolation and the Application in Medical Image Processing

    Get PDF
    Abstract : A new weighted bivariate blending rational spline with parameters is constructed based on function values of a function only. The interpolation is C1 in the whole interpolating region under the condition which free parameters is not limited. This study deals with the bounded property of the interpolation. In order to meet the needs of practical design, an interpolation technique is employed to control the shape of surfaces. This rational interpolation with parameters is used in the medical image enhancement. The value of the interpolating function at any point in the interpolating region can be modified under the condition that the interpolating data are not changed by selecting the suitable parameters. Using the surface control, the local enhancement of the image is implemented. The experimentations show that this algorithm is efficient

    On spline quasi-interpolation through dimensions

    Get PDF

    Representation and application of spline-based finite elements

    Get PDF
    Isogeometric analysis, as a generalization of the finite element method, employs spline methods to achieve the same representation for both geometric modeling and analysis purpose. Being one of possible tool in application to the isogeometric analysis, blending techniques provide strict locality and smoothness between elements. Motivated by these features, this thesis is devoted to the design and implementation of this alternative type of finite elements. This thesis combines topics in geometry, computer science and engineering. The research is mainly focused on the algorithmic aspects of the usage of the spline-based finite elements in the context of developing generalized methods for solving different model problems. The ability for conversion between different representations is significant for the modeling purpose. Methods for conversion between local and global representations are presented

    Algorithm XXX: SHEPPACK: Modified Shepard Algorithm for Interpolation of Scattered Multivariate Data

    Get PDF
    Scattered data interpolation problems arise in many applications. Shepard’s method for constructing a global interpolant by blending local interpolants using local-support weight functions usually creates reasonable approximations. SHEPPACK is a Fortran 95 package containing five versions of the modified Shepard algorithm: quadratic (Fortran 95 translations of Algorithms 660, 661, and 798), cubic (Fortran 95 translation of Algorithm 791), and linear variations of the original Shepard algorithm. An option to the linear Shepard code is a statistically robust fit, intended to be used when the data is known to contain outliers. SHEPPACK also includes a hybrid robust piecewise linear estimation algorithm RIPPLE (residual initiated polynomial-time piecewise linear estimation) intended for data from piecewise linear functions in arbitrary dimension m. The main goal of SHEPPACK is to provide users with a single consistent package containing most existing polynomial variations of Shepard’s algorithm. The algorithms target data of different dimensions. The linear Shepard algorithm, robust linear Shepard algorithm, and RIPPLE are the only algorithms in the package that are applicable to arbitrary dimensional data

    On the constrained mock-Chebyshev least-squares

    Full text link
    The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes whose elements mimic as well as possible the Chebyshev-Lobatto points. In this work we use the simultaneous approximation theory to combine the previous technique with a polynomial regression in order to increase the accuracy of the approximation of a given analytic function. We give indications on how to select the degree of the simultaneous regression in order to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical results are provided.Comment: 17 pages, 9 figure

    Parametric Interpolation To Scattered Data [QA281. A995 2008 f rb].

    Get PDF
    Dua skema interpolasi berparameter yang mengandungi interpolasi global untuk data tersebar am dan interpolasi pengekalan-kepositifan setempat data tersebar positif dibincangkan. Two schemes of parametric interpolation consisting of a global scheme to interpolate general scattered data and a local positivity-preserving scheme to interpolate positive scattered data are described

    Proceedings of the NASA Workshop on Surface Fitting

    Get PDF
    Surface fitting techniques and their utilization are addressed. Surface representation, approximation, and interpolation are discussed. Along with statistical estimation problems associated with surface fitting

    Numerical quadrature for Gregory quads

    Get PDF
    We investigate quadrature rules in the context of quadrilateral Gregory patches, in short Gregory quads. We provide numerical and where possible symbolic quadrature rules for the space spanned by the twenty polynomial/rational functions associated with Gregory quads, as well as the derived spaces including derivatives, products, and products of derivatives of these functions. This opens up the possibility for a wider adoption of Gregory quads in numerical simulations
    corecore